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In this paper, we present four limit cycles in quadratic near-integrable polynomial systems. It is
shown that when a quadratic integrable system has two centers and is perturbed by quadratic
polynomials, it can generate at least four limit cycles with (3, 1)-distribution. This result provides
a positive answer to an open question in this research area.
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1. Introduction

The well-known Hilbert’s 16th problem has
remained unsolved since Hilbert proposed the 23
mathematical problems at the Second International
Congress of Mathematics in 1900 [Hilbert, 1902].
Recently, a modern version of the second part of
the 16th problem was formulated by Smale [1998],
chosen as one of the 18 challenging mathematical
problems for the 21st century. To be more specific,
consider the following planar system:

dx d
== S =Quey).
where P, (z,y) and Q,(z,y) represent nth degree
polynomials of x and y. The second part of Hilbert’s
16th problem is to find the upper bound H(n) < nf
on the number of limit cycles that the system
can have, where ¢ is a universal constant, and
H(n) is called Hilbert number. In the early 1990’s,

Py (x,y),

Ilyashenko and Yakovenko [1991], Ecalle [1992]
proved the finiteness theorem pioneered by Dulac,
for given planar polynomial vector fields. In general,
the finiteness problem has not been solved even for
quadratic systems. Recent survey articles (e.g. see
[Li, 2003; Yu, 2006] and more references therein)
have comprehensively discussed this problem and
reported the recent progress.

If the problem is restricted to the neighbor-
hood of isolated fixed points, then the question on
studying degenerate Hopf bifurcations gives rise to
weak (fine) focus points. In the past six decades,
many researchers have considered the local prob-
lem and obtained many results (e.g. see [Kukles,
1944; Bautin, 1952; Malkin, 1964; Liu & Li, 1989;
Li & Liu, 1991; Yu & Han, 2005a, 2005b]). In the
last 20 years, much progress on finite cyclicity near
a weak focus point or a homoclinic loop has been
achieved. Roughly speaking, the so-called finite
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cyclicity means that at most a finite number of
limit cycles can exist in some neighborhood of focus
points or homoclinic loop under small perturbations
on the system’s parameters.

In this paper, we particularly consider bifur-
cation of limit cycles in quadratic systems. Early
results can be found in a survey article by Ye
[1982]. Some recent progress has been reported in a
number of papers (e.g. see [Roussarie, 1998; Rous-
sarie & Schlomiuk, 2002]). For general quadratic
system (1) (n = 2), in 1952, Bautin proved that
there exist 3 small limit cycles around a weak
focus point or a center [Bautin, 1952]. After 30
years, until the end of 1970’s, concrete examples
were given to show that general quadratic systems
can have 4 limit cycles [Shi, 1979; Chen & Wang,
1979], around two foci with (3,1)-configuration.
Since then, many researchers have paid attention
to integrable quadratic systems, and a number of
results have been obtained. A question was nat-
urally raised: Can near-integrable quadratic sys-
tems have 4 limit cycles? A quadratic system is
called near-integrable if it is a perturbation of a
quadratic integrable system by quadratic polynomi-
als. On one hand, it is reasonable to believe that the
answer should be positive since general quadratic
systems have at least 4 limit cycles; while on the
other hand, near-integrable quadratic systems have
restrictions on their system parameters and thus it
is more difficult to find 4 limit cycles in such sys-
tems. In fact, this is still an open problem after
another 30 years since the finding of 4 limit cycles
in general quadratic systems, and many researchers
are working on this problem. It should be men-
tioned that 4 limit cycles have been discussed by Lli-
bre and Schlomiuk [2004], Artés et al. [2006] using
general polynomial perturbations applied to inte-
gral quadratic systems, which are not near-integral
quadratic systems defined in this paper.

The study of bifurcation of limit cycles in
near-integrable systems is related to the so-called
weak Hilbert’s 16th problem [Arnold, 1977], which
is transformed to finding the maximal number of
isolated zeros of the Abelian integral or Melnikov
function:

M(h,d) = j{ Qndr — P,dy, (2)
H(z,y)=h

where H(z,y),P, and @, are all real polyno-
mials of z and y with degH = n + 1, and
max{deg P,,,deg Q,,} < n. The weak Hilbert’s 16th

problem is a very important problem, closely related
to the maximal number of limit cycles of the follow-
ing near-Hamiltonian system [Han, 2006]:

dv  OH(z,y)

7 oy +epn(z,y), 5
dy  O0H(z,y)

i o + eqn(,y),

where H(x,y), pn(z,y) and g, (x, y) are polynomials
of x and y, and 0 < € < 1 is a small perturbation.

General quadratic systems with one center have
been classified, for example, by Zoladek [1994] using
a complex analysis on the condition of the center,
as four systems: gv — the Lotka—Volterra sys-
tem; Q? — Hamiltonian system:; Q§ — reversible
system; and (4 — codimension-4 system. In 1994,
Horozov and Iliev [1994] proved that in quadratic
perturbation of generic quadratic Hamiltonian vec-
tor fields with one center and three saddle points
there can appear at most two limit cycles, and
this bound is exact. Later, Gavrilov [2001] extended
Horozov and Iliev’s method to give a fairly com-
plete analysis on quadratic Hamiltonian systems
with quadratic perturbations. Quadratic Hamilto-
nian systems, with at most four singularities, can
be classified as three cases [Gavrilov, 2001]: (i) one
center and three saddle points; (ii) one center and
one saddle point; and (iii) two centers and two sad-
dle points. Gavrilov [2001] showed that like case (i),
cases (ii) and (iii) can also have at most two
limit cycles. Therefore, generic quadratic Hamilto-
nian systems with quadratic perturbations can have
maximal two limit cycles, and this case has been
completely solved.

For the Q§ reversible system, there have been
many results published. For example, Dumortier
et al. [1997] studied a case of QI system with
two centers and two unbounded heteroclinic loops,
and presented a complete analysis of quadratic 3-
parameter unfolding. It was proved that 3 is the
maximal number of limit cycles surrounding a single
focus, and only the (1,1)-configuration can occur
in case of simultaneous nests of limit cycles. That
is, 3 is the maximal number of limit cycles for
the system they studied [Dumortier et al., 1997].
Later, Peng [2002] considered a similar case with
a homoclinic loop and showed that 2 is the max-
imal number of limit cycles which can bifurcate
from the system. Around the same time, Yu and Li
[2002] investigated a similar case as Peng considered
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but with a varied parameter in a certain interval,
and obtained the same conclusion as Peng’s. Later,
Iliev et al. [2005] reinvestigated the same case but
for the parameter values varied at a different inter-
val (which yields two centers) and got the same
conclusion as that of [Dumortier et al., 1997], i.e.
3 is the maximal number of limit cycles which can
be obtained from this case. Recently, Li and Lli-
bre [2010] considered a different case of Q¥ sys-
tem which can exhibit the configurations of limit
cycles: (0,0), (1,0), (1,1) and (1,2). Again, no 4
limit cycles were found. In order to explain why the
above authors did not find 4 limit cycles from the
Q§ reversible system, consider the QgR system with
quadratic perturbations, which can be described by
[Dumortier et al., 1997]

&= —y+ ax® + by® + e(ux + poay), @
§=x(1+ cy) + epsa?,
where a, b, c are real parameters, u;, ¢ = 1,2,3 are
real perturbation parameters, and 0 < ¢ < 1. When
e = 0, system (4).—¢ is a reversible integrable sys-
tem. It has been noted that in all the cases consid-
ered in [Dumortier et al., 1997; Peng, 2002; Yu &
Li, 2002; Iliev et al., 2005], the parameters a and
¢ were chosen ¢ = —3, ¢ = —2, but with b = 1 in
[Dumortier et al., 1997]; b = —1 in [Peng, 2002],
b € (—oo,—1) U (—1,0) in [Yu & Li, 2002], and
b € (0,2) in [Iliev et al., 2005]. In these papers,
complete analysis on the perturbation parameters
was carried out with the aid of Poincaré transforma-
tion and the Picard—Fuchs equation, but it needed
to fix all (or most of) the parameters a,b and c.
This way it may miss the opportunity to find more
limit cycles, such as possible existence of 4 limit
cycles. As a matter of fact, for the cases considered
in [Yu & Li, 2002; Iliev et al., 2005], a simple scaling
on the parameter b (b # 0) can be used to eliminate
b. So, suppose the nonperturbed system (4).—o has
two free parameters and let us consider the two-
dimensional parameter plane. Then, all the cases
studied in the above mentioned articles are special
cases, represented by just a point or a line segment
in the two-dimensional parameter plane (see more
details in Sec. 2). It has been noted that a differ-
ent method was used in [Li & Llibre, 2010] with
Melnikov function up to second order, but no more
limit cycles were found.
It should be mentioned that Zhang [2002]
has proved that the possible cycle distributions
in general quadratic systems with two foci must

Four Limit Cycles in Near-Quadratic Integrable Systems

be (0,1)-distribution or (1,%)-distribution, i =
0,1,2,3,.... So far, no results have been obtained
for ¢ > 4. This result also rules out the possibility
of (2,2)-distribution. It is conjectured that at most
3 limit cycles can exist around one focus point. The
problem of bifurcation of 3 limit cycles near an iso-
lated homoclinic loop is still open.

In this paper, we turn to a different angle and
consider bifurcation of limit cycles in quadratic
near-integrable systems with two centers. We shall
leave more free parameters in the integrable sys-
tems, so that we will have chances to find more
limit cycles. The basic idea is as follows: we first
consider bifurcation of multiple limit cycles from
Hopf singularity, which does not need to fix any
parameters, and use expansion of Melnikov function
near centers to get as many as possible such limit
cycles. This leads to the determination of a maxi-
mal number of parameters. Then, for the remaining
undetermined parameters, we compute the global
Melnikov function to look for possible large limit
cycles. Indeed, although, due to the complex inte-
grating factor in the analysis, we are not able to give
a complete analysis for classifying the perturbation
unfolding, we do get a positive answer to the open
question of existence of 4 limit cycles in quadratic
near-integrable systems. In particular, we will show
that perturbing a reversible, integrable quadratic
system with two centers can have at least 4 limit
cycles, with (3, 1)-distribution, bifurcating from the
two centers under quadratic perturbations.

The rest of paper is organized as follows. In
Sec. 2, we give a different classification in real
domain for quadratic systems with one center, and
compare it with that given by Zoladek [1994].
Also, we use our classification to present a sim-
ple summary on some of the existing results for
the reversible near-integrable system. Section 3 is
devoted to the analysis on bifurcation of small limit
cycles from Hopf singularity. In Sec. 4, we show how
to find large limit cycles bifurcating from closed
orbits to obtain a total of 4 limit cycles. Finally,
conclusion is drawn in Sec. 5. The main results of
this manuscript has been posted on arXiv.org since
February 2010 [Yu & Han, 2010].

2. Classification of Generic Quadratic
Systems with at Least One Center

In this section, we give a different classification in
real domain for quadratic systems with a center,
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which is consistent with the Hamiltonian systems
considered in [Horozov & Iliev, 1994; Gavrilov,
2001]. We start from the following general quadratic
system:

dZ1 2
o €100 + €C11021 + C10122 + €120%7
+cr112122 + 01022%,
(5)
dZQ 9
P €200 + €21021 + C201%2 + C22027

2
+ C2112122 + C202273,

where c;;’s are real constant parameters. It is easy
to show that this system has at most four singular-
ities, or more precisely, it can have 0, 2 or 4 sin-
gularities in real domain. In order for system (5) to
have limit cycles, the system must have some singu-
larity. In this paper, we assume that system (5) has
at least two singularities. Without loss of generality,
we may assume that one singular point is located at
the origin (0,0), which implies ¢109 = c200 = 0, and
the other at (p, q) (p?+¢* # 0). Further assume the
origin is an elementary center. Then introducing a
series of linear transformations, parameter rescaling
and time rescaling to system (5) yields the following
general quadratic system:

dx n n 9

— =y+azy+a

dt Y 1Y 2Y°,

. (6)
d—i = —z + 2% + agzy + asy’,

which has an elementary center at the origin (0,0)
and another singularity at (1,0).

In order to have the origin of system (6) being
a center, we may calculate the focus values of sys-
tem (6) and find four cases under which (0,0) is a
center, listed in the following theorem (here we use
Zoladek’s notation in our classification).

Theorem 1. The origin of (6) is a center if and
only if one of the following conditions is satisfied:

Q§ — Reversible system: as = as = 0, under which
system (6) becomes

dz .

_ = a

; (7)
d—g; = —z + 2% + agy?,

with
center if ap < —1,
(1,0) being a
saddle point if a1 > —1.
Q? — Hamiltonian system: a3 = a; + 2a4 = 0,

under which system (6) is reduced to

dx . 4 an?
— = a1y + a
dt Y 1Ty 297,
d 1 ¥
d_i =—x+a2%— §a1y2,
with
center if ap < —1,
(1,0) being a ‘ .
saddle point if a3 > —1.
gv — Lokta—Volterra system: ao = 1+ a4 = 0,

under which system (6) becomes

dz .

— =y+az

; (9)
d—g; = —z+ 2%+ azzy — v,

with

(1,0) being a

1
focus if ap < — <1 + Za%),
. I
node if — 1+Za3 <a; < -1,
saddle point if a1 > —1.

@4 — Codimension-4 system:

asz — 5&2 = a1 — (5+3a4)

= a4 +2(1+4a3) =0, (10)
under which system (6) can be rewritten as
dx
= =y — (1+6ad)zy + azy?,
(11)
dy _ 2 2,2
pri —z + 2 + bagry — 2(1 + a3)y”,

with (1,0) being a node for ay # 0.
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Remark 2.1. There is one more case found from the
above process, defined by the following conditions:

az — Haz = a1 — (5 + 3ay)
=3(as + 2)(ag + 1)% — (5ay + 6)a3

—0. (12)

We will show later in this section, when we com-
pare our above real classification with the com-
plex classification given by Zoladek [1994], that
the case defined by (12) actually belongs to the
Q§ — reversible system.

Proof.  Necessity is easy to be verified by comput-
ing the focus values of system (6) associated with
the origin. Some focus values will not equal zero if

the condition is not satisfied. |

Four Limit Cycles in Near-Quadratic Integrable Systems

For sufficiency, we find an integrating factor for
each case when the condition holds. For the le —
Hamiltonian system (8), we know that the integrat-
ing factor is 1, and the Hamiltonian is given by

1 1 1
H(z,y) = 5@2 +y%) — §$3 + §Cllﬂfy2

1
+ _a2y37

. (13)

which is exactly the same as that given in [Horo-
zov & Iliev, 1994; Gavrilov, 2001].

For the QL — reversible system (7), the inte-
grating factor is

a1+2ay

y=[14+az| (14)

and the first integral of the system is given by

1. _2aq (1+ a1 — aq)(1 + 2a47) 72
F = —sign(1 1 a|y? - : 15
(z,7) 2slgm( +a12)|1 + arx| = [y + aa(ar — an)(ar — 2a1) pP— (15)

For the Q%Y — Lokta—Volterra system (9), we find the integrating factor as
v =lg(z,y)[7h,  where g(z,y) = (1 + a1z)[(z — 1)* +as(z — 1)y — (1 +a1)y’], (16)
and the first integral of the system is
_sign(9(z,y)) 2In|1 + a1z| + ay In|(1 + a1)y? — asy(z — 1) — (z — 1)?|
2a1(14 ay)
2 —1 —1)—2(1
N araz(z —1) tann—! | _23& 1) —2( +ay 7
Va2 +4(1+ ar)](z — 1)2 Va2 +4(1 + ar)](z — 1)2
when a3 + 4(1 +a;) > 0,
Fle,y) = (17)
ign(1
—% {2111]1 + a1z| + ap In[(1 4 a1)y? — asy(z — 1) — (z — 1)?]
B 2a1a3(z — 1) - as(x —1) = 2(1 +aq)y
Vi-ag =41+ ar)](z - 1)2 VIEa =40+ a)]z - 1)2] |
when a3 +4(1 + a;) < 0.
Finally, for the Q4 — codimension-4 system (11), we have
v = lg(a,y)|7°%, where g(x,y) = 1 - 2(1+ 2a3)a — 2azy + (1 + 4a3)(x + azy)?, (18)
and the first integral of the system is equal to |
. x, = —(1+4da?) 4 3(x + agy + 2a3x
Flo,y) = S8 0 1)=8/2 (2, ) frn= 22> ( ;y )
’ 12a$ ’ e X [14+ a3 — (14 3a3)(x + azy)]

(19) +(1+3a2)(1 + 4a2) (@ + azy)®.  (20)

where

The proof is complete. W
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Note that among the four classifications of the
integrable system (6), the first three classified sys-
tems (7)—(9) have two free parameters, while the
last system (11) has only one free parameter.

Remark 2.2. We now show that our classification in
Theorem 1 is equivalent to that given by Zoladek
[1994]. The general quadratic system considered by
Zoladek is given in the complex form:

dz

— = (i+Nz+ A2 + B2z + C7?,

7 (21)

where z = x+iy, and A, B and C' are complex coef-
ficients. It has been shown by Zoladek [1994] that
the point z = 0 is a center if and only if one of the
following conditions is fulfilled:

Q" : A=B=0,
QY N=24A+B=0,
QY: N =Im(AB) = Im(B3C)
=Im(A43C) =0,
Qi: A\=A—-2B=|C|—|B|=0.

(22)

In the following, we first use real differen-
tial equation to give a brief proof (different from
Zoladek’s [1994]), and then show that our classifi-
cation is equivalent to Zoladek’s when system (21)
is assumed to have a nonzero singularity. To prove
this, let

A=A +iAs,
C =Cp +10y,

B = By +1iB>,
(iz = *1)7

and then rewrite the complex equation (21) in the
real form:

d
d—f = Az +y+ (A + By + Cy)a?
+ 2(A2 — CQ)CEy — (A1 — B+ C’l)y2, (23)
d
d—i = —z+ Ay — (A2 + By + Cy)z?

+2(A; — C)zy + (Ag — By + Co)y?,

where y — —y has been used. Letting A = 0 yields
the focus value vg = 0. Then, it is easy to find the
first focus value (or the first Lyapunov constant) as

V1 = —A1B2 - BlAQ = —Im(AB) (24)

Letting v; = 0 results in Im(AB) = 0, which gives

7B1A2

By =
2 Ala

under the assumption of A; # 0.
(25)

(The degenerate case A; = 0 can be similarly ana-
lyzed and the details are omitted here.) Then, we
apply our Maple program (e.g. see [Yu, 1998]) to
system (23), with the conditions A = 0 and (25), to
obtain

gy = —fAL—2B) - —ffs

? 343 T 2164%°

vy = —ff4 Vs — —ffs
9720A7’ 466560A7 "

where
f = Bi1(2A1 + By)(Cy A3 + 3C Ay A3
—3A3CyA, — C1A3),

and f3, f4, etc. are polynomials of Ay, Ao, C1, Cy and
Bj. Letting f =0, i.e.

Bi=0 or 24;+B; =0 or
CoA3 + 301442 — 3A2C,A1 — C1 A3
=Im(A3C) =0
yields vg = v3 =--- = 0.

Indeed, By = 0 implies By = 0 due to the condi-
tion (25), and so B = 0. Thus, we obtain A = B = 0,
corresponding to the ng case.

For the condition 24; + By = 0, it follows
from (25) that 245 — By = 0, i.e. 24 + B = 0,
which plus the condition A = 0 gives the le case.

The third condition Im(A3C) = 0, with A = 0
and Im(AB) = 0, corresponds to the Q¥ case. Fur-
ther, it is easy to show that under the condition
Im(AB) = 0, Im(43C) = 0 and Im(B3C) = 0 are
equivalent. Thus, the conditions A\ = Im(AB) =
Im(B3C) = 0 are also applicable for this case. So
for this case, either Im(A3C) = 0 or Im(B3C) = 0
is needed, but not both of them. In the following,
we show one more case to join this case, leading to
both the two conditions being needed.

Note that there is one more condition A1 = 2B;
which renders vo = 0. Letting A; = 2B, and so
Ay = —2By [see (25)], implying that A — 2B = 0.
Under the condition A = 2B, v; = vy = 0, and the
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other focus values become

25
v3 = §(Cl2 + C2 — B? — B2)(CyB} — 3C,B?B, — 3C3,B1 B2 + C1B3),

vy = 1—2[453% + 58582 + 60(B,C1 + BsCh) — 196(C2 + C2)],

v = 6:1%[648(731l + 124BIB2 + 1557B3) — 3(961BC? — 76808, BoC1 Cy + 202345B2C%)

+ 5768, C1 (106 B? + 307B3) + 288B,C5(371B? + 773B3) — 3(4801B3C% + 206185B5C3)
— 80688(C'1% + C22)(B1Cy + BoCy) + 86144(C12 4 02%)?),

Hence, under the conditions A = A — 2B = 0, there 1
are two possibilities such that vg = v4 = -+ = 0. = —Im(A3C) =0,
The first possibility is 8
(26)
C?4+C2—-B?-B2=0, ie |C|—|B|=0, due to A = 2B. Since these conditions can
be included in the conditions A = Im(AB) =
which is one of the conditions given for the Q4 case Im(B*C) = Im(A*C) = 0, this possibility belongs

[see (22)]. to the QI case.
The second possibility is given by the condition: The remaining task is to show that the condi-
tions classified in (22) are sufficient. This can be
s Bi?, — 30, B% B,y — 3C, By B22 e Bg, done by finding an integrating factor for each case.
For brevity, we only list these integrating factors
=Im(B3C) below (while the lengthy expressions of the first

integrals are omitted):

|1+ 4(Asx — A1y) + 4(A1Cs + AsCy — 2A1 Ag)zy + [(A1 + C1) (A1 — 3C)
+ (A2 + C2)(5Az — 3C5)]2? + [(Az + Ca) (A — 3C5)
+ (A1 + C1)(5A; — 3C))|y? +2(A3 + A2 — C? — C2)[(Ag + C3)2®
— (A1 + C)y® — (A1 — 3C))x%y + (Ag — 3Co)xy?]| L, for QLY
Y= 1, for Q4 (27)
L= 24y — Oyl B for QF.
|1 — 4(Bax + Buy) + 2(Bf + B3)(z* + y?)
+2(B1C} 4 BoCy) (22 — y?) 4+ 4(B1Cy — ByCh)xy|~%/2, for Q4.

For the integrating factors of degenerate cases (e.g. Ay — Cy = 0), one can easily find them.
Next, compare the classification listed in (22) with ours given in Theorem 1. First, consider the Q%"
case. Letting A = B; = By = 0 in (23) yields

dx
P =y+ (A + 01)562 +2(A2 — Co)zy — (A1 + C’1)y2,
(28)
d
d—f = 2 — (Ag + Co)2? + 2(A1 — C)ay + (As + Ca)y?.
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Then, let
k =tan(f), and so
k 1 (29)
sin(f) = ——, cos(f) = ——,
(©) V14 k? (6) V1+ k2

where k is solved from the following cubic polyno-
mial:

Pl(k‘) = (A2 + 02)]433 + (A1 — 301)]432

+ (A —3C)k+ A1 +C1=0. (30)

This cubic polynomial at least has one real solution
for k, which gives the slope of the line on which a
second fixed point is located. k =0 if A; +C7 =0,
otherwise, k # 0. Let k be a real root of Py(k), i.e.
Py(k) = 0.

Further, introducing the linear transformation
(rotation):

x = cos(f)u — sin(0)v,

(31)
y = sin(f)u + cos(0)v,
into (28) yields
dx 2 2
% =Y + Mi20T° + M111TY + M102Y~,
(32)
dy . 2 2
% = —Z + Maoox” + M2112Y + M202Y~,
where
mi120 = —MN102
=1 +kH)32P(k) =0,
mo20 = —1202

= (1+ k) 732[(Ay + CE® — (A3 — 3C,) K>
+ (A — 301k — Ay — Cyl,
min = —2(1 + k2)732[(A; — C)E?
— (Ag +3C2)k? + (A1 +3C1)k
— Ay + Oy,
mar1 = 2(1 + k%) 73/2[(Ay — Co)k® + (A; + 3C)k?

+ (Ay 4+ 3Co)k + Ay — C4).
Suppose mazg # 0. Then, introducing T = mago,
7 = magoy into (32) results in
dr.— _  mann__

@t U

.
T =—E+7+

ma11 _9
— Yy
m220

(33)

C .. . ) : _ man
which is identical to (9) as long as letting a; = 711

and a3z = % This shows that the four parame-
ters Ay, Ay, C and C5 are not independent. Thus,
alternatively, we may simply take k = 0 (which ren-
ders the second singularity of (28) on the z-axis),

yielding C1 = —A;. Thus, (28) becomes

dx

— = 2(Ay9 — C

g =yt (A2 — Ca)xy,

dy_ 2 2
E = —x — (AQ + CQ)JJ + 4A1:L'y + (Ag + Cg)y .

Suppose Ay + Co # 0. Introducing T = —(Ay +
Cy)x,y = — (A + Cy)y into the above equations we
obtain

dz  _ 2(A2 — 02) __
— =y ———— 77,
dt Ay + Cy
(34)
dy - _9 4A1 —— =2
7 T+ A2+02:Uy U,
which is identical to (9) if letting a; = %

and ag = 4+Acl'2' In the following, we will use this

simple approach for other cases.
For the Q? case, substituting A = 0, B; =
—2A; and By = 2A, into system (23) results in

dzx
= =¥ = (A1 = C1)a” +2(A; — Co)ay
— (341 + C1)y?,
dy 2
— =T (3Ay + Co)x? +2(Ay — Cy)xy

—(Ay = Co)y.

Further, taking C7 = A; in the above equations
gives another singularity on the z-axis, and intro-
ducing T = — (342 + C2)z,7 = —(342 + C2)y into
the resulting equations yields

dv 2<A2—Cg)i_+ 44,
dt_y 3A9 + Oy 4 3A2+Czy7
(35)
dy | o Ay —Ch
dt Tt 3A2—|—Czy ’
which is identical to (8) if we set a; = %

__4A
and ay = 410
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For the Q§ reversible case, it follows from
[Zoladek, 1994] that all the coefficients A, B and
C are real, and thus we obtain the following real
form from the complex system (21)

&y tar® b
at Y ax? y,
(36)
dy _
dt—az cxy,

where
a=A1+B1+C, b=DB -4 -0,
C:2A1 *201.

Suppose b # 0. Then, introducing T = by,7 = bx
into (36) results in

d_:z' — 77 + E:f_
dt =Y b Y,
(37)
dy _g
- TrT by ’
which is identical to (7) if
N & N 2<A1 — Cl)
a; = E = m and
a A+DB+C
agyy=—-=——
b - A -

For the last (4 case, under the condition A\ =
A—2B =0, by setting C1 = —3B; (which renders a
nonzero singularity on the z-axis) in (23) we obtain

dx
ik 2(2By + Co)zy + 2B1y7,
dy
Pl + (Bg — 02)33 + 10B1zy

— (332 — Cz)y2

Suppose By — (3 # 0. Then, introducing 7 =
(By — C9)x,y = (B — C9)y into the above equa-
tions yields

dT _ 2(232 + CQ) L 2B, 2
-V = Y— Ty +
dt B2 — CQ B2 - 02

(38)
dy _ 9 10B; 3By — (Y _9
T ry — Y.
dt By — Cy By — Cy

Comparing the coefficients of the above system (38)
with our system (6) results in

Four Limit Cycles in Near-Quadratic Integrable Systems

g 22B2+Cy) - 2B1
! By—Cy 2 By—Cy’ (30)
10B; 3By —
a3 = ——— ay=——>=
3 B2*027 4 BQ*CQ’

which in turn implies that ag — 5as = a3 — (5 +
3ays) =0, and

8B} + C3 —
(B2 *02)
_ C}+C3-B}- B}
(B2 — Ca)?
=0, for|C|—

as +2(1+a3) =

1B| = 0.

The above conditions are the exact conditions given
in (10) for the Q4 case.
Finally, we turn to the conditions given in (12).

It follows from (39) that
3(a4 + 2) (a4 + ) (5a4 + 6)
(40)

On the other hand, under the condition C7 =
—3Bj, the condition (26) for the second possibility
becomes

CyB} —3CBiBy — 3CyB, B3 + C1 B3

= CyB} + C?BBy — 3C3 B B3 — 3B, B3
= —B1(3B3 +3B3Cy — CBy — BiCy) =

which implies, by Eq. (40), 3(as+2)(as+1)%>—(5as+
6)a? = 0 for By # 0. Hence, according to Zoladek’s
classification [see (22)], this case should be included
in the Q§ case. However, one cannot prove this by
directly using the conditions in (12) as well as that
for the Q¥ case (see Theorem 1). One must trace
back to the original system coefficients.

In the paper [Zoladek, 1994], the author used
Bautin’s system to verify his classification. Bautin’s
system is described by [Bautin, 1952]

d

d_f = M2 —y+ 322 + (202 + X5)zy + A6y,
dy o 2 2
% =z + My + Aoz + (2>\3 + >\4)xy — A2y~

(41)

It is seen from (23) and (41) that Bautin’s system
has only six parameters, while Zoladek’s system has
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seven (in real domain) parameters. This indicates
that Zoladek’s system has one redundant parame-
ter. In fact, putting Bautin’s system in Zoladek’s
complex form gives the following expressions:

1
A=A, A= Z()\3+)\4—)\6—i/\5),

1
B=——(A3—2A\

C\(B + B3)
B1(B? — 3B3

For By = 0, the above expression is reduced to

‘1+2[

5B
11— 2(2By — Cy)y|Ti=2%2 = [1 - 2(A; — Cy)y|”

which is the integrating factor for the QgR system,
as shown in (27).

Now we return to system (6). Among the four
classifications, the Hamiltonian system (Q%) has
been completely studied in [Horozov & Iliev, 1994;
Gavrilov, 2001]: the system can have maximal two
limit cycles. In this paper, we will concentrate on
the Qf — reversible case. Special cases for the
reversible system have been investigated by a num-
ber of authors (e.g. see [Dumortier et al., 1997;
Peng, 2002; Yu & Li, 2002; Iliev et al., 2005; Li &
Llibre, 2010]). It is easy to see that system (7)
is invariant under the mapping (¢,y) — (—t,—vy),
where a1 and a4 can be considered as perturba-
tion parameters. The singular point (1,0) of (7) is
a center when a; < —1; but a saddle point when
a1 > —1. ap = —1 gives a degenerate singular point
at (1,0). Further, it is easy to verify that when
(a1 + 1)ay > 0, there are no more singularity; while
when (a1 + 1)ay < 0, there exist additional two
saddle points, given by

(ﬁwg:(_;i_:%ﬂiﬁ>_

al alaq

a4 = 0 is a critical value, yielding the two additional
saddle points at infinity: (z*,y*) = (—all,j:oo).
In summary, the distribution of singularity of the
reversible system (7) has the following possibility
(see Fig. 1, where 1C + 1S stands for one center
and one saddle point, similar meaning applies to
2C, 2C' + 25 and 1C + 35):

Two centers when a; < —1 and a4 < 0;

) 2] (Box + By)

1
C = 7[= (323 + A+ Ae) +i(4h2 + Xs)]-

Then, applying the formulas given in (23)
will immediately generate the center conditions
obtained by Bautin [1952]. The above expressions
clearly show that By = 0. As a matter of fac-
tor, the integrating factor for the system, cor-
responding to the second possibility, i.e. when
A= A—2B =Im(B3C) =0, is given by

5B (B} -3B3)
C1(Bf+B3)—2B1 (B} —3B2)

241 +B;
A1-Cq

(due to A1 = 231),

Two centers and two saddle points
when a1 < —1 and a4 > 0O;

One center and one saddle point
when a; > —1 and a4 > 0;

One center and three saddle points

when a1 > —1 and a4 < 0.
(42)

In this paper, we pay particular attention to
a; < —1,a4 <0, for which system (7) has only two
singularities at (0,0) and (1,0), both of them are
centers.

By adding quadratic perturbations to sys-
tem (7) we obtain the following perturbed quadratic
system:

dx
o =yl +az) +eP(z,y)
=y(1+ a1z) + e(arox + a1y
+ agw? + apxy + a02y2),
p (43)
d—g; = —x+ 2% + ayy® + eQ(x,y)

= —x+ 22 + asy?® + e(bror + b1y
+ boox? + bi1xy + boay?),

where 0 < ¢ < 1, a;;'s and b;;’s are perturbation
parameters.
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ayq

_ _3 _ _3
a;=-—1 ag=5a1 @4=a; a4=75a0

2C+2S

5 4 3 2 NS

.
a,]:%(an»S)" .

a3=3(6a,+5)

Fig. 1. Case studies for the Q? reversible system.

Remark 2.3. The special system considered by
Dumortier et al. [1997] is system (4) with

a=-3, c=-2, b=1.

This is equivalent to our system when a; = —2 and
a4 = —3 for which the system has only two elemen-
tary centers at (0,0) and (1,0). Consider the a;—ay
parameter plane, as shown in Fig. 1. It can be seen
that this case is just a point, (a1,a4) = (—2,-3),
in the parameter plane, marked by a blank circle in
the third quadrant on the line ay = %al (see Fig. 1).

The special system studied by Peng [2002] is
system (4) with

This is equivalent to our system when a; = 2 and
a4 = 3, for which the system has one center at (0, 0)
and one saddle point at (1,0). Thus, this case is
again a point, (a1, a4) = (2,3), in the a;—a4 param-
eter plane, marked by another blank circle in the
first quadrant on the line as = 2a; (see Fig. 1).

The cases considered in [Yu & Li, 2002; Iliev
et al., 2005] correspond to system (4) with a = —3,
¢c=—2,and b € (—o0,—1) U (—1,0) in [Yu & Li,
2002], and b € (0,2) in [Iliev et al., 2005].

When ¢ = 0 in system (4), one can use the
following transformation:

dz :g(1+f:z),

dt b

(44)
dy _ ~2 )
7 T+ x4+ by ,

Four Limit Cycles in Near-Quadratic Integrable Systems

which is our system (7) with

alzg, a4:%. (45)
Equation (45) yields
a
ag=—a1 (b#0), (46)

which represents a line in the a;—a4 parameter
plane, passing through the origin with the slope <.

In particular, the parameter values: a = —3,¢c = —2,
b € (—o0,—1) U (—1,0) U (0,2), yielding a1 = —3
and a4 = —%, correspond to a part of the line,

described by

Vap € (—o0,—1) U (0,00), (47)

a4 = 5&1
as shown in Fig. 1, where the dotted line for a; €
[—1,0] is excluded from the study in [Yu & Li, 2002;
Iliev et al., 2005].

It should be noted that when a = —3,¢ = -2,
the point (0, #) is a saddle point if and only if

1+§:1—%>0 = be (—00,0)U(2,+00).
Thus, the case considered in [Yu & Li, 2002] has one
center and one saddle point; while the case studied
in [lliev et al., 2005] has two elementary centers.
But even these two studies together do not cover
the whole line a4 = %al (the missing part is denoted
by a dotted line segment in Fig. 1).

Another alternative form for a special case
of our system (7) considered by Han [1997] is
described by

Z_f:y[urz(l—e) (E—l—%)];

dy

dt
where e and d (# 0) are parameters. This sys-
tem has a saddle point at the origin and a center
at (z,7) = (—5,0). Based on the two parameters,
seven cases are classified [Han, 1997]. We can apply
the following transformation:

1 1

:f‘:a(ﬂffl), y=

to system (48), yielding

dz 2(1 —e¢)
i Tk S
dt y[ * x}

(48)
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dy_ 2, € 9
a T e T gy

(49)

which has a center at the origin and a saddle point
at (1,0). Then, setting

2(1—e) e
=25 =2 50
ai d a4 d’ (50)
in system (49) leads to our system (7). Equa-
tion (50) denotes a line, given by
e
= — 51

in the a;—a, parameter plane, passing through the
origin with the slope ﬁ However, it is easy to
see that using our system (7) in analysis is simpler
to using system (48). In fact, all the seven cases
classified in [Han, 1997] together denote a region in
Fig. 1, see the shaded area in this figure. This area
covers most of the region, defined by a; > —1. But
the study given in [Han, 1997] for the seven cases
is restricted to local analysis on the bifurcation of
limit cycles near a homoclinic loop, except the two

lines (see Fig. 1):

a4 = ay val € (_17 0) U (07 OO>7 (52)
which corresponds to the parameter value e = %,
and

ay = *§CL1 Vap € (O, OO), (53)

which corresponds to e — 4o0. It has been shown in
[Han, 1997] that except the above two lines, for the
parameter values in the shaded area, system (48)
can have at most 2 limit cycles near a homoclinic
loop under quadratic perturbation.

Figure 1 shows the a1—a4 parameter plane asso-
ciated with the reversible system (7), where the
above mentioned case studies are indicated on the
line a4 = %al as well as in the shaded area. More
precisely, a complete global analysis given in [Yu &
Li, 2002], which includes the result in [Dumortier
et al., 1997] as a special case, shows that corre-
sponding to each point on the line segment a4 = %al
(a1 > 0), the system has one center and one sad-
dle point, and has maximal 2 limit cycles. In [Han,
1997] it is shown for each point in the shaded area
[except the two line segments ay = a1 (a1 > —1)
and ay = —%a; (a; > 0)], which contains the
above line segment, the system has one center and

one (or three) saddle(s), and has maximal 2 limit
cycles, but restricted to local analysis near one
homoclinic loop. Similarly, a global analysis given
in [Iliev et al., 2005], which contains the result in
[Dumortier et al., 1997] as a special case, proves
that corresponding to each point on the line seg-
ment a4 = %al (ap < —1), the system has two
centers, and exhibits maximal 3 limit cycles around
one center. The technique of Poincaré transforma-
tion and Picar-Puchs equation, used for the above
mentioned global analysis on parameter unfolding,
seems not possible to be generalized to consider the
general situation for arbitrary points in the a;—a4
parameter plane. The two particular dash-dotted
lines: a4 = %(al —5)Var € (—oo,—1) U (—1,00),
and ay = 3(6a; + 5)Vay € (—oo,—1), as well as
the five dark circles correspond to our results, pre-
sented in the next two sections. In particular, we
will show that there exist 3 small limit cycles on
the two dash-dotted lines, and at least 4 limit cycles
for the parameter values marked by the five dark
circles.

In the following, we will use the perturbed
quadratic system (43) for our study on bifurcation
of limit cycles. First, we need the following lemma,
which will greatly simplify the analysis.

Lemma 1. The perturbed quadratic reversible sys-
tem (43) can have three independent perturbation
parameters.

Proof. First, note that the integrating factor for
the unperturbed reversible system (7) is v = |1 +

a1+2ay

ajz| @ . Thus, let t = 7. Then system (7) can
be transformed to

dx _aj+t2ay4
— =[l4+az] = (y+azy),
dr
(54)
d _aj+t2ay
=t (b aw?)
dr
which has the Hamiltonian function:
1 _ 204
H(z,y) = §sign(1 +a12)|1 + arx| =
" [ 2, (14 a1 —aq)(1 + 2a47)
a4(a1 — a4)(a1 — 2&4)
2
T
— . 55
— (55)
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Then, the Melnikov function of system (43) along a loop defined by Ly, : H(x,y) = h, can be expressed as

M(h,ay, a4, aij,bij)

:fL YQ(x,y, bij)dr — yP(x,y, ai;)dy
h

_aj+2ay _aj+2ay 2 2
= ?{ 14+ ajz| 1t (bor + bix)yde — 74 1+ aiz] v (aj0 + agez” + agey”)dy
Lh Lh

a1 + 2ay

_a1+2a4
= f{ 1+az| = [(bm + bi1x) + aig + 2az0r —
Ly,

7a1+2a4 9
— a2 14+ a1z = y°dy
Lh

a1 + 2ay
(1+ax)

_a1t2ay
- j,f 1+ ayzx] = [(@10 + bo1) + (b11 + 2ag0)x — (@10 + azoxz)] ydx
Ly,

a1+2ay

1 14+ az| =
- 2
3@+ 2a4)a0 th 1+ ax

yida. (56)

Note that

a1+2ay

’1 + alxli ajy 3 3a4 % 7a1+2a4 9
a dr = —— 1+a1z a1 dy. 57
4]éLh T P Lh! 1] y-dy (57)

Further, it follows from Eq. (7) that

(—x + 22+ a4y2)dx = (1 + a1x)ydy, (58)

a1+2ay
° y on both sides and then the resulting equation is integrated along Ly,

[14aiz|

which is multiplied by Ttarz

to yield

aj+2ay ajt2ay4

’1 + (11[13‘ aj 9 9 % ‘1 + (1116" ay 2
— dr = 1+ dy.
]éh 1 iy ( x4+ x° + a4y )y X . 1 iy ( ala:)y Y

Combining the above equation with (57) we obtain

a]+2ay

_a +2a 2 1 - a
% 11+ a1zl K 4y2dy _ Gt 2 % L+ a1z] ' (—x + 2%)yd. (59)
Ly Ly

1+ a1z
Substituting the above result into (56) yields

M(h, a1, a4, a0, bor, bi1, azo, ao2)

_a1t2ay aj + 2a4 9
— 1 ay b b 2 - d
th 11+ arz| [(alo +bo1) + (b11 + 2a20)x (1 +az) (@107 + agoz?) | ydx
’ ‘7a1+2a4
a1 + 2aq4 1+ a1z al 9
_ L rema — dx.
a1a4a02th I+ arx (ot o)yds
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7a1+2a4
= ]é 1+az] = {(alo + bo1) + (b1 + 2a90)x
Ly

a1 + 2a
e a1 oo + o) el + ]} i

Next, rewriting the term in the square bracket of (60) gives

M (h, a1, a4, a0, a2, a2, bot, b11)

a1 + 2ay
(a1 —aq)(1 4 a1x)

_a1+2a4
= f{ 1+aiz] = {(alo + bo1) + (b1 + 2ag0)r —
Lp,

1 1
X [a[(al — aq)az + ap2)(1 + arz)x + g[(cm —aq)(ara1p — ao)
1

= (I +a1)age)(1 + a1z) — %[(al — ag)(araig — az) — (1 + a1)a02]] }
1

_oa1t2ay a1 + 2ay 1
= 1+a1z a1 —— (a1 — aq)(ara1g — azg) — (1 + aq)a
B 1t R ) (aran — o) — (14 el

ai + 2ay4

+ <501 + a10 — —

——[(a1 — aa)(a1a10 — az) — (1 + a1)ap2]
aj(ar — as)

1
- — [bn + 2a90 —
a

| ay + 2a4 ) [(a1 — as)aso + aoﬂ])

ai(ar —aq

a1 + 2ay

44 (bn + 2ag9 — ax(ar — an) [(a1 — as)azo + aoz]) (1+ a1$)}

aq

= colo + c11h + c21o, (61)

where
_ 2(aj+tay)

Iy = % sign(l + alx)(l + CLICE) a1 ydx,
Ly,

_2(ajtay)

L = % sign(l + a12)(1 +a1z) = y(l4 ayx)de, (62)
Ly

_2(ajtay)

I, = ]é sign(1 + a1z)(1 + a1z)” @ y(1 4 ayx)’de,
Ly,

and

. al + 2@4@ a1 + 2ay (1 + a1)<a1 + 2@4)
g = ———

e 63
a1 10 CL% a20 CL% (CL1 — CL4) ap2, ( )

20 Ly, +2a 2+ a1)(a1 + 2a
Cl:b01—_4a10__b11+_24a20+( 21)( 1 4)

ap2, (64)
ay ay as as(ar — aq)

1 a] — 2a4 a1 + 2a4
¢y = —by + ——5 a2 + S~ a02- (65)
a1 as ai(ar — aq)
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It is obvious that the expression in (61) contains
only three independent perturbation parameters,
though the parameters a; and a4 are involved in
I;;1 = 0,1,2. Thus, we may let two of them equal
to zero. For example, letting asg = age = 0 yields

2a
Cy = <1 + a—4> aio,
1

2a4a10 + b1y

= oy — A0 T OLL 66
c1 = b1 o ; (66)
1
cp = —bi1,
ag

which indeed shows that aqg,bg1 and bi; can be
used as the three independent perturbation para-
meters. W

Thus, without loss of generality, we may assume
that ap1 = az0 = a11 = ap2 = big = bao = bo2 = 0,
under which system (43) is reduced to

dx
zﬁ.::y(14fa1x)4—ea1mr
(67)
dy 2 2
= = w2 +ay? + by +buwy),

where a1 < —1l and 0 < e < 1.

3. Hopf Bifurcation Associated with
the Two Centers

In this section, we study Hopf bifurcation of sys-
tem (67) from two centers (0,0) and (1,0), leading
to the bifurcation of multiple limit cycles. The result
is summarized in the following theorem.

Theorem 2. When a1 < —1, the quadratic
near-integrable system (67) can have small limit
cycles bifurcating from the two centers (0,0) and
(1,0) with distributions: (3,0),(0,3),(2,0),(0,2)
and (1,1). (2,1)- or (1,2)-distribution does not
exist.

Proof.  Consider system (67) for a; < —1. The
system (67).—o is a reversible integrable system. In
order to compute the Melnikov function near the
two centers (0,0) and (1,0), we multiply (67) by
the integrating factor 7 [given in (14)] to obtain the
following perturbed Hamiltonian system:

dzx

o= v(y + arzy) + evyaor,
=

Four Limit Cycles in Near-Quadratic Integrable Systems

d I
di =~z + 2% + asy?) + ey(bory + b zy),
(68)

with the Hamiltonian of the unperturbed system (7)
(i.e. (68)-—p), given by (55), with as # 0, a; # au,
a1 # 2a4. The cases a4 = 0, a1 = a4 or a1 = 2ay
will not be considered in this paper.

Note that
hoo = H(0,0)

B 14+a1 —aq
2&4(0,1 — a4)(a1 — 20,4)’

for 1 + a1z > 0,
hip = H(1,0)

_ (@At
; 2a4(a1—a4)(a1—2a4)< L) '

for 1+ a1z <O.

Since in this paper, we concentrate on the case that
system (67).—o has only two centers, we assume
a1 < —1,a4 < 0. Thus,

lim  H(z,y) = +oco and

g L
ay

lim H(z,y) = —oc.
o 1t
al

It is easy to see from system (67) that the trajec-
tories of (67).—¢ rotate around the center (0,0) in
the clockwise direction, while rotating around the
center (1,0) in the counter clockwise direction, as
shown in Fig. 2. Thus, the values of hin H(x,y) = h

1.5

15 P—
25 2 -15 -1

05 0 05 1 15 2 25 3 35

X

Fig. 2.
two centers for a1 = —3,a4 = —%.

A phase portrait of the reversible system (7) with
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are taken from the two intervals: h € (hgp,o0) for
1+ ajz > 0, and h € (—o0,hyg) for 1 + a1z < 0.
It should be noted that hgg is not necessarily larger
than hig. The analyses on the two half-plane in the
x—y plane (see Fig. 2), divided by the singular line
1+ a1z = 0, are independent.

Next, introduce

Lh : H(ﬂ?,y)
b h e (h()(),OO), for 1 +ayx > 0,
| he (=0, hig), forl+ax <0,

(70)
and define the Melnikov function:

M(h, aij, bl])

h
|

oo = 2m (a0 + bot),
v

Ho1 = 10

— 5ajay + 4a?)bor + 12(1 + a4)by1],

™

Ho2 = 364

where p(z,y, a;;) = yarox and q(x,y, bij) = v(bo1 +
bi1z)y. Using the results in [Han, 2000, 2006;
Han & Chen, 2000], we can expand M near h = hy
and h = hyp as

Mo(h,a;j,bij)
= puoo(h — hoo) + po1 (h — hoo)? + po2(h — hoo)?
+ 1103(h — hoo)* + O((h — hoo)®),
for 0 < h — hgy < 1,
My (h,a;j,bj)
= p1o(hio — h) + pa1(hio — h)* + paa(hio — h)?
+ p113(hio — h)* + O((h1o — h)®),
for 0 < hig — h < 1,
(72)
where the coefficients p;;,7 = 0,1;j = 0,1,2,... can

be obtained by using the Maple programs developed
in [Han et al., 2009] as follows:

[(10 — 13a1 — 14a4 + 1303 + Tayay — 20a3)ayo + (10 — ay + 10ay + a2

[(1540 — 980a; — 280a4 + 861aF — 1512a1ay — 394843 — 62643 + 1566a%ay + 1620a;a>

— 443243 + 313a] — 1018a3ay — 279a%a2 4 3080a1a; — 209647 )a19 + (1540 + 700a; + 3080a4

+21a? + 168a a4 + 277243 — 2a3 + 126a3a4 — 828a1a3 + 1424a3 + af — 58a3ay + 369a3a’

— 712a1a3 + 400a3)boy 4 24b11 (1 + a4)(70 + 35a1 + 70a4 + a? — 17ajay4 + 52a3)b11],

103 = 552080

— a1 + a4y + a7 — a1a4 — a
3403400 — 300300 3003000 690690 % 4984980 7327320 i

— 500885a3 + 331485002 ay — 4430580a a5 — 17811640a3 + 323121a] — 244443943 ay

+4201218a%a? 4 5794692a1 a3 — 180339364 — 168603a; + 1420500aay — 3253551a3a3

—1296282a%a3 + 12107904a; aj — 10462368a; + 56201a$ — 520311a3ay + 1471287a} a3

— 40705303 a3 — 458977202 af + 7149264a;al — 3159616a5) a0 + (3403400 4 33033000,

41021020004 + 69069003 + 5825820a; as + 14294280a3 + 1193543 4 40425043 ay

+2721180a1 a3 4 1223684043 — 699a; — 1137943 a4 + 26245843 a3 — 1891308a, a’

+6994704a] + 417a3 + 1380atas — 149091a3a? + 112183842 a3 — 29645764, a]

+ 26704324 — 13945 — 291aay + 46227a a2 — 366193a3a3 + 107698843 a}

—1335216a; aj + 578624a$ )bo; + (3603600 + 3603600a; + 10810800a,4 + 79002042
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and

H1io =

H11 =

H12 =

H13 =

Four Limit Cycles in Near-Quadratic Integrable Systems

+ 6597360a; ay 4+ 1502424043 + 1260043 + 48006003 a4 + 3764880a; a3 4 1251432043
+180a] — 1080043 ay + 1134002 a3 — 618480a1 a3 + 6566400a] + 180ajas — 2340043 a’
+ 32130002 a3 — 1389600a; aj + 186912043 )by1],

2m(—1 — ay)*?[(1 — 2a4)aio + (1 + ay)(bor + b11)],

4 2ay—aq) 2 2 2 3
12( 1—a1) = [(10+ 33a; — 6aq + 36a] — 21laras — 24ajas + 30aia7 — 8aj)aig

+ (1 +a1)(10 + 21ay — 10ay + 1243 — 15a1a4 + 4a3)bor — (14 a1)(1 + aq)(2 + 3a; — 4aq)byi],

_ (5a1—8ay)
ﬁ(*l —ay)” Fm o [(1540 4 T140a; — 2800a4 + 1304102 — 11592ayas + 221242 + 1144843

— 1807203 ay + 8628a;a3 — 111243 + 752a4 — 12024a3ay + 12213a3a? — 52324, a’

+4320a7 — 1728aj a4 + 6192a3 a3 — 7938a%a’ 4 4272a1a; — 800a3)ayg

+ (1 + a1)(1540 + 5460a; — 3080a4 + 7161a? — 9072a1 a4 + 2772a% + 4104a3

—9030a2a4 + 6372a1a3 — 142443 + 864a] — 3096a3ay + 3969a3a2 — 2136a;a3 + 400at)bo
— (14 a1)(1 + a4)(140 4 420a; — 420ay + 42303 — 996a;a4 + 57603

+ 144463 — 633a%ay + 888aya3 — 400a3)by1],

T ~ 2(aj—3ay)

iteg "L @) (3403400 + 207207000y — 9809800as + 5324319002 — 54234180a; a4

+ 1309308003 + 7433464503 — 12373515002 a4 + 65571660a1 a3 — 1077692043 + 60023916a;

— 14790051903 ay + 13193497842 a2 — 49682268a, a; + 6439744a} + 2700216043
— 954601200 a4 + 13238086503 a3 — 894086100 ai + 29027880a;1 aj — 3527040
+ 544320008 — 2894616003 aq + 6399853247 a3 — 7487961303 a’ + 4849833643 a]
— 16296336a; a] + 218124845 — 155520008 ay + 9603360a3a2 — 24061752a a

+ 3123235843 af — 2207253643 a} + 8011296a;a$ — 11572484 )ag

+ (1 + a1)(3403400 + 17117100a; — 1021020004 + 3522519043 — 45225180a; a4
+ 1429428047 + 3778582503 — 7920297003 ay + 54455940a, a3 — 122368404

+ 22125636a] — 6837120943 ay + 7786459803 a3 — 38601828a1 a’ + 6994704a]

+ 66290400 — 28984608a]ay + 49687587a3 a3 — 41614974a% a3 + 16953984a, a}
— 267043243 + 77760008 — 480168043 ay + 120308764} a’ — 156161794} a;

+ 1103626802 af — 4005648a;a; + 57862448 )boy
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— (14 a1)(1 + a4)(200200 + 900900a; — 800800ay + 160083043 — 3132360a; a4
1

4153076042 + 139765543 — 459648042 a4 + 5008500a1 a5 — 180824043 4 594864a]

— 300126643 a4 + 559402242 a2 — 4568112a1 a3 + 13799364 + 972004 — 7367764} a4

4216207943 a3 — 308026802 a3 + 2136528a; aj — 578624a3 )by1],

Remark 3.1. The coefficients pg; listed above are
applicable as long as (0,0) is a center, and the coef-
ficients p1; are applicable as long as (1,0) is a cen-
ter, regardless of the number and distribution of the
system’s singularities. Therefore, for each point on
the whole line ay = (a; — 5) (see Fig. 1), there
always exist 3 small limit cycles bifurcating from
the center (0,0), no matter whether the system has
two centers, or one center and three saddle points,
or one center and one saddle point. For each point
on the line segment a4 = 3(6a; + 5)(a1 < —1), the
system can have 3 limit cycles bifurcating from the
center (1,0). This indicates that the results given
in [Dumortier et al., 1997; Peng, 2002; Han, 1997]
showing that the reversible near-integrable systems
with one center and one saddle point can have max-
imal 2 limit cycles is conservative, since on the part
of the line ay = %(a; — 5) in the first quadrant
(a; > 5) such a system can have at least 3 limit
cycles.

First, we consider the maximal number of limit
cycles which can bifurcate from the center (0,0).
Setting g = 0 yields

bor = —aqo, (73)
and then we have

o1 = 7r[(a1 —-1- CL4)(CL1 + 2&4)&10 + (1 + a4)b11].
(74)

In order to have ug; = 0, we suppose a4 # —1 and
choose

B (a1 — 1 —ayg)(ar + 2a4)a

b p—
11 T+ as

10- (75)
Then, pgo and o3 are simplified to

Vs
Ho2 = gal(al — a4)(a1 + 2&4)(&1 —3ay — 5)a10,

{103 = —Jﬂal(al — ay)(a1 + 2a4)(770 + 1054,

+ 14000y + 42a% — 434aya4 + 127403

—13a3 + 128a%ay — 415a1a3 + 444a3)ayg.
(76)

There are five choices for pgs = 0. Except the
choice a1 — 3a4 — 5 = 0, all other choices lead to
poi = 0,2 =3,4,.... Thus, letting
1
as = =(a1 —9),
1= g(a1 = 5)
which implies a; # 2 when a4 # —1. Since we
assume a1 < —1, for this case (i.e. when the condi-
tion (77) holds), ay # —1 is guaranteed. Then, we
have

(77)

25T
o3 = ——al(al + 1)(&1 — 2)2(26L1 + 5)&10,

162
Hoa = —8718 al(al + 1)(0,1 — 2)2(2a1 -+ 5)
X (a1 + 4)(170,1 + 518)&10
107 _
H10 = —T<—1 — a1> 3/2a1(2a1 + 5)&10,
257 _2(2a; 45)
_ _1 _ 3a
1= 5o ar) 1

X aq (a1 — 2)2(2a1 + 5)a10,

implying that in addition we need
(2a1 + 5)@10 £ 0.

Under the above conditions (73), (75), (77) and
(78), we obtain pgg = po1 = poz = 0, but pez # 0,
1o # 0. Hence, at most 3 small limit cycles can
bifurcate from the center (0,0) with no limit cycles
bifurcating from the center (1,0). Further, giving
proper perturbations to the parameters ay (or al),

(78)
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b11 and by1, we can obtain 3 small limit cycles bifur-
cating from the origin. This shows that the conclu-
sion is true for the case of (3, 0)-distribution.

Next, consider the (0, 3)-distribution. Similarly,
letting p19 = 0 yields

20,4—1
1+a

bor = —b11 + a1o. (79)

Then, pq11 becomes

_ 2(ay—ay)
M1 =7T<—1—a1> @1

X [(a1 + 2&4)(20,1 — a4 + 1)a10

— (1 + al)g(al — a4 + 1)b11]. (80)
Hence, we set
b — (a1 + 20,4)(2&1 —ay + l)a
T T 0t a)(a —ag+1) 0
(a1 —ayg +1 7é 0), (81)
to yield p11 = 0, and
T 75(11—8(14
12 = g(*l —a1) 1 ai(ar —aq)
x (a1 + 2a4)(6a1 — 3aq + 5)aio,
T _2(a3—3ay)
s = gog(=l—a1) o ai(ar — aa) (82)

X (a1 + 2a4)(770 4+ 2205a; — 1400a4
+2142a? — 3234a1a4 + 127403 — 72003
—1962a%ay + 1689a1a2 — 444a3)ayg.

The only choice for g9 = 0 is 6a; — 3aq4 + 5 = 0,
from which we have
1
ay = §(6a1 +5). (83)

This implies that a; —aq +1 = —(ay + %) > 0 for
a1 < —1. Further, we obtain

25 10+11a
p3 = _371(—1 ) @ ay(3a +2)°
X (3&1 + 5)a10,
5 80+87a,
Hi4 = (—1 — al) 6a1 g (3&1 + 2)2

17496
X (3&1 + 5)(30,1 + 4)(5010,1 + 518)@10

Four Limit Cycles in Near-Quadratic Integrable Systems

107
00 3(1+a1)2a1( a1 +5)ao,
25m 9
== a1(3 5)(3 2
HOL= = 3901 1 a2 (B B)Bm + 2,

implying that in addition we require

(3&1 + 5)&10 75 0. (84)

Under the above conditions (79), (81), (83)
and (84), we have pj9 = p11 = pi2 = 0, but
iz # 0,p00 # 0. Further, by properly perturb-
ing the parameters a4 (or aj), b1 and bgi, we can
obtain 3 small limit cycles bifurcating from the cen-
ter (1,0), but no limit cycles from the origin. This
proves the case of (0, 3)-distribution.

For the case of (2,0)-distribution, it follows
from the conditions (73) and (75), and a4 # —1
that ppo = por =0, and

T
Ho2 = gal(al —ay)(ay + 2a4)(a1 — 3aq — 5)aio,

2 (
= — a

a; — ay)

X (a1 + 2&4)&10.

Thus, po2 # 0 implies p19 # 0, indicating that the
conclusion holds for the case of (2,0)-distribution,
if a4 75 *1,

When a4 = —1, (74) becomes

po1 = mai(ar — 2)aig

%0 fora; < —1 and a9 # 0.

Under the conditions by; = —ayp and aqg = —1, g
and p117 becomes

p1o = —2m(—1 — a1)~%?[(a1 — 2)aro — (1 4 a1)byi],

_2+a1
1 aj(a1 — 2)aio,

par =m(—=1—a1)
(85)

which shows that 11 # 0 for a; < —1 and a9 # 0.
But we can choose

b1y =

to obtain w19 = 0. Thus, for this case we have a
(1, 1)-distribution.
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Similarly, for the (0, 2)-distribution, we use the
conditions (79) and (81) to obtain

__5a1—8ay

Hi2 = %(*1 —ap) 2

ai(a; — ayg)(ar + 2a4)

X (6&1 — 3a4 + 5)&10,

2
(1+a)?*(ag —as+1

Moo = )(Il (CL1 - CL4)

X (a1 + 2&4)&10.

This indicates that s # 0 implies pgg # 0, and so
the conclusion for the case of (0,2)-distribution is
also true if a; —aqg + 1 # 0.

When a1 —a4 +1 =0, ie. a4 = a1 +1 <0,
(80) is reduced to

_2(a3—ay)
ni1 = 7T(*1 — al) a1 aq (3&1 + 2)&10 75 0
for a1 < —1 and aio 7& 0,

and poo and po; become

Lioo = [(a1 + 2)a10 — (1 + a1)bui],

1+ ay
Vs
1+a;

(86)

o1 = a1 (3a1 + 2)aio,

which clearly shows that pg; # 0 for a3 < —1 and
aig # 0. However, we may choose

to obtain ppg = 0. Thus, for a; —aq +1 = 0, we
have a (1, 1)-distribution.

Finally, suppose the condition given in (73) is
satisfied, i.e. bgy = —aj9, then substitute this into
110 to solve by; to obtain
a1 + 2ay

1+aq ’

Then, under the conditions (73) and (87), we obtain

T
1+ag

by = (87)

Mot = ai (a1 — aq)(a1 + 2a4)arp,

_2(aj—ay)

pr = —m(~=1—ay) = (83)

ai(a; — aq)
X (a1 + 20,4)&1(),

which shows that pgy # 0 implies pu1; # 0, and
thus in general the conclusion is true for the case of
(1, 1)-distribution.

As we have seen in the above analysis, if the
condition (77), as = %(al —5), is not used, then
we can only have 2 limit cycles bifurcating from the
origin, but no limit cycles can occur from the center
(1,0). In other words, we can obtain one more limit
cycle, by using the condition a4 = %(al —5), only
bifurcating from the center (0,0). Similarly, if the
condition (83), as = $(6ay + 5), is not used, then
we can have only 2 limit cycles bifurcating from
the center (1,0), but no limit cycles can bifurcate
from the origin. Then, condition as = £(6a; + 5)
can be only used to get one more limit cycle around
the center (1,0), rather than the origin. Therefore,
(2,1)- or (1,2)-distribution is not possible.

This completes the proof of Theorem 2. W

4. Limit Cycles Bifurcating from
Closed Orbits

In this section, based on the results of the small
limit cycles obtained in the previous section, we
wish to investigate the possibility of existence of
large limit cycles by applying the Melnikov func-
tion, defined in (71). We have the following result.

Theorem 3. For the case of bifurcation of small
limit cycles from the two centers (0,0) and (1,0)
with (3,0)-distribution (resp., (0,3)-distribution)
there exists at least one large limit cycle near Ly
for some h € (—o0,hig) (resp. for some h €
(hoo,00)). For the case of limit cycles with (2,0)-
distribution (resp., (0,2)-distribution) there exist at
least two large limit cycles, one near Ly, for some
hi € (—o0,hig) and one near Ly, for some hy €
(hoo,00). The corresponding values of the parame-
ters ay and aq for the existence of 4 limit cycles
can appear at least in some regions in the a;—ay
parameter plane.

Remark 4.1. Theorem 3 gives a positive answer to
the open question of existence of limit cycles in
near-integrable quadratic systems: at least 4 limit
cycles can exist. For the case of (1,1)-distribution,
so far no more large limit cycles have been found.

Proof. 'We use the formulas given in (61) and (66)
in the following calculations. Since one cannot find
the closed form of the integrals I;(h,a1,a4), @ =
0,1,2, for general a; and a4, nor the technique of
Picard—Fuchs equation can be applied here, we shall
choose some values for a; and a4 and then find
numerical values of the integral. We first use the
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results given in the previous section to determine
bo1, b11, and a4, and then choose proper values for
a1 to find more limit cycles. We consider four dis-
tributions: (3,0), (0,3), (2,0) and (0,2), and each
case can have 4 limit cycles.

(A) First, consider the (3,0)-distribution. For this
case, we have

1
ag = g(ch —5), by = —aio,

b1 = *10(1 + al)alo.

Taking a1 = —% yields a4 = —%, which denotes a

point (a blank circle) on the line ay = §(a; — 5) in
the a;—a4 parameter plane (see Fig. 1). Further, we

have b11 = @alo, and

3" (4d)

Then, the Hamiltonian (55) becomes

Four Limit Cycles in Near-Quadratic Integrable Systems

The Melnikov functions M;(h,a19) can be
expressed as

Mi(h, a10> = Mi (h)al(), 1= 0, 1. (89)
Without loss of generality, we may assume
aig > 0, (90)

and thus M;(h, a19) and M;y(h) have the same sign.
It is noted that for the above chosen parameter
values, we have

_ 13091500007
HO3 = 5379 10

__2500vT6Lr
Hio = 3703 aio .

The computation results of Myo(h) for h €
(hoo,o0) and Mjg(h) for h € (—oo, hyg) are shown,
respectively, in Figs. 3(a) and 3(b). Figure 3(a)
shows that Myg(h) > 0 for h € (hgp,0), and its
sign agrees with that of g3 > 0 for 0 < h—hgy < 1,
as expected. It is also noted, as shown in Fig. 3(b),

H(z,y) = 16250y* + 136502° + 27302 — 441 that the sign of Myo(h) agrees with that of pip < 0
’ 30 13/9 for 0 < hyp — h < 1. However, unlike the inter-
32500 (1 - 7$> val h € (hgp,00), this interval contains a critical
value h = h} € (—0.9250363254, —0.9250363253)
for @ £ . at which Myo(h*) = 0 and the function Mio(h)
30 changes its sign as h crosses this critical point. Thus,
with for this case, besides the 3 small limit cycles, there
13/9 exists at least one large limit cycle bifurcating from
hoo = — 441 > hyp = — 15939 (l) . the closed orbit L+ of (70). This large limit cycle is
32500 32500 \ 23 shown in Fig. 4(a), which encloses the center (1,0);
35 [ 8
0l 0.1 6l
0.08
251 006 4r
0.04
Mo [ oce gl *
sl . hoo My, o hy hio
0.02 0 0.02 0.04 0.06 0.08 0.1
10} 2t
5t 4t
ol : -6 s s : t
0 0.2 0.4 0.6 0.8 1 1.2 -1.25 -1 -0.75 -0.5 -0.25 0
h h
(a) (b)
Fig. 3. Functions Moyg(h) and Mjg(h) under the conditions pgg = o1 = po2 = 0, po3 # 0 and p1g9 # 0, for a; = —3—70 and

as = 1(a1 = 5) = =82 (a) Moo(h) > 0 for h € [hoo, +00), with hg = —zaats ~ —0.01357; and (b) Mig(h) for h € (—o0, 1],
with hig = — 33939 (L)13/9 ~ —0.08797, crossing the h-axis at h = h} € (—0.9250363254, —0.9250363253).
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230
b11 = S1a10—€2, bo1 =

Illustration of the existence of 4 limit cycles when a1 =

//’
05}
N {
y 0 S
7777777777777777777 e "\\
\
05}
\\
\‘\
-1 . . L \
0.6 -0.4 0.2 0 = 0.4 0.6
X
(b)
—%, ay = %(al —-5) = —% —¢e1, and a9 = 000

—ajp—e3, where 0 < e3 € €2 < €] < &: (a) An unstable large limit cycle enclosing the center ( ,0);

and (b) zoomed area around the center (0,0) showing the existence of 3 small limit cycles.

and Fig. 4(b) illustrates the existence of 3 small
limit cycles around the center (0,0).

(B) For the case of the (0, 3)-distribution, we have

1 2a4 — 1
ay = =(6a1 +5), by = —b11 + aig,
4 3( 1+5) 01 R Pt
(a1 + 2&4)(20,1 —aq + 1)
1= 5 a10-
(1+a1)*(ar —aqg +1)
By choosing a1 = —g—(l], we have a4 = —g—‘;’, bo1 =
5366111a10 and b;; = 8366710a10 The point (a1, a4) =
(—g—(l], —35) is marked by a blank circle on the line

—

ay = 3(6a; +5) in the a;—ay parameter plane (see
Fig. 1). Moreover,

18
70\ 7 51
= 1 _— —_—

and the Hamiltonian is

2750y + 935022 — 16830z + 7803

H(az, y) = 70 11/7
5500 (1 — —zx
51
51
f _
or r # 0’
with
o T803 L 323 (51 1/
00 = 7500 ~ "= T5500 \ 19 '

For this case, poo and p13 become

10500
Moo = — 3617Ta10 <0 and
4561235000 /517 .
= | — Ta
H13 = 565036352721 \ 19 10

The computation results of Myy(h) for h €
(hoo,o0) and Mig(h) for h € (—o0, hig) are shown
in Figs. 5(a) and 5(b), respectively. As shown in
Fig. 5(a), the sign of Myy(h) agrees with that of
oo < 0 for 0 < h — hgy < 1, and in addi-
tion the function Myg(h) crosses a critical value at
h = h3 € (13.3847179116, 13.3847179117), at which
it changes sign. Figure 5(b) shows that Mo(h) > 0
for h € (—o0, hig), and its sign agrees with that of
w1z > 0 for 0 < hjp — h < 1. Hence, for this case,
in addition to the 3 small limit cycles, there also
exists at least one large limit cycle bifurcating from
the closed orbit Ly; of (70). This large limit cycle
is depicted in Fig. 6(a), which encloses the center
(0,0); and Fig. 6(b) illustrates the existence of 3
small limit cycles around the center (1,0).

(C) Now consider the (2,0)-distribution. For this
case, the condition ay = %(a; — 5) is not used. We
need to determine the values for both a; and a4.
We choose
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(b)
Fig. 5. Functions Moyg(h) and Mjg(h) under the conditions pjg = p11 = pi2 = 0, p13 # 0 and pep # 0, for a3 = —g—(lJ
and ag = $(6a1 +5) = —2%: (a) Myo(h) for h € [hg,+00), with hgy = gg% ~ 1.41873, crossing the h-axis at

h = h} € (13.3847179116, 13.3847179117); and (b) M1g(h) > 0 for h € (—o0, h1], with h1g = — 225 (3117 ~ —0.27714.

which represents a point in the third quadrant of
the a;—a4 parameter plane (see the dark circle in
Fig. 1 near the line a4 = £(a; — 5)). Thus,

y=(1—4z)"% (x#i).

with

25 325 /1\"/°
hoo—%—ﬁhm—‘gsﬁ(g) -

For this case, pp2 and p1g are reduced to

1344
In addition, we have by; = —ai9,b11 = %am, and oz == 125 ma <0 and
192y? + 48022 — 180z + 25
384(1 _ 4$)9/5 K10 9 Taio .
; 1 The computation results of Myy(h) for h €
or z # 4’ (hoo,00) and Mjg(h) for h € (—o0, hyg) are shown,
250 , , , , , , , 1 - , , , ,
200 | T - ‘k\
150 | | \
/' - . 051 v\‘ T
100 7 1 \ R
50 | i ‘ L \
y ol h y o 3 [ k
-50 -\'\ ,// 1
100 b / ] "J’ """""" -
05} / :
-150 | 1 /
2200 | \\1\\\*——»,, 777777777 B /J#"n_“,x—“"’ - B /
-250 - - : . . . . -1 i . s s s
-400 -350 -300 -250 -200 -150 -100 -50 0 0.4 0.6 % 0.8 1 1.2 1.4 1.6
X X
(a) (b)
Fig. 6. Illustration of the existence of 4 limit cycles when a1 = fg—?, as = %(6a1 +5) = fg—? — €1, and ajp = 10,
bi1 = %66—710(110 — &9, bg1 = f%aw +e3, where 0 < e3 € €2 € €1 < &: (a) An unstable large limit cycle enclosing the center

(0,0); and (b) zoomed area around the center (1,0) showing the existence of 3 small limit cycles.
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Fig. 7. Functions Moyg(h) and Mig(h) under the conditions ugg = po1 = 0, po2 # 0 and pig # 0, for ag = —4 and
as = —%: (a) Moo(h) for h € [hoo, +00), with hg = £ ~ 0.06510, crossing the h-axis at h = hj € (0.1448192224,

0.1448192225); and (b) Miyg(h) for h € (—oo,h1], with hig

(—0.5822537644, —0.5822537643).

respectively, in Figs. 7(a) and 7(b). As shown in
Fig. 7(a), the sign of Myo(h) agrees with that of
to2 < 0 for 0 < h — hgg < 1. Moreover, the func-
tion Mog(h) crosses a critical value at h = hji €
(0.1448192224,0.1448192225) at which it changes
sign. Figure 7(b) shows Mg(h) for h € (—o0, hio),
whose sign agrees with that of 119 < 0 for 0 < hyg—

—%(%)9/5 ~ —0.11715, crossing the h-axis at h = h} €

orbits Ly and Lpz of (70). One large limit cycle
surrounding the center (1,0) is shown in Fig. 8(a),
while another large limit cycle enclosing the cen-
ter (0,0) with 2 small limit cycles is depicted in
Fig. 8(b).

(D) Finally, consider the (0, 2)-distribution. For this

L. o . 1 .
h < 1. Also, Myo(h) crosses a critical value at h =  case, the condition ay = g(6a1 + 5) is not used.
hj; € (—0.5822537644, —0.5822537643) at which it Taking
changes sign. Therefore, for this case, besides the
2 small limit cycles, there exist at least 2 large 4 6
.. . . . ayr = —5, a4 = ——,
limit cycles bifurcating from the two different closed 3 5
2000 : : : : : 25 . . . . . :
"""""""""""""""""""""""""" 2t S
15}
1000
1t
05}
vy of y o0
) -05 n
N al b
-1000 Y
151
__________ 216 e ‘\“‘\_
-2000 s - N . 25 s . . s .
0 1000 2000 3000 4000 5000 6000 -6 5 4 -3 2 1 0!l 1
X X
(a) (b)
Fig. 8. Illustration of the existence of 4 limit cycles when a1y = —4, a4 = 715—8, and a9 = ﬁ, b11 = %aw — €1, and
bo1 = —a1g — €2, where 0 < 9 < €] < &: (a) An unstable large limit cycle enclosing the center (1,0); and (b) Zoomed area

around the center (0,0) showing the existence of 1 large limit cycle and 2 small limit cycles.
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Fig. 9. Functions Mpg(h) and Mig(h) under the conditions pui9 = p11 = 0, pi2 # 0 and pgo # 0, for a3 = f%
and a4 = —g: (a) Mog(h) for h € [hgo,+0o0), with hg = % ~ 253096, crossing the h-axis at h = hi €

(12.6197809949, 12.6197809950); and (b) Mig(h) for h € (—oo, hy], with hjg = 7%39/5 ~ —1.41107, crossing the h-axis

at h = h§ € (—3.1388150376, —3.1388150375).

(-3 (#)

The point (—%, —g) is marked by a dark circle near

the line a4 = %(6@1 + 5) in the a;—a4 parameter

yields

plane (see Fig. 1). Further, we have by; = —%alo,
1176
b1 = 65 @10, and

64y? + 48022 — 780z + 325 3
H(z,y) = YAt 993+ for x # —,
4 /5 4
128 <1 — —a:)
3
with
325 25
hoo = o= > hyg = ———3%/.
00 =758 > M0 = ~95¢3
For this case, oo and w12 are simplified as
896
Moo = —Ewam <0 and
448

Hi2 = 39/107ra10 < 0.

30375

The computation results of Myy(h) for h €
(hoo,00) and M;jg(h) for h € (—o0, hip) are shown
in Figs. 9(a) and 9(b), respectively. As shown in
Fig. 9(a), the sign of Myo(h) agrees with that of
poo < 0 for 0 < h — hgg < 1, and the func-
tion Moo(h) crosses a critical value at h = hi €
(12.6197809949, 12.6197809950) at which it changes
sign. Figure 9(b) shows Mg(h) for h € (—o0, hip),
whose sign agrees with that of wio < 0 for

0 < hip—h < 1. Moreover, Myo(h) crosses a critical
value at h = h§ € (—3.1388150376, —3.1388150375)
at which it changes sign. Therefore, for this case,
in addition to the 2 small limit cycles, there also
exist at least 2 large limit cycles bifurcating from
the two different closed orbits Lj: and Ly of (70).
One large limit cycle surrounding the center (0, 0) is
shown in Fig. 10(a), while another large limit cycle
enclosing the center (1,0) with 2 small limit cycles
is depicted in Fig. 10(b).

It is noted that all the four sets of values
of a; and a4 chosen above in (A), (B), (C) and
(D) satisfy
a1t 204 = 2_n7 where n is an integer and

a : :
1 m is an odd integer,

(91)
so that a consistent integrating factor (and so a con-
sistent Hamiltonian function for the whole trans-
formed system) is obtained. However, this condition
is not necessary since the singular line 1 4+ ajz =0
divides the phase plane into two parts, and the
analysis does not need the continuity on the sin-
gular line. To demonstrate this, in the following
we present a case for which the condition (91) is
not satisfied. Consider the (2,0)-distribution, and
choose a; = —5 and a4 = —4. The point (a1,a4) =
(—5,—4) is marked by a dark circle in the aj—ay
parameter plane (see Fig. 1). Then,
ai + 2ay 13 26

bor = a19, b11 = —-aio
a 5’ ’ 3 ’
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The computation result of Myy(h) shows that
Myo(h) < 0 for 0 < h < 1, agrees with the sign
of 2. Moreover, Myg(0.1) = 0.0510077880 > 0,
implying that there exists h = h% € (0,0.1) such
that Moo(h%) = 0, and so a large limit cycle bifur-
cates from the closed orbit Lp: of (70). The result
of Mig(h) also shows that Mig(h) < 0 for 0 <
—3%24/5 — h < 1, agreeing with the sign of o,
and that Mo(—52%° — 0.8) = 7.4630743072 >
0, implying the existence h = h§ € (—3%24/ 5
0.8, —52%%) ~ (—0.8544094102, —0.0544094102)
such that Mg(hg) = 0. Thus, there exists another
large limit cycle bifurcating from the closed orbit
Lpz of (70). Therefore, this case exhibits 2 small
limit cycles and 2 large limit cycles, leading to the
existence of at least 4 limit cycles.

Another example is to choose the line ay = %al.
There exist many points on this line which exhibit
4 limit cycles. For example, choose a; = —4, then

4000 4 .
2000 2| \\‘
y o y o0 /A
©
-2000 | 2t
-4000 - - . . . -4 [ .
-6000 -5000 -4000 -3000 -2000 -1000 0 -1 0 i 1 2 3 4 5 6 7
X X
(a) (b)
Fig. 10. Illustration of the existence of 4 limit cycles when a1 = f%, ay = fg, and ajg = 1, b1 = %aw — €1,
bo1 = f%aw + €9, where 0 < g2 < €1 < e: (a) An unstable large limit cycle enclosing the center (0,0); and (b) Zoomed
area around the center (1,0) showing the existence of 1 large limit cycle and 2 small limit cycles.
and
2 2
Tz +y 1
— Vh e (0,00), when z < —
2(1 — 5z)8/5’ (0,00), 5’
H(z,y) = .
T4 + 1 1
—73/, Vhe —00,7—24/5 , when x > —.
2(1 — 533)8/ 5 32 )
For this case, pg2 and pi19 become |
aqs = —3 for which 3 small limit cycles are around
130 0 d 65 0 (0,0), and 1 large limit cycle encloses (1,0). On the
fo2 = ——g=map < U and - fig = —gmaio < U other hand, taking a; = —5, we have ay = —22 for

which 2 small limit cycles are in the neighborhood
of (0,0), and 2 large limit cycles exist with each
enclosing (0,0) and (1,0). It should be noted that
not all the points on this line a4 = %al can generate
4 limit cycles. Identifying which parts of the line to
have 4 limit cycles is not an easy task.

Summarizing the above results with the conti-
nuity of parameters a; and a4 shows that at least
for some regions in the a1—a4 parameter plane the
reversible near-integrable system (67) can exhibit
at least 4 limit cycles around the two singular
points (0,0) and (1,0) with distribution either (3,1)
or (1,3).

The proof of Theorem 3 is completed. MW

5. Conclusion

In this paper, we have proved that a quadratic
non-Hamiltonian integrable system with two cen-
ters can have at least 4 limit cycles under quadratic
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perturbations, with distributions either (3,1) or
(1,3). This result gives a new record, answering
the open problem of the existence of limit cycles
in near-integrable quadratic systems. It is shown
that such systems can have at least 4 limit cycles
for some regions in the two-dimensional parame-
ter plane, associated with the parameters of the
integrable systems. Further research is needed on
global analysis for all possible parameter values in
the parameter plane.
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