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In this paper, we show that generic planar quadratic Hamiltonian systems with third degree
polynomial perturbation can have eight small-amplitude limit cycles around a center. We use
higher-order focus value computation to prove this result, which is equivalent to the computation
of higher-order Melnikov functions. Previous results have shown, based on first-order and
higher-order Melnikov functions, that planar quadratic Hamiltonian systems with third degree
polynomial perturbation can have five or seven small-amplitude limit cycles around a center.
The result given in this paper is a further improvement.
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1. Introduction

The second part of the well-known Hilbert’s 16th
problem [Hilbert, 1902] can be described as follows:
What is the upper bound of the number of limit
cycles of the following system:

y:Qn(xay>7 <1>

where P, (z,y) and Q,(x,y) denote nth degree poly-
nomials of z and y, and the bound only depends
on n? This number is denoted by H(n), called
Hilbert number. The finiteness of H(n) has not
been solved even for quadratic systems. Later, a so-
called weak Hilbert’s 16th problem was proposed by
Arnold [1983], which asks for the maximal number
of isolated zeros of the Abelian integral or Melnikov

T = Pn(a:,y),

fAuthor for correspondence

function:
M(h,d) = / Qndx — P,dy, (2)
H(x,y)=h

where H(z,y),P, and @, are all real polyno-
mials of =z and y with degH = n + 1, and
max{deg P,,,deg Q,} < n. The weak Hilbert’s 16th
problem itself is closely related to the following
near-Hamiltonian system [Han, 2006]:

i:Hy(x,y)+5pn($,y,5), (3)
y = _Haf(xay> + 5Qn($;ya5>7

where H(z,y), pn(x,y) and g,(x,y) are all poly-
nomial functions of x and y, and 0 < ¢ < 1 is
a small perturbation. Studying the bifurcation of
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limit cycles for such a system can be transformed
to investigating the zeros of the Melnikov function
as follows:

JWM=£qmwwwy
h

(e wn

where Lj is a contour around a singular point,
and D(h) is the region bounded by the contour.
It should be noted that more precisely, the above
Melnikov function is called the first order Melnikov
function.

If the Hilbert’s 16th problem is restricted to
a neighborhood of isolated fixed points with Hopf
singularity, then the problem becomes the study of
degenerate Hopf bifurcations, associated with com-
putation of focus values or normal forms. Many
results have been obtained in this direction (e.g. see
[Bautin, 1952; Kukles, 1944; Li & Liu, 1991; Malkin,
1964]). In 1952, Bautin [1952] proved that the gen-
eral quadratic system (1) (n = 2) can have three
small-amplitude limit cycles around a fine focus
point or a center. For cubic systems, many results
have been obtained, showing that in the vicinity of a
singular point the number of small-amplitude limit
cycles can be five [Christopher & Lloyd, 1990], six
[Lloyd et al., 1988], seven [Li & Bai, 1989; Lloyd
et al., 1988; Sadovskii, 2003], eight [James & Lloyd,
1991; Yu & Corless, 2009], and nine [Yu & Corless,
2009; Yu & Han, 2012]. When considering multiple
singular points, it has been shown that cubic pla-
nar polynomial systems can have limit cycles (not
necessarily small): ten [Han et al., 2004], eleven [Li,
2003; Zhang et al., 2004], twelve [Yu & Han, 2004;
Yu & Han, 2005a, 2005b], and thirteen [Li et al.,
2009; Li & Liu, 2010; Yang et al., 2010]. It should
be pointed out that the nine small-amplitude limit
cycles given in [Yu & Corless, 2009] were obtained
by perturbing an elementary center (linear center)
of general cubic systems, while that given in [Yu &
Han, 2012] were obtained by perturbing a center of
an integrable system with cubic polynomials.

In this paper, we consider the bifurcation of
limit cycles in quadratic Hamiltonian system with
cubic degree polynomial perturbation, and pay par-
ticular attention to the limit cycles bifurcating from
a center. We may assume, without loss of general-
ity, that system (3).—¢ has a center at the origin
(z,y) = (0,0). To determine the number of limit
cycles in the vicinity of the origin, we may use either

the Melnikov function method (e.g. see [Han, 2006;
Han et al., 2009]) or the focus value method (or the
normal form method, see [Yu, 1998]). In this paper,
we will apply the method of focus value compu-
tation to study the bifurcation of limit cycles. In
general, the focus values of system (3) evaluated at
the origin can be written in the form of

~ ~ 2~ 3~
V; = V0 + €V + €7V + €703

+e* o+, i=0,1,2,..., (5)

where 9,0 = 0, ¢ = 0,1,2,... since the origin is a
center when € = 0. Thus, for sufficiently small €, we
can use the leading focus values ¥;; to determine
the bifurcation of small limit cycles. If all ©;;1 = 0,
then use ¥;2, and so on.

For the quadratic Hamiltonian system with sec-
ond degree polynomial perturbation, it has been
shown that such perturbed systems can have
maximal two limit cycles [Horozov & Iliev, 1994;
Gavrilov, 2001], i.e. H(2) =2, representing the
number of limit cycles bifurcating from closed
orbits of quadratic Hamiltonian systems under sec-
ond order perturbation. It is easy to show that
Hj(2) = 2, where the tilde denotes small-amplitude
limit cycles around singular points. Recently, it has
been shown [Han et al., 2009] that quadratic Hamil-
tonian systems with third order polynomial pertur-
bation can have five small-amplitude limit cycles in
the vicinity of a center, i.e. Ha(3) > 5. The result
given in [Han et al., 2009] was obtained by using
the first order Melnikov function. More recently,
bifurcation of limit cycles in quadratic Hamiltonian
systems with up to 20th degree polynomial pertur-
bations has been studied using the first order Mel-
nikov functions [Yu & Han, 2011]. Iliev, on the other
hand, studied a so-called Bogdanov—Takens Hamil-
tonian system under various degree of polynomial
perturbations using various order of Melnikov func-
tions [Iliev, 2000]. The Bogdanov—Takens Hamilto-
nian system is given by

&=y +epn(r,y,e),
. ) (6)
y:*.I*I*LE +8qn(xaya€)a

and the corresponding unperturbed system has
Hamiltonian

1 1
5@2 +y7) — §$3 (7)

which is called the Bogdanov—Takens unfolding,
known from the unfolding of a cusp singularity.

H(:an) =
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It has been shown in [Iliev, 2000] that the
Bogdanov-Takens Hamiltonian system with third
degree polynomial perturbation can have seven
limit cycles upon using fourth order Melnikov func-
tion, i.e. Ho(3) > 7. Certainly, these seven limit
cycles are not necessarily small.

Very recently, we consider perturbing the fol-
lowing generic quadratic Hamiltonian system:

&=y + arzy + agy?,

| . ®)
j=—z+a’— jay?,

and obtain seven small-amplitude limit cycles
around the center (0,0). The derivation of sys-
tem (8) from a general quadratic system can be
found in [Yu & Han, 2011]. The Hamiltonian of sys-
tem (8) is given by

1 1
H(z,y) = 5(332 +y?) — gﬂfg

+ %alxyz + %agy?’. 9)
It is noted that system (8) has a center at the origin
(0,0) and another singularity at (1,0). Since we are
interested in the limit cycles bifurcating from the
center (0,0), we will ignore whether the singular
point (1,0) is a center or a saddle point.

The perturbed Hamiltonian system or near-
Hamiltonian system of (8) can be generally written
as

T=y+ary+ a2y2 + epn(z,y),

1 (10)

§=—z+2° - 5@1@/2 + eqn(2,y),

where the general perturbing polynomial functions
pn(z,y,€) and ¢, (x,y,€) can be written as

2
pn(2,y,€) = Z [aij1 + caija + a3
1<i+j<n

+ 63aij4 + - -]a:iyj
(11)
an(2,y,€) = Z [bij1 + €bijo + £2bij3
1<i+j<n

+ 63bij4 + - ~]:L'iyj.
We have found that such a perturbed system can
have seven small-amplitude limit cycles around
the origin, under the assumption: a;;, = 0 (ie.

pn(z,y) = 0), and bjr, = 0. This in general
may result in missing possibly more limit cycles.

Therefore, in this paper, we assume that

aso1a121b304 # 0, (12)

and obtain eight limit cycles around the origin, i.e.
Hy(3) > 8.

In order to distinguish the order of focus value
with the order of e, we call ¢™-order focus values
with respect to the nth order Melnikov function.
The rest of the paper is organized as follows. In
the next section, for completeness, we apply the e-
order focus values to reinvestigate this case to con-
firm Hy(3) > 5. The results obtained from £%-, 3-
, €% and e5-order focus values will be presented
in Secs. 3-6, respectively. Conclusion is drawn in

Sec. 7.

2. Perturbed Quadratic Hamiltonian
Systems and H1(3) =5 Based
on e-Order Focus Values

In this section, we use e-order focus values to re
derive the result H}(3) = 5, where the super-
script “1” indicates the result based on e-order
focus values. The case for quadratic Hamiltonian
systems with second degree polynomial perturba-
tion is straightforward. It can be shown that for
any e"-order focus values, Hy(2) = 2, agreeing with
H,(2) = 2. We have the following theorem.

Theorem 1.  With the ec-order focus wvalues,

H}(3) =5.

Proof. In order for the origin (0,0) to be a lin-
ear center under perturbation up to € order, we set
bo11 = 0 under which v5; = 0. Then, applying the
Maple program to system (10) yields

B 1
U1 = E[6b031 + 20211 — (a1 — 2)b111

— dasboa1 + 6az01 + 2a121]. (13)
Solving (13) for b3y results in
1
boz1 = 6[(a1 — 2)b111 + 4dasgboz1 — 2ban1
— 6&301 - 2&121]. (14)
Then we obtain 09; as follows:
5 1
Vg1 = —Ea2(5a1 — 2)(a1bo21 — bi21)

1
— 19—2[20a§ + (3a1 +10)(ay — 2)]

x (b111 + b211 + 3apz1)- (15)
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First, assume ay # % Then we solve bip; from
91 = 0 to obtain

20a2 + (3a1 + 10)(a; — 2)
4&2(5&1 - 2)

bi21 = aibo21 +

X (b111 + b211 + 3aos1), (16)

under which 931,041, etc., are simplified as

35
S P
Us1 3072Q1 1(a1,a2),
v ! Q1M ( )
V4 = — =z ai,a
41 73798 1 1\a1,42), (17)
v ! Q1N ( )
V51 = ——————x ai,a
oL 84934656 <1V T
where
Q L (bt + bot + 3az01)
= Qa
1 (Bar —2) 111 + ba11 301

x [(a1 +1)(ar - 2)* — 4a3],

Fy = 3a? + 12a; — 4 — 4a3,

M = 27a$ — 90a3 — 1308a? + 1608a; — 256
+4a3(105a% + 402a; — 344 — 64a3),

Ny = 19683a$ + 34311643 — 124524af
— 616867243 4 7612368a2 4 1585344a,
— 1071424 + 4a3[422145a7 + 1867608a3
+119640a? — 5068704a; + 1265424
—4a3(101127a% — 99084a,
— 316356 + 66964a3)],

(18)

It is noted that all the expressions 041, Us1, . . .
contain a common factor Q1. Setting (1 = 0 results
in all the e-order focus values to be zero. Hence, in
order for this factor to be nonzero, we may use ao
to solve F} = 0, yielding

1
ag = 15\/3(% +2)2 — 16. (19)

To guarantee ay being real, the value of a1 must
be taken from the following intervals:

43 43
al € <oo, T2> U <T2,oo>

~ (—00, —4.309401077) U (0.309401077, 00).
(20)

Under the condition (19), 941 and 05, are further
simplified as

~ 7 2/ 2
S — 2)2(a? — 8ay + 4
YL 1096 (5a; — 2) (a1 +2)"(ay — 8a1 +4)
X (b111 + b211 + 3ason)
x (11a$ + 46a3 — 84a; + 24),
. (21)
Us1 a“ (a1 + 2)2

~ 12288(5a; — 2)
x (a? — 8ay + 4)(b111 + ba11 + 3aszo1)
x (11a$ + 72a% — 175a1 + 50).

It is easy to see from (21) that the only possibility
for 41 = 0 but 951 # 0 is to choose the roots of the
polynomial

Fi(ay) = 11a3 + 46a% — 84a; + 24, (22)

which has three real roots, since its discriminant

d= —% < 0, given by

a; = —5.6118538340...,0.3650705869. . .,
1.0649650652 . . . , (23)

which are all located in the interval given in (20).
The above results show that there exist in total six
solutions.

It is easy to see that the two third degree poly-
nomials in 947 and ¥5; do not have common roots.
That is, the solutions given in (23) do not yield the
third degree polynomial in 751 to be zero. Further,
a direct calculation yields

0v31  0U31
0 0
D1 = det “ 2
0041 OV
8@1 8&2

245a5(ay + 2)*(at — 8ay + 4)
x (b111 + ba11 + 3azor)?
1572864(5a; — 2)°

1350005-4



Int. J. Bifurcation Chaos 2013.23. Downloaded from www.worldscientific.com
by CITY UNIVERSITY OF HONG KONG on 03/05/13. For personal use only.

Eight Limit Cycles in Quadratic Hamiltonian Systems with Third-Order Perturbation

x (165a8 — 38243 — 4568a7 + 489643
+ 688a2 — 1696a; + 384) # 0,

if b111 + bo11 + 3aser # 0, where 037 and 747 are
given in (17), evaluated at the critical point deter-
mined by 19) and (23), since none of the solu-
tions given in (23) is a root of the sixth degree
polynomial in the above expression. Thus D; # 0,
implying that proper perturbations on a; and ao
can be found such that |031] < |0a1] < |Us1] < €
and 031041 < 0,041051 < 0. Three other perturba-
tions on bya1, bps1, bo11 can be easily obtained one by
one, satisfying [0;1| < [0¢j41)1] and 910411 < 0
for j = 0,1,2,3. Hence, for this case, five small-
amplitude limit cycles can bifurcate from the origin
(the center).

The remaining case is a; = %, for which bg3;
and by9; become

1
bo31 = ﬁ(blll + 8agbp21 — 4b211

—12a301 — 4a121),

5

b1o1 = =b
121 5 021 + 1684y

X (b111 + ba11 + 3aso1),

(24)
(16a3 + 7)

under which 917 = v9; = 0, and

5 5 )
31 = T7ang (3202 — V(b + bann + 3as01)

x (16a3 — 179),
bg1 = —————(32a3 — 7)(b b 3
a1 84934656< a3 )(b111 + b211 + 3asen)

x (4096a3 — 8430443 + 76201),

1

U1 = memeeee—— (3203 — 7)(b b 3
ol 782757787696< ay = T)(bi11 + ba11 + 3azon)

x (6857113645 + 6960921647
— 896328398443 + 797929021),

(25)

Hence, the only solution is ay = :I:i\/ 179, for which

V41 = %(blll‘i‘bﬂl +3a301), showing that when

a) = %, the system can have at most four small limit
cycles around the origin.

In conclusion, we have shown that H 13)=5
based on the e-order focus values. W

Remark 1

(i) The method and formulas presented in this sec-
tion for proving Theorem 1 are different from
that in [Han et al., 2009], and the computation
is simpler.

(ii) The coefficients a; and ag are used here to
obtain two additional limit cycles towards
H 1(3) = 5, while they do not play any role for
quadratic systems in determining H 1(2)=2.

3. H2(3) = 6 Based on ¢2-Order

Focus Values
In this section, we use the e?-order focus value to
consider the limit cycles around the origin of the
quadratic near-Hamiltonian system (10) when all
the e-order focus values equal zero. We have the
following result.

Theorem 2. When all the c-order focus values
vanish, H3(3) = 6 based on the analysis of the &*-
order focus values.

Proof. First, we need to find the conditions under
which all the e-order focus values, v;1, vanish. It is
seen from the factor ()1 given in (18) that there are
two cases: (1) bii1 + ba11 + 3asor = 0; (2) (a1 +
1)(a; —2)? — 4a3 = 0. Under these two conditions,
bos31 and bya1 are given by (14) and (16) accordingly.
The complete conditions are given below:

Case 1

bii1 = —bo11 — 3azor, bi21 = ay bo21,

bos1 = é(‘lazb(m — a1ba11 — 3ajasor — 2a121);
Case 2

ag = :t%(a“;’ — 3a? +4)'/2,

bi21 = a1bo21 + 4%2(&1 — 2)(b211 + b111 + 3azo1),

1
boz1 = 6[(611 — 2)b111 — 2b211 + 4agbo21

— 6ago1 — 2a121).
(26)
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In the following, we consider the two cases in
detail. It should be noted that the special case
ay = % discussed in the previous section for e-order
focus values is included in the two general cases.

Case 1. This case can have six small-amplitude
limit cycles near the origin. Similarly, in order for
the origin (0,0) to be a linear center under pertur-
bation up to €2 order, let byj2 = 0. Then under the
first set of conditions given in (26), the first £2-order
focus value is given by

_ 1
U1 = E[6b032 — (a1 — 2)b112 + 2b212
— 4agbpaz — 2b201(b211 + 3aso1]. (27)

Solving bg3e from the equation 0192 = 0 yields

1

1
boz2 = 6[(a1 — 2)b112 — 2b212 + 4asboas

+ 2b901(b211 + 3aso1))- (28)
Next, solving 99 = 0 for biso gives
1
bioo = a1 b —_
122 = @10p22 + 1205 (501 —2)

x {3(3a2 + 4a1 — 20 + 20a2)(b112 + ba12)

— 2[10a1azbo1y + (9a% — 6a1 + 20a3)bo2
+3(3a1 — 10)bso1 + 6az(5ar — 3)asoer
—10aga191](ba11 + 3aser) — 12[(3a1 — 2)a121
+ (3a1 — 10)aso1]bo21 }- (29)

Then, similarly solving 030 = 0 for boo yields

{2(21a? — 36a; + 20 — 28a3)(ba11 + 3as301)

bo12 = —b112 —

21(a$ — 3a? + 4 — 4a2)(3a? + 12a; — 4 — 4a3)

X [a1a2(2b211 — 3&301) — (30,? — 40,%)[)021 — 2&2&121] — 3[57@111 — 300&? + 168@% + 336a; — 112

+ a3(84a? — 480a; + 80)](ba11bso1 + 3b3o1aszor + 2az01bo21)

+2a%(21a% — 36a; + 20 — 28a3)a191bo21 }- (30)
Then we obtain
1
S S
V42 36864 Q21 21(6117@2);
: QoMo (a,a)
Us2 = — T T oon w21iM21(a1,a2),
10616832 (31)
1
S S
V62 7134511104@21 21(at, az),
where
1 3 2
Qo1 = 307 1 120y — 41— 42 {ba11[4arazbarn — 2(3ay — 4a3)boa1 — 2a2(2a121 — 3a1asor)
+3(a? — 4a3)bso1] — 12a121 (a3boz1 + azasoer) — [6a1(2a3boo1 + 3azazon)
—9(aj — 4a3)bso1]azo }, (32)
Fyy = 8laf — 64843 — 648a% + 1632a; — 880 — 8a3(63a% — 204a; — 212 + 110a3), (33)
Moy = 6075a% — 9234043 + 196020a] 4 25027243 — 105105642 + 854208a; — 207680
+4a3[3(3123a] — 780043 — 7884042 + 75552a1 + 8752) — 4a3(2511a?
— 53388a; — 6564 4 12980a3)], (34)
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Nap = 40459505 — 35108640a] + 338936400a$ — 74273241645 — 1033811424a? + 391407667243

— 282605644842 + 116090880a; + 446800640 — 16a3{6003963a$ — 4933418445 — 431249404

+ 6631315203 + 18044769647 — 288936576, + 236774080 — 243[18200889a} — 3673454443

— 19547460047 + 144468288a; + 191492880 + 40a3(1092537a2 + 906964,

— 2959676 + 349063a3)]}.

Eliminating ay from the equations Fbj(ay,as) =

Ms1(ay,az) = 0 yields the solution for as:
G
4GE”

a3 = G (ay) =

where

GY =10179a$ — 81864aF — 179172a

+204992a3 — 32496402
—124032a; + 66880,

GLH = 5109a7 + 1207643 — 7593602
— 167664a; + 48944,

and a resultant equation: Roi(a;) = (a1 + 2)

R3,(a1) = 0, where

R, = 77571ay — 156101445 + 9024720a !

—9985760a$ — 3308976045 + 106013376

— 124646144a3 + 6693120047
—14081280a; + 924160.

(35)

" 912384
21 = 7 ADN\4
(GH)

There are two cases: GY = 0 and G§ # 0.
When G% = 0, ay becomes a free parameter, and
Fy; and My are reduced to (by a Groebner basis
reduction)

1
3 = —%(1429596@% + 946728a7

+ 7306224a; — 2820128)
— a3(504a2 — 1632a; — 1696 + 880a3),
1
M, = —m(3882430557112320a§
+ 744175894966272a7
—20372431117787136a,
+5134141771333632).
(39)

Obviously, M3, # 0 when G = 0. Thus, the case
GL = 0 gives less number of limit cycles.

Now we assume GL) # 0. Then for ay given
in (37), N2; becomes

(a1 + 2)%(222054091780227759a2° — 63738842886969948364,1°

+ 57872670509850006330a1% — 95008467211017717240a1" — 1070901986288903038080a 16

+ 3405647993468931379872a1 + 7502901541666624628032a 11 — 30682840424726820986240a1

— 18272114454422946840320a 1% + 141218579798872808061440a 11 — 50908318975749623584768a1°
— 332515317146691984467968a + 422613421162028272250880a5 + 123263528407830337413120a ]
— 67336336275739871748096005 + 660101849483275511496704a; — 341539074886857685467136a |
+109461214641140744192000a3 — 21805360740053211545600a2 + 2410620747661516472320a,

— 108965872871895203840.

Since Go1(—2) = —4 < 0, a3 = —2, which satisfies Rs1(a1) = 0 is not a solution. We only need to consider
the real solutions of R3; = 0. First, it is easy to see that N3; # 0 when Rj, = 0, under the condition
G # 0. Therefore, there exist parameter values such that (actually Rj, = 0 has six real solutions)
U1, = 0,1,...,5, but 9,6 # 0. Thus, we know that Case 1 can have at most six small-amplitude limit
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cycles around the origin. Furthermore, using (31)—(35) and (36) it can be shown that

0042 Oy
Dy = det Ou  Oaz | 1 Q@2 Fn) 0(Qa1Ma1)  0(Qa1Fr) 0(Q21Ma1)
21 Oz OUs 97844723712 day Oas day Da;
8@1 aCLQ
1 0Q2 OF\ [ 0Qa Moy
- M.
97844723712 K day P+ Qn Oay ) ( ag 2 Qo das
0Q21 OF\ [ 0Qa Moy,
( Bay 2 + Q21 day > ( da, M1 + Qa1 9.
Q%l 8F21 8M21 8F21 8M21 o .
- - due to Fy; = My, = 0 at the critical t
97844723712 \ Oay Oas day Oay (due to Foy 21 = 0 at the critical point)

~ Hag(ar +1)(a1 +2)°Q3;

= (1249408869579a1° — 25349207372424a1° + 133358276098944a1*

131072(GH)3

+ 189343131380256a1® — 1946402075623936a1% — 4007107219164032a 1" + 6336827152556032a 1"

4 58110371111648768a — 26195046324699648a5 — 279206513748129792@{

+ 310501457384177664a% + 311258045221625856a; — 802642255883698176a |

+ 590462898498666496a5 — 201499555600531456a% + 32823637655552000a; — 2062302224384000)

0,

since Qo1 # 0 and G # 0, and the 16th degree
polynomial factor in the above expression does not
contain any real roots of R3;(a;) = 0.

Summarizing the above results shows that when
all the e-order focus values, v;1, equal zero, one can
perturb b012, b032, b122, b212, a9 and aj backwards to
generate

0j2] < [9(j41)2] and  Tj2 D12 <0

for j=0,1,...,5.

This shows that for Case 1 there can be indeed six
small-amplitude limit cycles in the vicinity of the
origin, based on the analysis of 2-order focus val-

ues. |

a1a2

Case 2. For this case, there exist five small-
amplitude limit cycles in the neighborhood of the
origin. Again let bpj2 = 0 under which the ori-
gin (0,0) becomes a linear center up to &2 order.
Then under the second set of conditions given
in (26), solving bps2 from the equation 15 = 0
results in

1
bozz = 6{(a1 — 2)b112 — 2b212 + 4azbpaz
— [2bo21 + 2b201 — (a1 — 4)bio1]b1in1
— 2(b211 + 3aso1)bior }- (40)

Next, solving 090 = 0 for by yields

1

b122 = a1bo22 + (b112 + bo212) —

(a1 +1)(a1 - 2)

6(a1 + 1)(5@1 — 2)(0,1 — 2)2

x {(a1 — 2)[(10a3 — 33a? + 6a; + 28)b3y; + 6a1b3;; — ((a1 — 2)(23a; + 14)bo1y

— 2(5&% — 11a1 — 10)@121 -+ 3(17@% — 14a1 — 16)&301)[)111 — 6a1 (2&121b211 + 6a121a301 + 90%01)]
— 2&2[2((&1 + 1)(5&% — 2a1 — 28)b111 + 3(&1 — 4)(3&1 + 4)b211 — 6(3&1 — 2)&121
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+3(9a2 — 30a; — 28)aso1)boz1 + 3((5as — 7a? + 8a; — 60)big1 + (5a3 — 10a? + 4a; — 40)bygy

+2(3a1 — 16)bso1)b111 + 3((5a7 + 4ar — 60)bio1 + 2(aibagr — 20bag1 — 6bso1))(b211 + 3ase1)]}-
(41)

Further, we solve 933 = 0, but its expression shows that it does not contain any more b;jo coefficients. Thus,
we may use some b;;1 coefficients to solve the equation 032 = 0. For example, solving for bype; leads to

2&2
3(ay 4+ 1) (a1 — 2)%[21(a1 — 2)(a? + 2a1 + 2)(a? — 8ay + 4)bi1y
—2(21at + 1943 — 3002 — 324a1 + 152)(ba11 + 3as01)]

b3o1 =

x {(a; — 2)[21(a1 + 1)(a1 — 2)(a? — 2)(a? — 8a1 + 4)b3y, — (14a3 + TaT — 22643 + 100a?
+56a; — 32)b3;, + ((7aS — 105a3 + 33a] + 7444 — 528a% — 528a; + 368)b211

+6ay(7a] — 84a3 + 104a? + 160a; — 112)aia; + 3(28a8 — 294af + 327a] + 65645 — 33647
—672a; + 336)azo1)bii1 + 2((14a5 — 203a] + 248a3 + 424a% — 256a; + 16)ai2

—3(5a; — 2)(a? + 2a1 + 2)(7a? — 20a; + 4)ase1)bar1 + 3(2(14a3 — 203a] + 24843 4 424a?
—256a1 + 16)a121 — 3a1(56a] — 95a3 4 30a? — 332a1 + 152)asg; )aso]

—2a5[21(a; — 2)(a? — 8ay + 4)(3(a1 + 2)*b1o1 + (a1 + 2)(a? + 2a; + 4)boo

+4(ay + 1)%bo1)bi11 + 21(a? — 4)(a — 8ay + 4)(bar1 + 3asz01)(3(ar + 2)bigy

+ (a? 4 2a1 + 4)boo1) + 2((14a8 — 2165 — 390a] + 138a3 + 111647 + 24a; — 368)bay;
+6a3(7a3 — 4242 + 36a; + 8)arar + 6(7ab — 21a3 — 13247 + 2943 + 46243

+84a1 — 168)aso1)bo21]}- (42)

Then we obtain

Uy = *ﬁ@zzez(al,az),

- 7

Usg = QOMm(ah@), "
- 1

Vg2 = m@zﬂ\fzz(al,az),

where
az(ai + 2)(bi11 + bo11 + 3ase1)

(a1 + 1)(0,1 — 2)[21(0,1 — 2)(0,% + 2a71 + 2)(@% — 8ay + 4)b111
—2(21at + 19a3 — 30a? — 324a; + 152)(ba11 + 3azo1)]

Qa2 =

X {(a1 — 2)[(2&1 — 1)(&1 + 2)31)311 — (a1 + 2)((&11 — 6&? — 8&% + 4a1 + 8)b111
+ 2(2&1 — 1)(&% —2a1 — 2)&121 — 6(2&1 — 1)(&% + 2a;1 + 2)&301)b211
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+3(2a3(a? + 2a1 + 2)ara1 — (a] — a} — 14a3 — 10a? + 8ay + 8)asg1 )b

—3(a; +2)(2a1 — 1)(2(a? — 2a; — 2)ai21 — 3a3asz01)as01]

+ 2as[(a1 + 2)(3a2 — 4)(3(a1 + 2)bio1 + (a2 + 2a; + 4)bog1 ) (ba11 + 3aszo1)

+2((a1 +2)(2a} + 9a} + 4a? — 8ar — 8)ba11 + 6(a] + 5at + 8ai — af — 8a; — 4)azn

+6a(a? 4 2a1 + 2)ai21)boa1]}, (44)
Foy = 55aF — 42463 + 1104a? — 832a; + 16, (45)
Moy = 324508 — 4616445 + 2478364 — 62588843 + 75460842 — 3653764, + 25664, (46)
Nay = 174531545 — 13055560a] — 1637032a° + 30856620845 — 12481162244

+ 2205908864403 — 1880103808a7 4 661809152a; — 34712320, (47)

It is easy to see that Q2 = 0 yields 042 = V52 =
g2 = --- = 0. Thus, to obtain maximal num-
ber of limit cycles, let Fyy = 0, but My # 0.
In fact, the equation Fhy = 0 has two real
solutions for which Mss # 0. Further, properly
perturbing bg12, bos2, b122,b301 and a; backwards,
we obtain five small-amplitude limit cycles for
Case 2 based on the analysis of e?-order focus
values.
The proof of Theorem 2 is complete. W

Remark 2. It is easy to see from (31) and (33),
as well as (43) and (45) that the special case
ap = % gives one less limit cycle for each case,
that is, when a; = %, Case 1 has five small-
amplitude limit cycles, while Case 2 yields four

limit cycles.
|

ba11 + 3asor

|
4. Seven Limit Cycles Obtained

from e3-Order Focus Values

In this section and the following two sections, we
will not investigate all possible cases, but instead we
find one case for each order of focus value, showing
seven limit cycles from e3-order focus values, eight
limit cycles from e*-order focus values, and eight
limit cycles from e5-order focus values.

Theorem 3. When all the e- and £?-order focus val-
ues vanish, there erist seven limit cycles obtained
from the analysis of the €3-order focus values.

Proof. Suppose the conditions given in (26) for
Case 1 are satisfied, under which all the e-order
focus values vanish. Further assume the following
conditions hold, for which all the e?-order focus
values become zero.

{3a3bz01 — 2as[2a191 — a1(2b211 — 3asze1) + 6agbse1]},

{[(3a} — 4a3)bsor + 4a1azas01]b3;;

+6a1a2a30; (ba11 — 3aso1) + [2(3atbsor — 2azaz01)ara1 + 3(3a7 — 4a3)azorbsor](ba11 + 3asor)

{[2a3 (a1 + 1)ba11 — 4aras(ar + 1)bsor + 2a1(ay + 1)agzn

bo21 =
2[(3a3 — 4a2)ba11 + 6a%ai91 + 6atasor]
b 1
212 =
[(3a$ — 4a2)ba11 + 6a2a191 + 6a3ase: ]
— (3a$ — 4a3)ba11 (br12 — 3b3o1asor) — 6a3 (ai21 + arazer )bz},
1
braz = — 3 2 2 3
2[(3a} — 4a3)ba11 + 6ajaia + 6aiazoen]

+ (1643 + 7a? — 12a3)az01]b3; + 3[(14a3 — a2 — 12a3)bo11 — 12a1a2(ay + 1)bsor + 2a1(4ay — 5)aya

+6a3(2a1 — 1)asor]ade; — 2[6az(ar + 1)(a121 + 2a1a301)bso1 — (—2a1a121 — 2a121 — 2a1a301

+ Tazora?) a1z ]bar1 — 2a1[(3a3 — 4a2)ba11 + 6ataz + 6a3asor]boaz

—12(ay + 1)(a121 + 3azbso1)ai21a301 },
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1
6[(3a3 — 4a2)ba11 + 6a%ai91 + 6atasor]

bo32 = — {[~4aiasbory + (3a3 + 4a3)b3o1 + 4asara

— 10a1 agaso b3y + 3[4ayasbay + 3(3a3 + 4a3)bsgr + 4agayz + 6ayasasgr]ady;
+2[6a3 (ba11 + 3azo1)bsor + 8azazorba1n — 3atbiia — 12a3asboas]asn
+6[(3a} + 4a3)ba11bso1 — aibiia — datasbox]asn — (3ai — 4a3)(ar1biiz + 4azbozz)baii }-
Here, it is assumed that (3@“;’ — 4a%)b211 + 6a%a121 + 6@5{’@301 2 0. Similarly, first let bp;3 = 0 under which

the origin (0,0) becomes a linear center under perturbation up to 3 order. Then, solving 913 = 0 for b33
yields

1

3a? — 4a? — 2)b1ga — 2bogy — 2b
6[(3a3 — 4a3)ba11 + 6a2ai21 + 6adaso] (33 a)((@ 102 202 022)

bozz = —

+ dajagbiiz)borr + (3(af — 4a3)bsor — 2a2(2a121 — 3araser))bi12 + 3(2aarar + (5a — 4a3)aser)
x (a1bioz — 2b102 — 2b202 — 2boaz) — (3a} — 4a3)(a1biiz — 2b113 — 2b213 + dazboss)]bary
+3[(3(af — 4a3)bsor — 4dasainr — 6arasaser)biie + 6a3(ai21 + arasor)(arbioz — 2bige — 2b202)
—12a3(a121 + ar1as01)bozz — 2a3(a1biiz — 2b113 + 4azboas — 2b213)]ason

— 6a3(arbiiz — 2b113 + 4asboaz — 2ba13)aia; }- (48)

Further, solving 93 = 0 for bjes, 033 = 0 for beis, and 43 = 0 for bspe yields (the lengthy expressions of
b123, b213, b302 are omitted here for simplicity)

i 11 95

Soa012 @31 Tes = e Qs Man, - 01 10871635068 231 Vst (49)

U3 =

where
ba11 + 3ap31
[(3a3 — 4a2)ba11 + 6ataya + 6atazg]
x [81af — 648a3 — 648a? + 1632a; — 880 — 8a3(63a3 — 204a; — 212 + 110a3)]

Q31 = ; (50)

and F31, M31 and N31 are functions of ai, ag, bgll, b301, ai121 and aso1- b211 + 3a031 =0 (i.e. Q31 = 0) yields

Us; = 0,7 = 3,4,.... S0, in order to obtain maximal number of limit cycles, assume bo11 + 3ags1 # 0. Then,

eliminating bo1; from the equations F3; = 0 and Ms; = 0 results in an expression bgll)l and a resultant

equation F3o = 0; similarly, eliminating bs1; from the equations F3; = 0 and N3; = 0 results in another

expression 5521)1 and a resultant equation M3y = 0; it is found that béll)l = 521)1, and so let ba11 = béll)l. The

two resultant equations are given by
Fsy = Q32F33(a1,a2), Mso = Q32M33(a1, az), (51)
where

Q32 = —ay (G? — 3&% — 4&% + 4)(20,121 + 3a1a301 — 2a1b211){[2(a§’ — 2&%)(2&%(&%&121 -+ 2a§a301)a121
— a%(a:{’ — 40,%)&%01)[)211 — a§(2a1(11a‘11a301 — 760,10,30,301 — 58@?61121 + 8&%&121)0,121
+ (3af + 16aja3 — 80az)a3y; Jazor + 8af(4af + a3)aiy |ba1 — 3lai((3afazor — 4afarn

3.2 4 2 2 2(.3 2\ 2
+4CL1(L26L301 - 32a1a301 - 72a1a2a121)a121 - 2&1&2 (al - 36&2)CL301)CL121
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— aj(3af — 12a}a3 — 32a3)ady Jazor + 60aiaiy H[(ar (af — 4a3)(at — 2a3)bany

+6(a3 — 4a3) (a3 + a3)ai1 + 3a1(3a8 — Taal — 4a3)az01 )bt + 12(a? (a3 + 4a3)aro;

+ (3a$ + 8a3a3 — 4a3)azor)ara1 + 9a1(3a$ + 4ata3 — 8ad)a3y|ba1r + (2a121 + 3arazer)

x [4ay((a3 + 16a2)ai21 + 3a1(ad + 10a3)aser )aror + 9(a + a3) (a3 + 4a3)ady]}, (52)
Fy3 = 405a] + 6264a3 + 6264a3 — 5664a; + 1360 — 8a3(99a + 708a; + 524 — 170a3), (53)

M3z = 8991a% + 9622843 — 890028a] — 397728a? + 2094480a3 — 1063872a, + 177344

+4a3[14553a7 + 269064a} + 425592a7 — 328032a; — 89328

— 4a3(8307af + 66492a; + 22332 — 11084a3)]. 4

Eliminating ae from the equations Fz3(aj,as) =
Mss(ay,as) = 0 yields the solution for as:

a2:G(a):§ (55)
2 3\a1 4G§)7
where
G5 = 10516508 + 194551247 + 4062996a]
+620224a3 — 605712a% + 294528a,
— 70720, (56)
GL =17499a7 + 788364} + 664464a?

+1162416a; — 72176,

and a resultant equation: Rz(a1) = (ag+2)R5(a1) =
0, where

Rj = 224181af + 725074248 + 5163444047
—140047504a$ — 1062768004
+ 50222323247 — 39809344043
+109666560a% — 6539520a; + 86528.  (57)

Similarly, we can discuss two cases: Gé) = 0 and
Gé) = 0, and can show that the case Gé) = 0 yields
one less limit cycle than the case Gé) % 0, so we
assume G # 0. Since G3(—2) = —4 < 0, we only
need to consider the real roots of G3, which consist
of three real solutions:

a1 = —2.0772478597...,0.0187162703 . . .,
0.0563411398 ..., (58)

all of them satisfy G3 > 0. However, all of them
give F31 # 0,M3; # 0 and N33 # 0, indicating
that there are no parameter values which can be
chosen to obtain 053 = g3 = v73 = 0. Therefore,
eight limit cycles are not possible for this case.

In other words, under the conditions given in Case 1
of (26) and that given at the beginning of this sec-
tion, the system can have at most seven small limit
cycles. By proper perturbations on the parameters
b013, b033, b123, b213, b302,a2 and ap we can obtain
seven limit cycles. It should be noted that there
exist an infinite number of choices to have seven
limit cycles since there is a free parameter. We can
ignore the equation N3; = 0 and only need to find
solutions satisfying F3o = 0. For simplicity, let

a121 = a301 = b33 = b124 = 0.

Thus, the conditions under which all the e- and £2-
order focus values vanish become

bi11 = —ba11
bt — aidarasbary + 3(a} — 4a3)bso1]
2t 2(3a3 — 4a3) ’
by — (af — 4a3)(a1ba11 — 2a2b301)
ot 2(3a3 — 4a3) ’
bor — 4ayazbarr + 3(ad — 4a2)bsor
o 2(3a3 — 4a3) ’
ba12 = —b112 + b3o1b211,
b — b — ai(ar + 1)(a1ban — 2a2b301)b211
122 19022 3&% *4&% 3

1
boza = 5(a1b112 + 4agboa2)

bar1 [4arasbary — (3a3 + 4a3)bso1]
6307 — 4a2

Then, having found bg3s from 13 = 0, bis3 from
1723 = 0, b213 from 1~)33 = 0, and b302 from 1743 = 0,
we obtain Us3, Ug3 and 073, given in (49), with the
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new expressions for (Y31, F31, M3q:

{—2&1[0,1 (a:{’ — 4@%)17211 + 2&2(&? + 40,%)[)301][)211 + (961,61s — 80,:%0,% + 16@%)[)%01}[)211

_ 59
Qa1 2(3a3 — 4a3)[81a} — 648a3 — 648a% + 1632a; — 880 — 8a3(63a? — 204a; — 212 + 110a3)]’ (59)

Fs1 = 3a3(a1 — 2)1(27a3 + 378a3 + 468a; — 104) — 2a3{ (a1 — 2)*(720a$ + 691543 + 558a]

— 863243 + 443243 + 11440a; — 2080) + 4a3[117a] — 51a§ + 376945 — 12074a]

+ 1511243 + 636802 — 21232a; — 2080 — 4a3(13aF + 208a] — 473a3 + 4034a?

— 3196a; — 3496 — 4a3(13a? + 91a; — 422))]}, (60)
Msy = 3a3 (a1 — 2)*(4617a3 4 54270a7 — 16437645 — 20174402 + 286416a; — 40352)

—2a3{(a; — 2)*(30510a + 24813a! — 2540934a$ + 270973243 + 362752847 — 424052843

— 662710442 4 6535360a; — 807040) — 4a2[1053a! — 4923a§ — 596022a] + 6131316a°

—14693784a? + 10560048a; + 527049643 — 1206073642 — 1279360a; + 3660800

— 4a3(3(4706a] + 2051a8 + 17916843 — 6825324 + 170425647 — 1476144a — 11759364,

+ 738880) — 4a3(1261a3 + 22945a] — 4705443 + 49829243 — 838664a;

— 164480 — 4a2(1261a? 4 8827a; — 52154)))]}, (61)
N3 =---

Now eliminating as from the equations F3; = 0 and M3; = 0 yields a solution a2 = G3;(a1) and a resultant
equation: Rgy(a1) = ai(a; —1)(a1 —2)(a1 + 2)R5,(a1) = 0, where

R%, = (445508 + 7236a] + 31367208 — 221316845 + 69032964 — 1253254443 + 1364672047
—7033088a; + 1112320)(13351908375a17 + 265409355510a1% 4 1081982776752a1°
+ 9569452329504a1* — 39169526239872a 1 — 1272089955831808a 12 + 13576490445425408a 1"
— 50519661087526400a1° 4 86886455726370304a + 375951818613872644%
— 339423155743125504a ] 4 464992256852189184a§ — 282090445527318528a3
+ 75653277426057216a] — 3285541114019840a7 — 2141390834892800a 7
+183591357317120a; + 21921657651200).

Solving R31(a1) = 0, we obtain seven real solutions of a;, which satisfy Gsj(ay) > 0. Furthermore, for the
solution a2 = G31(a1), we, with the aid of (49), (59)—(61), obtain the following determinant:

Ovs3  OUs3
D21 = det aal 8&2 — 77@%1 8F31 8M31 . 8F31 8M31
. Olgz  OUgs 4174708211712 \ Oay Oas Oas Oay
da;  Oasy
7761262?’)1 3 6 10 9 5 .
- 7m{9a1 (a1 — 2)°(5275530a1" + 120407715a7 + 662209668a] — 253452168a

— 229754548848 + 47615481645 + 21722156164 — 96095833645 — 77556044842 + 3152448000,
— 36341760) + 2a3[3(a; — 2)*(13533156a1* + 140321484a1® — 363560805412 + 1941075063a1"
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+ 9300506472410 + 7846977804a — 2206487635245 — 3139735427247 + 450043479044’

+14378089344a] — 43470117120a] + 181621706244 + 1475542016043 — 5787059200a,

+ 726835200) — 2a3((a; — 2)%(133290846a1* 4+ 1031602554a1® — 3336210504a 12

+10721006703a 1! + 63250405830a1° — 632111860440 — 332773753944af + 3036231117764 ]

+ 7232928388484 — 4297814388484 — 907565685504a + 4049893854724 + 4803465538564

— 163481144320a; + 48647505920) — 4a3(492804a1® + 189417150a1* + 1257308766413

+ 1091200455012 — 6911221320a1’ — 53511530364a1° + 170729575280a] — 1299767577645

- 556070255616@{ + 6183555800324 + 4992065187844 — 854373933312@‘1l — 1053936250884

4 2372024616964 2 + 110981984256, + 172705095680 + 4a3 (1132992941 — 24180273a 12

+ 250285566a 1 — 2939960835010 + 107359833154 — 4120692815445 + 786116546404 ]

+ 356255217924 — 2517048292804 + 36530564160a] + 255492287744a3 — 2564386636842

—175674537216a; — 100844423680 — 4a3(1554462a1t + 25684035a1° — 55825172a

+945083700a% — 43861027864 + 15904459144a8 — 263855295604 — 23846931840a?

+ 592452744000 + 735197990403 — 65788578432a; — 35236972544 — 4a3 (8196548

+ 31844674 + 13001586a] — 8256411848 + 69032655947 — 2945002254a + 373254815247

+ 213722212842 — 10504933200a; — 6469603936 — 4a2(114751a% — 30721474t + 197425847

— 5753524443 + 16004934003 — 468735936a; — 549537056
— 52a3(2a; + 7)(1261a% + 8827a; — 97034)))))))]} # 0,

for the roots of R3;. Therefore, we have shown that
when all the - and e2-order focus values equal zero,
one can choose b()13, b033, b123, b213, bllg, a9 and aq
such that v;3 = 0,7 =0,1,...,6, but o735 # 0. Fur-
ther, we can perturb these coefficients backwards to
generate

03] < [0¢j41)3| and  j30(41)3 <O

for 5 =0,1,...,6.

This shows that for the case considered in this sec-
tion, seven small-amplitude limit cycles exist in the
vicinity of the origin based on the analysis of -
order focus values.

This completes the proof of Theorem 3. B

1
bso1 =0, ba11 = 2—(2a121 + 3ajasor),
ai

1

bogs =~
053 36a; (a3 — 4a3)

5. Eight Limit Cycles Obtained
from e%*-Order Focus Values

In this section, we will present a case for the near-
Hamiltonian system (10) when all the e-, e%- and
e3-order focus values vanish.

Theorem 4. When all the e-, €2-, and €3-order
focus wvalues vanish, there exist eight limit cycles
obtained from the analysis of the e*-order focus
values.

Proof. The conditions under which all the e3-order
focus values become zero are given below:

{6&1 (CL? — 4&%)(&11)113 + 4&2[)023) —aq (2CL121 + 9&1&301)[3(&? — 4&%)()102

+8azbi12 + 9(2a121 — 3arasor)aso] — 2[2(15a7 + 4a3)ai21 + 9a1(3a? + 4a3)azo1]bozz ),
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1

bias = arboss + ———————
123 19023 12@%(@? — 40,%)

{8a2as(ay + 1)(8aia1 + 9aiazor )booz

+4(ay + 1)[@?1)112 + 9as(ai21 + 3aiaser )asor]aio + 9a%[2(2ai{’ + a% — 4a%)b112

—27as(ay + 1)61%01]@301},

1

boiz = —b113 + ——=—5~
213 113 1201 (a? — 4a2)

{(26L121 + 9&1&301)[6(&? — 4&%)([)102 + b202)

+ a1 (8agbi1z + 9azo1(2a121 — 3arazor))] + 4[2(9a3 — 4a3)aiar + a1 (3at — 4a3)azor]bozz ),

1
6(@? — 4&%)(2@121 + 9@10,301)

b3p2 =

{4[2(9@? — 4&%)&121 + 3&1(7&? — 4&%)&301][)022

+ a1(2a121 + 9aiaso1)[8azbii2 + 9(2a121 — 3aiasoer)asor]}-

Then, the conditions given at the beginning of the
proof for Theorem 3 under which all the e2-order
focus values vanish, and the conditions given in
Case 1 of (26) under which all the e-order focus
values become zero can be simplified.

Similarly, we first let g4 = 0 under which the
origin (0,0) becomes a linear center under pertur-

—4aq(ba1a + bi12b202)
+4aq (2a2bo24 — b112b022)]. (62)

Then, SOlVing '1724 = 0 for b124, 1~)34 = 0 for b214,
’l~)44 = 0 for b303, and ’l~)54 = 0 for b(]22 yields

143 715
. 4 : -~ — 3] = - F v - M
bfitlon up to £* order. Then, solving 914 = 0 for byz4 V64 294912Q4 4, V74 113246208 QaMy,
yields
- 715 QuN.
Uy = ————— .
boza = [2(2a121 + 9a1a301)(b203 + bo23) i 97844723712 <4
12a1
(63)
~ (a1 = 2)(2a121 + 9a10501)b10s where Q4 is a lengthy quotient expression of
+2ay(a; — 2)(b114 + b112b102) ai,az,bii2,a121 and agpr, and Fy, My and Ny are
| polynomials of a; and as, given by
Fy = 405a] + 626443 + 626403 — 5664a; + 1360 — 8a3(99a7 + 708a; + 524 — 170a3), (64)

My = 8991a$ 4 9622843 — 890028a7] — 39772843 + 2094480a% — 1063872a; + 177344

+ 4a3[14553a] + 269064a’ + 425592a% — 328032a; — 89328

— 4a3(8307a3 + 66492a; + 22332 — 11084a3)], .

Ny = 9082611a¥ 4 24786000a] — 142580347248 + 571870368043 + 36905440327

— 1667027174403 + 6941193984a? — 229020672a; — 325899520

— 16a3{22470453a$ + 657728100a] + 34983932443 — 71211484843 — 160903886402

+855025344a; — 313210688 — 2a3[3(6779079a’ + 4542314443 + 8054748043

—142504224a; — 133284304) — 8a3(4266441a? + 894612a; — 19575668 + 1273045a3)]}. (66)

It is easy to check that the solutions of Fy = My = 0 do not satisfy Ny = 0. Therefore, for the case
considered in this section, the system can have at most eight small-amplitude limit cycles around the
origin. As a matter of fact, eliminating as from the equations Fy = M4 = 0 yields the solution for as, given
by (55), and the resultant equation given by R3(a1) = (a1 +2)R5(a1), where R%(a1) is given in (57). Thus,
following the analysis given in the previous section, we know that there are three real solutions of a1, given
in (58), with corresponding values of ag, satisfying Fy = My = 0, but Ny # 0.
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To show the existence of eight limit cycles around the origin, we can use (63)—(65) to calculate the
following determinant at the above critical point (determined from Rj(a;) = 0), yielding

Dy —det | 00 0o | _ 10224503 (OFyOMy  OFyOM
gy Ovgy 33397665693696 \ Da; daz  Oaa day

::47102245a2(a1+—1y93

229351763907682011a® + 2699927727044834952a17
DTASTTO0694A(G D)5 “ “

+ 87583767321739875300a1® 4 2477482839329918653440a1° + 28894284677331065397696a 1
+ 287826215971992283313664a1® + 2083536090616271308366080a1>

+ 11306745587830989900365824a 1! + 49908682502030886814964224a,1°

+ 139927312881078584706609152a] + 17138487053577199194310041640%

— 38893392788724121376391168a] — 215813558844300812012961792a$

— 6765674196055619728441344a5 + 98146534152538536362704896a

— 34281949179420096784760832a% 4 40297453213323256252989442
—196645766409135800713216a; + 3440013069016973443072) # 0.

which implies that for the case considered in this T
section, eight small-amplitude limit cycles exist in
the vicinity of the origin based on the analysis of
et-order focus values.

Theorem 4 is proved. W

attempt does not give more limit cycles, but we still
obtain eight limit cycles.

Theorem 5. When all the e*-order (k = 0,1,2,3,4)
focus wvalues vanish, there exist eight limit cycles
obtained from the analysis of the £°-order focus
values.

6. Eight Limit Cycles Obtained

Int. J. Bifurcation Chaos 2013.23. Downloaded from www.worldscientific.com
by CITY UNIVERSITY OF HONG KONG on 03/05/13. For personal use only.

from e°-Order Focus Values

In this section, we assume that all the e*-order
(k =0,1,2,3,4) focus values vanish and consider
a case based on e°-order focus values. However, this

|

Proof. The conditions under which all the e¥-order
(k = 0,1,2) focus values become zero are given in
the previous sections. Further, we have the follow-
ing conditions under which all the e*-order focus
values vanish:

3a2
bii2 = a121a301(2a121 — 3aiazor),
a3(2a121 + 3ajasor) ( )
3
bo2s = aso1(2a121 — 3a1a 2a121 + 9a1as3p1),
022 802 (2a121 + 3arazer) 301 (2a121 1a301)(2a121 1a301)
1
b3oz = —

3a}(a? — 4a3)(2a121 + 9arasn)

{2a3a3(2a121 + 9a1a301)?broz + 18atas(2a121 + 9ayasor )baozasor

— 40,4110,2(20/121 + 9@1@301)[)113 — 2@?[2(9@? — 40,%)@121 + 3a1 (70,“;’ — 40,%)@301][)023}

asazol (2a121 — 3aiazoen)

T3

al(aif’ - 4“%)(261121 + 9aia301)(2a121 + 3aiason)

5{8aiy + 729alazy,

+ 9a121a301 [2(2&1 a121 + (22&? — CL% — 4&%)&301)&121 + 3a; (32&? — 3&% + 4&%)&%01]},
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1 2a
bo1a = —b11a + ——(2a121 + 9a1a301)(3b103 + 3b203 + 2bo23) + 55 2 (24121 + 9a1a301)b1s
6aq 3(aj — 4a3)
2a? 1
+——(8 +9 boas —
3l = 4a§)( a121 + 9a1a3o1)boz23 1245 (a3 — 4a2)(2a121 + 3arasor )?

X {4&%&2(2&121 + 3&1&301)[8&%&?21 + 243&?&%01 + 3a121a301 (2(17&? — 12&%)&121

+ 9aq (90,? + 4&%)&301)][)102 + 36@%&2&301[)202(201121 + 3&1&301)[2(3&?

2\ 2
- 4a2)a121

+ 27&?&%01 + 3a1 (70,? + 40,%)&1210,301] — 3asasol (2&121 — 30,10,301)[160,1&11121 + 14580,?0,%01

+ 9a121a301 (4((&? + 20,%

2a9 (a1 =+ )

—————"(8a121 + 9a1a301)bo2s —
3(a? — 4a2)

ba14 = aibo2s +

— 4a3)aio + ai(2la; — 1)ager)arzr + 943 (21ai — 247 + 4a3)a3y )]},

1

24ai (a3

— 4a3)(2a121 + 3aiasr)?

X {2a§’(2a121 + 9aiaso1)(2a121 + 3a1a301) [a1(a1 + 1)(2a121 + 9a1a301)bio2 + 9(a? + 4a%)a3015202]
[

— 4&11(201121 + 3&1&301) 2a

1(a1 + Dagar + 9(2a3 + a?

— 4a3)aszo1]b113
4

— 3&301 (2&121 — 3a1a301 [8&1 a1 + 1)@121 + 7290,1(0,1 -+ 40,2)&301

)
+ 9a121a301 (2(2(3a? + af
+ 9a%(13a:{’ — a% + 44a1a2 — 12a2)a301)]},

2&2

1 1
b3oa = —a1bi14 + —=bo2a — —=(2a121 + a1 as01)b1o3 —

6 3 12

1
— 4a3)(2a121 + 3aiasr)?

+
72a3 (a3

+ 3a121a301 (2(3&? + 28@% — 12&%)&121 — 9aq (a“;’ — 20&%

— 8&2)CL121 + aq (29&1 — CLl + 84&1&2 — 36&2)CL301)CL121

—————(2a121 + 9a1a301)(2b113 — 9as01b202)
9(a? — 4a3)

{4a3as(2a191 + 3araszo1)[16a1 a3y, + 486aia3y

— 4a3)as01)]b102

— 4&11(20,121 + 3&1&301)2[2(1561? + 4&%)0,121 + 9a1 (30,:% + 40,%)&301][)023

— 3asasol (20,121 — 3&1&301)[32&10&121 + 2916&?&%101 + 9a191a301 (4((0,:% + 4&%

+a1(39a3 — 2a3 4 12a3)aso1)aro1 + 9a3 (4503 — 4a? — 4a3)a3y)]}-

Then, similarly we first let by15 = 0 under which
the origin (0,0) becomes a linear center under per-
turbation up to €® order. Then, solving @15 = 0 for
b035, ’[)25 = 0 for b125, ’[)35 = 0 for b215, @45 = 0 for
b304, and ’[)55 = 0 for b(]23 yields

i 143
vos = 2959296Q5 o

715
B = ———2 O M 67
15 = 505969664 2715 (67)

715

Bas = ———— =2 O.N- ...
U85 = ~ 782757780696 20>

where Qs is a lengthy quotient expression of
a1, az, bio2, b202, b113,a121 and agpr, and Fy; =
Fy,Ms = My and N5 = Ny, given in (64)—(66).
Therefore, from the analysis given in the previous

— 4&%)0,121

section, we know that the solutions of Fy = M5 =0
do not satisfy N5 = 0, and so nine limit cycles is
not possible for this case. The remaining part of
proving the existence of eight limit cycles is almost
exactly the same as that given in the proof of
Theorem 4. W

7. Conclusion

In this paper, we have studied bifurcation of limit
cycles from a center of quadratic Hamiltonian sys-
tems with third order polynomials perturbation. It
is shown using higher-order focus values compu-
tation that such a system can have at least eight
small-amplitude limit cycles in the vicinity of a cen-
ter. This result, obtained by perturbing a general
quadratic Hamiltonian system, is better than the
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existing seven limit cycles, obtained by perturbing
the quadratic Bogdanov—Takens Hamiltonian sys-
tem. What is maximal number of limit cycles for
the system considered in this paper is still open.
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