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In this paper, we present four limit cycles in quadratic near-integrable polynomial systems. It is
shown that when a quadratic integrable system has two centers and is perturbed by quadratic
polynomials, it can generate at least four limit cycles with (3, 1)-distribution. This result provides
a positive answer to an open question in this research area.
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1. Introduction

The well-known Hilbert’s 16th problem has
remained unsolved since Hilbert proposed the 23
mathematical problems at the Second International
Congress of Mathematics in 1900 [Hilbert, 1902].
Recently, a modern version of the second part of
the 16th problem was formulated by Smale [1998],
chosen as one of the 18 challenging mathematical
problems for the 21st century. To be more specific,
consider the following planar system:

dx

dt
= Pn(x, y),

dy

dt
= Qn(x, y), (1)

where Pn(x, y) and Qn(x, y) represent nth degree
polynomials of x and y. The second part of Hilbert’s
16th problem is to find the upper bound H(n) ≤ nq

on the number of limit cycles that the system
can have, where q is a universal constant, and
H(n) is called Hilbert number. In the early 1990’s,

Ilyashenko and Yakovenko [1991], Écalle [1992]
proved the finiteness theorem pioneered by Dulac,
for given planar polynomial vector fields. In general,
the finiteness problem has not been solved even for
quadratic systems. Recent survey articles (e.g. see
[Li, 2003; Yu, 2006] and more references therein)
have comprehensively discussed this problem and
reported the recent progress.

If the problem is restricted to the neighbor-
hood of isolated fixed points, then the question on
studying degenerate Hopf bifurcations gives rise to
weak (fine) focus points. In the past six decades,
many researchers have considered the local prob-
lem and obtained many results (e.g. see [Kukles,
1944; Bautin, 1952; Malkin, 1964; Liu & Li, 1989;
Li & Liu, 1991; Yu & Han, 2005a, 2005b]). In the
last 20 years, much progress on finite cyclicity near
a weak focus point or a homoclinic loop has been
achieved. Roughly speaking, the so-called finite
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cyclicity means that at most a finite number of
limit cycles can exist in some neighborhood of focus
points or homoclinic loop under small perturbations
on the system’s parameters.

In this paper, we particularly consider bifur-
cation of limit cycles in quadratic systems. Early
results can be found in a survey article by Ye
[1982]. Some recent progress has been reported in a
number of papers (e.g. see [Roussarie, 1998; Rous-
sarie & Schlomiuk, 2002]). For general quadratic
system (1) (n = 2), in 1952, Bautin proved that
there exist 3 small limit cycles around a weak
focus point or a center [Bautin, 1952]. After 30
years, until the end of 1970’s, concrete examples
were given to show that general quadratic systems
can have 4 limit cycles [Shi, 1979; Chen & Wang,
1979], around two foci with (3, 1)-configuration.
Since then, many researchers have paid attention
to integrable quadratic systems, and a number of
results have been obtained. A question was nat-
urally raised: Can near-integrable quadratic sys-
tems have 4 limit cycles? A quadratic system is
called near-integrable if it is a perturbation of a
quadratic integrable system by quadratic polynomi-
als. On one hand, it is reasonable to believe that the
answer should be positive since general quadratic
systems have at least 4 limit cycles; while on the
other hand, near-integrable quadratic systems have
restrictions on their system parameters and thus it
is more difficult to find 4 limit cycles in such sys-
tems. In fact, this is still an open problem after
another 30 years since the finding of 4 limit cycles
in general quadratic systems, and many researchers
are working on this problem. It should be men-
tioned that 4 limit cycles have been discussed by Lli-
bre and Schlomiuk [2004], Artés et al. [2006] using
general polynomial perturbations applied to inte-
gral quadratic systems, which are not near-integral
quadratic systems defined in this paper.

The study of bifurcation of limit cycles in
near-integrable systems is related to the so-called
weak Hilbert’s 16th problem [Arnold, 1977], which
is transformed to finding the maximal number of
isolated zeros of the Abelian integral or Melnikov
function:

M(h, δ) =
∮

H(x,y)=h
Qndx − Pndy, (2)

where H(x, y), Pn and Qn are all real polyno-
mials of x and y with deg H = n + 1, and
max{deg Pn,deg Qn} ≤ n. The weak Hilbert’s 16th

problem is a very important problem, closely related
to the maximal number of limit cycles of the follow-
ing near-Hamiltonian system [Han, 2006]:

dx

dt
=

∂H(x, y)
∂y

+ εpn(x, y),

dy

dt
= −∂H(x, y)

∂x
+ εqn(x, y),

(3)

where H(x, y), pn(x, y) and qn(x, y) are polynomials
of x and y, and 0 < ε � 1 is a small perturbation.

General quadratic systems with one center have
been classified, for example, by Żola̧dek [1994] using
a complex analysis on the condition of the center,
as four systems: QLV

3 — the Lotka–Volterra sys-
tem; QH

3 — Hamiltonian system; QR
3 — reversible

system; and Q4 — codimension-4 system. In 1994,
Horozov and Iliev [1994] proved that in quadratic
perturbation of generic quadratic Hamiltonian vec-
tor fields with one center and three saddle points
there can appear at most two limit cycles, and
this bound is exact. Later, Gavrilov [2001] extended
Horozov and Iliev’s method to give a fairly com-
plete analysis on quadratic Hamiltonian systems
with quadratic perturbations. Quadratic Hamilto-
nian systems, with at most four singularities, can
be classified as three cases [Gavrilov, 2001]: (i) one
center and three saddle points; (ii) one center and
one saddle point; and (iii) two centers and two sad-
dle points. Gavrilov [2001] showed that like case (i),
cases (ii) and (iii) can also have at most two
limit cycles. Therefore, generic quadratic Hamilto-
nian systems with quadratic perturbations can have
maximal two limit cycles, and this case has been
completely solved.

For the QR
3 reversible system, there have been

many results published. For example, Dumortier
et al. [1997] studied a case of QR

3 system with
two centers and two unbounded heteroclinic loops,
and presented a complete analysis of quadratic 3-
parameter unfolding. It was proved that 3 is the
maximal number of limit cycles surrounding a single
focus, and only the (1, 1)-configuration can occur
in case of simultaneous nests of limit cycles. That
is, 3 is the maximal number of limit cycles for
the system they studied [Dumortier et al., 1997].
Later, Peng [2002] considered a similar case with
a homoclinic loop and showed that 2 is the max-
imal number of limit cycles which can bifurcate
from the system. Around the same time, Yu and Li
[2002] investigated a similar case as Peng considered
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but with a varied parameter in a certain interval,
and obtained the same conclusion as Peng’s. Later,
Iliev et al. [2005] reinvestigated the same case but
for the parameter values varied at a different inter-
val (which yields two centers) and got the same
conclusion as that of [Dumortier et al., 1997], i.e.
3 is the maximal number of limit cycles which can
be obtained from this case. Recently, Li and Lli-
bre [2010] considered a different case of QR

3 sys-
tem which can exhibit the configurations of limit
cycles: (0, 0), (1, 0), (1, 1) and (1, 2). Again, no 4
limit cycles were found. In order to explain why the
above authors did not find 4 limit cycles from the
QR

3 reversible system, consider the QR
3 system with

quadratic perturbations, which can be described by
[Dumortier et al., 1997]

ẋ = −y + ax2 + by2 + ε(µ1x + µ2xy),

ẏ = x(1 + cy) + εµ3x
2,

(4)

where a, b, c are real parameters, µi, i = 1, 2, 3 are
real perturbation parameters, and 0 < ε � 1. When
ε = 0, system (4)ε=0 is a reversible integrable sys-
tem. It has been noted that in all the cases consid-
ered in [Dumortier et al., 1997; Peng, 2002; Yu &
Li, 2002; Iliev et al., 2005], the parameters a and
c were chosen a = −3, c = −2, but with b = 1 in
[Dumortier et al., 1997]; b = −1 in [Peng, 2002],
b ∈ (−∞,−1) ∪ (−1, 0) in [Yu & Li, 2002], and
b ∈ (0, 2) in [Iliev et al., 2005]. In these papers,
complete analysis on the perturbation parameters
was carried out with the aid of Poincaré transforma-
tion and the Picard–Fuchs equation, but it needed
to fix all (or most of) the parameters a, b and c.
This way it may miss the opportunity to find more
limit cycles, such as possible existence of 4 limit
cycles. As a matter of fact, for the cases considered
in [Yu & Li, 2002; Iliev et al., 2005], a simple scaling
on the parameter b (b �= 0) can be used to eliminate
b. So, suppose the nonperturbed system (4)ε=0 has
two free parameters and let us consider the two-
dimensional parameter plane. Then, all the cases
studied in the above mentioned articles are special
cases, represented by just a point or a line segment
in the two-dimensional parameter plane (see more
details in Sec. 2). It has been noted that a differ-
ent method was used in [Li & Llibre, 2010] with
Melnikov function up to second order, but no more
limit cycles were found.

It should be mentioned that Zhang [2002]
has proved that the possible cycle distributions
in general quadratic systems with two foci must

be (0, 1)-distribution or (1, i)-distribution, i =
0, 1, 2, 3, . . . . So far, no results have been obtained
for i ≥ 4. This result also rules out the possibility
of (2, 2)-distribution. It is conjectured that at most
3 limit cycles can exist around one focus point. The
problem of bifurcation of 3 limit cycles near an iso-
lated homoclinic loop is still open.

In this paper, we turn to a different angle and
consider bifurcation of limit cycles in quadratic
near-integrable systems with two centers. We shall
leave more free parameters in the integrable sys-
tems, so that we will have chances to find more
limit cycles. The basic idea is as follows: we first
consider bifurcation of multiple limit cycles from
Hopf singularity, which does not need to fix any
parameters, and use expansion of Melnikov function
near centers to get as many as possible such limit
cycles. This leads to the determination of a maxi-
mal number of parameters. Then, for the remaining
undetermined parameters, we compute the global
Melnikov function to look for possible large limit
cycles. Indeed, although, due to the complex inte-
grating factor in the analysis, we are not able to give
a complete analysis for classifying the perturbation
unfolding, we do get a positive answer to the open
question of existence of 4 limit cycles in quadratic
near-integrable systems. In particular, we will show
that perturbing a reversible, integrable quadratic
system with two centers can have at least 4 limit
cycles, with (3, 1)-distribution, bifurcating from the
two centers under quadratic perturbations.

The rest of paper is organized as follows. In
Sec. 2, we give a different classification in real
domain for quadratic systems with one center, and
compare it with that given by Żola̧dek [1994].
Also, we use our classification to present a sim-
ple summary on some of the existing results for
the reversible near-integrable system. Section 3 is
devoted to the analysis on bifurcation of small limit
cycles from Hopf singularity. In Sec. 4, we show how
to find large limit cycles bifurcating from closed
orbits to obtain a total of 4 limit cycles. Finally,
conclusion is drawn in Sec. 5. The main results of
this manuscript has been posted on arXiv.org since
February 2010 [Yu & Han, 2010].

2. Classification of Generic Quadratic
Systems with at Least One Center

In this section, we give a different classification in
real domain for quadratic systems with a center,
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which is consistent with the Hamiltonian systems
considered in [Horozov & Iliev, 1994; Gavrilov,
2001]. We start from the following general quadratic
system:

dz1

dt
= c100 + c110z1 + c101z2 + c120z

2
1

+ c111z1z2 + c102z
2
2 ,

dz2

dt
= c200 + c210z1 + c201z2 + c220z

2
1

+ c211z1z2 + c202z
2
2 ,

(5)

where cijk’s are real constant parameters. It is easy
to show that this system has at most four singular-
ities, or more precisely, it can have 0, 2 or 4 sin-
gularities in real domain. In order for system (5) to
have limit cycles, the system must have some singu-
larity. In this paper, we assume that system (5) has
at least two singularities. Without loss of generality,
we may assume that one singular point is located at
the origin (0, 0), which implies c100 = c200 = 0, and
the other at (p, q) (p2 +q2 �= 0). Further assume the
origin is an elementary center. Then introducing a
series of linear transformations, parameter rescaling
and time rescaling to system (5) yields the following
general quadratic system:

dx

dt
= y + a1xy + a2y

2,

dy

dt
= −x + x2 + a3xy + a4y

2,

(6)

which has an elementary center at the origin (0, 0)
and another singularity at (1, 0).

In order to have the origin of system (6) being
a center, we may calculate the focus values of sys-
tem (6) and find four cases under which (0, 0) is a
center, listed in the following theorem (here we use
Żola̧dek’s notation in our classification).

Theorem 1. The origin of (6) is a center if and
only if one of the following conditions is satisfied :

QR
3 — Reversible system: a3 = a2 = 0, under which

system (6) becomes

dx

dt
= y + a1xy,

dy

dt
= −x + x2 + a4y

2,

(7)

with

(1, 0) being a

{
center if a1 < −1,

saddle point if a1 > −1.

QH
3 — Hamiltonian system: a3 = a1 + 2a4 = 0,

under which system (6) is reduced to

dx

dt
= y + a1xy + a2y

2,

dy

dt
= −x + x2 − 1

2
a1y

2,

(8)

with

(1, 0) being a

{
center if a1 < −1,

saddle point if a1 > −1.

QLV
3 — Lokta–Volterra system: a2 = 1 + a4 = 0,

under which system (6) becomes

dx

dt
= y + a1xy,

dy

dt
= −x + x2 + a3xy − y2,

(9)

with

(1, 0) being a


focus if a1 < −
(

1 +
1
4
a2

3

)
,

node if −
(

1 +
1
4
a2

3

)
< a1 < −1,

saddle point if a1 > −1.

Q4 — Codimension-4 system:

a3 − 5a2 = a1 − (5 + 3a4)

= a4 + 2(1 + a2
2) = 0, (10)

under which system (6) can be rewritten as

dx

dt
= y − (1 + 6a2

2)xy + a2y
2,

dy

dt
= −x + x2 + 5a2xy − 2(1 + a2

2)y
2,

(11)

with (1, 0) being a node for a2 �= 0.
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Remark 2.1. There is one more case found from the
above process, defined by the following conditions:

a3 − 5a2 = a1 − (5 + 3a4)

= 3(a4 + 2)(a4 + 1)2 − (5a4 + 6)a2
2

= 0. (12)

We will show later in this section, when we com-
pare our above real classification with the com-
plex classification given by Żola̧dek [1994], that
the case defined by (12) actually belongs to the
QR

3 — reversible system.

Proof. Necessity is easy to be verified by comput-
ing the focus values of system (6) associated with
the origin. Some focus values will not equal zero if
the condition is not satisfied.

For sufficiency, we find an integrating factor for
each case when the condition holds. For the QH

3 —
Hamiltonian system (8), we know that the integrat-
ing factor is 1, and the Hamiltonian is given by

H(x, y) =
1
2
(x2 + y2) − 1

3
x3 +

1
2
a1xy2

+
1
3
a2y

3, (13)

which is exactly the same as that given in [Horo-
zov & Iliev, 1994; Gavrilov, 2001].

For the QR
3 — reversible system (7), the inte-

grating factor is

γ = |1 + a1x|−
a1+2a4

a1 , (14)

and the first integral of the system is given by

F (x, y) =
1
2
sign(1 + a1x)|1 + a1x|−

2a4
a1

[
y2 +

(1 + a1 − a4)(1 + 2a4x)
a4(a1 − a4)(a1 − 2a4)

− x2

a1 − a4

]
. (15)

For the QLV
3 — Lokta–Volterra system (9), we find the integrating factor as

γ = |g(x, y)|−1, where g(x, y) = (1 + a1x)[(x − 1)2 + a3(x − 1)y − (1 + a1)y2], (16)

and the first integral of the system is

F (x, y) =




−sign(g(x, y))
2a1(1 + a1)

{
2 ln|1 + a1x| + a1 ln|(1 + a1)y2 − a3y(x − 1) − (x − 1)2|

+
2a1a3(x − 1)√

[a2
3 + 4(1 + a1)](x − 1)2

tanh−1

[
a3(x − 1) − 2(1 + a1)y√
[a2

3 + 4(1 + a1)](x − 1)2

]}
,

when a2
3 + 4(1 + a1) > 0,

−sign(1 + a1x)
2a1(1 + a1)

{
2 ln|1 + a1x| + a1 ln[(1 + a1)y2 − a3y(x − 1) − (x − 1)2]

− 2a1a3(x − 1)√
[−a2

3 − 4(1 + a1)](x − 1)2
tan−1

[
a3(x − 1) − 2(1 + a1)y√
[−a2

3 − 4(1 + a1)](x − 1)2

]}
,

when a2
3 + 4(1 + a1) < 0.

(17)

Finally, for the Q4 — codimension-4 system (11), we have

γ = |g(x, y)|−5/2, where g(x, y) = 1 − 2(1 + 2a2
2)x − 2a2y + (1 + 4a2

2)(x + a2y)2, (18)

and the first integral of the system is equal to

F (x, y) =
sign(g(x, y))

12a6
2

|g(x, y)|−3/2f(x, y),

(19)

where

f(x, y) = −(1 + a2
2) + 3(x + a2y + 2a2

2x)

× [1 + a2
2 − (1 + 3a2

2)(x + a2y)]

+ (1 + 3a2
2)(1 + 4a2

2)(x + a2y)3. (20)

The proof is complete. �
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Note that among the four classifications of the
integrable system (6), the first three classified sys-
tems (7)–(9) have two free parameters, while the
last system (11) has only one free parameter.

Remark 2.2. We now show that our classification in
Theorem 1 is equivalent to that given by Żola̧dek
[1994]. The general quadratic system considered by
Żola̧dek is given in the complex form:

dz

dt
= (i + λ)z + Az2 + Bzz + Cz2, (21)

where z = x+iy, and A,B and C are complex coef-
ficients. It has been shown by Żola̧dek [1994] that
the point z = 0 is a center if and only if one of the
following conditions is fulfilled:

QLV
3 : λ = B = 0,

QH
3 : λ = 2A + B = 0,

QR
3 : λ = Im(AB) = Im(B3C)

= Im(A3C) = 0,

Q4 : λ = A − 2B = |C| − |B| = 0.

(22)

In the following, we first use real differen-
tial equation to give a brief proof (different from
Żola̧dek’s [1994]), and then show that our classifi-
cation is equivalent to Żola̧dek’s when system (21)
is assumed to have a nonzero singularity. To prove
this, let

A = A1 + iA2, B = B1 + iB2,

C = C1 + iC2, (i2 = −1),

and then rewrite the complex equation (21) in the
real form:

dx

dt
= λx + y + (A1 + B1 + C1)x2

+ 2(A2 − C2)xy − (A1 − B1 + C1)y2,

dy

dt
= −x + λy − (A2 + B2 + C2)x2

+ 2(A1 − C1)xy + (A2 − B2 + C2)y2,

(23)

where y → −y has been used. Letting λ = 0 yields
the focus value v0 = 0. Then, it is easy to find the
first focus value (or the first Lyapunov constant) as

v1 = −A1B2 − B1A2 = −Im(AB). (24)

Letting v1 = 0 results in Im(AB) = 0, which gives

B2 = −B1A2

A1
, under the assumption of A1 �= 0.

(25)

(The degenerate case A1 = 0 can be similarly ana-
lyzed and the details are omitted here.) Then, we
apply our Maple program (e.g. see [Yu, 1998]) to
system (23), with the conditions λ = 0 and (25), to
obtain

v2 =
−f(A1 − 2B1)

3A3
1

, v3 =
−ff 3

216A5
1

,

v4 =
−ff 4

9720A7
1

, v5 =
−ff 5

466560A9
1

, . . .

where

f = B1(2A1 + B1)(C2A
3
1 + 3C1A2A

2
1

− 3A2
2C2A1 − C1A

3
2),

and f3, f4, etc. are polynomials of A1, A2, C1, C2 and
B1. Letting f = 0, i.e.

B1 = 0 or 2A1 + B1 = 0 or

C2A
3
1 + 3C1A2A

2
1 − 3A2

2C2A1 − C1A
3
2

= Im(A3C) = 0

yields v2 = v3 = · · · = 0.
Indeed, B1 = 0 implies B2 = 0 due to the condi-

tion (25), and so B = 0. Thus, we obtain λ = B = 0,
corresponding to the QLV

3 case.
For the condition 2A1 + B1 = 0, it follows

from (25) that 2A2 − B2 = 0, i.e. 2A + B = 0,
which plus the condition λ = 0 gives the QH

3 case.
The third condition Im(A3C) = 0, with λ = 0

and Im(AB) = 0, corresponds to the QR
3 case. Fur-

ther, it is easy to show that under the condition
Im(AB) = 0, Im(A3C) = 0 and Im(B3C) = 0 are
equivalent. Thus, the conditions λ = Im(AB) =
Im(B3C) = 0 are also applicable for this case. So
for this case, either Im(A3C) = 0 or Im(B3C) = 0
is needed, but not both of them. In the following,
we show one more case to join this case, leading to
both the two conditions being needed.

Note that there is one more condition A1 = 2B1

which renders v2 = 0. Letting A1 = 2B1, and so
A2 = −2B2 [see (25)], implying that A − 2B = 0.
Under the condition A = 2B, v1 = v2 = 0, and the
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other focus values become

v3 =
25
8

(C2
1 + C2

2 − B2
1 − B2

2)(C2B
3
1 − 3C1B

2
1B2 − 3C2B1B

2
2 + C1B

3
2),

v4 =
v3

45
[45B2

1 + 585B2
2 + 60(B1C1 + B2C2) − 196(C2

1 + C2
2 )],

v5 =
v3

6480
[648(7B4

1 + 124B2
1B2

2 + 1557B4
2 ) − 3(961B2

1C2
1 − 7680B1B2C1C2 + 202345B2

2C2
2 )

+ 576B1C1(106B2
1 + 307B2

2 ) + 288B2C2(371B2
1 + 773B2

2) − 3(4801B2
1C2

2 + 206185B2
2C2

1 )

− 80688(C12 + C22)(B1C1 + B2C2) + 86144(C12 + C22)2],
...

Hence, under the conditions λ = A− 2B = 0, there
are two possibilities such that v3 = v4 = · · · = 0.
The first possibility is

C2
1 + C2

2 − B2
1 − B2

2 = 0, i.e. |C| − |B| = 0,

which is one of the conditions given for the Q4 case
[see (22)].

The second possibility is given by the condition:

C2B
3
1 − 3C1B

2
1B2 − 3C2B1B

2
2 + C1B

3
2

= Im(B3C)

=
1
8
Im(A3C) = 0,

(26)

due to A = 2B. Since these conditions can
be included in the conditions λ = Im(AB) =
Im(B3C) = Im(A3C) = 0, this possibility belongs
to the QR

3 case.
The remaining task is to show that the condi-

tions classified in (22) are sufficient. This can be
done by finding an integrating factor for each case.
For brevity, we only list these integrating factors
below (while the lengthy expressions of the first
integrals are omitted):

γ =




|1 + 4(A2x − A1y) + 4(A1C2 + A2C1 − 2A1A2)xy + [(A1 + C1)(A1 − 3C1)

+ (A2 + C2)(5A2 − 3C2)]x2 + [(A2 + C2)(A2 − 3C2)

+ (A1 + C1)(5A1 − 3C1)]y2 + 2(A2
1 + A2

2 − C2
1 − C2

2 )[(A2 + C2)x3

− (A1 + C1)y3 − (A1 − 3C1)x2y + (A2 − 3C2)xy2]|−1, for QLV
3 ,

1, for QH
3 ,

|1 − 2(A1 − C1)y|−
2A1+B1
A1−C1 , for QR

3 ,

|1 − 4(B2x + B1y) + 2(B2
1 + B2

2)(x2 + y2)

+ 2(B1C1 + B2C2)(x2 − y2) + 4(B1C2 − B2C1)xy|−5/2, for Q4.

(27)

For the integrating factors of degenerate cases (e.g. A1 − C1 = 0), one can easily find them.
Next, compare the classification listed in (22) with ours given in Theorem 1. First, consider the QLV

3

case. Letting λ = B1 = B2 = 0 in (23) yields

dx

dt
= y + (A1 + C1)x2 + 2(A2 − C2)xy − (A1 + C1)y2,

dy

dt
= −x − (A2 + C2)x2 + 2(A1 − C1)xy + (A2 + C2)y2.

(28)
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Then, let

k = tan(θ), and so

sin(θ) =
k√

1 + k2
, cos(θ) =

1√
1 + k2

,
(29)

where k is solved from the following cubic polyno-
mial:

P1(k) = (A2 + C2)k3 + (A1 − 3C1)k2

+ (A2 − 3C2)k + A1 + C1 = 0. (30)

This cubic polynomial at least has one real solution
for k, which gives the slope of the line on which a
second fixed point is located. k = 0 if A1 + C1 = 0,
otherwise, k �= 0. Let k be a real root of P1(k), i.e.
P1(k) = 0.

Further, introducing the linear transformation
(rotation):

x = cos(θ)u − sin(θ)v,

y = sin(θ)u + cos(θ)v,
(31)

into (28) yields

dx

dt
= y + m120x

2 + m111xy + m102y
2,

dy

dt
= −x + m220x

2 + m211xy + m202y
2,

(32)

where

m120 = −m102

= (1 + k2)−3/2P1(k) = 0,

m220 = −m202

= (1 + k2)−3/2[(A1 + C1)k3 − (A2 − 3C2)k2

+ (A1 − 3C1)k − A2 − C2],

m111 = −2(1 + k2)−3/2[(A1 − C1)k3

− (A2 + 3C2)k2 + (A1 + 3C1)k

−A2 + C2],

m211 = 2(1 + k2)−3/2[(A2 − C2)k3 + (A1 + 3C1)k2

+ (A2 + 3C2)k + A1 − C1].

Suppose m220 �= 0. Then, introducing x = m220x,
y = m220y into (32) results in

dx

dt
= y +

m111

m220
xy,

dy

dt
= −x + x2 +

m211

m220
xy − y2,

(33)

which is identical to (9) as long as letting a1 = m111
m220

and a3 = m211
m220

. This shows that the four parame-
ters A1, A2, C1 and C2 are not independent. Thus,
alternatively, we may simply take k = 0 (which ren-
ders the second singularity of (28) on the x-axis),
yielding C1 = −A1. Thus, (28) becomes

dx

dt
= y + 2(A2 − C2)xy,

dy

dt
= −x − (A2 + C2)x2 + 4A1xy + (A2 + C2)y2.

Suppose A2 + C2 �= 0. Introducing x = −(A2 +
C2)x, y = −(A2 +C2)y into the above equations we
obtain

dx

dt
= y − 2(A2 − C2)

A2 + C2
xy,

dy

dt
= −x + x2 − 4A1

A2 + C2
xy − y2,

(34)

which is identical to (9) if letting a1 = −2(A2−C2)
A2+C2

and a3 = −4A1
A2+C2

. In the following, we will use this
simple approach for other cases.

For the QH
3 case, substituting λ = 0, B1 =

−2A1 and B2 = 2A2 into system (23) results in

dx

dt
= y − (A1 − C1)x2 + 2(A2 − C2)xy

− (3A1 + C1)y2,

dy

dt
= −x − (3A2 + C2)x2 + 2(A1 − C1)xy

− (A2 − C2)y2.

Further, taking C1 = A1 in the above equations
gives another singularity on the x-axis, and intro-
ducing x = −(3A2 + C2)x, y = −(3A2 + C2)y into
the resulting equations yields

dx

dt
= y − 2(A2 − C2)

3A2 + C2
xy +

4A1

3A2 + C2
y2,

dy

dt
= −x + x2 +

A2 − C2

3A2 + C2
y2,

(35)

which is identical to (8) if we set a1 = −2(A2−C2)
3A2+C2

and a2 = 4A1
3A2+C2

.
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For the QR
3 reversible case, it follows from

[Żola̧dek, 1994] that all the coefficients A,B and
C are real, and thus we obtain the following real
form from the complex system (21)

dx

dt
= −y + ax2 + by2,

dy

dt
= x + cxy,

(36)

where

a = A1 + B1 + C1, b = B1 − A1 − C1,

c = 2A1 − 2C1.

Suppose b �= 0. Then, introducing x = by, y = bx
into (36) results in

dx

dt
= y +

c

b
xy,

dy

dt
= −x + x2 +

a

b
y2,

(37)

which is identical to (7) if

a1 =
c

b
=

2(A1 − C1)
B1 − A1 − C1

and

a4 =
a

b
=

A1 + B1 + C1

B1 − A1 − C1
.

For the last Q4 case, under the condition λ =
A−2B = 0, by setting C1 = −3B1 (which renders a
nonzero singularity on the x-axis) in (23) we obtain

dx

dt
= y − 2(2B2 + C2)xy + 2B1y

2,

dy

dt
= −x + (B2 − C2)x2 + 10B1xy

− (3B2 − C2)y2.

Suppose B2 − C2 �= 0. Then, introducing x =
(B2 − C2)x, y = (B2 − C2)y into the above equa-
tions yields

dx

dt
= y − 2(2B2 + C2)

B2 − C2
xy +

2B1

B2 − C2
y2,

dy

dt
= −x + x2 +

10B1

B2 − C2
xy − 3B2 − C2

B2 − C2
y2.

(38)

Comparing the coefficients of the above system (38)
with our system (6) results in

a1 = −2(2B2 + C2)
B2 − C2

, a2 =
2B1

B2 − C2
,

a3 =
10B1

B2 − C2
, a4 = −3B2 − C2

B2 − C2
,

(39)

which in turn implies that a3 − 5a2 = a1 − (5 +
3a4) = 0, and

a4 + 2(1 + a2
2) =

8B2
1 + C2

2 − B2
2

(B2 − C2)2

=
C2

1 + C2
2 − B2

1 − B2
2

(B2 − C2)2

= 0, for |C| − |B| = 0.

The above conditions are the exact conditions given
in (10) for the Q4 case.

Finally, we turn to the conditions given in (12).
It follows from (39) that

3(a4 + 2)(a4 + 1)2 − (5a4 + 6)a2
2

= − 4
(B2 − C2)3

(3B3
2 + 3B2

2C2 − C2
1B2 − B2

1C2).

(40)

On the other hand, under the condition C1 =
−3B1, the condition (26) for the second possibility
becomes

C2B
3
1 − 3C1B

2
1B2 − 3C2B1B

2
2 + C1B

3
2

= C2B
3
1 + C2

1B1B2 − 3C2B1B
2
2 − 3B1B

3
2

= −B1(3B3
2 + 3B2

2C2 − C2
1B2 − B2

1C2) = 0,

which implies, by Eq. (40), 3(a4+2)(a4+1)2−(5a4+
6)a2

2 = 0 for B1 �= 0. Hence, according to Żola̧dek’s
classification [see (22)], this case should be included
in the QR

3 case. However, one cannot prove this by
directly using the conditions in (12) as well as that
for the QR

3 case (see Theorem 1). One must trace
back to the original system coefficients.

In the paper [Żola̧dek, 1994], the author used
Bautin’s system to verify his classification. Bautin’s
system is described by [Bautin, 1952]

dx

dt
= λ1x − y + λ3x

2 + (2λ2 + λ5)xy + λ6y
2,

dy

dt
= x + λ1y + λ2x

2 + (2λ3 + λ4)xy − λ2y
2.

(41)

It is seen from (23) and (41) that Bautin’s system
has only six parameters, while Żola̧dek’s system has
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seven (in real domain) parameters. This indicates
that Żola̧dek’s system has one redundant parame-
ter. In fact, putting Bautin’s system in Żola̧dek’s
complex form gives the following expressions:

λ = λ1, A =
1
4
(λ3 + λ4 − λ6 − iλ5),

B = −1
2
(λ3 − λ6),

C =
1
4
[−(3λ3 + λ4 + λ6) + i(4λ2 + λ5)].

Then, applying the formulas given in (23)
will immediately generate the center conditions
obtained by Bautin [1952]. The above expressions
clearly show that B2 = 0. As a matter of fac-
tor, the integrating factor for the system, cor-
responding to the second possibility, i.e. when
λ = A − 2B = Im(B3C) = 0, is given by

∣∣∣∣1 + 2
[

C1(B2
1 + B2

2)
B1(B2

1 − 3B2
2)

− 2
]

(B2x + B1y)
∣∣∣∣

5B1(B2
1−3B2

2)

C1(B2
1
+B2

2
)−2B1(B2

1
−3B2

2
)

.

For B2 = 0, the above expression is reduced to

|1 − 2(2B1 − C1)y|
5B1

C1−2B2 = |1 − 2(A1 − C1)y|−
2A1+B1
A1−C1 (due to A1 = 2B1),

which is the integrating factor for the QR
3 system,

as shown in (27).
Now we return to system (6). Among the four

classifications, the Hamiltonian system (QH
3 ) has

been completely studied in [Horozov & Iliev, 1994;
Gavrilov, 2001]: the system can have maximal two
limit cycles. In this paper, we will concentrate on
the QR

3 — reversible case. Special cases for the
reversible system have been investigated by a num-
ber of authors (e.g. see [Dumortier et al., 1997;
Peng, 2002; Yu & Li, 2002; Iliev et al., 2005; Li &
Llibre, 2010]). It is easy to see that system (7)
is invariant under the mapping (t, y) → (−t,−y),
where a1 and a4 can be considered as perturba-
tion parameters. The singular point (1, 0) of (7) is
a center when a1 < −1; but a saddle point when
a1 > −1. a1 = −1 gives a degenerate singular point
at (1, 0). Further, it is easy to verify that when
(a1 + 1)a4 > 0, there are no more singularity; while
when (a1 + 1)a4 < 0, there exist additional two
saddle points, given by

(x∗, y∗) =

(
− 1

a1
,±
√−a4(a1 + 1)

a1a4

)
.

a4 = 0 is a critical value, yielding the two additional
saddle points at infinity: (x∗, y∗) = (− 1

a1
,±∞).

In summary, the distribution of singularity of the
reversible system (7) has the following possibility
(see Fig. 1, where 1C + 1S stands for one center
and one saddle point, similar meaning applies to
2C, 2C + 2S and 1C + 3S):

Two centers when a1 < −1 and a4 < 0;

Two centers and two saddle points

when a1 < −1 and a4 > 0;

One center and one saddle point

when a1 > −1 and a4 > 0;

One center and three saddle points

when a1 > −1 and a4 < 0.
(42)

In this paper, we pay particular attention to
a1 < −1, a4 < 0, for which system (7) has only two
singularities at (0, 0) and (1, 0), both of them are
centers.

By adding quadratic perturbations to sys-
tem (7) we obtain the following perturbed quadratic
system:

dx

dt
= y(1 + a1x) + εP (x, y)

= y(1 + a1x) + ε(a10x + a01y

+ a20x
2 + a11xy + a02y

2),

dy

dt
= −x + x2 + a4y

2 + εQ(x, y)

= −x + x2 + a4y
2 + ε(b10x + b01y

+ b20x
2 + b11xy + b02y

2),

(43)

where 0 < ε � 1, aij ’s and bij ’s are perturbation
parameters.
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1 2 3−3 −2

2

1

3

−1

−2

−3

−4

−4

4

4

−1 0 5−5

Fig. 1. Case studies for the QR
3 reversible system.

Remark 2.3. The special system considered by
Dumortier et al. [1997] is system (4) with

a = −3, c = −2, b = 1.

This is equivalent to our system when a1 = −2 and
a4 = −3 for which the system has only two elemen-
tary centers at (0, 0) and (1, 0). Consider the a1–a4

parameter plane, as shown in Fig. 1. It can be seen
that this case is just a point, (a1, a4) = (−2,−3),
in the parameter plane, marked by a blank circle in
the third quadrant on the line a4 = 3

2a1 (see Fig. 1).
The special system studied by Peng [2002] is

system (4) with

a = −3, c = −2, b = −1.

This is equivalent to our system when a1 = 2 and
a4 = 3, for which the system has one center at (0, 0)
and one saddle point at (1, 0). Thus, this case is
again a point, (a1, a4) = (2, 3), in the a1–a4 param-
eter plane, marked by another blank circle in the
first quadrant on the line a4 = 3

2a1 (see Fig. 1).
The cases considered in [Yu & Li, 2002; Iliev

et al., 2005] correspond to system (4) with a = −3,
c = −2, and b ∈ (−∞,−1) ∪ (−1, 0) in [Yu & Li,
2002], and b ∈ (0, 2) in [Iliev et al., 2005].

When ε = 0 in system (4), one can use the
following transformation:

x =
ỹ

b
, y =

x̃

b
,

to transform system (4)ε=0 to

dx̃

dt
= ỹ

(
1 +

c

b
x̃
)
,

dỹ

dt
= −x̃ + x̃2 +

a

b
ỹ2,

(44)

which is our system (7) with

a1 =
c

b
, a4 =

a

b
. (45)

Equation (45) yields

a4 =
a

c
a1 (b �= 0), (46)

which represents a line in the a1–a4 parameter
plane, passing through the origin with the slope a

c .
In particular, the parameter values: a = −3, c = −2,
b ∈ (−∞,−1) ∪ (−1, 0) ∪ (0, 2), yielding a1 = −2

b

and a4 = −3
b , correspond to a part of the line,

described by

a4 =
3
2
a1 ∀ a1 ∈ (−∞,−1) ∪ (0,∞), (47)

as shown in Fig. 1, where the dotted line for a1 ∈
[−1, 0] is excluded from the study in [Yu & Li, 2002;
Iliev et al., 2005].

It should be noted that when a = −3, c = −2,
the point (0, 1

b ) is a saddle point if and only if

1 +
c

b
= 1 − 2

b
> 0 ⇒ b ∈ (−∞, 0) ∪ (2,+∞).

Thus, the case considered in [Yu & Li, 2002] has one
center and one saddle point; while the case studied
in [Iliev et al., 2005] has two elementary centers.
But even these two studies together do not cover
the whole line a4 = 3

2a1 (the missing part is denoted
by a dotted line segment in Fig. 1).

Another alternative form for a special case
of our system (7) considered by Han [1997] is
described by

dx

dt
= y

[
1 + 2(1 − e)

(
x +

1
d

)]
,

dy

dt
= x + dx2 + ey2,

(48)

where e and d (�= 0) are parameters. This sys-
tem has a saddle point at the origin and a center
at (x, y) = (−1

d , 0). Based on the two parameters,
seven cases are classified [Han, 1997]. We can apply
the following transformation:

x =
1
d
(x − 1), y =

1
d
y,

to system (48), yielding

dx

dt
= y

[
1 +

2(1 − e)
d

x

]
,
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dy

dt
= −x + x2 +

e

d
y2,

(49)

which has a center at the origin and a saddle point
at (1, 0). Then, setting

a1 =
2(1 − e)

d
, a4 =

e

d
, (50)

in system (49) leads to our system (7). Equa-
tion (50) denotes a line, given by

a4 =
e

2(1 − e)
a1, (51)

in the a1–a4 parameter plane, passing through the
origin with the slope e

2(1−e) . However, it is easy to
see that using our system (7) in analysis is simpler
to using system (48). In fact, all the seven cases
classified in [Han, 1997] together denote a region in
Fig. 1, see the shaded area in this figure. This area
covers most of the region, defined by a1 > −1. But
the study given in [Han, 1997] for the seven cases
is restricted to local analysis on the bifurcation of
limit cycles near a homoclinic loop, except the two
lines (see Fig. 1):

a4 = a1 ∀ a1 ∈ (−1, 0) ∪ (0,∞), (52)

which corresponds to the parameter value e = 2
3 ,

and

a4 = −1
2
a1 ∀ a1 ∈ (0,∞), (53)

which corresponds to e → ±∞. It has been shown in
[Han, 1997] that except the above two lines, for the
parameter values in the shaded area, system (48)
can have at most 2 limit cycles near a homoclinic
loop under quadratic perturbation.

Figure 1 shows the a1–a4 parameter plane asso-
ciated with the reversible system (7), where the
above mentioned case studies are indicated on the
line a4 = 3

2a1 as well as in the shaded area. More
precisely, a complete global analysis given in [Yu &
Li, 2002], which includes the result in [Dumortier
et al., 1997] as a special case, shows that corre-
sponding to each point on the line segment a4 = 3

2a1

(a1 > 0), the system has one center and one sad-
dle point, and has maximal 2 limit cycles. In [Han,
1997] it is shown for each point in the shaded area
[except the two line segments a4 = a1 (a1 > −1)
and a4 = −1

2a1 (a1 > 0)], which contains the
above line segment, the system has one center and

one (or three) saddle(s), and has maximal 2 limit
cycles, but restricted to local analysis near one
homoclinic loop. Similarly, a global analysis given
in [Iliev et al., 2005], which contains the result in
[Dumortier et al., 1997] as a special case, proves
that corresponding to each point on the line seg-
ment a4 = 3

2a1 (a1 < −1), the system has two
centers, and exhibits maximal 3 limit cycles around
one center. The technique of Poincaré transforma-
tion and Picar–Puchs equation, used for the above
mentioned global analysis on parameter unfolding,
seems not possible to be generalized to consider the
general situation for arbitrary points in the a1–a4

parameter plane. The two particular dash-dotted
lines: a4 = 1

3(a1 − 5)∀ a1 ∈ (−∞,−1) ∪ (−1,∞),
and a4 = 1

3(6a1 + 5)∀ a1 ∈ (−∞,−1), as well as
the five dark circles correspond to our results, pre-
sented in the next two sections. In particular, we
will show that there exist 3 small limit cycles on
the two dash-dotted lines, and at least 4 limit cycles
for the parameter values marked by the five dark
circles.

In the following, we will use the perturbed
quadratic system (43) for our study on bifurcation
of limit cycles. First, we need the following lemma,
which will greatly simplify the analysis.

Lemma 1. The perturbed quadratic reversible sys-
tem (43) can have three independent perturbation
parameters.

Proof. First, note that the integrating factor for
the unperturbed reversible system (7) is γ = |1 +

a1x|−
a1+2a4

a1 . Thus, let t = γτ . Then system (7) can
be transformed to

dx

dτ
= |1 + a1x|−

a1+2a4
a1 (y + a1xy),

dy

dτ
= |1 + a1x|−

a1+2a4
a1 (−x + x2 + a4y

2)

(54)

which has the Hamiltonian function:

H(x, y) =
1
2
sign(1 + a1x)|1 + a1x|−

2a4
a1

×
[
y2 +

(1 + a1 − a4)(1 + 2a4x)
a4(a1 − a4)(a1 − 2a4)

− x2

a1 − a4

]
. (55)
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Then, the Melnikov function of system (43) along a loop defined by Lh : H(x, y) = h, can be expressed as

M(h, a1, a4, aij , bij)

=
∮

Lh

γQ(x, y, bij)dx − γP (x, y, aij)dy

=
∮

Lh

|1 + a1x|−
a1+2a4

a1 (b01 + b11x)ydx −
∮

Lh

|1 + a1x|−
a1+2a4

a1 (a10x + a20x
2 + a02y

2)dy

=
∮

Lh

|1 + a1x|−
a1+2a4

a1

[
(b01 + b11x) + a10 + 2a20x − a1 + 2a4

(1 + a1x)
(a10x + a20x

2)
]

ydx

− a02

∮
Lh

|1 + a1x|−
a1+2a4

a1 y2dy

=
∮

Lh

|1 + a1x|−
a1+2a4

a1

[
(a10 + b01) + (b11 + 2a20)x − a1 + 2a4

(1 + a1x)
(a10x + a20x

2)
]

ydx

− 1
3
(a1 + 2a4)a02

∮
Lh

|1 + a1x|−
a1+2a4

a1

1 + a1x
y3dx. (56)

Note that

a4

∮
Lh

|1 + a1x|−
a1+2a4

a1

1 + a1x
y3dx =

3a4

a1 + 2a4

∮
Lh

|1 + a1x|−
a1+2a4

a1 y2dy. (57)

Further, it follows from Eq. (7) that

(−x + x2 + a4y
2)dx = (1 + a1x)ydy, (58)

which is multiplied by |1+a1x|−
a1+2a4

a1

1+a1x y on both sides and then the resulting equation is integrated along Lh

to yield

∮
Lh

|1 + a1x|−
a1+2a4

a1

1 + a1x
(−x + x2 + a4y

2)ydx =
∮

Lh

|1 + a1x|−
a1+2a4

a1

1 + a1x
(1 + a1x)y2dy.

Combining the above equation with (57) we obtain

∮
Lh

|1 + a1x|−
a1+2a4

a1 y2dy =
a1 + 2a4

a1 − a4

∮
Lh

|1 + a1x|−
a1+2a4

a1

1 + a1x
(−x + x2)ydx. (59)

Substituting the above result into (56) yields

M(h, a1, a4, a10, b01, b11, a20, a02)

=
∮

Lh

|1 + a1x|−
a1+2a4

a1

[
(a10 + b01) + (b11 + 2a20)x − a1 + 2a4

(1 + a1x)
(a10x + a20x

2)
]

ydx

− a1 + 2a4

a1 − a4
a02

∮
Lh

|1 + a1x|−
a1+2a4

a1

1 + a1x
(−x + x2)ydx.
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=
∮

Lh

|1 + a1x|−
a1+2a4

a1

{
(a10 + b01) + (b11 + 2a20)x

− a1 + 2a4

(a1 − a4)(1 + a1x)
[(a1 − a4)(a10x + a20x

2) + a02(−x + x2)]
}

ydx.

(60)

Next, rewriting the term in the square bracket of (60) gives

M(h, a1, a4, a10, a20, a02, b01, b11)

=
∮

Lh

|1 + a1x|−
a1+2a4

a1

{
(a10 + b01) + (b11 + 2a20)x − a1 + 2a4

(a1 − a4)(1 + a1x)

×
[

1
a1

[(a1 − a4)a20 + a02](1 + a1x)x +
1
a2

1

[(a1 − a4)(a1a10 − a20)

− (1 + a1)a02](1 + a1x) − 1
a2

1

[(a1 − a4)(a1a10 − a20) − (1 + a1)a02]
]}

=
∮

Lh

|1 + a1x|−
a1+2a4

a1

{
a1 + 2a4

a2
1(a1 − a4)

[(a1 − a4)(a1a10 − a20) − (1 + a1)a02]
1

1 + a1x

+
(

b01 + a10 − a1 + 2a4

a2
1(a1 − a4)

[(a1 − a4)(a1a10 − a20) − (1 + a1)a02]

− 1
a1

[
b11 + 2a20 − a1 + 2a4

a1(a1 − a4)
[(a1 − a4)a20 + a02]

])

+
1
a1

(
b11 + 2a20 − a1 + 2a4

a1(a1 − a4)
[(a1 − a4)a20 + a02]

)
(1 + a1x)

}

= c0I0 + c1I1 + c2I2, (61)

where

I0 =
∮

Lh

sign(1 + a1x)(1 + a1x)−
2(a1+a4)

a1 ydx,

I1 =
∮

Lh

sign(1 + a1x)(1 + a1x)−
2(a1+a4)

a1 y(1 + a1x)dx, (62)

I2 =
∮

Lh

sign(1 + a1x)(1 + a1x)−
2(a1+a4)

a1 y(1 + a1x)2dx,

and

c0 =
a1 + 2a4

a1
a10 − a1 + 2a4

a2
1

a20 − (1 + a1)(a1 + 2a4)
a2

1(a1 − a4)
a02, (63)

c1 = b01 − 2a4

a1
a10 − 1

a1
b11 +

4a4

a2
1

a20 +
(2 + a1)(a1 + 2a4)

a2
1(a1 − a4)

a02, (64)

c2 =
1
a1

b11 +
a1 − 2a4

a2
1

a20 +
a1 + 2a4

a2
1(a1 − a4)

a02. (65)
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It is obvious that the expression in (61) contains
only three independent perturbation parameters,
though the parameters a1 and a4 are involved in
Ii, i = 0, 1, 2. Thus, we may let two of them equal
to zero. For example, letting a20 = a02 = 0 yields

c0 =
(

1 +
2a4

a1

)
a10,

c1 = b01 − 2a4a10 + b11

a1
, (66)

c2 =
1
a1

b11,

which indeed shows that a10, b01 and b11 can be
used as the three independent perturbation para-
meters. �

Thus, without loss of generality, we may assume
that a01 = a20 = a11 = a02 = b10 = b20 = b02 = 0,
under which system (43) is reduced to

dx

dt
= y(1 + a1x) + εa10x,

dy

dt
= −x + x2 + a4y

2 + ε(b01y + b11xy),

(67)

where a1 < −1 and 0 < ε � 1.

3. Hopf Bifurcation Associated with
the Two Centers

In this section, we study Hopf bifurcation of sys-
tem (67) from two centers (0, 0) and (1, 0), leading
to the bifurcation of multiple limit cycles. The result
is summarized in the following theorem.

Theorem 2. When a1 < −1, the quadratic
near-integrable system (67) can have small limit
cycles bifurcating from the two centers (0, 0) and
(1, 0) with distributions: (3, 0), (0, 3), (2, 0), (0, 2)
and (1, 1). (2, 1)- or (1, 2)-distribution does not
exist.

Proof. Consider system (67) for a1 < −1. The
system (67)ε=0 is a reversible integrable system. In
order to compute the Melnikov function near the
two centers (0, 0) and (1, 0), we multiply (67) by
the integrating factor γ [given in (14)] to obtain the
following perturbed Hamiltonian system:

dx

dτ
= γ(y + a1xy) + εγa10x,

dy

dτ
= γ(−x + x2 + a4y

2) + εγ(b01y + b11xy),

(68)

with the Hamiltonian of the unperturbed system (7)
(i.e. (68)ε=0), given by (55), with a4 �= 0, a1 �= a4,
a1 �= 2a4. The cases a4 = 0, a1 = a4 or a1 = 2a4

will not be considered in this paper.
Note that

h00 = H(0, 0)

=
1 + a1 − a4

2a4(a1 − a4)(a1 − 2a4)
,

for 1 + a1x > 0,

h10 = H(1, 0)

= − (a1 + 1)(a4 + 1)
2a4(a1 − a4)(a1 − 2a4)

(−1 − a1)
− 2a4

a1 ,

for 1 + a1x < 0.

(69)

Since in this paper, we concentrate on the case that
system (67)ε=0 has only two centers, we assume
a1 < −1, a4 < 0. Thus,

lim
x→− 1

a1

−
H(x, y) = +∞ and

lim
x→− 1

a1

+
H(x, y) = −∞.

It is easy to see from system (67) that the trajec-
tories of (67)ε=0 rotate around the center (0, 0) in
the clockwise direction, while rotating around the
center (1, 0) in the counter clockwise direction, as
shown in Fig. 2. Thus, the values of h in H(x, y) = h

-1.5

-1

-0.5

0

 0.5

1

 1.5

-2.5 -2 -1.5 -1 -0.5 0  0.5 1  1.5 2  2.5 3  3.5

y

x

Fig. 2. A phase portrait of the reversible system (7) with
two centers for a1 = −3, a4 = − 8

3 .
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are taken from the two intervals: h ∈ (h00,∞) for
1 + a1x > 0, and h ∈ (−∞, h10) for 1 + a1x < 0.
It should be noted that h00 is not necessarily larger
than h10. The analyses on the two half-plane in the
x–y plane (see Fig. 2), divided by the singular line
1 + a1x = 0, are independent.

Next, introduce

Lh : H(x, y)

= h

{
h ∈ (h00,∞), for 1 + a1x > 0,

h ∈ (−∞, h10), for 1 + a1x < 0,

(70)

and define the Melnikov function:

M(h, aij , bij)

=
∮

Lh

q(x, y, bij)dx − p(x, y, aij)dy, (71)

where p(x, y, aij) = γa10x and q(x, y, bij) = γ(b01 +
b11x)y. Using the results in [Han, 2000, 2006;
Han & Chen, 2000], we can expand M near h = h00

and h = h10 as

M0(h, aij , bij)

= µ00(h − h00) + µ01(h − h00)2 + µ02(h − h00)3

+ µ03(h − h00)4 + O((h − h00)5),

for 0 < h − h00 � 1,

M1(h, aij , bij)

= µ10(h10 − h) + µ11(h10 − h)2 + µ12(h10 − h)3

+ µ13(h10 − h)4 + O((h10 − h)5),

for 0 < h10 − h � 1,
(72)

where the coefficients µij, i = 0, 1; j = 0, 1, 2, . . . can
be obtained by using the Maple programs developed
in [Han et al., 2009] as follows:

µ00 = 2π(a10 + b01),

µ01 =
π

12
[(10 − 13a1 − 14a4 + 13a2

1 + 7a1a4 − 20a2
4)a10 + (10 − a1 + 10a4 + a2

1

− 5a1a4 + 4a2
4)b01 + 12(1 + a4)b11],

µ02 =
π

864
[(1540 − 980a1 − 280a4 + 861a2

1 − 1512a1a4 − 3948a2
4 − 626a3

1 + 1566a2
1a4 + 1620a1a

2
4

− 4432a3
4 + 313a4

1 − 1018a3
1a4 − 279a2

1a
2
4 + 3080a1a

3
4 − 2096a4

4)a10 + (1540 + 700a1 + 3080a4

+ 21a2
1 + 168a1a4 + 2772a2

4 − 2a3
1 + 126a2

1a4 − 828a1a
2
4 + 1424a3

4 + a4
1 − 58a3

1a4 + 369a2
1a

2
4

− 712a1a
3
4 + 400a4

4)b01 + 24b11(1 + a4)(70 + 35a1 + 70a4 + a2
1 − 17a1a4 + 52a2

4)b11],

µ03 =
π

622080
[(3403400 − 300300a1 + 3003000a4 + 690690a2

1 − 4984980a1a4 − 7327320a2
4

− 500885a3
1 + 3314850a2

1a4 − 4430580a1a
2
4 − 17811640a3

4 + 323121a4
1 − 2444439a3

1a4

+ 4201218a2
1a

2
4 + 5794692a1a

3
4 − 18033936a4

4 − 168603a5
1 + 1420500a4

1a4 − 3253551a3
1a

2
4

− 1296282a2
1a

3
4 + 12107904a1a

4
4 − 10462368a5

4 + 56201a6
1 − 520311a5

1a4 + 1471287a4
1a

2
4

− 407053a3
1a

3
4 − 4589772a2

1a
4
4 + 7149264a1a

5
4 − 3159616a6

4)a10 + (3403400 + 3303300a1

+ 10210200a4 + 690690a2
1 + 5825820a1a4 + 14294280a2

4 + 11935a3
1 + 404250a2

1a4

+ 2721180a1a
2
4 + 12236840a3

4 − 699a4
1 − 11379a3

1a4 + 262458a2
1a

2
4 − 1891308a1a

3
4

+ 6994704a4
4 + 417a5

1 + 1380a4
1a4 − 149091a3

1a
2
4 + 1121838a2

1a
3
4 − 2964576a1a

4
4

+ 2670432a5
4 − 139a6

1 − 291a5
1a4 + 46227a4

1a
2
4 − 366193a3

1a
3
4 + 1076988a2

1a
4
4

− 1335216a1a
5
4 + 578624a6

4)b01 + (3603600 + 3603600a1 + 10810800a4 + 790020a2
1
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+ 6597360a1a4 + 15024240a2
4 + 12600a3

1 + 480060a2
1a4 + 3764880a1a

2
4 + 12514320a3

4

+ 180a4
1 − 10800a3

1a4 + 11340a2
1a

2
4 − 618480a1a

3
4 + 6566400a4

4 + 180a4
1a4 − 23400a3

1a
2
4

+ 321300a2
1a

3
4 − 1389600a1a

4
4 + 1869120a5

4)b11],
...

and

µ10 = 2π(−1 − a1)3/2[(1 − 2a4)a10 + (1 + a1)(b01 + b11)],

µ11 =
π

12
(−1 − a1)

− 2(a1−a4)
a1 [(10 + 33a1 − 6a4 + 36a2

1 − 21a1a4 − 24a2
1a4 + 30a1a

2
4 − 8a3

4)a10

+ (1 + a1)(10 + 21a1 − 10a4 + 12a2
1 − 15a1a4 + 4a2

4)b01 − (1 + a1)(1 + a4)(2 + 3a1 − 4a4)b11],

µ12 =
π

864
(−1 − a1)

− (5a1−8a4)
2a1 [(1540 + 7140a1 − 2800a4 + 13041a2

1 − 11592a1a4 + 2212a2
4 + 11448a3

1

− 18072a2
1a4 + 8628a1a

2
4 − 1112a3

4 + 752a4
4 − 12024a3

1a4 + 12213a2
1a

2
4 − 5232a1a

3
4

+ 4320a4
1 − 1728a4

1a4 + 6192a3
1a

2
4 − 7938a2

1a
3
4 + 4272a1a

4
4 − 800a5

4)a10

+ (1 + a1)(1540 + 5460a1 − 3080a4 + 7161a2
1 − 9072a1a4 + 2772a2

4 + 4104a3
1

− 9030a2
1a4 + 6372a1a

2
4 − 1424a3

4 + 864a4
1 − 3096a3

1a4 + 3969a2
1a

2
4 − 2136a1a

3
4 + 400a4

4)b01

− (1 + a1)(1 + a4)(140 + 420a1 − 420a4 + 423a2
1 − 996a1a4 + 576a2

4

+ 144a3
1 − 633a2

1a4 + 888a1a
2
4 − 400a3

4)b11],

µ13 =
π

1244160
(−1 − a1)

− 2(a1−3a4)
a1 [(3403400 + 20720700a1 − 9809800a4 + 53243190a2

1 − 54234180a1a4

+ 13093080a2
4 + 74334645a3

1 − 123735150a2
1a4 + 65571660a1a

2
4 − 10776920a3

4 + 60023916a4
1

− 147900519a3
1a4 + 131934978a2

1a2
4 − 49682268a1a3

4 + 6439744a4
4 + 27002160a5

1

− 95460120a4
1a4 + 132380865a3

1a
2
4 − 89408610a2

1a
3
4 + 29027880a1a

4
4 − 3527040a5

4

+ 5443200a6
1 − 28946160a5

1a4 + 63998532a4
1a

2
4 − 74879613a3

1a
3
4 + 48498336a2

1a
4
4

− 16296336a1a
5
4 + 2181248a6

4 − 1555200a6
1a4 + 9603360a5

1a
2
4 − 24061752a4

1a
3
4

+ 31232358a3
1a

4
4 − 22072536a2

1a
5
4 + 8011296a1a

6
4 − 1157248a7

4)a10

+ (1 + a1)(3403400 + 17117100a1 − 10210200a4 + 35225190a2
1 − 45225180a1a4

+ 14294280a2
4 + 37785825a3

1 − 79202970a2
1a4 + 54455940a1a

2
4 − 12236840a3

4

+ 22125636a4
1 − 68371209a3

1a4 + 77864598a2
1a

2
4 − 38601828a1a

3
4 + 6994704a4

4

+ 6629040a5
1 − 28984608a4

1a4 + 49687587a3
1a

2
4 − 41614974a2

1a
3
4 + 16953984a1a

4
4

− 2670432a5
4 + 777600a6

1 − 4801680a5
1a4 + 12030876a4

1a2
4 − 15616179a3

1a
3
4

+ 11036268a2
1a

4
4 − 4005648a1a

5
4 + 578624a6

4)b01
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− (1 + a1)(1 + a4)(200200 + 900900a1 − 800800a4 + 1600830a2
1 − 3132360a1a4

+ 1530760a2
4 + 1397655a3

1 − 4596480a2
1a4 + 5008500a1a

2
4 − 1808240a3

4 + 594864a4
1

− 3001266a3
1a4 + 5594022a2

1a
2
4 − 4568112a1a

3
4 + 1379936a4

4 + 97200a5
1 − 736776a4

1a4

+ 2162079a3
1a

2
4 − 3080268a2

1a
3
4 + 2136528a1a

4
4 − 578624a5

4)b11],
...

Remark 3.1. The coefficients µ0j listed above are
applicable as long as (0, 0) is a center, and the coef-
ficients µ1j are applicable as long as (1, 0) is a cen-
ter, regardless of the number and distribution of the
system’s singularities. Therefore, for each point on
the whole line a4 = 1

3 (a1 − 5) (see Fig. 1), there
always exist 3 small limit cycles bifurcating from
the center (0, 0), no matter whether the system has
two centers, or one center and three saddle points,
or one center and one saddle point. For each point
on the line segment a4 = 1

3 (6a1 + 5)(a1 < −1), the
system can have 3 limit cycles bifurcating from the
center (1, 0). This indicates that the results given
in [Dumortier et al., 1997; Peng, 2002; Han, 1997]
showing that the reversible near-integrable systems
with one center and one saddle point can have max-
imal 2 limit cycles is conservative, since on the part
of the line a4 = 1

3 (a1 − 5) in the first quadrant
(a1 > 5) such a system can have at least 3 limit
cycles.

First, we consider the maximal number of limit
cycles which can bifurcate from the center (0, 0).
Setting µ00 = 0 yields

b01 = −a10, (73)

and then we have

µ01 = π[(a1 − 1 − a4)(a1 + 2a4)a10 + (1 + a4)b11].

(74)

In order to have µ01 = 0, we suppose a4 �= −1 and
choose

b11 = −(a1 − 1 − a4)(a1 + 2a4)
1 + a4

a10. (75)

Then, µ02 and µ03 are simplified to

µ02 =
π

3
a1(a1 − a4)(a1 + 2a4)(a1 − 3a4 − 5)a10,

µ03 = − π

144
a1(a1 − a4)(a1 + 2a4)(770 + 105a1

+ 1400a4 + 42a2
1 − 434a1a4 + 1274a2

4

− 13a3
1 + 128a2

1a4 − 415a1a
2
4 + 444a3

4)a10.

(76)

There are five choices for µ02 = 0. Except the
choice a1 − 3a4 − 5 = 0, all other choices lead to
µ0i = 0, i = 3, 4, . . . . Thus, letting

a4 =
1
3
(a1 − 5), (77)

which implies a1 �= 2 when a4 �= −1. Since we
assume a1 < −1, for this case (i.e. when the condi-
tion (77) holds), a4 �= −1 is guaranteed. Then, we
have

µ03 = −25π
162

a1(a1 + 1)(a1 − 2)2(2a1 + 5)a10,

µ04 = − 5π
8748

a1(a1 + 1)(a1 − 2)2(2a1 + 5)

× (a1 + 4)(17a1 + 518)a10

...

µ10 = −10π
3

(−1 − a1)−3/2a1(2a1 + 5)a10,

µ11 =
25π
324

(−1 − a1)
− 2(2a1+5)

3a1

× a1(a1 − 2)2(2a1 + 5)a10,

...

implying that in addition we need

(2a1 + 5)a10 �= 0. (78)

Under the above conditions (73), (75), (77) and
(78), we obtain µ00 = µ01 = µ02 = 0, but µ03 �= 0,
µ10 �= 0. Hence, at most 3 small limit cycles can
bifurcate from the center (0, 0) with no limit cycles
bifurcating from the center (1, 0). Further, giving
proper perturbations to the parameters a4 (or a1),
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b11 and b01, we can obtain 3 small limit cycles bifur-
cating from the origin. This shows that the conclu-
sion is true for the case of (3, 0)-distribution.

Next, consider the (0, 3)-distribution. Similarly,
letting µ10 = 0 yields

b01 = −b11 +
2a4 − 1
1 + a1

a10. (79)

Then, µ11 becomes

µ11 = π(−1 − a1)
− 2(a1−a4)

a1

× [(a1 + 2a4)(2a1 − a4 + 1)a10

− (1 + a1)2(a1 − a4 + 1)b11]. (80)

Hence, we set

b11 =
(a1 + 2a4)(2a1 − a4 + 1)
(1 + a1)2(a1 − a4 + 1)

a10,

(a1 − a4 + 1 �= 0), (81)

to yield µ11 = 0, and

µ12 =
π

3
(−1 − a1)

− 5a1−8a4
2a1 a1(a1 − a4)

× (a1 + 2a4)(6a1 − 3a4 + 5)a10,

µ13 =
π

288
(−1 − a1)

− 2(a1−3a4)
a1 a1(a1 − a4)

× (a1 + 2a4)(770 + 2205a1 − 1400a4

+ 2142a2
1 − 3234a1a4 + 1274a2

4 − 720a3
1

− 1962a2
1a4 + 1689a1a

2
4 − 444a3

4)a10.

(82)

The only choice for µ12 = 0 is 6a1 − 3a4 + 5 = 0,
from which we have

a4 =
1
3
(6a1 + 5). (83)

This implies that a1 − a4 + 1 = −(a1 + 2
3) > 0 for

a1 < −1. Further, we obtain

µ13 = −25π
324

(−1 − a1)
10+11a1

a1 a1(3a1 + 2)2

× (3a1 + 5)a10,

µ14 = − 5π
17496

(−1 − a1)
80+87a1

6a1 a1(3a1 + 2)2

× (3a1 + 5)(3a1 + 4)(501a1 + 518)a10

...

µ00 =
10π

3(1 + a1)2
a1(3a1 + 5)a10,

µ01 = − 25π
324(1 + a1)2

a1(3a1 + 5)(3a1 + 2)2a10,

...

implying that in addition we require

(3a1 + 5)a10 �= 0. (84)

Under the above conditions (79), (81), (83)
and (84), we have µ10 = µ11 = µ12 = 0, but
µ13 �= 0, µ00 �= 0. Further, by properly perturb-
ing the parameters a4 (or a1), b11 and b01, we can
obtain 3 small limit cycles bifurcating from the cen-
ter (1, 0), but no limit cycles from the origin. This
proves the case of (0, 3)-distribution.

For the case of (2, 0)-distribution, it follows
from the conditions (73) and (75), and a4 �= −1
that µ00 = µ01 = 0, and

µ02 =
π

3
a1(a1 − a4)(a1 + 2a4)(a1 − 3a4 − 5)a10,

µ10 = − 2π
(1 + a4)(−1 − a1)3/2

a1(a1 − a4)

× (a1 + 2a4)a10.

Thus, µ02 �= 0 implies µ10 �= 0, indicating that the
conclusion holds for the case of (2, 0)-distribution,
if a4 �= −1,

When a4 = −1, (74) becomes

µ01 = πa1(a1 − 2)a10

�= 0 for a1 < −1 and a10 �= 0.

Under the conditions b01 = −a10 and a4 = −1, µ10

and µ11 becomes

µ10 = −2π(−1 − a1)−3/2[(a1 − 2)a10 − (1 + a1)b11],

µ11 = π(−1 − a1)
− 2+a1

a1 a1(a1 − 2)a10,

(85)

which shows that µ11 �= 0 for a1 < −1 and a10 �= 0.
But we can choose

b11 =
a1 − 2
1 + a1

a10

to obtain µ10 = 0. Thus, for this case we have a
(1, 1)-distribution.
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Similarly, for the (0, 2)-distribution, we use the
conditions (79) and (81) to obtain

µ12 =
π

3
(−1 − a1)

− 5a1−8a4
2a1 a1(a1 − a4)(a1 + 2a4)

× (6a1 − 3a4 + 5)a10,

µ00 =
2π

(1 + a1)2(a1 − a4 + 1)
a1(a1 − a4)

× (a1 + 2a4)a10.

This indicates that µ12 �= 0 implies µ00 �= 0, and so
the conclusion for the case of (0, 2)-distribution is
also true if a1 − a4 + 1 �= 0.

When a1 − a4 + 1 = 0, i.e. a4 = a1 + 1 < 0,
(80) is reduced to

µ11 = π(−1 − a1)
− 2(a1−a4)

a1 a1(3a1 + 2)a10 �= 0

for a1 < −1 and a10 �= 0,

and µ00 and µ01 become

µ00 =
2π

1 + a1
[(a1 + 2)a10 − (1 + a1)b11],

µ01 = − π

1 + a1
a1(3a1 + 2)a10,

(86)

which clearly shows that µ01 �= 0 for a1 < −1 and
a10 �= 0. However, we may choose

b11 =
a1 + 2
1 + a1

a10

to obtain µ00 = 0. Thus, for a1 − a4 + 1 = 0, we
have a (1, 1)-distribution.

Finally, suppose the condition given in (73) is
satisfied, i.e. b01 = −a10, then substitute this into
µ10 to solve b11 to obtain

b11 =
a1 + 2a4

1 + a1
. (87)

Then, under the conditions (73) and (87), we obtain

µ01 =
π

1 + a1
a1(a1 − a4)(a1 + 2a4)a10,

µ11 = −π(−1 − a1)
− 2(a1−a4)

a1 a1(a1 − a4)

× (a1 + 2a4)a10,

(88)

which shows that µ01 �= 0 implies µ11 �= 0, and
thus in general the conclusion is true for the case of
(1, 1)-distribution.

As we have seen in the above analysis, if the
condition (77), a4 = 1

3(a1 − 5), is not used, then
we can only have 2 limit cycles bifurcating from the
origin, but no limit cycles can occur from the center
(1, 0). In other words, we can obtain one more limit
cycle, by using the condition a4 = 1

3(a1 − 5), only
bifurcating from the center (0, 0). Similarly, if the
condition (83), a4 = 1

3(6a1 + 5), is not used, then
we can have only 2 limit cycles bifurcating from
the center (1, 0), but no limit cycles can bifurcate
from the origin. Then, condition a4 = 1

3(6a1 + 5)
can be only used to get one more limit cycle around
the center (1, 0), rather than the origin. Therefore,
(2, 1)- or (1, 2)-distribution is not possible.

This completes the proof of Theorem 2. �

4. Limit Cycles Bifurcating from
Closed Orbits

In this section, based on the results of the small
limit cycles obtained in the previous section, we
wish to investigate the possibility of existence of
large limit cycles by applying the Melnikov func-
tion, defined in (71). We have the following result.

Theorem 3. For the case of bifurcation of small
limit cycles from the two centers (0, 0) and (1, 0)
with (3, 0)-distribution (resp., (0, 3)-distribution)
there exists at least one large limit cycle near Lh

for some h ∈ (−∞, h10) (resp. for some h ∈
(h00,∞)). For the case of limit cycles with (2, 0)-
distribution (resp., (0, 2)-distribution) there exist at
least two large limit cycles, one near Lh1 for some
h1 ∈ (−∞, h10) and one near Lh2 for some h2 ∈
(h00,∞). The corresponding values of the parame-
ters a1 and a4 for the existence of 4 limit cycles
can appear at least in some regions in the a1–a4

parameter plane.

Remark 4.1. Theorem 3 gives a positive answer to
the open question of existence of limit cycles in
near-integrable quadratic systems: at least 4 limit
cycles can exist. For the case of (1, 1)-distribution,
so far no more large limit cycles have been found.

Proof. We use the formulas given in (61) and (66)
in the following calculations. Since one cannot find
the closed form of the integrals Ii(h, a1, a4), i =
0, 1, 2, for general a1 and a4, nor the technique of
Picard–Fuchs equation can be applied here, we shall
choose some values for a1 and a4 and then find
numerical values of the integral. We first use the
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results given in the previous section to determine
b01, b11, and a4, and then choose proper values for
a1 to find more limit cycles. We consider four dis-
tributions: (3, 0), (0, 3), (2, 0) and (0, 2), and each
case can have 4 limit cycles.

(A) First, consider the (3, 0)-distribution. For this
case, we have

a4 =
1
3
(a1 − 5), b01 = −a10,

b11 = −10(1 + a1)a10.

Taking a1 = −30
7 yields a4 = −65

21 , which denotes a
point (a blank circle) on the line a4 = 1

3(a1 − 5) in
the a1–a4 parameter plane (see Fig. 1). Further, we
have b11 = 230

7 a10, and

γ =
(

1 − 30
7

x

)− 22
9

(
x �= 7

30

)
.

Then, the Hamiltonian (55) becomes

H(x, y) =
16250y2 + 13650x2 + 2730x − 441

32500
(

1 − 30
7

x

)13/9

for x �= 7
30

,

with

h00 = − 441
32500

> h10 = −15939
32500

(
7
23

)13/9

.

The Melnikov functions Mi(h, a10) can be
expressed as

Mi(h, a10) = Mi0(h)a10, i = 0, 1. (89)

Without loss of generality, we may assume

a10 > 0, (90)

and thus Mi(h, a10) and Mi0(h) have the same sign.
It is noted that for the above chosen parameter
values, we have

µ03 =
139150000π

453789
a10 > 0 and

µ10 = −2500
√

161π

3703
a10 < 0.

The computation results of M00(h) for h ∈
(h00,∞) and M10(h) for h ∈ (−∞, h10) are shown,
respectively, in Figs. 3(a) and 3(b). Figure 3(a)
shows that M00(h) > 0 for h ∈ (h00,∞), and its
sign agrees with that of µ03 > 0 for 0 < h−h00 � 1,
as expected. It is also noted, as shown in Fig. 3(b),
that the sign of M10(h) agrees with that of µ10 < 0
for 0 < h10 − h � 1. However, unlike the inter-
val h ∈ (h00,∞), this interval contains a critical
value h = h∗

1 ∈ (−0.9250363254,−0.9250363253)
at which M10(h∗

1) = 0 and the function M10(h)
changes its sign as h crosses this critical point. Thus,
for this case, besides the 3 small limit cycles, there
exists at least one large limit cycle bifurcating from
the closed orbit Lh∗

1
of (70). This large limit cycle is

shown in Fig. 4(a), which encloses the center (1, 0);

0

5

 10

 15

 20

 25

 30

 35

0  0.2  0.4  0.6  0.8 1  1.2

0

 0.02

 0.04

 0.06

 0.08

 0.1

-0.02 0  0.02  0.04  0.06  0.08  0.1

-6

-4

-2

0

2

4

6

8

-1.25 -1 -0.75 -0.5 -0.25 0

(a) (b)

Fig. 3. Functions M00(h) and M10(h) under the conditions µ00 = µ01 = µ02 = 0, µ03 �= 0 and µ10 �= 0, for a1 = − 30
7 and

a4 = 1
3 (a1 − 5) = − 65

21 : (a) M00(h) > 0 for h ∈ [h00, +∞), with h0 = − 441
32500 ≈ −0.01357; and (b) M10(h) for h ∈ (−∞, h1],

with h10 = − 15939
32500 ( 7

23 )13/9 ≈ −0.08797, crossing the h-axis at h = h∗
1 ∈ (−0.9250363254, −0.9250363253).
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Fig. 4. Illustration of the existence of 4 limit cycles when a1 = − 30
7 , a4 = 1

3 (a1 − 5) = − 65
21 − ε1, and a10 = 1

2000 ,

b11 = 230
21 a10 − ε2, b01 = −a10 − ε3, where 0 < ε3 � ε2 � ε1 � ε: (a) An unstable large limit cycle enclosing the center (1, 0);

and (b) zoomed area around the center (0, 0) showing the existence of 3 small limit cycles.

and Fig. 4(b) illustrates the existence of 3 small
limit cycles around the center (0, 0).

(B) For the case of the (0, 3)-distribution, we have

a4 =
1
3
(6a1 + 5), b01 = −b11 +

2a4 − 1
1 + a1

a10,

b11 =
(a1 + 2a4)(2a1 − a4 + 1)
(1 + a1)2(a1 − a4 + 1)

a10.

By choosing a1 = −70
51 , we have a4 = −55

51 , b01 =

−5611
361 a10 and b11 = 8670

361 a10. The point (a1, a4) =

(−70
51 ,−55

51 ) is marked by a blank circle on the line
a4 = 1

3(6a1 + 5) in the a1–a4 parameter plane (see
Fig. 1). Moreover,

γ =
(

1 − 70
51

x

)− 18
7

(
x �= 51

70

)
,

and the Hamiltonian is

H(x, y) =
2750y2 + 9350x2 − 16830x + 7803

5500
(

1 − 70
51

x

)11/7

for x �= 51
70

,

with

h00 =
7803
5500

> h10 = − 323
5500

(
51
19

)11/7

.

For this case, µ00 and µ13 become

µ00 = −10500π
361

a10 < 0 and

µ13 =
4561235000

565036352721

(
51
19

)2/7

πa10 > 0.

The computation results of M00(h) for h ∈
(h00,∞) and M10(h) for h ∈ (−∞, h10) are shown
in Figs. 5(a) and 5(b), respectively. As shown in
Fig. 5(a), the sign of M00(h) agrees with that of
µ00 < 0 for 0 < h − h00 � 1, and in addi-
tion the function M00(h) crosses a critical value at
h = h∗

2 ∈ (13.3847179116, 13.3847179117), at which
it changes sign. Figure 5(b) shows that M10(h) > 0
for h ∈ (−∞, h10), and its sign agrees with that of
µ13 > 0 for 0 < h10 − h � 1. Hence, for this case,
in addition to the 3 small limit cycles, there also
exists at least one large limit cycle bifurcating from
the closed orbit Lh∗

2
of (70). This large limit cycle

is depicted in Fig. 6(a), which encloses the center
(0, 0); and Fig. 6(b) illustrates the existence of 3
small limit cycles around the center (1, 0).

(C) Now consider the (2, 0)-distribution. For this
case, the condition a4 = 1

3 (a1 − 5) is not used. We
need to determine the values for both a1 and a4.
We choose

a1 = −4, a4 = −18
5

,
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0

 0.01

 0.02

 0.03

 0.04

 0.05

-0.8 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2

(a) (b)

Fig. 5. Functions M00(h) and M10(h) under the conditions µ10 = µ11 = µ12 = 0, µ13 �= 0 and µ00 �= 0, for a1 = − 70
51

and a4 = 1
3 (6a1 + 5) = − 55

51 : (a) M00(h) for h ∈ [h0, +∞), with h00 = 7803
5500 ≈ 1.41873, crossing the h-axis at

h = h∗
2 ∈ (13.3847179116, 13.3847179117); and (b) M10(h) > 0 for h ∈ (−∞, h1], with h10 = − 323

5500 ( 51
19 )11/7 ≈ −0.27714.

which represents a point in the third quadrant of
the a1–a4 parameter plane (see the dark circle in
Fig. 1 near the line a4 = 1

3(a1 − 5)). Thus,

γ = (1 − 4x)−
14
5

(
x �= 1

4

)
.

In addition, we have b01 = −a10, b11 = 392
65 a10, and

H(x, y) =
192y2 + 480x2 − 180x + 25

384(1 − 4x)9/5

for x �= 1
4
,

with

h00 =
25
384

> h10 = −325
384

(
1
3

)9/5

.

For this case, µ02 and µ10 are reduced to

µ02 = −1344
125

πa10 < 0 and

µ10 = −40
√

3
9

πa10 < 0.

The computation results of M00(h) for h ∈
(h00,∞) and M10(h) for h ∈ (−∞, h10) are shown,

y

x

-250

-200

-150

-100

-50

0

 50

 100

 150

 200

 250

-400 -350 -300 -250 -200 -150 -100 -50 0
-1

-0.5

0

 0.5

1

 0.4  0.6  0.8 1  1.2  1.4  1.6

y

x

(a) (b)

Fig. 6. Illustration of the existence of 4 limit cycles when a1 = − 70
51 , a4 = 1

3 (6a1 + 5) = − 55
51 − ε1, and a10 = 10,

b11 = 8670
361 a10 − ε2, b01 = − 5611

361 a10 + ε3, where 0 < ε3 � ε2 � ε1 � ε: (a) An unstable large limit cycle enclosing the center
(0, 0); and (b) zoomed area around the center (1, 0) showing the existence of 3 small limit cycles.
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-0.8 -0.6 -0.4 -0.2 0

(a) (b)

Fig. 7. Functions M00(h) and M10(h) under the conditions µ00 = µ01 = 0, µ02 �= 0 and µ10 �= 0, for a1 = −4 and
a4 = − 18

5 : (a) M00(h) for h ∈ [h00, +∞), with h0 = 25
384 ≈ 0.06510, crossing the h-axis at h = h∗

3 ∈ (0.1448192224,

0.1448192225); and (b) M10(h) for h ∈ (−∞, h1], with h10 = − 325
384 ( 1

3 )9/5 ≈ −0.11715, crossing the h-axis at h = h∗
4 ∈

(−0.5822537644, −0.5822537643).

respectively, in Figs. 7(a) and 7(b). As shown in
Fig. 7(a), the sign of M00(h) agrees with that of
µ02 < 0 for 0 < h − h00 � 1. Moreover, the func-
tion M00(h) crosses a critical value at h = h∗

3 ∈
(0.1448192224, 0.1448192225) at which it changes
sign. Figure 7(b) shows M10(h) for h ∈ (−∞, h10),
whose sign agrees with that of µ10 < 0 for 0 < h10−
h � 1. Also, M10(h) crosses a critical value at h =
h∗

4 ∈ (−0.5822537644,−0.5822537643) at which it
changes sign. Therefore, for this case, besides the
2 small limit cycles, there exist at least 2 large
limit cycles bifurcating from the two different closed

orbits Lh∗
3

and Lh∗
4

of (70). One large limit cycle
surrounding the center (1, 0) is shown in Fig. 8(a),
while another large limit cycle enclosing the cen-
ter (0, 0) with 2 small limit cycles is depicted in
Fig. 8(b).

(D) Finally, consider the (0, 2)-distribution. For this
case, the condition a4 = 1

3(6a1 + 5) is not used.
Taking

a1 = −4
3
, a4 = −6

5
,

-2000

-1000

0

 1000

 2000

0  1000  2000  3000  4000  5000  6000

y

x

-2.5

-2

-1.5

-1

-0.5

0

 0.5

1

 1.5

2

 2.5

-6 -5 -4 -3 -2 -1 0 1

y

x

(a) (b)

Fig. 8. Illustration of the existence of 4 limit cycles when a1 = −4, a4 = − 18
5 , and a10 = 1

100 , b11 = 392
65 a10 − ε1, and

b01 = −a10 − ε2, where 0 < ε2 � ε1 � ε: (a) An unstable large limit cycle enclosing the center (1, 0); and (b) Zoomed area
around the center (0, 0) showing the existence of 1 large limit cycle and 2 small limit cycles.
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-120

-80

-40

0

 40

 80

2 4 6 8  10  12  14

0

2

4

6

8

 10

 12

-5 -4 -3 -2 -1

-0.3

-0.2

-0.1

0

 0.1

 0.2

 0.3

-3.5 -3 -2.5 -2 -1.5 -1

(a) (b)

Fig. 9. Functions M00(h) and M10(h) under the conditions µ10 = µ11 = 0, µ12 �= 0 and µ00 �= 0, for a1 = − 4
3

and a4 = − 6
5 : (a) M00(h) for h ∈ [h00, +∞), with h0 = 325

128 ≈ 2.53096, crossing the h-axis at h = h∗
5 ∈

(12.6197809949, 12.6197809950); and (b) M10(h) for h ∈ (−∞, h1], with h10 = − 25
12839/5 ≈ −1.41107, crossing the h-axis

at h = h∗
6 ∈ (−3.1388150376, −3.1388150375).

yields

γ =
(

1 − 4
3
x

)− 14
5

(
x �= 3

4

)
.

The point (−4
3 ,−6

5) is marked by a dark circle near
the line a4 = 1

3(6a1 + 5) in the a1–a4 parameter
plane (see Fig. 1). Further, we have b01 = −513

65 a10,

b11 = 1176
65 a10, and

H(x, y) =
64y2 + 480x2 − 780x + 325

128
(

1 − 4
3
x

)9/5
for x �= 3

4
,

with

h00 =
325
128

> h10 = − 25
128

39/5.

For this case, µ00 and µ12 are simplified as

µ00 = −896
65

πa10 < 0 and

µ12 = − 448
30375

39/10πa10 < 0.

The computation results of M00(h) for h ∈
(h00,∞) and M10(h) for h ∈ (−∞, h10) are shown
in Figs. 9(a) and 9(b), respectively. As shown in
Fig. 9(a), the sign of M00(h) agrees with that of
µ00 < 0 for 0 < h − h00 � 1, and the func-
tion M00(h) crosses a critical value at h = h∗

5 ∈
(12.6197809949, 12.6197809950) at which it changes
sign. Figure 9(b) shows M10(h) for h ∈ (−∞, h10),
whose sign agrees with that of µ12 < 0 for

0 < h10−h � 1. Moreover, M10(h) crosses a critical
value at h = h∗

6 ∈ (−3.1388150376,−3.1388150375)
at which it changes sign. Therefore, for this case,
in addition to the 2 small limit cycles, there also
exist at least 2 large limit cycles bifurcating from
the two different closed orbits Lh∗

5
and Lh∗

6
of (70).

One large limit cycle surrounding the center (0, 0) is
shown in Fig. 10(a), while another large limit cycle
enclosing the center (1, 0) with 2 small limit cycles
is depicted in Fig. 10(b).

It is noted that all the four sets of values
of a1 and a4 chosen above in (A), (B), (C) and
(D) satisfy

a1 + 2a4

a1
=

2n
m

, where n is an integer and
m is an odd integer, (91)

so that a consistent integrating factor (and so a con-
sistent Hamiltonian function for the whole trans-
formed system) is obtained. However, this condition
is not necessary since the singular line 1 + a1x = 0
divides the phase plane into two parts, and the
analysis does not need the continuity on the sin-
gular line. To demonstrate this, in the following
we present a case for which the condition (91) is
not satisfied. Consider the (2, 0)-distribution, and
choose a1 = −5 and a4 = −4. The point (a1, a4) =
(−5,−4) is marked by a dark circle in the a1–a4

parameter plane (see Fig. 1). Then,

a1 + 2a4

a1
=

13
5

, b01 = a10, b11 =
26
3

a10,
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Fig. 10. Illustration of the existence of 4 limit cycles when a1 = − 4
3 , a4 = − 6

5 , and a10 = 1, b11 = 1176
65 a10 − ε1,

b01 = − 513
65 a10 + ε2, where 0 < ε2 � ε1 � ε: (a) An unstable large limit cycle enclosing the center (0, 0); and (b) Zoomed

area around the center (1, 0) showing the existence of 1 large limit cycle and 2 small limit cycles.

and

H(x, y) =




x2 + y2

2(1 − 5x)8/5
, ∀h ∈ (0,∞), when x <

1
5
,

− x2 + y2

2(1 − 5x)8/5
, ∀h ∈

(
−∞,− 1

32
24/5

)
, when x >

1
5
.

For this case, µ02 and µ10 become

µ02 = −130
3

πa10 < 0 and µ10 = −65
12

πa10 < 0.

The computation result of M00(h) shows that
M00(h) < 0 for 0 < h � 1, agrees with the sign
of µ02. Moreover, M00(0.1) = 0.0510077880 > 0,
implying that there exists h = h∗

7 ∈ (0, 0.1) such
that M00(h∗

7) = 0, and so a large limit cycle bifur-
cates from the closed orbit Lh∗

7
of (70). The result

of M10(h) also shows that M10(h) < 0 for 0 <

− 1
3224/5 − h � 1, agreeing with the sign of µ10,

and that M10(− 1
3224/5 − 0.8) = 7.4630743072 >

0, implying the existence h = h∗
8 ∈ (− 1

3224/5 −
0.8,− 1

3224/5) ≈ (−0.8544094102,−0.0544094102)
such that M10(h∗

8) = 0. Thus, there exists another
large limit cycle bifurcating from the closed orbit
Lh∗

8
of (70). Therefore, this case exhibits 2 small

limit cycles and 2 large limit cycles, leading to the
existence of at least 4 limit cycles.

Another example is to choose the line a4 = 3
4a1.

There exist many points on this line which exhibit
4 limit cycles. For example, choose a1 = −4, then

a4 = −3 for which 3 small limit cycles are around
(0, 0), and 1 large limit cycle encloses (1, 0). On the
other hand, taking a1 = −5, we have a4 = −15

4 for
which 2 small limit cycles are in the neighborhood
of (0, 0), and 2 large limit cycles exist with each
enclosing (0, 0) and (1, 0). It should be noted that
not all the points on this line a4 = 3

4a1 can generate
4 limit cycles. Identifying which parts of the line to
have 4 limit cycles is not an easy task.

Summarizing the above results with the conti-
nuity of parameters a1 and a4 shows that at least
for some regions in the a1–a4 parameter plane the
reversible near-integrable system (67) can exhibit
at least 4 limit cycles around the two singular
points (0, 0) and (1, 0) with distribution either (3, 1)
or (1, 3).

The proof of Theorem 3 is completed. �

5. Conclusion

In this paper, we have proved that a quadratic
non-Hamiltonian integrable system with two cen-
ters can have at least 4 limit cycles under quadratic
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perturbations, with distributions either (3, 1) or
(1, 3). This result gives a new record, answering
the open problem of the existence of limit cycles
in near-integrable quadratic systems. It is shown
that such systems can have at least 4 limit cycles
for some regions in the two-dimensional parame-
ter plane, associated with the parameters of the
integrable systems. Further research is needed on
global analysis for all possible parameter values in
the parameter plane.
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