
February 23, 2009 18:30 02298

International Journal of Bifurcation and Chaos, Vol. 19, No. 1 (2009) 419–433
c© World Scientific Publishing Company

CRITICAL PERIODS OF PLANAR REVERTIBLE
VECTOR FIELD WITH THIRD-DEGREE

POLYNOMIAL FUNCTIONS

PEI YU∗ and MAOAN HAN
Department of Applied Mathematics,
The University of Western Ontario,
London, Ontario N6A 5B7, Canada

∗Department of Mathematics, Shanghai Normal University,
Shanghai 200234, P. R. China

∗pyu@uwo.ca

Received August 14, 2007; Revised April 28, 2008

In this paper, we consider local critical periods of planar vector field. Particular attention is given
to revertible systems with polynomial functions up to third degree. It is assumed that the origin
of the system is a center. Symbolic and numerical computations are employed to show that the
general cubic revertible systems can have six local critical periods, which is the maximal number
of local critical periods that cubic revertible systems may have. This new result corrects that in
the literature: general cubic revertible systems can at most have four local critical periods.
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1. Introduction

The study of Hilbert’s 16th problem [Hilbert, 1902]
has attracted many researchers from the area of
nonlinear dynamical systems. The problem seems
far away from having a complete solution, since
the uniform finiteness problem is not solved even
for general quadratic systems. In order to find the
upper bound of Hilbert number, many researchers
have turned to consider the lower bound of Hilbert
number and hoped to get close to the upper bound
by raising the lower bound for general planar poly-
nomial systems or for individual degree of systems.
Many results have been obtained (e.g. see the review
articles [Han, 2002; Li, 2003; Yu, 2006; Han &
Zhang, 2006]). One of the research directions is
to study small amplitude limit cycles bifurcating
from Hopf critical point by computing the focus

values (or Lyapunov constants, or normal form of
Hopf bifurcation) with the aid of computer alge-
bra systems such as Maple, Mathematica. The ear-
liest result based on focus value computation goes
back to Bautin [1954] who proved that a general
quadratic system can at most have three small limit
cycles bifurcating from an isolated Hopf critical
point. Recently, the method of normal forms and
efficient computation technique have been used to
obtain bifurcation of 12 small limit cycles in cubic
polynomial planar systems [Yu & Han, 2004, 2005a,
2005b].

Another interesting problem is bifurcation of
limit cycles from equilibria of center type, since
the monotonicity of periods of closed orbit sur-
rounding a center is a nondegeneracy condition
of subharmonic bifurcation for periodically forced
Hamiltonian systems [Chow & Hale, 1982]. Suppose
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the planar polynomial vector field is described by
the following differential equations:

dx

dt
= Pn(x, y,µ),

dy

dt
= Qn(x, y,µ), (1)

where Pn(x, y) and Qn(x, y) represent the nth-
degree polynomials of x and y, and µ∈Rk is a k-
dimensional parameter vector. Suppose the origin of
system (1) is a fixed point and further it is a nonde-
generate center. (If the Jacobian of the system does
not have a double zero eigenvalue at the origin, then
the origin is called a nondegenerate center.)

Now let T (h,µ) denote the minimum period of
closed orbit of system (1) surrounding the origin for
0 < h � 1. Then the origin is said to be a weak cen-
ter of finite order k of the system for the parameter
value µ = µc if

T ′(0,µc) = T ′′(0,µc) = · · · = T k(0,µc) = 0,
but T k+1(0,µc) �= 0. (2)

The origin is called an isochronous center if
T k(0,µc) = 0 ∀ k ≥ 1, or equivalently, T (h,µc) =
constant for 0 < h � 1. A local critical period is
defined as a period corresponding to a critical point
of the period function T (h,µ) which bifurcates from
a weak center.

For the quadratic system, given by

dx

dt
= −y +

∑
i+j=2

aijx
iyj ,

(3)
dy

dt
= x +

∑
i+j=2

bijx
iyj,

Chicone and Jacobs [1989] discussed weak centers
and critical periods which may bifurcate from weak
centers. In the same paper, they also studied the
following special Hamiltonian system:

ü + V (u) = 0, (4)

where V is a 2n-degree polynomial of u. Let u = x
and u̇ = y. Then, the Hamiltonian of system (4)
can be written as

H(x, y) =
1
2
y2 +

∫ x

0
V (s)ds. (5)

It has been shown [Chicone & Jacobs, 1989] that
system (4) can have at most n − 2 critical periods
bifurcating from the origin.

In 1993, Rousseau and Toni [1993] stud-
ied a special cubic system with third-degree

homogeneous polynomials only, as described below:

dx

dt
= −y +

∑
i+j=3

aijx
iyj ,

dy

dt
= x +

∑
i+j=3

bijx
iyj.

(6)

They similarly discussed weak centers and bifurca-
tion of critical periods from weak centers.

Recently, Zhang et al. [2000] gave a detailed
study on cubic revertible polynomial systems — a
system is said to be revertible if it is symmetric with
respect to a line. Up to translation and rotation of
coordinates, any revertible cubic differential systems
can be described by (e.g. see [Zhang et al., 2000]):

dx

dt
= −y + a20x

2 + a02y
2 + a21x

2y + a03y
3,

dy

dt
= x + b11xy + b30x

3 + b12xy2,

(7)

where aij and bij are constant parameters. It has
been shown [Zhang et al., 2000] that system (7) can
have at most four local critical periods.

The work of Maosas and Villadelprat [2006]
should be also mentioned. The system considered
in [Maosas & Villadelprat, 2006] is a Hamiltonian
system with the following Hamiltonian:

H(x, y) =
1
2
(x2 + y2) +

a

4
x4 +

b

6
x6, (8)

where a and b are constants, and b �= 0. It is shown
that system (8) can at most have one critical period.
Note that system (8) is not a special case of system
(5), since the term g(x) =

∫ x
0 V (s)ds in H(x, y) of

(5) is a (2n + 1)-degree polynomial.
In this paper, we shall consider bifurcation of

local critical periods from a weak center in cubic
polynomial planar systems. We will show that the
revertible system (7) actually can have maximal six
local critical periods, rather than four as claimed in
[Zhang et al., 2000]. Also, we will give some con-
ditions under which the origin of system (7) is an
isochronous center. The method used in this paper
is based on normal form theory, with the aid of both
symbolic and numerical computations.

In the next section, we outline a perturbation
technique for computing the normal form of Hopf
bifurcation and discuss how to employ this method
to determine local critical periods. The main results
for the revertible system (7) are presented in Sec. 3.
Some illustrative numerical examples are given in
Sec. 4, and finally, conclusion is drawn in Sec. 5.
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2. Computation of Critical Periods
Using the Method of
Normal Forms

In this section, we briefly present an approach for
computing local critical periods using normal form
theory, associated with Hopf singularity. There are
many books and papers in the literature which par-
ticularly discuss normal form theory (e.g. see [Mars-
den & McCracken, 1976; Guckenheimer & Homes,
1992; Ye, 1986; Nayfeh, 1993; Chow et al., 1994]).
Here, we shall introduce a perturbation technique
based on multiple time scales [Nayfeh, 1993; Yu,
1998]. The technique does not need application of
center manifold theory, but instead formulates a
unified approach to directly compute the normal
forms of Hopf and degenerate Hopf bifurcations for
general n-dimensional systems. The technique has
been proven to be computationally efficient [Yu &
Han, 2004, 2005a, 2005b].

To describe the perturbation technique,
consider the following general n-dimensional
differential system:

dx
dt

= Jx + f(x), x ∈ Rn, f : Rn → Rn, (9)

where Jx is the linear part of the system, and f rep-
resents the nonlinear part and is assumed analytic.
Further, suppose x = 0 is an equilibrium point of
the system, i.e. f(0) = 0, and that the Jacobian of
system (9), evaluated at the equilibrium point 0,
contains one pair of purely imaginary eigenvalues
±i. Without loss of generality, we may assume that
the Jacobian of system (9) is in the Jordan canoni-
cal form:

J =




0 1 0
−1 0 0

0 0 A


 , where A ∈ R(n−2)×(n−2).

(10)

A is assumed to be stable, i.e. all of its eigenvalues
have negative real parts.

The basic idea of the perturbation technique
based on multiple scales can be briefly described as
follows: Instead of a single time variable t, multi-
ple independent variables or scales, Tk = εkt, k =
0, 1, 2, . . ., are introduced. Thus, the differentiation
with respect to t becomes the summation of partial
derivatives with respect to Tk:

d

dt
=

∂T0

∂t

∂

∂T0
+

∂T1

∂t

∂

∂T1
+

∂T2

∂t

∂

∂T2
+ · · ·

= D0 + εD1 + ε2D2 + · · · (11)

where the differential operator Dk = ∂/∂Tk.

Next, assume that the solutions of system (9) in
the neighborhood of x = 0 are expanded in series as

x(t; ε) = εx1(T0, T1, . . .)
+ ε2x2(T0, T1, . . .) + · · · (12)

Note in the above procedure that the same pertur-
bation parameter, ε, is used in both time and space
scalings, see (11) and (12). This implies that this
perturbation approach uses a same scaling to treat
time and space.

Now, substituting (11) and (12) into system (9)
and solving the resulting ordered nonhomogeneous
linear differential equations by eliminating the so-
called “secular terms” finally yields the following
normal form, given in polar coordinates (a detailed
procedure can be found in [Yu, 1998]):

dr

dt
=

∂r

∂T0

∂T0

∂t
+

∂r

∂T1

∂T1

∂t
+

∂r

∂T2

∂T2

∂t
+ · · ·

= D0r + D1r + D2r + · · ·
dφ

dt
=

∂φ

∂T0

∂T0

∂t
+

∂φ

∂T1

∂T1

∂t
+

∂φ

∂T2

∂T2

∂t
+ · · ·

= D0φ + D1φ + D2φ + · · ·

(13)

where Dir and Diφ are uniquely determined. Fur-
ther, it has been shown [Yu, 1998] that the deriva-
tives Dir and Diφ are functions of r only, and
only D2kr and D2kφ are non-zero, which can be
expressed as D2kr = vkr

2k+1 and D2kφ = bkr
2k,

where both vk and bk are expressed in terms of the
original system’s coefficients. The results are sum-
marized in the following theorem.

Theorem 1. Suppose the general n-dimensional
system (9) has an Hopf-type singular point at the
origin, i.e. the linearized system of (9) has one pair
of purely imaginary eigenvalues and the remain-
ing eigenvalues have negative real parts. Then the
normal form of system (9) for Hopf or generalized
Hopf bifurcations up to the (2k + 3)rd order term is
given by

dr

dt
= r(v0 + v1r

2 + v2r
4 + · · · + vkr

2k

+ vk+1r
2k+2), (14)

dθ

dt
= 1 +

dφ

dt

= 1 + b0 + b1r
2 + b2r

4 + · · · + bkr
2k

+ bk+1r
2k+2, (15)

where the coefficient vk is usually called the kth-
order focus value or Lyapunov constant.
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Note here that r and θ represent the amplitude
and phase of motion, respectively. v0 and b0 cor-
respond to the linear part of system (9) when it
contains parameters. For our study in this paper,
v0 = b0 = 0.

Equation (14) (or the focus values) can be used
to determine the existence and number of limit
cycles that system (9) can have, as what is employed
in finding small limit cycles of Hilbert’s 16th prob-
lem (e.g. [Yu & Han, 2005b]). Equation (15), on the
other hand, can be applied to find the period of the
periodic solutions and to determine the local critical
periods of the solutions.

In the following, we describe how to use Eq. (15)
to express the period of periodic motion and how
to determine the local critical periods. For conve-
nience, let

h = r2 > 0 and
p(h) = b1h + b2h

2 + · · · + bk+1h
k+1.

(16)

Then Eq. (15) can be written as

dθ = (1 + p(h))dt (b0 = 0 for system (9))

Let the period of motion be T (h). Then integrating
the above equation on both sides from 0 to 2π yields

2π = (1 + p(h))T (h),

which gives

T (h) =
2π

1 + p(h)
for 0 < h � 1

(and so 1 + p(h) ≈ 1). (17)

Now, the local critical periods are determined by
T ′(h) = 0, or

T ′(h) =
−2πp′(h)

(1 + p(h))2
= 0. (18)

Thus, for 0 < h � 1 (meaning that we consider
small limit cycles), the local critical periods are
determined by

p′(h) = b1 + 2b2h + · · · + kbkh
k−1 + (k + 1)bk+1h

k

= 0. (19)

Similar to the discussion in determining the
number of limit cycles using focus values, we can
find the sufficient conditions for the polynomial
p′(h) to have maximal number of zeros. If b1 =
b2 = · · · = bk = 0, but bk+1 �= 0, then equa-
tion p′(h) = 0 can have at most k real roots. Then
b1, b2, . . . , bk (remember that they are expressed in
terms of the coefficients of the original system (9))
can be perturbed appropriately to have k real roots.

We give a theorem below without proof (see refer-
ences [Yu & Han, 2004, 2005a, 2005b]), which can
be used to determine the maximal number of real
roots of p′(h) = 0. Assume that bi depends on k
independent system parameters:

bi = bi(a1, a2, . . . , ak), i = 1, 2, . . . , k, (20)

where a1, a2, . . . , ak are the parameters of the orig-
inal system (9).

Theorem 2. Suppose that

bi(a1c, a2c, . . . , akc) = 0, i = 1, 2, . . . , k,

bk+1(a1c, a2c, . . . , akc) �= 0, and

det
[

∂(b1, b2, . . . , bk)
∂(a1, a2, . . . , ak)

(a1c, a2c, . . . , akc)
]
�= 0,

(21)

where a1c, a2c, . . . , akc represent critical values.
Then small appropriate perturbations applied to the
critical values lead to that equation p′(h) = 0 has k
real roots.

3. Critical Periods of Cubic
Revertible System

Now, we are ready to study local critical peri-
ods of the general cubic revertible system,
described by system (7). In [Zhang et al., 2000],
the authors assumed that the seven parameters
(a20, a02, a21, a03, b11, b30, b12) are independent. As a
matter of fact, we can further reduce the number of
parameters by one. In other words, there are in total
only six independent parameters. To achieve this,
assume that a20 �= 0. Then, we use the following
scalings:

x → x

a20
, y → −y

a20
,

a02 → m1a20, a21 → m2a
2
20,

a03 → m3a
2
20, b11 → n1a20,

b30 → n2a
2
20, b12 → n3a

2
20,

(22)

to obtain a new system (for a20 �= 0):

dx

dt
= y + x2 + m1y

2 − m2x
2y − m3y

3,

dy

dt
= −x + n1xy − n2x

3 − n3xy2.

(23)

System (23) has only six independent parameters,
i.e. a20 �= 0 can be chosen arbitrarily if we use the
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original system (7). This implies that for the cubic
revertible polynomial system (23) (or the original
system (7)), in general the maximal number of local
critical periods that the system can have is six.

Remark 1. The above scaling reduces one more sys-
tem parameter. The advantage of the reduction
makes the computation simpler, particularly for
numerical computation. However, it requires to con-
sider more cases (see below), unlike for the anal-
ysis based on the original system (7) with seven
parameters, only one set of parameters need to be
investigated.

When a20 = 0, there are only six parameters.
We may assume a02 �= 0, and obtain a similar sys-
tem like (23) but now m1 = 1 and there is no
x2 term, resulting in a system with only five inde-
pendent parameters. This clearly shows that such
a “degenerate” system has less independent para-
meters and so in general has less number of critical
periods. By doing this, to completely analyze the
system there are in total four different cases:

Case 1. a20 = a02 = b11 = 0: the corresponding
system is given by (no scaling)

dx

dt
= y − m2x

2y − m3y
3,

dy

dt
= −x − n2x

3 − n3xy2,

(24)

where m2 = a21, m3 = a03, n2 = b30, n3 = b12.
Note here that the advantage without applying
scaling does not necessary assume one of the four
parameters being nonzero, and four parameters can
be easily handled in computation.

Case 2. a20 = a02 = 0, b11 �= 0: the system is
described by

dx

dt
= y − m2x

2y − m3y
3,

dy

dt
= −x + xy − n2x

3 − n3xy2.

(25)

Case 3. a20 = 0, a02 �= 0: the system is given by

dx

dt
= y + y2 − m2x

2y − m3y
3,

dy

dt
= −x + n1xy − n2x

3 − n3xy2.

(26)

Case 4. a20 �= 0: the system is given by Eq. (23).

3.1. Case 1: a20 = a02 = b11 = 0 (no
scaling)

The system for this case is described by Eq. (24)
which has four parameters. Employing the Maple
program [Yu, 1998] we easily obtain the coefficients
bi’s. In particular,

b1 =
1
8
(n3 − m2 − 3m3 + 3n2). (27)

Letting

n3 = m2 + 3m3 − 3n2, (28)

we have b1 = 0, and further obtain

b2 = − 1
16

[2(m3 + n2)m2 + 3(3m2
3 + n2

2)]. (29)

Thus, by choosing

m2 = −3(3m2
3 + n2

2)
2(m3 + n2)

, (30)

we have b2 = 0, and

b3 =
3

32(m3 + n2)2
m3n2

× (m3 − n2)(m2
3 − 10m3n2 + n2

2),

b4 = − 3
128(m3 + n2)3

m3n2(m3 − n2)2

× (3m3
3 − 16m2

3n2 + 83m3n
2
2 − 6n3

2),

(31)

where m3 �= −n2, and (· · ·) denotes a homogeneous
polynomial of m3 and n2.

It is easy to observe from (31) that when m3 =
0, or n2 = 0, or m3 = n2, in addition to b1 = b2 = 0,
we have b3 = b4 = · · · = 0, leading to that the origin
is an isochronous center.

Setting m2
3 − 10m3n2 + n2

2 = 0 yields

m3 = (5 ± 2
√

6)n2, (32)

which, in turn, results in b3 = 0, and b4 =
−(5/16)(49 ± 20

√
6)n4

2. It is obvious that n2 = 0
leads to a trivial case — a linear system. If n2 �= 0,
then at the critical point,

(m3c,m2c, n3c) = ((5 ± 2
√

6)n2, − (21 ± 8
√

6)n2,

− (9 ± 2
√

6)n2), (n2 �= 0),

system (24) for Case 1 can have at most three local
critical periods. Since here we can have perturba-
tion one by one on m3 for b3, on m2 for b2 and on
n3 for b1, we know that the system can have three
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local critical periods after proper small perturba-
tions. Alternatively, it is not difficult to show that

det
[

∂(b1, b2, b3)
∂(m3,m2, n3)

]
(m3,m2,n3)=(m3c ,m2c,n3c)

=
3(2

√
6 ± 5)

256
n3

2 �= 0 when n2 �= 0.

So, according to Theorem 2, we know that sys-
tem (24) for Case (1) can have three local critical
periods.

Summarizing the above results, we have the fol-
lowing theorem.

Theorem 3. For the revertible system (24), there
exist three local critical periods bifurcating from
the weak center (the origin) at the critical point:
m3 = (5 ± 2

√
6)n2, m2 = −(21 ± 8

√
6)n2, n3 =

−(9± 2
√

6)n2, (n2 �= 0). Moreover, the origin is an
isochronous center if one of the following conditions
is satisfied:

(i) m3 = 0, n3 = 3m2 = −(9/2)n2;
(ii) n2 = 0, m2 = 3n3 = −(9/2)m3;
(iii) m3 = n2, m2 = n3 = −3n2.

Remark 2

(i) The linear isochronous center is included in the
above as a special case when m2 = m3 = n2 =
n3 = 0.

(ii) System (24) actually has only three indepen-
dent parameters. One can apply a proper scal-
ing to remove one parameter. For example,
if a21 �= 0, then substituting the following
scalings:

x → x√|a21|
, y → y√|a21|

,

a03 → m3a21, b30 → n2a21,

b12 → n3a21,

(33)

into (7) to obtain

dx

dt
= y − sign(a21)x2y − m3y

3,

dy

dt
= −x − n2x

3 − n3xy2,

(34)

which has only three independent parameters.
So it is not surprising that the maximal number
of local critical periods for this case is three. But
note that we need to deal with the case a21 = 0
separately.

3.2. Case 2: a20 = a02 = 0, b11 �= 0

For this case, the system is given by (25). Again like
Case 1, we have only four independent parameters.
However, comparing with system (24), we can see
that this case has an extra term xy in the second
equation. Similarly, applying the Maple program
results in

b1 =
1
8
(n3 − m2 − 3m3 + 3n2) − 1

24
. (35)

Letting

n3 = m2 + 3m3 − 3n2 +
1
3

(36)

yields b1 = 0, and

b2 = −1
8
(m3 + n2)m2 − 3

16
(3m2

3 + n2
2)

− 1
48

(m3 − n2). (37)

Further, setting b2 = 0 gives

m2 = −9(3m2
3 + n2

2) + m3 − n2

6(m3 + n2)
, (38)

and then we obtain

b3:=-1/622080/(m3+n2)^2*(10*m3*n2-450*m3^2*n2+2430*m3*n2^2+218700*m3^3*n2
+224370*m3^2*n2^2-21060*m3*n2^3-25*n2^2-m3^2+594*m3^3+450*n2^3+58320*m3*n2^4
-58320*m3^4*n2+641520*m3^3*n2^2-641520*m3^2*n2^3-2025*n2^4+119151*m3^4):

b4:= 1/14929920/(m3+n2)^3*(15*m3^2*n2-75*m3*n2^2-3924*m3^3*n2+486*m3^2*n2^2
-12132*m3*n2^3-m3^3+125*n2^3+200853*m3*n2^4-1851741*m3^4*n2-3293622*m3^3*n2^2
-2475306*m3^2*n2^3-3015*n2^4+729*m3^4+23895*n2^5-20655*m3^5+20111409*m3^2*n2^4
-7725942*m3^5*n2-14508315*m3^4*n2^2-5360580*m3^3*n2^3-1120230*m3*n2^5+4186647*m3^6
-61965*n2^6-1049760*m3^6*n2+7698240*m3^5*n2^2-41290560*m3^4*n2^3-33242400*m3^2*n2^5
+65784960*m3^3*n2^4+2099520*m3*n2^6):

b5:= ...
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Now, we cannot simply solve m2, or n2 explicitly from equation b3 = 0. So, eliminating m3 from the two
equations b3 = b4 = 0 yields the solution:

m3:=-5*n2*(569247802015285555200000000*n2^17-103113441440789193008640000000*n2^16
+466529487811481854805391360000*n2^15+729111368647971303747081984000*n2^14
-3440190919625653129747806067200*n2^13+3438895452646143906561357829440*n2^12
-1378411040396816095486593212352*n2^11+285964218564988124360928779568*n2^10
-34124043635787788029719058104*n2^9+2432214301711349939660168220*n2^8
-102825774441224160041266596*n2^7+2435439784546733144583681*n2^6
-26920684006629130290960*n2^5+28477324117008592587*n2^4-24412806206412462*n2^3
+227374081948134*n2^2+10829164128*n2-89476)
/(9323709749208362108620800000000*n2^17-44517267151612466882167296000000*n2^16
-61412451181308892954545408000000*n2^15+321743370081378172281237529344000*n2^14
-355843063477576132735248304473600*n2^13+179370522907753892786267929778880*n2^12
-52301734187935423342257787875264*n2^11+8886375904760643874661408844576*n2^10
-868968351982197524387386778472*n2^9+48055547873605778137672378956*n2^8
-1401016447946025855097185996*n2^7+17115522926246428048567128*n2^6
-19139109085867805531199*n2^5+54190781990061950916*n2^4-205550961979095693*n2^3
-232683432511500*n2^2-16584226269*n2-246059):

(39)

and the resultant:

F1:= n2*(120*n2+1)*(18*n2-1)*(9*n2-1)*(2498755783880540160000000*n2^14
-17765690890838070067200000*n2^13+13203335586250663280640000*n2^12
+116972435487395393766604800*n2^11-312815713413038729734287360
*n2^10+326210648416092258308527104*n2^9-164073549847183061353286400*n2^8
+39662487303463530756084240*n2^7-4354024089576423808213776*n2^6
+167083114350796340077368*n2^5+763655709750029898516*n2^4
-3114647882885854395*n2^3-245131814155149*n2^2-14233762746*n2-559225):

A simple numerical scheme can be employed to
show that the polynomial equation F1(n2) = 0 has
14 real solutions for n2. The first four solutions are:
n2 = 0,−1/120, 1/18, 1/9. It is easy to verify that
the first three of them are not solutions, while the
last one results in m3 = m2 = n3 = 0, leading to
b3 = b4 = b5 = · · · = 0. This indicates that for this
solution, the origin is an isochronous center.

For the remaining ten roots of the equation
F1(n2) = 0, we have used the built-in Maple com-
mand fsolve to numerically compute these real solu-
tions up to 1000 digit points, guaranteeing the
accuracy of computation. (The ten solutions are
not listed here for brevity.) Note that for a single-
variable polynomial, fsolve can be used to find all
real roots of the polynomial up to very high accu-
racy. In fact, the Maple command solve can be
employed to find all (real and complex) roots of
a single-variable polynomial. It can be shown that
for all these ten solutions, b1 = b2 = b3 = b4 = 0,
but b5 �= 0. This implies that (n2,m3,m2, n3) has
ten sets of real solutions for which system (25) has

four local critical periods bifurcating from the weak
center — the origin.

The results obtained above for Case (2) are
summarized in the following theorem.

Theorem 4. For the revertible system (25), there
are ten sets of solutions for the critical point
(n2c,m3c,m2c, n3c) which can be perturbed to gen-
erate four local critical periods. Moreover, when
n2 = 1/9, m3 = m2 = n3 = 0, the origin is an
isochronous center.

Remark 3. It should be pointed out that although
Theorem 4 states that there are only ten sets of
solutions which generate four local critical periods,
there are actually infinite number of solutions since
b11 (�= 0) can be chosen arbitrarily.

3.3. Case 3: a20 = 0, a02 �= 0

Now we consider Case 3 described by Eq. (26),
which has five independent parameters. So it is
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possible to have five local critical periods. Similarly,
we apply the Maple program to obtain

b1 =
1
24

(3n3 − 3m2 − 9m3 + 9n2

+ n1 − n2
1) −

5
12

, (40)

which yields

n3 = m2 + 3m3 − 3n2 +
1
3
n1(n1 − 1) +

10
3

(41)

such that b1 = 0. Then,

b2 = − 1
48

[
(6m3 + 6n2 − n1 + 11)m2

+ m3

(
n1 +

23
2

)2

+ 27
(

m3 − 17
24

)2

+ (n1 + 7)2 + 9
(

n2 +
1
18

)2

−n2
1n2 − 13003

576

]
. (42)

Setting b2 = 0 we obtain

m2 =
n2

1n2 − m3n1(n1 + 23) − m3(27m3 + 94) − n2(9n2 + 1) − n1(n1 + 14) − 40
6(m3 + n2) − n1 + 11

. (43)

Then b3, b4 and b5 become

b3 =
1

155520(6m3 + 6n2 − n1 + 11)2
F1(m3, n2, n1),

b4 = − 1
1866240(6m3 + 6n2 − n1 + 11)2

F2(m3, n2, n1),

b5 =
1

1881169920(6m3 + 6n2 − n1 + 11)2
F3(m3, n2, n1),

(44)

where F1, F2 and F3 are polynomials of m3, n2

and n1. Eliminating m3 from the three polynomi-
als equations F1 = F2 = F3 = 0 yields a solu-
tion m3 = m3(n2, n1), and two resultant polynomial
equations:

P1 = FF4(n2, n1) and P2 = FF5(n2, n1), (45)

where

F = 432n2
2 − 24(n2

1 + 16n1 − 3)n2

+ 2n3
1 + 45n2

1 − 348n1 − 499, (46)

and F4 and F5 are respectively 25th and 26th degree
polynomials with respect to n2.

We now want to solve the two equations: P1 =
P2 = 0. It can be shown that the roots of F = 0
(e.g. solving n2 in terms of n1) are not solutions of
the original equations b3 = b4 = b5 = 0, since it
yields 6(m3 +n2)−n1 +11 = 0, giving rise to a zero

divisor [see Eq. (43)]. Thus, the only possible solu-
tions come from the two equations: F4 = F5 = 0.
However, it is very difficult to follow the above pro-
cedure to eliminate one parameter from these two
equations, since their degrees are too high. There-
fore, we apply the built-in Maple command fsolve
here to find the solutions of F4 = F5 = 0. But
Maple has limit on solving multivariate polynomi-
als, which only gives one possible real solution. (For
single-variable polynomials, fsolve can find all real
solutions.) Nevertheless, if the solution is a true
solution of the system, it is enough for our purpose
since we mainly want to prove the existence of crit-
ical periods, rather than finding all their solutions.
Certainly, if one can find all solutions, it would be
better.

By applying fsolve to equations F4 = F5 = 0,
we obtain a solution as follows (up to 1000 digit
points):

n2 :=-1.0374657711409184091779706577299995254461315397204415031414369263370 ...
... 79336402835255809692665089727046900731772309088198085488679011713048:

n1 := 8.9323170715252135817419113353613426091223557177893498009791622790995 ...
... 83522994180267403875842542364148975622856247830140462101539212923691:
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Then the values of m3, m2 and n3 directly follow
the formulas given in Eqs. (41), (43), and m3(n2, n1)
(which is not listed in this paper). By verifying the
original equations, we can show that the above solu-
tion yields b1 = b2 = b3 = b4 = 0, but b5 �= 0. Thus,
this solution only gives at most four local critical
periods, not five as we are expecting.

The problem is caused by numerically solving
the roots of the resultant equations, rather than the
original equations. We may apply fsolve directly to
the original equations, with the risk that we may
not be able to obtain any solutions at all due to too
many equations and variables involved. The follow-
ing Maple command:

with(linalg): Mysolution := fsolve({b1,b2,b3,b4,b5}, {m2,m3,n1,n2,n3}):

yields a solution (up to 1000 digit points):

m2 :=-21.09060048443715279884238139893351496665397750283464284307238494 ...
... 019234043470591684120459559737824861162984975896990695511170114751:

m3 := 5.125109394169587039145091618355152678331363487291313143329652082 ...
... 708996820915283214563810999105222159218993365237562500814877898150:

n1 := .2211444818520424763620979834379313195951475156731323013529805585 ...
... 380110623946971134688104347855383954946414228889480850825415792946:

n2 := 4.536766340054913651507181574123480691222115160017318145023788504 ...
... 774024708155221034216788445170902581275389079050267890102308702990:

n3 :=-16.04965118875927734665732451579703873331519269547524914368562229 ...
... 113889180570162284796205552039147067145683154187478411837014672177:

Substituting the above solution (referred to as a critical point C) into bi’s to obtain

b1 = 0, b2 = −0.128 × 10−997, b3 = 0.48 × 10−997, b4 = 0.5042 × 10−995, b5 = −0.219 × 10−994,

b6 = 63.26140030377982283073214398034314178739364579558605952899625352812377 · · ·
Further calculating the Jacobian given in Eq. (21) at the above critical point shows that

det
[

∂(b1, b2, b3, b4, b5)
∂(n1, n2,m3,m2, n3)

]
C

= −788.5944073455359252615007085140950529060104 · · · �= 0,

implying that for Case 3 there exist five local crit-
ical periods bifurcating from the weak center (the
origin). The above results are summarized as a the-
orem below.

Theorem 5. For the revertible system (26), there
exist values of the parameters n1, n2, m3, m2, n3

such that five local critical periods are obtained,
which bifurcate from the weak center (the origin).

3.4. Case 4: a20 �= 0

Finally, we consider the most general and difficult
case a20 �= 0. The system, described by Eq. (23),
has six independent parameters. So it is expected
that the system may have six local critical peri-
ods bifurcating from the weak center (the origin). If
all the parameters are chosen free, then pure sym-
bolic computation becomes intractable. What we
will show below include three cases:

(i) m1 = n1 = 0: four local critical periods (using
symbolic computation only);

(ii) m1 = 0: five local critical periods (using both
symbolic and numerical computations);

(iii) No parameter equals zero: six local critical
periods (using numerical computation only).

Note here that the four and five local critical peri-
ods are different from that presented respectively in
Cases 2 and 3, since this case contains the term x2

in the first equation of (23).

Subcase (i) : m1 = n1 = 0. For this subcase, we
have

b1 =
1
8
(n3 − m2 − 3m3 + 3n2) − 1

6
. (47)

Thus,

n3 = m2 + 3m2 − 3n2 +
4
3
, (48)

in order to have b1 = 0. Then,

b2 = − 1
48

[
(6m3 + 6n2 + 1)m2 + 27m2

3 + 4m3

+ 9n2
2 + 17n2 − 28

3

]
, (49)
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which, in turn, gives

m2 = −3(27m2
3 + 4m3 + 9n2

2 + 17n2) − 28
(36m3 + 6n2 + 1)

. (50)

Having determined n3,m2, further calculation on bi yields

b3 := 1/24186470400/(1+6*n2+6*m3)^4
*(-166336+4299237*m3^2*n2-6138180*m3*n2^3-524880*m3^4*n2-860016*n2+8118774*m3*n2
+167748*m3+6689538*m3^2+5799564*n2^2-5457861*n2^3-13858047*m3*n2^2+7283439*m3^3
+790236*m3^4+2055780*m3^3*n2-12629196*m3^2*n2^2-3020976*n2^4-5773680*m3^2*n2^3
+5773680*m3^3*n2^2+524880*m3*n2^4):

b4 := 1/3482851737600/(1+6*n2+6*m3)^6
*(23079424+1436655204*m3^2*n2+2741028336*m3^3*n2^3-3587043042*m3^4*n2^2
-1236483144*m3*n2^3-1899088011*m3^4*n2+45558144*n2+222969024*m3^5*n2
+111996270*m3^6-1152699903*n2^5-1335699936*m3*n2-96135264*m3-1533692286*m3^2
-816192288*n2^2+1653973560*n2^3+5023865106*m3*n2^2-1559217870*m3^3+1445706144*m3^4
+1161666360*m3^3*n2+3218307552*m3^2*n2^2-168315894*m3^2*n2^4-28343520*m3^6*n2
-133898832*n2^4-897544800*m3^2*n2^5+923597802*m3^2*n2^3-1114845120*m3^4*n2^3
-1265905584*m3*n2^5-1445873814*m3^3*n2^2-4577964723*m3*n2^4+207852480*m3^5*n2^2
+1712007657*m3^5+56687040*m3*n2^6-271822230*n2^6+1776193920*m3^3*n2^4):

Now eliminating n2 from the two equations b3 = b4 = 0 (ignoring the constant facts and the denominator)
results in a solution n2 = n2(m3) and the following resultant:

F := m3*(432*m3^2-120*m3-143)*(126869487069973102400323268975096320000
+1784888370972525270091602872443558214400*m3
-9348651749685583327400893519397782348320*m3^2
-180800063427669636863734588422996272329041*m3^3
-746581783644289047363474147089894788272012*m3^4
-2222378300355895533085580534812469051038848*m3^5
-3469925887989885659170689395818689329998464*m3^6
-1145234326680884388874832530043049946275840*m3^7
+3380460143974513503057245985798526646174208*m3^8
+4653823046725235033083004693863807438718976*m3^9
+2525328066926045569461981921341628839276544*m3^10
+633102362563246433385697571351721446080512*m3^11
+53071469300915955859924147398611360808960*m3^12
-6266143755679537389398161813515612979200*m3^13
-1496220412367981954158936640685342720000*m3^14
-91125515208355127816250303656755200000*m3^15
-1260542774882511663851089428480000000*m3^16
+25092321673302690678964224000000000*m3^17):

The solution m3 = 0 gives n2 = 4/9, m2 = n3 = 0,
leading to b1 = b2 = · · · = 0, implying that the ori-
gin is an isochronous center. The two solutions from
the second fact are actually not the solutions of
the original equations. So other possible solutions
come from the 17th-degree polynomial, which has
13 real solutions. By verifying the original bi equa-
tions: there are only 11 solutions satisfying the origi-
nal equations. Further, by checking the determinant
(nonzero) of the Jacobian in Theorem 2, we know

that perturbing each of these 11 solutions results in
four local critical periods. Thus, we have

Theorem 6. For the revertible system (23) when
m1 = n1 = 0, there are 11 sets of solutions
(m3, n2,m2, n3) leading to four local critical peri-
ods. Moreover, when n2 = 4/9, m3 = m2 = n3 =
m1 = n1 = 0, the origin is an isochronous center.

Subcase (ii): m1 = 0. For this subcase, if we use
elimination procedure, it will lead to very high
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degree polynomials and it is difficult to obtain the final resultant with only one variable. Thus, we try
to use the Maple command, fsolve, to find a possible solution, since one solution is enough for proving
the existence of certain order critical periods. To do this, let m1 = 0 in bi, i = 1, 2, . . . , 5. Then use the
command

with(linalg):
m1 := 0:
Mysolution := fsolve({b1,b2,b3,b4,b5}, {m2,m3,n1,n2,n3}):

to obtain a solution (up to 1000 digit points):

m1 := 0:
m2 := 6.035400017219239604088365819876376821283045937559186370150833917 ...

... 521247539246439636893372513430973055913423563721427540938133657870:
m3 :=-2.780809904103370988424442531627905476289418239384590526626481008 ...

... 834576020348013746716149424390335117837648597349089950519527455229:
n1 := 0.621849114501545687930704699633765375651291643986255358128944707 ...

... 257901313693726483172377467569487002179968213262136823553358496491:
n2 :=-2.047466873502703059425954703630994770898922153574473647213673030 ...

... 666859689375467940323918533739308056608575305705993922947509110621:
n3 := 4.261187841650111830405730002765259103184527609789400252719948417 ...

... 683595939560330109243994695209408865769445515993036954490477716439:

Now, it is very important to verify if this approximate solution indeed implies the existence of a true
solution. To do this, we substitute the numerical solution into the explicit expressions of bi’s to obtain

b1 = −0.1 × 10−999, b2 = −0.127 × 10−998, b3 = 0.836 × 10−998,

b4 = 0.121 × 10−996, b5 = −0.46863 × 10−995,

b6 = −7.421658867638726722085244758030121967219919492961715344089192361574668 · · ·
Because the symbolic expressions of bi’s are exact before the substitution, the above verification scheme
indeed shows that there exists a solution such that bi = 0, i = 1, 2, . . . , 5, but b6 �= 0.

Moreover, the Jacobian given in Eq. (21) for this case evaluated at the above critical point yields

det
[

∂(b1, b2, b3, b4, b5)
∂(m2,m3, n1, n2, n3)

]
C

= 364.7865755777720922466634159033851143935637 · · · �= 0.

Thus, based on Theorem 2, we know that Subcase (ii) has five local critical periods bifurcating from the
weak center (the origin). A theorem summarizing the above results is given below.

Theorem 7. For the revertible system (23) when m1 = 0, solution (m2,m3, n1, n2, n3) exists such that the
system has five local critical periods.

Subcase (iii) : no parameter equals zero. For this case, computation is more involved than any other cases
discussed above. Unless with a very powerful computer system, with purely symbolic computation, it is
almost impossible to find the solutions for possible six local critical periods. The Maple command

with(linalg):
Mysolution := fsolve({b1,b2,b3,b4,b5,b6}, {m1,m2,m3,n1,n2,n3}):

has been used to obtain the following solution (up to 500 digit points):

m1 :=-1.911271311412248894318376740313337291799639386556225538177599088 ...
... 551695141943450774237846747710516252168805098710405990834877601960:

m2 :=-5.506140892974370699687829878845944063608812076156309266238462197 ...
... 453925796588449713220926391370283940499191777465781362693575055392:

m3 :=-0.964624737596251179318221385991593355899241421793789156746030895 ...
... 488788745833477563333057595494538855773734927488701053284011587824:
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n1 := 0.010953161557416338490455140243205661271093061527829850636322735 ...
... 817276254120361520768053706683747606003767341822911703779322849287:

n2 := 0.000931994068568175728068553100368911145145362148682258162814424 ...
... 387802846258161211724575939719403782034564144996916537003441939052:

n3 :=-1.275092497446341268494136712199644529818702522662286744901854359 ...
... 410836309921145454838123983140640614491450117156176212929362565911:

for which the verification scheme shows that
b1 = −0.9 × 10−499, b2 = −0.68 × 10−499, b3 = 0.69269 × 10−497,

b4 = 0.753 × 10−496, b5 = −0.405311585 × 10−494, b6 = 0.174948224057419 × 10−492

b7 = 0.000285510949123486875739425029555321579531193374039367118349090525999 · · ·
indicating that there exists a solution (m1,m2,m3, n1, n2, n3) such that bi = 0, i = 1, 2, . . . , 6, but b7 �= 0.

Further, substituting the above critical values into the Jacobian results in

det
[

∂(b1, b2, b3, b4, b5)
∂(m2,m3, n1, n2, n3)

]
C

= 0.000037080749268755896616788610013019818749 · · · �= 0.

Therefore, based on Theorem 2, we can conclude
that Subcase (iii) can have six local critical peri-
ods bifurcating from the weak center (the origin),
as summarized in the following theorem.

Theorem 8. For the revertible system (23) there
exists solution (m1,m2,m3, n1, n2, n3) for the criti-
cal point such that six local critical periods bifurcate
from the weak center.

Finally, to end this section, we notice that if
we follow the classification given at the beginning
of this section, we can have more cases, and com-
bining the case studies with the results obtained in
above leads to the following result.

Theorem 9. For the general revertible system
(7 ), the maximal number of local critical periods
bifurcating from theweak center is equal to the number
of independent parameters contained in the system.

4. Numerical Examples

In the previous section, we have established several
theorems for the properties of local critical periods
and isochronous center of cubic revertible systems.
In this section, we present two numerical examples
to demonstrate how to perturb parameters from a
critical point to obtain the exact number of local
critical periods given in the theorems.

Remark 4. We have established Theorem 2 which
theoretically guarantees the existence of k local crit-
ical periods if the conditions given in the theorem
are satisfied. However, in practice it is not easy to
find a particular set of perturbations to obtain a

numerical realization. If the parameters can be per-
turbed one by one separately for each of bi’s, the
process is straightforward. When the perturbation
parameters are coupled, such as those cases consid-
ered in Secs. 3.2–3.4, it is very difficult to find such
a set of perturbations. In particular, when more
parameters are coupled, like the case of six local
critical periods (Theorem 8), it is extremely diffi-
cult to obtain a numerical set of perturbations.

In the following, we give two examples, one for
the three local critical periods considered in Sec. 3.1,
and the other for the four local critical periods dis-
cussed in Sec. 3.2.

4.1. Example 1

Consider the three local critical periods given in
Theorem 3. For this example, T ′(h) is given by

T ′(h) =
−2πp′(h)

(1 + p(h))2
,

where

p′4(h) = b1 + 2b2h + 3b3h
2 + 4b4h

3, (51)

in which the subscript 4 denotes that p(h) is a
fourth-degree polynomial of h.

Taking n2 = 0.01, and applying the following
perturbations:

m3 = (5 + 2
√

6)n2 + 0.1 × 10−3,

m2 = −3(3m2
3 + n2

2)
2(m3 + n2)

+ 0.1 × 10−8,

n3 = m2 + 3m3 − 3n2 + 0.1 × 10−13,
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yields the third-degree polynomial

p′4(h) = 0.125× 10−14− 0.27272820328796× 10−10h

+ 0.2046433012965192 × 10−7h2

− 0.1229176145646577605 × 10−5h3.

The roots of p′4(h) = 0 are

h1 = 0.47522968629422680728 × 10−4,

h2 = 0.14084921112674735809 × 10−2,

h3 = 0.15192803075362020703 × 10−1,

(52)

as expected. Therefore, T ′(hi) = 0, i = 1, 2, 3, and

T ′(h) > 0 ∀h ∈ (0, h1) ∪ (h2, h3)
and T ′(h) < 0 ∀h ∈ (h1, h2).

In terms of the amplitude of periodic solution,
r =

√
h [see Eq. (16)], the amplitudes corresponding

to the three critical points [see Eq. (52)] are

r1 = 0.00689369049417093288,

r2 = 0.03752988291038853708,

r3 = 0.12325908922007342952.

In order to show that higher order terms added
to p′4(h) do not affect the number of real roots of
p′4(h) for 0 < h � 1, we expand p′(h) up to b7 using
the above perturbed parameter values to obtain

p′7(h) = 0.125 × 10−14

− 0.27272820328796 × 10−10h

+ 0.2046433012965192 × 10−7h2

− 0.122917614564657764 × 10−5h3

+ 0.30977476026963404769 × 10−7h4

− 0.13132778484607037717 × 10−7h5

+ 0.90644113252474127528 × 10−9h6,

which has the following four real roots:

h1 = 0.47522968635658762712 × 10−4,

h2 = 0.14084868274006266263 × 10−2,

h3 = 0.15199198405041823566 × 10−1,

h4 = 17.115958097383951681.

(53)

Compared with the roots of p′4(h), the first three
roots of p′7(h) are almost the same as that of
p′4(h) [see Eq. (52)]. The extra root of p′7(h),
17.115958097383951681, is obviously not in the
interval 0 < h � 1. This clearly shows that adding
higher-order terms to p′4(h) does not change the
number of local critical periods for small values of h.

4.2. Example 2

Consider the case of four local critical periods dis-
cussed in Sec. 3.2. For this case,

p′5(h) = b1 + 2b2h + 3b3h
2 + 4b4h

3 + 5b5h
4. (54)

Note that for this example, we cannot follow the
procedure of Example 1, since for this case the
parameters m3 and n2 are coupled in the two equa-
tions: b3(m3, n2) = b4(m3, n2) = 0. Although we
obtain the exact expression m3 = m3(n2), given
in Eq. (39), we cannot treat these two parameters
independently. Thus, we have to find the perturba-
tions simultaneously for b3 and b4, by using m3 and
n2. Having determined perturbations on m3 and n2,
we can determine the perturbations on m2 and n3

one by one since they are separated.
It has been shown in Sec. 3.2 that we have ten

sets of real solutions of n2 for the four local critical
periods. The critical values of n3, m2 and m3 are
given by Eqs. (36), (38) and (39), respectively. The
ten sets of solutions of n2 are given below (com-
puted with up to 1000 digit points, but here only
list the first 30 digits for brevity):

n2c = −2.988556390795433847240184465716, − 0.635382863075051310708014537214 × 10−2,

− 0.545466741005699584641353982592 × 10−4, 0.270691303457354452445821624251 × 10−2,

0.105332445282244310486473242133, 0.146768333158553387163454757140,
0.229725794378667851313343707244, 1.262453270242292441218033530515,
1.823300157906979647339870136974, 4.986133921303859181966365972699.

Theoretically, for all the above ten sets of critical solutions, we should be able to find perturba-
tions which yield exactly four local critical periods. However, we have found that except for the ninth
solution n2 = 1.82330015790697964734, it is very difficult to use other nine solutions to obtain proper
perturbations.
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For the ninth set of solutions:

n2c = 1.823300157906979647339870136974,

m3c = 0.054747577449362631411917708322,

m2c = −2.505455098029020960301490961062,

n3c = −7.477779506068538674752014913683,

we have

b1 = b2 = b3 = b4 = 0,

b5 = −0.424877044745732310146822626068 × 10−2

< 0.

Thus, we need perturbations such that

b4 > 0, b3 < 0, b2 > 0, b1 < 0
and |bi| � |bi+1| � 1 (i = 1, 2, 3, 4).

First, consider perturbations simultaneously on
n2c and m3c for b4 and b3. Following the procedure
given in [Yu & Han, 2005b], we obtain

n2 = n2c + ε1

= n2c + 0.001
= 1.824300157906979647339870136974,

m3 = m3c + ε2

= m3c − 0.000025572
= 0.054722005449362631411917708322,

for which Eq. (54) has two real solutions for h. Then
take

ε3 = −0.1 × 10−15 and ε4 = −0.1 × 10−22,

respectively for m2 and n3 to obtain
m2 = m2c + ε3

= −2.506970838229428046763990414400,
n3 = n3c + ε2

= −7.482374592939391199554043292633.
Under the above perturbed parameter values,
we have

b1 = −0.1250000000001 × 10−23,

b2 = 0.23487766293640493222454 × 10−16,

b3 = −0.420581414234386731843468184691×10−10,

b4 = 0.339137615944725037359924228352 × 10−5,

b5 = −0.427146953340583532366971102420 × 10−2,

for which Eq. (54) has four real roots:

h1 = 0.169811971816428230300926230677 × 10−3,

h2 = 0.598730983112402851118019026925 × 10−3,

h3 = 0.300806322819703128399192749467 × 10−2,

h4 = 0.250333629057619075954658809755 × 10−1,

(55)

as expected. If we add two more terms 6b6h
5 and

7b7h
6 to Eq. (54), it still gives only four real roots,

which are almost exactly the same as that given in
Eq. (55).

5. Conclusions

It has been shown in this paper that general revert-
ible planar cubic systems can have six local critical
periods which bifurcate from a weak center. This
new result improves the existing conclusion that
such a system can at most have four local criti-
cal periods. The methodology used in this paper
is based on a perturbation technique for comput-
ing normal forms. Also some sufficient conditions
are derived under which the center of the system
becomes an isochronous center. This approach is
proved to be computationally efficient, and can be
extended to consider other systems such as Hamil-
tonian systems.
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