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FOUR LIMIT CYCLES IN QUADRATIC

NEAR-INTEGRABLE SYSTEMS∗
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Abstract In this note, we report of obtaining 4 limit cycles in quadratic near-
integrable polynomial systems. It is shown that when a quadratic integrable
system has two centers and is perturbed by quadratic polynomials, it can
generate at least 4 limit cycles with (3, 1) distribution. This result provides a
positive answer to an open problem in this area.
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1. Introduction

The well-known Hilbert’s 16th problem is remained unsolved since Hilbert [8] pro-
posed the 23 mathematical problems at the Second International Congress of Math-
ematics in 1900. Recently, a modern version of the second part of the 16th problem
was formulated by Smale [20], chosen as one of the 18 challenging mathematical
problems for the 21st century. To be more specific, consider the following planar
system:

ẋ = Pn(x, y), ẏ = Qn(x, y), (1)

where the dot denotes differentiation with respect to time, t, and Pn(x, y) and
Qn(x, y) represent nth-degree polynomials of x and y. The second part of Hilbert’s
16th problem is to find the upper bound H(n) ≤ nq on the number of limit cycles
that the system can have, where q is a universal constant, and H(n) is called
Hilbert number.

If the problem is restricted to a neighborhood of an isolated fixed point, then
the problem is reduced to studying degenerate Hopf bifurcations, giving rise to a
weak (fine) focus point. In the past six decades, many researchers considered the
local problem and obtained many results (e.g., see [2, 10, 12, 14, 15, 22]). In the last
20 years, much progress on finite cyclicity near a weak focus point or a homoclinic
loop was achieved.

In this paper, we particularly consider bifurcation of limit cycles in quadratic
systems. Early results can be found in a survey article by Ye [21]. Some recent
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progress has been reported in a number of papers (e.g., see [17, 18]). For general
quadratic system (1) (n = 2), in 1952, Bautin [2] proved that there exist 3 small
amplitude limit cycles around a weak focus point or a center. Later around the end
of 1970’s, concrete examples were given to show that general quadratic systems can
have 4 limit cycles [3, 19], around two foci with (3, 1) configuration. A question
was naturally raised: Can near-integrable quadratic systems have 4 limit cycles?
A quadratic system is called near-integrable if it is a perturbation of a quadratic
integrable system by quadratic polynomials. To our best knowledge, this problem
is still open.

The study of bifurcation of limit cycles for near-integrable systems is related to
the so called weak Hilbert’s 16th problem [1], which is transformed to finding the
maximal number of isolated zeros of the Abelian integral or Melnikov function:

M(h, δ) =

∮

H(x,y)=h

Qn dx − Pn dy, (2)

where H(x, y), Pn and Qn are all real polynomials of x and y with degH = n+1,
and max{degPn, degQn} ≤ n. The weak Hilbert’s 16th problem is a very important
problem, closely related to the maximal number of limit cycles of the following near-
Hamiltonian system [6]:

ẋ = Hy(x, y) + ε pn(x, y), ẏ = −Hx(x, y) + ε qn(x, y), (3)

where H(x, y), pn(x, y) and qn(x, y) are polynomials of x and y, and 0 < ε ≪ 1
is a small perturbation.

General quadratic systems with one center have been classified by Żola̧dek [25]
using a complex analysis on the condition of the center, as four systems: QLV

3

– the Lotka-Volterra system; QH
3 – Hamiltonian system; QR

3 – reversible system;
and Q4 – codimension-4 system. It has been shown [9, 5] that generic quadratic
Hamiltonian systems with quadratic perturbations can have maximal two limit
cycles. For the QR

3 reversible system, there have been many results published (e.g.,
see [4, 16, 24, 11, 13]). It has been noticed in all these papers that existence of 4
limit cycles was not reported. In this paper, we consider bifurcation of limit cycles
in quadratic near-integrable systems with two centers, and show existence of 4 limit
cycles. The basic idea is as follows: We first consider bifurcation of multiple small
amplitude limit cycles from Hopf singularity, and then compute the global Melnikov
function to serach for possible large limit cycles. In particular, we will show that
perturbing a reversible, integrable quadratic system with two centers can have at
least 4 limit cycles, with (3, 1) distribution.

2. Main Result

General quadratic systems with a center at the origin can be classified as four
systems.

a3 = a2 = 0 (QR
3 - Reversible system):

ẋ = y + a1 x y, ẏ = − x + x2 + a4 y2. (4)

a3 = a1 + 2 a4 = 0 (QH
3 - Hamiltonian system):

ẋ = y + a1 x y + a2 y2, ẏ = − x + x2 − 1
2 a1 y2. (5)
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a2 = 1 + a4 = 0 (QLV
3 - Lokta-Volterra system):

ẋ = y + a1 x y, ẏ = − x + x2 + a3 x y − y2. (6)

a3 − 5 a2 = a1 − (5 + 3 a4) = a4 + 2(1 + a2
2) = 0 (Q4 - Codimension-4 system):

ẋ = y − (1 + 6 a2
2)x y + a2 y2, ẏ = − x + x2 + 5 a2 x y − 2 (1 + a2

2) y2. (7)
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Figure 1. Case studies for the QR
3 reversible system.

In this note, we concentrate on the reversible system (4). It is easy to see that
this system is invariant under the mapping (t, y) → (−t, −y), where a1 and a4

can be considered as perturbation parameters. The singular point (1, 0) of (4) is
a center when a1 < − 1; but a saddle point when a1 > − 1. a1 = − 1 gives a
degenerate singular point at (1, 0). The distribution of singularity of the reversible
system (4) is shown in Fig. 1, where 1C+1S stands for one center and one saddle
point, similar meaning applies to 2C, 2C+2S and 1C+3S. The results mentioned in
above references [4, 16, 24, 11, 13] are demonstrated in this figure by blank circles.
The two particular dash-dotted lines: a4 = 1

3 (a1 − 5) ∀ a1 ∈ (−∞, −1) ∪ (−1,∞),
and a4 = 1

3 (6 a1 + 5) ∀ a1 ∈ (−∞, −1), as well as the five dark circles correspond
to our results, presented in this note. In fact, there exist 3 small amplitude limit
cycles on the two dash-dotted lines, and at least 4 limit cycles for the parameter
values marked by the five dark circles.

In the following, we consider perturbing the reversible system (4). Without loss
of generality, we may assume the perturbed system is given by

ẋ = y (1 + a1 x) + ε a10 x, ẏ = − x + x2 + a4 y2 + ε (b01 y + b11 x y), (8)

where a1 < − 1 and 0 < ε ≪ 1.
Consider system (8) for a1 < − 1. The system (8)ε=0 is a reversible integrable

system. Multiplying γ = |1+a1x|
−

a1+2a4
a1 on both sides of (8) yields the perturbed

Hamiltonian system:

dx

dτ
= γ (y + a1 x y) + ε γ a10 x,

dy

dτ
= γ (− x + x2 + a4 y2) + ε γ (b01 y + b11 x y),

(9)
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with the Hamiltonian of (9)ε=0, given by

H(x, y) =
1

2
sign(1 + a1x) |1 + a1x|

−
2a4
a1

[

y2 + (1+a1−a4) (1+2 a4 x)
a4 (a1−a4) (a1−2 a4) − x2

a1−a4

]

, (10)

for a4 6= 0, a1 6= a4, a1 6= 2 a4. Now introduce

Lh : H(x, y) = h

{

h ∈ (h00,∞), for 1 + a1 x > 0, (h00 = H(0, 0))

h ∈ (−∞, h10), for 1 + a1 x < 0, (h10 = H(1, 0)),
(11)

and define the Melnikov function:

M(h, aij , bij) =

∮

Lh

q(x, y, bij) dx − p(x, y, aij) dy, (12)

where p(x, y, aij) = γ a10 x and q(x, y, bij) = γ (b01 + b11 x) y. Using the results
in [6], we can expand M near h = h00 and h = h10 as

M0(h, aij , bij) =
∑

k=0

µ0k (h − h00)
k, for 0 < h − h00 ≪ 1,

M1(h, aij , bij) =
∑

k=0

µk0 (h10 − h)k, for 0 < h10 − h ≪ 1,
(13)

where the coefficients µij , i = 0, 1; j = 0, 1, 2, · · · can be obtained by using the
Maple programs developed in [7].

In general, we can use the perturbation coefficients a10, b10 and b11 to obtain
µ00 = µ01 = µ02 = 0, but µ03 6= 3, implying that proper perturbations on these
parameters can generate maximal 3 small amplitude limit cycles around (0, 0). Sim-
ilarly, we can have maximal 3 small amplitude limit cycles around (1, 0). This shows
that for small amplitude limit cycles, it has (3, 0) or (0, 3) distribution. Other dis-
tributions such as (2, 0), (0, 2) and (1, 1) exit, but no (2, 1) or (1, 2) distributions.

Next, based on the above distribution of small amplitude limit cycles, we in-
vestigate the possibility of large limit cycles by applying the Melnikov function.
Since it is not possible to find the closed form of the Melnikov function, we shall
choose proper values for a1 to find more limit cycles, and only prove the case of
(3, 0)-distribution (other cases can be similarly proved).

For the (3, 0)-distribution, we obtain

a4 = 1
3 (a1 − 5), b01 = − a10, b11 = − 10 (1 + a1) a10.

Taking a1 = − 30
7 yields a4 = − 65

21 , which denotes a point (a blank circle) on
the line a4 = 1

3 (a1 − 5) in the a1-a4 parameter plane (see Fig. 1). Further, we

have b11 = 230
7 a10, and γ = (1 − 30

7 x)−
22
9 (x 6= 7

30 ). Then, the Hamiltonian (10)
becomes

H(x, y) = 16250 y2+13650 x2+2730 x−441
32500 (1− 30

7
x)13/9 for x 6= 7

30 ,

with

h00 = − 441
32500 > h10 = − 15939

32500 ( 7
23 )13/9.

The Melnikov functions Mi(h, a10) can be expressed as Mi(h, a10) = Mi0(h) a10,

i = 0, 1. Without loss of generality, we may assume a10 > 0, and thus Mi(h, a10)
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Figure 2. Functions M00(h) and M10(h) under the conditions µ00 = µ01 = µ02 = 0,

µ03 6= 0 and µ10 6= 0, for a1 = − 30
7 and a4 = 1

3 (a1 − 5) = − 65
21 : (a) M00(h) > 0

for h ∈ [h00, +∞), with h0 = − 441
32500 ≈ − 0.01357; and (b) M10(h) for h ∈

(−∞, h1], with h10 = − 15939
32500 ( 7

23 )13/9 ≈ − 0.08797, crossing the h-axis at h = h∗
1 ∈

(− 0.9250363254, − 0.9250363253).

and Mi0(h) have the same sign. It is noted that for the above chosen parameter
values, we have

µ03 = 139150000 π
453789 a10 > 0 and µ10 = − 2500

√
161 π

3703 a10 < 0.

The computation results of M00(h) for h ∈ (h00,∞) and M10(h) for h ∈
(−∞, h10) are shown, respectively, in Figs. 2(a) and 2(b). Figure 2(a) shows that
M00(h) > 0 for h ∈ (h00,∞), and its sign agrees with that of µ03 > 0 for 0 <

h − h00 ≪ 1, as expected. It is also noted, as shown in Fig. 2(b), that the sign
of M10(h) agrees with that of µ10 < 0 for 0 < h10 − h ≪ 1. However, this
interval contains a critical value h = h∗

1 ∈ (− 0.9250363254, − 0.9250363253) at
which M10(h

∗
1) = 0 and the function M10(h) changes its sign as h crosses this

critical point. Thus, for this case, besides the 3 small amplitude limit cycles, there
exists at least one large limit cycle bifurcating from the closed orbit Lh∗

1
of (11).

This large limit cycle is shown in Fig. 3(a), which encloses the center (1, 0); and
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Figure 3. Illustration of the existence of 4 limit cycles when a1 = − 30
7 , a4 =

1
3 (a1 − 5) = − 65

21 − ε1, and a10 = 1
2000 , b11 = 230

21 a10 − ε2, b01 = − a10 − ε3, where
0 < ε3 ≪ ε2 ≪ ε1 ≪ ε: (a) An unstable large limit cycle enclosing the center
(1, 0); and (b) Zoomed area around the center (0, 0) showing the existence of 3
small amplitude limit cycles.

Fig. 3(b) illustrates the existence of 3 small amplitude limit cycles around the center
(0, 0).

The above result shows that a quadratic non-Hamiltonian integrable system
with two centers can have at least 4 limit cycles under quadratic perturbations, with
distributions either (3, 1) or (1, 3). This result gives a new record, answering the
open problem of the existence of limit cycles in near-integrable quadratic systems.
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