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In this paper, we give a constructive proof on the existence of globally exponentially attrac-
tive set and positive invariant set of general Lorenz family, which contains four indepen-
dent parameters and is more general than any Lorenz systems studied so far in the
literature. The system considered in this paper not only contains the classical Lorenz sys-
tem and the generalized Lorenz family as special cases, but also provides three new Lorenz
systems, which do not belong to the generalized Lorenz system, but the general Lorenz sys-
tem. The results presented in this paper contain all the existing relative results as special
cases.

� 2008 Elsevier B.V. All rights reserved.
1. Introduction

Since the discovery of the Lorenz chaotic attractor [1] in 1963, many other chaotic systems have been found, including the
well-known Rössler system [2], Chua’s circuit [3], which have been served as models for study of chaos. In late 1990’s, a new
chaotic system was found, which is a dual system to the Lorenz system, and now known as the Chen system [4]. Due to its
close relation to the Lorenz system and importance, the Chen system has been widely studied (e.g., see [5–7] and references
therein).

The ultimate boundedness of a chaotic system is very important for the study of the qualitative behaviour of a chaotic
system. If one can show that a chaotic system under consideration has a globally attractive set, then one knows that the sys-
tem cannot have equilibrium points, periodic or quasi-periodic solutions, or other chaotic attractors existing outside the
attractive set. This greatly simplifies the analysis of dynamics of the system. The ultimate boundedness also plays a very
important role in the designs of chaos control and chaos synchronization. The ultimate boundedness property of the Lorenz
system has been investigated by many researchers (e.g., see [8,9,11–15]). In particular, in [15] we generalized the bounded-
ness or ultimate boundedness to the concept of globally exponentially attractive set and positive invariant set, and proved
the existence of such set for a class of Lorenz family.

It, however, has been noticed that so far very little has been achieved on other chaotic systems, regarding the property of
ultimate boundedness. A smooth Chua’s circuit has been studied and estimation on its ultimate boundedness has been
. All rights reserved.
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obtained [16]. For the Chen system, a recent article [17] investigated its property of ultimate boundedness, but the param-
eter values considered in this article does not cover the most interesting case of the Chen’s chaotic attractor.

Consider the following general system:
Fig. 1.
r ¼ 30;
_x ¼ rðy� xÞ;
_y ¼ qx� xz� cy;
_z ¼ xy� bz;

ð1Þ
where the dot denotes differentiation with respect to time t; r > 0, b > 0, c > 0 and q 2 ð�1;þ1Þ are parameters. When
r ¼ 10; b ¼ 8
3
; c ¼ 1; q ¼ 28; ð2Þ
system (1) is the classical Lorenz system; and when
r ¼ 25aþ 10; b ¼ 8þ a
3

; c ¼ 1� 29a; q ¼ 28� 35a; ð3Þ
where a 2 ½0; 1
29Þ, system (1) becomes the generalized Lorenz system.

As shown in Fig. 1, three new Lorenz systems are found, which do not belong to the classical Lorenz system, nor the gen-
eralized Lorenz system.
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The chaotic attractors of system (1) projected on the x�z plane: (a) the Lorenz attractor for r ¼ 35; b ¼ 8
3 ; c ¼ 1;q ¼ 28; (b) a chaotic attractor for

b ¼ 5; c ¼ 6;q ¼ 80; and (c) a chaotic attractor for r ¼ 40;b ¼ 5; c ¼ 20;q ¼ 250.
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Let Pðr; b; c;qÞ be a point in the subspace eR4 # R4, defined as
eR4 ¼ Rþ � Rþ � Rþ � R ¼ ð0;þ1Þ � ð0;þ1Þ � ð0;þ1Þ � ð�1;þ1Þ;
then the classical Lorenz system corresponds to only one point Pðr; b; c;qÞ ¼ Pð10; 8
3 ;1;28Þ in eR4, while the generalized Lor-

enz system or the Lorenz family corresponds to a small line segment in eR4, implying that the four parameters given in (3) are
not independent (linearly related).

In this paper, we remove the restriction on the parameters, given by (3) and assume generally that the four parameters
r; b; c and q are free to change in the sub-space eR4. We want to prove that there exist globally exponentially attractive set
and positive invariant set for such system described by (1), and thus confirm the conjecture that a chaotic system has a glo-
bal asymptotic stability in Lagrange sense, i.e., there exists a compact set X # R3 which is globally exponentially attractive
and positive invariant.

The earliest work on ultimate boundedness of chaotic systems goes back to Leonov et al. [8] who proved that the classical
Lorenz system (when r ¼ 10; b ¼ 8

3 ; c ¼ 1;q ¼ 28) is ultimately bounded (i.e., the system is asymptotically stable in the
sense of Lagrange). However, they did not obtain the globally exponentially Lagrange stability. Later, Liao [10] used the same
generalized Lyapunov function, but different approaches to further investigate the ultimate boundedness of the classical Lor-
enz system, a and improved the results. Recently, Yu and Liao [12,14] simplified the proofs and studied the globally attractive
set and positive invariant set of the classical Lorenz system and the generalized Lorenz system [14].

Very recently, Liao et al. [15] proposed globally exponentially attractive set and positive invariant set for the classical Lor-
enz system and the generalized system, and provided as constructive proof for the existence of such sets.

In this paper, we consider system (1) which is more general than the classical Lorenz system and the generalized Lorenz
system. The main goals are as follows:

(1) The methodology developed in [15] will be extended to study the general Lorenz system (1) for which the parameter
values have been generalized from finite region to infinite region. We shall prove that system (1) has a generic prop-
erty: it is always globally exponentially Lagrange stable regardless whether it is chaotic or not. In other words, there
always exist globally exponentially attractive set and positive invariant set X # R3 for such a system. The result con-
tains all existing results as its special cases.

(2) When studying chaotic systems, people usually assume that the system under consideration is ultimately bounded.
However, there does not exist a general proof for the ultimate boundedness of chaotic systems. Now, for the general
Lorenz system (1), we have shown that such system has globally exponentially attractive set and positive invariant
set.

(3) As is well-known, one of the most popular and useful approach used in chaos control and chaos synchronization is
feedback control, such as linear feedback control, particularly diagonal linear feedback control. Such controls are easy
to realize in practice or experiment. However, The control strategy is based on the assumption that the system is ulti-
mately bounded. Such analysis based on an assumption may have some theoretical important, but is hard to realize in
practice.

With the property of the ultimate boundedness established with explicit estimation in this paper, it becomes possible to
use simple linear feedback controls to reach chaos control and chaos synchronization.

In next section, we present some definitions which are needed in the Section 3. Our main result and its proof for system
(1) to have globally exponentially attractive set and positive invariant set are given in Section 3. We present two some appli-
cations in Section 4 and finally give a summery in Section 5.

2. Preliminaries

In this section, we present some basic definitions and two lemmas which are needed for proving all theorems in the next
section. For convenience, let X :¼ ðx; y; zÞ and XðtÞ :¼ Xðt; t0;X0Þ.

Definition 1. For the general chaotic system (1), if there exists compact (bounded and closed) set X � R3 such that 8X0 2 R3,
the following condition:
qðXðtÞ;XÞ :¼ inf
Y2X
kXðtÞ � Yk ! 0 as t ! þ1;
holds, then the set X is said to be globally attractive. That is, system (1) is ultimately bounded, namely, system (1) is globally
stable in the sense of Lagrange or dissipative with ultimate bound.

Further, if 8X0 2 X0 # X � R3, Xðt; t0;X0Þ# X0, then X0 for t P 0 is called the positive invariant set of system (1).

Definition 2. For the general chaotic system (1), if there exists compact set X � R3 such that 8X0 2 R3, and constants
MðX0Þ > 0, a > 0 such that
qðXðtÞ;XÞ 6 MðXðt0ÞÞe�aðt�t0Þ;
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then system (1) is said to have globally exponentially attractive set, or system (1) is globally exponentially stable in the sense
of Lagrange, and X is called the globally exponentially attractive set.

In general, from the definition we see that a globally exponential attractive set is not necessarily a positive invariant set.
But our results obtained in the next section indeed show that a globally exponentially attractive set is a positive invariant set.

Note that it is difficult to verify the existence of X in Definition 2. Since the Lyapunov direct method is still a powerful tool
in the study of asymptotic behaviour of non-linear dynamical systems, the following definition is more useful in
applications.

Definition 3. For the general chaotic system (1), if there exists a positive definite and radially unbounded Lyapunov function
VðxÞ, and positive numbers L > 0;a > 0 such that the following inequality
ðVðxðtÞ � LÞ 6 ðVðX0Þ � LÞe�aðt�t0Þ
is valid for VðXðtÞ > Lðt P t0Þ, then system (1) is said to be globally exponentially attractive or globally exponentially stable
in the sense of Lagrange, and X :¼ fXjVðtÞ 6 L; t P t0g is called the globally exponentially attractive set.
3. Main result

In this section, we present our main result for the general Lorenz system (1). We use the same generalized Lyapunov
function:
Vk ¼
1
2
½kx2 þ y2 þ ðz� kr� qÞ2�; ð4Þ
which is obviously positive definite and radially unbounded. Here, k P 0 is an arbitrary constant. Let X ¼ ðx; y; zÞ. We have
the following result.

Theorem 1. Suppose b > minfr; cg ¼ n, and let
Lk ¼
ðkrþ qÞ2b2

8ðb� nÞn : ð5Þ
Then the estimation
ðVkðXðtÞÞ � LkÞ 6 ðVkðXðt0ÞÞ � LkÞe�2nðt�t0Þ ð6Þ
holds, and thus Xk ¼ fXjVkðXÞ 6 Lkg is the globally exponentially attractive set and positive invariant set of system (1), i.e.,
limt!þ1VkðXðtÞÞ 6 Lk.

Proof. Differentiating the Lyapunov function Vk in (4) with respect time t along the trajectory of system (1) yields
dVk

dt

����
ð1Þ
¼ kx _xþ y _yþ ðz� kr� qÞ _z

¼ �krx2 þ krxyþ qxy� xyz� cy2 þ xyz� krxy� qxy� bz2 þ krbzþ qbz

¼ �krx2 � cy2 � bz2 þ bðkrþ qÞz
6 �knx2 � ny2 � nz2 þ 2nðkrþ qÞz� nðkrþ qÞ2 � ðb� nÞz2 þ ðb� 2nÞðkrþ qÞzþ nðkrþ qÞ2

6 �knx2 � ny2 � nðz� kr� qÞ2 � ðb� nÞ z� ðb� 2nÞðkrþ qÞ
2ðb� nÞ

� �2

þ ðb� 2nÞ2ðkrþ qÞ2

4ðb� nÞ þ nðkrþ qÞ2

6 �2nVk þ
ðkrþ qÞ2½ðb� 2nÞ2 þ 4ðb� nÞn�

4ðb� nÞ

¼ �2nVk þ
ðkrþ qÞ2b2

4ðb� nÞ
6 �2nðVk � LkÞ:

ð7Þ
Thus, we have
ðVkðXðtÞÞ � LkÞ 6 ðVkðXðt0ÞÞ � LkÞe�2nðt�t0Þ
and
limt!þ1VkðXðtÞÞ 6 Lk;
which clearly shows that Xk ¼ fXjVkðXÞ 6 Lkg is the globally exponentially attractive set and positive invariant set of system
(1).

The proof is complete. h
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Corollary 1. When
r ¼ aa ¼ 25aþ 10; b ¼ ba ¼
8þ a

3
; q ¼ ca ¼ 28� 35a; c ¼ da ¼ 1� 29a;
n ¼minfr; cg ¼minfaa; dag ¼ da. Thus,
Lk ¼
ðkrþ qÞ2b2

8ðb� nÞn ¼ ðkaa þ caÞb2
a

8ðba � daÞda
;

and the estimate (6) holds, implying that limt!þ1VkðXðtÞÞ 6 Lk, i.e., Xk ¼ fXjVkðXÞ 6 Lkg is the globally exponentially attractive set
and positive invariant set of system (1).

Remark 1. Corollary 1 gives the result of Theorem 1 in [15], implying that Theorem 1 of [15] is a special case of Theorem 1 in
this paper.

Corollary 2. When r P 1, b P 2, c ¼ 1, n ¼minfr; cg ¼ 1, and thus
bLk ¼
ðkrþ qÞ2b2

8ðb� 1Þ :
Therefore, the following:
ðVkðXðtÞÞ � bLkÞ 6 ðVkðXðt0ÞÞ � bLkÞe�2ðt�t0Þ
holds and
limt!þ1VkðXðtÞÞ 6 bLk;
i.e., bXk ¼ fXjVkðXÞ 6 bLkg is the globally exponentially attractive set and positive invariant set of system (1).

Remark 2. Corollary 2 is the result of Theorem 3 in [15], indicating that Theorem 3 of [15] is a special case of Theorem 1 in
this paper.

Remark 3. It is seen from Theorem 1 that larger (smaller) value of n implies larger (smaller) value of Lk, and thus fast (slow)
speed for trajectories to converge to the globally exponentially attractive set of system (1).

Remark 4. To illustrate the globally exponentially attractive set and positive invariant set, we use the classical Lorenz sys-
tem as an example. For this system, the parameter values are given in (2), and so
Lk ¼
ð10kþ 28Þ2ð8=3Þ2

8ð5=3Þ ¼ 32ð5kþ 14Þ2

15
;

which gives the following estimate of the ultimate bound:
Xk ¼ fXjVkðXÞ 6 Lkg
which is the globally exponentially attractive set and positive invariant set of the classical Lorenz system.

Remark 5. Note that the parameter values for the Lorenz attractor shown in Fig. 1(a) satisfy the condition in Theorem 1:
8
3 ¼ b > minfr; cg ¼minf35;1g ¼ 1, that for the second and third chaotic attractors shown in Fig. 1b and c do not satisfy
the condition in Theorem 1. Thus, we need new theorem when this condition does not hold.

Now we turn to consider the case that the condition in Theorem 1 is not satisfied.

Theorem 2. Let n ¼minfr; c; b
2g, and
Lk ¼
ðkrþ qÞ2b

4n
: ð8Þ
Then the estimate limt!þ1VkðXðtÞÞ 6 Lk holds, i.e., Xk ¼ fXjVkðXÞ 6 Lkg is the globally exponentially attractive set and positive
invariant set of system (1).

Proof. Again applying the positive definite and radially unbounded generalized Lyapunov function given in (4) and evalu-
ating the derivative of dVk

dt along the trajectory of system (1) leads to
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dVk

dt

����
ð1Þ
¼ kx _xþ y _yþ ðz� kr� qÞ _z

¼ �krx2 � cy2 � bz2 þ bðcrþ qÞz

¼ �krx2 � cy2 � b
2

z2 � b
2
½z2 � 2ðkrþ qÞzþ ðkrþ qÞ2 � ðkrþ qÞ2�

6 �knx2 � ny2 � nz2 � nðz� kr� qÞ2 þ b
2
ðkrþ qÞ2

6 �knx2 � ny2 � nðz� kr� qÞ2 þ 2n Lk

¼ �2nðVk � LkÞ;

ð9Þ
which implies that
ðVkðXðtÞÞ � LkÞ 6 ðVkðXðt0ÞÞ � LkÞe�2nðt�t0Þ:
Thus,
limt!þ1VkðXðtÞÞ 6 Lk;
suggesting that Xk ¼ fXjVkðXÞ 6 Lkg is the globally exponentially attractive set and positive invariant set of system (1).
This completes the proof of Theorem 2. h

For the application of Theorem 2, let us consider the first two chaotic attractors depicted in Fig. 1a and b.

Example 1. For the first chaotic attractor shown in Fig. 1a, the parameters are r ¼ 30; b ¼ 5; c ¼ 5;q ¼ 80. Thus
n1 ¼min r; c; b
2

� �
¼minf30;62:5g ¼ 2:5:
Taking k ¼ 1, we have
L1 ¼
ðrþ qÞ2b

4n
¼ ð30þ 80Þ2 � 5

4� 2:5
¼ 6050;
and thus we have the following estimation:
ðV1ðXðtÞÞ � 6050Þ 6 ðV1ðXðt0ÞÞ � 6050Þe�5ðt�t0Þ;
the globally exponentially attractive set and positive invariant set is given by
X1 ¼ fXjV1ðXÞ 6 6050g:
For the second chaotic attractor shown in Fig. 1b, the parameters are r ¼ 40; b ¼ 20; c ¼ 5;q ¼ 250. Thus
n1 ¼min r; c; b
2

� �
¼minf40;202:5g ¼ 2:5:
Again taking k ¼ 1, we have
L1 ¼
ðrþ qÞ2b

4n
¼ ð40þ 250Þ2 � 5

4� 2:5
¼ 42050:
So the following estimation:
ðV1ðXðtÞÞ � 42050Þ 6 ðV1ðXðt0ÞÞ � 42050Þe�5ðt�t0Þ
holds, and X1 ¼ fXjV1ðXÞ 6 6050g is the globally exponentially attractive set and positive invariant set.

Remark 6. Although the proof of Theorem 2 is simple, it is conservative since the term � b
2 z2 is neglected. In the following,

we give a theorem which is the result of generalization and improvement of Theorems 1 and 2. However, this new theorem
has a parameter to be determined, while the parameters used in Theorems 1 and 2 are the system parameters.

Theorem 3. Choose g 2 ð0; bÞ. Let n� ¼minfr; c;gg, and
L�k ¼
ðkrþ qÞ2b2

8ðb� n�Þn� : ð10Þ
Then when VkðXðtÞÞ > L�k and VkðXðt0ÞÞ > L�k, there exists the estimation
ðVkðXðtÞÞ � L�kÞ 6 ðVkðXðt0ÞÞ � L�kÞe�2n�ðt�t0Þ; ð11Þ
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and thus limt!þ1VkðXðtÞÞ 6 L�k, i.e., X�k ¼ fXjVkðXÞ 6 L�kg is the globally exponentially attractive set and positive invariant set of
system (1).

Proof. Using the VkðXÞ given in (2), we obtain
dVk

dt

����
ð1Þ
¼ kx _xþ y _yþ ðz� kr� qÞ _z

¼ �krx2 � cy2 � bz2 þ bðkrþ qÞz
6 �krx2 � cy2 � n�z2 þ 2n�ðkrþ qÞz� n�ðkrþ qÞ2 � ðb� n�Þz2 þ ðb� 2n�Þðkrþ qÞzþ n�ðkrþ qÞ2

6 �kn�x2 � n�y2 � n�ðz� kr� qÞ2 � ðb� n�Þ z� ðb� 2n�Þðkrþ qÞ
2ðb� n�Þ

� �2

þ ðb� 2n�Þ2ðkrþ qÞ2

4ðb� n�Þ þ n�ðkrþ qÞ2

6 �2n�Vk þ
ðkrþ qÞ2b2

4ðb� n�Þ
6 �2n�ðVk � L�kÞ:

ð12Þ
Therefore, when VkðXðtÞÞ > L�k and VkðXðt0ÞÞ > L�k, we have
ðVkðXðtÞÞ � L�kÞ 6 ðVkðXðt0ÞÞ � L�kÞe�2n�ðt�t0Þ;
and thus X�k ¼ fXjVkðXÞ 6 L�kg is the globally exponentially attractive set and positive invariant set of system (1). h

Remark 7. When b > minfr; cg, we can take n� ¼minfr; cg, leading to the conclusion of Theorem 1; when b 6 minfr; cg,
we can choose g ¼ b

2, and so n� ¼ minfr; c; b
2g ¼

b
2, resulting in the result of Theorem 2. Note that Theorem 3 does not need to

discuss b and minfr; cg, and thus is more general and applicable; while the conditions given in Theorems 1 and 2 are explic-
itly expressed in terms of system parameters, which does not need to determine n, and thus easier to be used in application.

In this following, we may separate the variable x form the variables y and z, and obtain another result as follows. Let
V0 ¼
1
2
½y2 þ ðz� qÞ2� and L0 ¼

b2q2

8ðb� nÞn where n ¼
minfr; cg; if r–2c;
cþ e
ðe > 0Þ; if r ¼ 2c:

8><>: ð13Þ
Theorem 4. If b > minfr; cg ¼ n, then
ðV0ðXðtÞÞ � L0Þ 6 ðV0ðXðt0ÞÞ � L0Þe�nðt�t0Þ;

ðx2ðtÞ � 2L0Þ 6 ðx2ðt0ÞÞ � 2L0Þe�2nðt�t0Þ;

(
ð14Þ

limt!þ1ðy2ðtÞ þ ðzðtÞ � qÞ2Þ 6 b2q2

4ðb�nÞn ;

limt!þ1x2ðtÞ 6 b2q2

4ðb�nÞn ;

8<: ð15Þ
and
X0 :¼ X
V0 6 L0

x2

���� �
¼

y2 þ ðz� qÞ2 6 b2q2

4ðb�nÞn ;

x2
6

b2q2

4ðb�nÞn

8<:
8<: ð16Þ
is the globally exponentially attractive set and positive invariant set of system (1).

Proof. Take k ¼ 0 in Theorem 1. Similar to the proof for Theorem 1, we obtain
dV0

dt
¼ yðqz� xz� cyÞ þ ðz� qÞðxy� bzÞ

¼ �cy2 � bz2 þ qbz

6 �ny2 � nz2 þ 2nqz� nq2 � ðb� nÞz2 þ ðb� 2nÞqzþ nq2

6 �2nV0 þ
b2q2

4ðb� nÞ
6 �2nðV0 � L0Þ;
which, in tern, results in
ðV0ðXðtÞÞ � L0Þ 6 ðV0ðXðt0ÞÞ � L0Þe�2nðt�t0Þ
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and so
limt!þ1ðy2ðtÞ þ ðzðtÞ � qÞ2Þ 6 b2q2

4ðb� nÞn :
Next, for the first equation of (1), construct the positive definite and radially unbounded Lyapunov function:
eV 0 ¼
1
2

x2;
and thus
deV 0

dt
¼ �rx2 þ rxy

6 �rx2 þ rjxjjyj

6 �rx2 þ 1
2
rx2 þ 1

2
ry2

6 �2reV 0 þ reV 0 þ rðV0ðx0Þ � L0Þe�2nðt�t0Þ
from which we have
ðeV 0ðxðtÞÞ � L0Þ 6 ðeV 0ðx0Þ � L0Þe�rðt�t0Þ þ
Z t

t0

e�rðt�sÞrðV0ðx0Þ � L0Þe�2nðs�t0Þds:
Now we estimate the integral in the above inequality:
rðV0ðx0Þ � L0Þe�rtþ2nt0

Z t

t0

eðr�2nÞsds

¼ ðV0ðx0Þ � L0Þe�rtþ2nt0
r

r� 2n

� �
½eðr�2nÞt � eðr�2nÞt0 �

¼ ðV0ðx0Þ � L0Þ
r

r� 2n

� �
½e�2nðt�t0Þ � e�rðt�t0Þ�

6

ðV0ðx0Þ � L0Þ r
r�2n

	 

e�2nðt�t0Þ when r > 2n;

ðV0ðx0Þ � L0Þ r
2n�r

	 

e�rðt�t0Þ when r < 2n:

8><>:

Hence, limt!þ1 eV 0ðXðtÞÞ 6 eL0, i.e., limt!þ1

1
2 x2
6 eL0.

Therefore, summarizing the above two parts shows that any trajectory of system (1) globally exponentially converges to
X0, namely, X0 is the globally exponentially attractive set and positive invariant set.

The proof is complete. h

Let n1 ¼ minfc; b
2g, eL0 ¼ q2b

4n1
. Again choose V0ðy; zÞ ¼ 1

2 ½y2 þ ðz� qÞ2�. Then we have

Theorem 5. When V0ðXðtÞÞ > eL0 and V0ðXðt0ÞÞ > eL0, the following estimate:
ðV0ðXðtÞÞ � eL0Þ 6 ðV0ðXðt0ÞÞ � eL0Þe�2~n1ðt�t0Þ
holds with
limt!þ1 eV 0ðXðtÞÞ 6 eL0 and limt!þ1
1
2

x2ðtÞ 6 eL0;
i.e.,
eX0 ¼ X
V0ðXðtÞÞ 6 eL0

1
2 x2
6 eL0

�����
( )
is the globally exponentially attractive set and positive invariant set of system (1).

Proof. In Theorem 2, taking k ¼ 0 yields
dV0

dt
¼ �n1½y2 þ ðz� qÞ2� þ 2n1

eL0 6 �2n1ðV0 � eL0Þ;
and thus
ðV0ðXðtÞÞ � eL0Þ 6 ðV0ðXðt0ÞÞ � eL0Þe�2n1ðt�t0Þ
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which implies that limt!þ1 eV 0ðXðtÞÞ 6 eL0. Further, by Theorem 4, we have limt!þ1
1
2 x2ðtÞ 6 eL0. Combining these two results

shows that
eX0 ¼ X
V0ðXðtÞÞ 6 eL0

1
2 x2
6 eL0

�����
( )
is the globally exponentially attractive set and positive invariant set of system (1). h

Example 2. Let us apply the above theorem to re-consider the first two chaotic attractors shown in Figs. 1a and b. For the
first chaotic attractor, r ¼ 30; b ¼ 5; c ¼ 5;q ¼ 80,
n1 ¼ min r; c; b
2

� �
¼minf30;5;2:5g ¼ 2:5:
Thus
eL0 ¼
q2b

4n1
¼ 802 � 5

10
¼ 3200;
giving a better estimation than that obtained in Example 1.
For the second chaotic attractor, r ¼ 40; b ¼ 20; c ¼ 5;q ¼ 250. n1 ¼minfc; b2g ¼ 2:5, and thus
eL0 ¼
ðrþ qÞ2b

4n1
¼ ð250Þ2 � 5

10
¼ 31250;
which is sharp than that given in Example 1.

Theorem 6. Choose g 2 ½0; b� and let minfc;gg ¼ n�. Let
L�0 ¼
q2b2

8ðb� n�Þn� :
Then, when V0ðXðtÞÞ > L�0 and V0ðXðt0ÞÞ > L�0, the following estimate
ðV0ðXðtÞÞ � L�0Þ 6 ðV0ðXðt0ÞÞ � L�0Þe�2n�ðt�t0Þ
holds with
limt!þ1 eV 0ðXðtÞÞ 6 L�0 and limt!þ1
1
2

x2ðtÞ 6 L�0;
i.e.,
X� ¼ X
1
2 y2 þ 1

2 ðz� qÞ2 6 L�0
1
2 x2
6 L�0

�����
( )
is the globally exponentially attractive set and positive invariant set of system (1).

Proof. In Theorem 3 take k ¼ 0, then following the proofs given for Theorems 3 and 5, we can similarly prove this theorem,
and the details are omitted for simplicity. h

At the end of this section, we give an application of Theorem 6 to globally exponentially stabilize the origin ð0;0;0Þ using
a simple feedback control.

4. Application

In this section, we only present two simple examples to illustrate the application of the theoretical results established in
the previous section for the globally exponential attracting set and positive invariant set. More applications in chaos control
and chaos synchronization will be discussed in other papers.

4.1. Application to stability and stabilization

Theorem 7. When q 6 0, the equilibrium point ð0;0;0Þ of system (1) is globally exponentially stable, and is thus unique. When
q > 0, there exist many feedback control laws to stabilize the equilibrium point ð0;0;0Þ, and the simplest one is to add a linear
feedback control �cx to the second equation of (1), where c P q.
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Proof. When q < 0, in Theorem 2 we choose krþ q ¼ 0, namely k ¼ � q
r. Thus the Lk in Theorem 2 becomes Lk ¼ L�q

r
¼ 0.

This shows that the globally exponential attracting set is reduced to the minimum, i.e., Xk ¼ Xq
r
¼ f0g. Therefore, the equi-

librium point ð0;0;0Þ of system (1) is globally exponentially stable.

When q ¼ 0, by using Theorem 4, we have L0 ¼ b2q2

8ðb�nÞn ¼ 0, which implies that
lim
t!þ1

y2ðtÞ þ z2ðtÞ ¼ 0 and lim
t!þ1

x2ðtÞ ¼ 0:
Hence, the minimum globally exponential attracting set X0 ¼ f0g, i.e., the equilibrium point ð0;0;0Þ of system (1) is glob-
ally exponentially stable.

When q > 0, adding the feedback control �cx to the second equation of system (1) yields the following controlled
system:
_x ¼ rðy� xÞ;
_y ¼ qx� xz� cy� cx ¼ ~qx� xz� cy;
_z ¼ xy� bz;
where ~q ¼ q� c 6 0. From the above discussions for the cases q < 0 and q ¼ 0, we know that the conclusion is also true for
q > 0. h
4.2. Qualitative study on the trajectory of system (1) in the complementary set of the globally exponential attracting set X

The second example is to consider the qualitative behaviour of the trajectories of system (1) in the complementary set of
the globally exponential attracting set X, R3=X.

Theorem 8. In the complementary set R3=X, (i.e., outside of the globally exponential attracting set X), there do not exist chaotic
attractor, or equilibrium point, or periodic solution, or quasi-periodic motion, or any other type of positive invariant sets.

Proof. First of all, all trajectories in R3=X move according to the exponential decay, converging towards the globally expo-
nential attracting set X. Obviously, there cannot exist any strange attractor like the Lorenz attractor. Thus, in R3=X there are
no fundamental differences between chaotic and non-chaotic systems.

Because the equilibrium points, periodic solutions and quasi-periodic solutions of system (1) are all positive invariant sets
of system (1). Thus, we prove for general case of positive invariant set.

Suppose this is not true. Without loss of generality, assume Q is a positive invariant set of R3=X. Then Q
S

X ¼ /, where /
denotes the empty set. This implies that Q and X do not intersect. So we have
inf
X2X;X2Q

kX � Xk > 0:
From the definition of positive invariant set, we know that Xðt; t0;X0Þ 2 Q ðt P t0Þ as long as X0 2 Q . Thus,
inf
X2X;Xðt;t0 ;X0Þ2Q ;tPt0

kX � Xðt; t0;X0Þk > 0:
On the other hand, since X is a globally exponential attracting set, we have that 8X0 2 R3, Xðt; t0;X0Þ ! X, which implies
inf
X2X;Xðt;t0 ;X0Þ2Q ;tPt0

kX � Xðt; t0;X0Þk ¼ 0;
leading to a contradiction to the above inequality. This shows that the conclusion of Theorem 8 is true. h

Remark 8. The X used in Theorem 8 is a general notation. The conclusion is always true when X is chosen as any of the
X;X0; eX0;X1;Xk;Xk and X�k, which are used in the previous section.
5. Conclusion

In this paper, we have extended the method developed in [15] to study the globally exponentially attractive set and po-
sitive invariant set for a more general Lorenz family. It has been shown that such system indeed has globally exponentially
attractive set and positive invariant set, and contains all the existing relative results as special cases. Exponential estimation
is explicitly derived. The approach presented in this paper may be applied to study other chaotic systems.
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