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Abstract

This paper is concerned with the computation of the simplest normal forms with perturbation parameters, associated
with codimension-one singularities, and applications to control systems. First, an efficient method is presented to com-
pute the normal forms for general semi-simple cases, which combines center manifold theory and normal form theory in
one unified procedure. The efficient approach is then applied to find the explicit simplest normal forms of general n-
dimensional nonlinear dynamical systems whose Jacobian matrices evaluated at an equilibrium point contain either sin-
gle zero or a purely imaginary pair. In addition to near-identity nonlinear transformation, time and parameter rescalings
are used to obtain the simplest normal forms. It is shown that, unlike the classical normal forms, the simplest normal
forms for single zero and Hopf singularities are finite up to an arbitrary order, which greatly simplify stability and bifur-
cation analysis. The new method is applied to consider controlling bifurcations of the Lorenz system and a nonlinear
electrical circuit. Symbolic programs have been developed using Maple, which greatly facilitates applications.
� 2006 Elsevier Ltd. All rights reserved.
1. Introduction

Normal form theory is one of the useful tools in the study of nonlinear dynamical systems and often applied to con-
trol systems to consider instability and bifurcation control (for example, see [1–8]). A control system can be described
by a map, a function or, in more general, an operator in either time domain or frequency domain. Differential equations
are the most useful and widely applied tools in describing control systems. They may be ordinary differential equations,
partial differential equations, delayed differential equations, or combination of differential equations and algebraic
equations. In this paper, the attention is focused on control systems described by ordinary differential equations.

The main idea of normal form theory is to apply successive coordinate transformations to systematically construct a
form of the original system as simple as possible. The new form is qualitatively equivalent to the original system and
thus the dynamical analysis of the original system is greatly simplified. However, a conventional normal form (CNF) is
in general not unique and can be further simplified using similar near-identity transformations, leading to the simplest
normal form (SNF). For example, the CNF of Hopf bifurcation contains an infinite number of terms while the SNF of
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Hopf singularity without unfolding has only three terms up to an arbitrary order. Such further reductions have recently
received considerable attention [9–21]. Roughly speaking, the main difference between the CNF and the SNF can be
explained from the computation point of view: for the CNF, the coefficients of the kth order nonlinear transformation
are only used to possibly remove the kth order nonlinear terms of the system; while for the SNF, the kth order nonlinear
transformation coefficients are not only used to simplify the kth order terms of the system, but also used to eliminate
higher order nonlinear terms. In general, the SNF computation is much more complicated than that of the CNF, and
computer algebra systems such as Maple, Mathematica, Reduce, etc. must be used [14,15,18–20]. However, even with
the aid of computer algebra systems, computational efficiency is still the main concern in computing the SNF. There-
fore, attention has been paid to developing efficient methodologies and efficient algorithms for the computation of the
SNF [22–25].

The computation of normal forms has been mainly restricted to systems which do not contain perturbation param-
eters (unfolding). However, in practice a physical system or a control problem always involves some parameters, usually
called perturbation parameters or unfolding. Such normal forms are very important in applications. A CNF with
unfolding is usually obtained in two steps: First ignore the perturbation parameter and compute the normal form
for the corresponding ‘‘reduced’’ system (by setting the parameters zero), and then add an unfolding to the resulting
normal form. This way it greatly reduces the computation effort, with the cost that it does not provide the transforma-
tion between the original system and the normal form. For the SNF, on the other hand, since Ushiki [9] introduced the
method of infinitesimal deformation in 1984 to study the SNF of vector fields, although many researchers have consid-
ered several cases of singularities (for example, see [9–14,16,17,20]), no single application using the SNF has been
reported. This is because that the main attention in this area has been focused on the computation of the SNF without
perturbation parameters. Recently, single zero and Hopf singularities have been considered and the explicit SNFs with
unfolding have been obtained by introducing time and parameter rescalings [22,26]. However, the systems considered in
these two papers are assumed on center manifolds. This is not convenient in applications since practical systems are
usually not described on center manifold. This restriction will be removed in this paper, and the SNFs associated with
dimension-one singularities (either single zero or Hopf) will be derived from general n-dimensional nonlinear differential
equations.

For a general nonlinear physical or engineering system, which may include stable manifold, normal form theory is
usually employed together with center manifold theory [27] in order to take the contribution from the stable manifold.
In general, given a nonlinear system, center manifold theory is applied before employing normal form theory. The idea
of center manifold theory is similar to normal form theory—simplify the system by applying successive nonlinear trans-
formations. It reduces the original system to a center manifold which has smaller dimension than that of the original
system. Different methods have been developed to combine center manifold theory with normal form theory in one uni-
fied procedure (e.g., see [23,26,28]). In [23] an efficient computation method and Maple programs are developed for gen-
eral systems associated with semi-simple cases. However, the normal form computation presented in [23] does not
contain perturbation parameters (unfolding), and thus is not directly applicable in solving practical problems.

In this paper, we will develop an efficient approach for computing the SNF with perturbation parameters (unfolding)
directly from general n-dimensional systems which are not necessarily described on center manifold, and apply the
method to consider controlling bifurcations. An explicit, recursive formula will be derived for computing the normal
forms associated with general semi-simple cases. The approach is efficient since it reduces the computation to minimum
at each step of finding ordered algebraic equations. Based on the general recursive formula, the SNFs for single zero
and Hopf singularities are obtained. The rest of the paper is organized as follows. In the next section, the general for-
mulas for computing the center manifolds, normal forms and nonlinear transformations of general semi-simple cases
are derived. The SNFs for the single zero and Hopf singularity are obtained in Section 3. The applications to bifurca-
tion control are presented in Section 4 to show the efficiency of the method. Finally, conclusions are drawn in Section 5.
2. General formulation

In this section, we shall derive the explicit formulas for computing the normal forms associated with semi-simple
cases. Consider the following general control system, given by
dx

dt
¼ Fðx; lÞ þ u; x; u 2 Rn; l 2 Rs;F : Rn ! Rn; ð1Þ
where x, u and l are state variable, control variable and system parameter, respectively. l may be considered as control
parameters. Usually, l is not explicitly shown in a control system. In this paper, l is explicitly shown for the conve-
nience of bifurcation analysis. The control function u can be, in general, any kind of function of the parameter l as
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well as time t, which renders system (1) non-autonomous. However, when a control law is determined, system (1) may
be transformed to autonomous. For instance, suppose the feedback, given by
u ¼ uðx; lÞ; ð2Þ
is chosen, then system (1) becomes autonomous, and the bifurcation theory for differential equations can be applied
with the l as control parameter. Then, Eq. (1) can be rewritten as
dx

dt
¼ Fðx; lÞ þ uðx; lÞ , Jxþ f ðx; lÞ; x 2 Rn; l 2 Rs; ð3Þ
where Jx denotes the linear terms. Further, without loss of generality, it is assumed that x = 0 is an equilibrium point of
the system for any values of l, i.e., f(0, l) � 0. The nonlinear function f is assumed analytic with respect to x and l. J is
the Jacobian matrix of the system evaluated at the equilibrium point x = 0, when the parameter l reaches its critical
point l = 0, given in the form of
J ¼
J 0 0

0 J 1

� �
; ð4Þ
where both J0 and J1 are assumed in diagonal form, indicating that all the eigenvalues of the Jacobian are semi-simple.
J0 includes the eigenvalues k1; k2; . . . ; kn0

with zero real parts, while J1 has the eigenvalues kn0þ1; kn0þ1; . . . ; kn with neg-
ative real parts. In other words, system (3) does not contain unstable manifold in the vicinity of x.

To find the normal form of system (3), one may expand the dimension of system (3) from n to n + s, by adding the
equation dl

dt ¼ 0 to system (3) to obtain a new system:
dx

dt
¼ Jxþ f ðx; lÞ; dl

dt
¼ 0; x 2 Rn; l 2 Rs. ð5Þ
Then a general near-identity transformation may be assumed either in the form of
x ¼ yþ hðy; mÞ; l ¼ m; ð6Þ
or
x ¼ yþ h1ðy; mÞ; l ¼ m þ h2ðy; mÞ; ð7Þ
where h(y, m), h1(y, m) and h2(y, m) are nonlinear analytic functions of y and m. The equation l = m given in Eq. (6)
emphasizes that the parameter l is not changed under the transformation (6), i.e., reparametrization is not applied.
For convenience, we may call transformation (6) as state transformation since it only changes state variable x, while
call Eq. (7) as state-parameter transformation because the parameter l is also expressed in terms of both y and m.
The state transformation is a natural way from the physical point of view since the parameter m is not a function of
time. The state-parameter transformation however contains time variation in parameter l since it involves the state var-
iable y. In this paper we only consider the near-identity state transformation or simply near-identity (nonlinear) trans-
formation (6) but with reparametrization l = m + p(m). Thus, transformation (6) becomes
x ¼ yþ hðy; mÞ; l ¼ m þ pðmÞ. ð8Þ
For the transformation (8), we can show that it is not necessary to extend the n-dimensional system (3) to (n + s)-
dimensional system (5). In fact directly apply normal form theory to system (3) is equivalent to using system (5). To
prove this, we assume that the transformed system (normal form) is given by
dy

dt
¼ Jyþ gðy; mÞ; dm

dt
¼ 0. ð9Þ
Then differentiating the first equation of (9) with respect to t results in dx
dt ¼

dy
dt þ oh

oy
dy
dt þ oh

om
dm
dt and then substituting Eqs.

(5) and (9) into the resulting equation yields
1þ oh

oy

� �
gðy; mÞ ¼ Lhðy; mÞ � oh

oy
Lyþ f ðyþ hðy; mÞ; mÞ. ð10Þ
Then the computation of the normal form of system (5) completely depends upon Eq. (10). However, it is easy to see
that Eq. (10) can be also directly derived from Eq. (3) with the aid of the first equations of (6) and (9). Therefore, in this
paper we shall use Eq. (3).

Now back to the original system (3), and let x = (x1, x2)T, where x1 and x2 are variables associated with the eigen-
values of J0 and J1, respectively. Then, Eq. (3) can be rewritten as
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dx1

dt
¼ J 0x1 þ f 1ðx1; x2; lÞ;

dx2

dt
¼ J 1x2 þ f 2ðx1; x2; lÞ.

ð11Þ
By center manifold theory [27], x2 can be expressed in terms of x1 as
x2 ¼ Nðx1; lÞ; satisfying Nð0; 0Þ ¼ 0;
oNð0; 0Þ
ox1ol

¼ 0; ð12Þ
under which the second equation of (11) can be rewritten as
Dx1
Nðx1; lÞ½J 0x1 þ f 1ðx1;Nðx1; lÞ; lÞ� ¼ J 1Nðx1; lÞ þ f 2ðx1;Nðx1; lÞ; lÞ. ð13Þ
Having found N(x1, l) from the above equation, the first equation of (11) becomes
dx1

dt
¼ J 0x1 þ f 1ðx1;Nðx1; lÞ; lÞ; ð14Þ
which governs the dynamics of the original system (3) in the vicinity of (x, l) = (0, 0).
In order to further simplify Eq. (14), introduce the following nonlinear transformation
x1 ¼ wþHðw; mÞ , wþ
X1
m¼2

Hmðw; mÞ; ð15Þ
and the time rescaling
t ¼ ðT 0 þ T ðw; mÞÞs , sþ
X1
m¼1

T mðw; mÞs; ð16Þ
where m indicates the parameter rescaling, given in the form of
l ¼ m þ pðmÞ , m þ
X1
m¼2

pmðmÞ. ð17Þ
Note that unlike the transformation (7), here l given in Eq. (17) does not involve the time variable w. Also note that T0

has been taken as 1 for convenience.
Further, assume that the normal form of system (14) is given by
dw

ds
¼ J 0wþ Cðw; mÞ , J 0wþ

X1
m¼2

Cmðw; mÞ. ð18Þ
Here, Hm(w, m) and Cm(w, m) are the mth degree, n0-dimensional vector homogeneous polynomials of w and m, and pm(m)
is the mth degree, s-dimensional vector homogeneous polynomials of m, while Tm(w, m) is the mth degree, scalar homo-
geneous polynomials of its components.

To find the normal form, first differentiating Eq. (15) and substituting it into Eq. (14) yields
ðI þ DwHðw; mÞÞ dw

ds
¼ dt

ds
½J 0ðwþHðw; mÞÞ þ f 1ðwþHðw; mÞ;NðwþHðw; mÞ; m þ pðmÞÞ; m þ pðmÞÞ�; ð19Þ
and then using Eq. (16) and substituting Eq. (10) into the above equation and rearranging results in
DwHðw; mÞJ 0w� J 0Hðw; mÞ ¼ f 1ðwþHðw; mÞ; hðw; mÞ; m þ pðmÞÞ � DwHðw; mÞCðw; mÞ � Cðw; mÞ
þ T ðw; mÞ½J 0ðwþHðw; mÞÞ þ f 1ðwþHðw; mÞ; hðw; mÞ; m þ pðmÞÞ�; ð20Þ
where h(w, m) � N(w + H(w, m),m + p(m)).
Next, one may substitute Eq. (15) into Eq. (13), and use Eq. (20) to find the following equation:
Dx1
Nðx1; lÞfðI þ DwHðw; mÞÞðJ 0wþ Cðw; mÞÞ � T ðw; mÞ½J 0ðwþHðw; mÞÞ
þ f 1ðwþHðw; mÞ; hðw; mÞ; m þ pðmÞÞ�g ¼ J 1hðw; mÞ þ f 2ðwþHðw; mÞ; hðw; mÞ; m þ pðmÞÞ. ð21Þ
By chain rule, Dx1
Nðx1; mÞðI þ DwHðw; mÞÞ ¼ Dwhðw; mÞ, one can rewrite Eq. (21) as
Dwhðw; mÞJ 0w� J 1hðw;wÞ ¼ f 2ðwþHðw; mÞ; hðw; mÞ; m þ pðmÞÞ � Dwhðw; mÞCðw; mÞ
þ T ðw; mÞDwhðw; mÞ½I þ DwHðw; mÞ��1½J 0ðwþHðw; mÞÞ
þ f 1ðwþHðw; mÞ; hðw; mÞ; m þ pðmÞÞ�. ð22Þ
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Finally, combining Eqs. (20) and (22) yields the following compact form:
D
Hðw; mÞ
hðw; mÞ

� �
J 0w�

J 0 0

0 J 1

� �
Hðw; mÞ
hðw; mÞ

� �
¼

f 1ðwþHðw; mÞ; hðw; mÞ; m þ pðmÞÞ
f 2ðwþHðw; mÞ; hðw; mÞ; m þ pðmÞÞ

� �
� D

Hðw; mÞ
hðw; mÞ

� �
Cðw; mÞ

�
Cðw; mÞ

0

� �
þ T ðw; mÞ

I

Dhðw; mÞ½I þ DHðw; mÞ��1

� �
½J 0ðwþHðw; mÞÞ

þ f 1ðwþHðw; mÞ; hðw; mÞ; m þ pðmÞÞ�; ð23Þ
where the differential operator D � Dw.
Eq. (23) is all what we need for computing the normal form C(w, m), the nonlinear transformations H(w, m) and

h(w, m) as well as the time rescaling T(w, m) and the reparametrization p(m). Note that all C(w, m), H(w, m) and h(w, m)
start from second order terms and can be expressed in terms of vector homogeneous polynomials of w and m.
C(w, m) and H(w, m) are n0-dimensional vectors while h(w, m) is a (n � n0)-dimensional vector. T(w, m) is a scalar function
while p(m) is a s-dimensional vector.

Since, in general, it is not possible to find the closed-form solutions for C(w, m), H(w, m), h(w, m), T(w, m) and p(m) from
Eq. (22), we may assume the approximate solutions, given by
Cðw; mÞ ¼
X1
m¼2

Cmðw; mÞ ¼
X1
m¼2

X
m

Cmwm1
1 � � �w

mn0
n0 m

mn0þ1

1 � � � mmn0þs
s ;

Hðw; mÞ ¼
X1
m¼2

Hmðw; mÞ ¼
X1
m¼2

X
m

Hmwm1
1 � � �w

mn0
n0 m

mn0þ1

1 � � � mmn0þs
s ;

hðw; mÞ ¼
X1
m¼2

hmðw; mÞ ¼
X1
m¼2

X
m

hmwm1
1 � � �w

mn0
n0 m

mn0þ1

1 � � � mmn0þs
s ;

ð24Þ
and
T ðw; mÞ ¼
X1
m¼1

T mðw; mÞ ¼
X1
m¼1

X
m

T mwm1
1 � � �w

mn0
n0 m

mn0þ1

1 � � � mmn0þs
s ;

pðmÞ ¼
X1
m¼2

pmðmÞ ¼
X1
m¼2

X
m

pmmm1
1 mm2

2 � � �wms
s ;

ð25Þ
where Cm, Hm, hm, Tm and pm represent the mth order coefficients. The subscript m means that for all possible non-neg-
ative integers, m1;m2; . . . ;mn0þs satisfy m1 þ m2 þ � � � þ mn0þs ¼ m (or m1 + m2 + � � � + ms = m for pm).

Further, for an arbitrary m P 2, one can show that
D
Hmðw; mÞ
hmðw; mÞ

� �
J 0w ¼

X
m

D
Hm

hm

� �
wm1

1 � � �w
mn0
n0 m

mn0þ1

1 � � � mmn0þs
s ðJ 0wÞ

¼
X

m

Xn0

i¼1

o

owi

Hm

hm

� �
wm1

1 � � �w
mn0
n0 m

mn0þ1

1 � � � mmn0þs
s kiwi

" #

¼
X

m

ðm1k1 þ � � � þ mn0
kn0
Þ

Hm

hm

� �
wm1

1 � � �w
mn0
n0 m

mn0þ1

1 � � � mmn0þs
s

¼
X

m

k0

Hm

hm

� �
wm1

1 � � �w
mn0
n0 m

mn0þ1

1 � � � mmn0þs
s ¼ k0

Hmðw; mÞ
hmðw; mÞ

� �
; ð26Þ
where
k0 ¼ m1k1 þ m2k2 þ � � � þ mn0
. ð27Þ
Thus, one can obtain the following equation from Eq. (23) for solving the mth order coefficients: Cm, Hm, hm, Tm and
pm:
½k0I � J 0�Hm

½k0I � J 1�hm

� �
¼

~f 1m

~f 2m

 !
�

Cm

0

� �
; ð28Þ
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where the mth order coefficients ~f 1m and ~f 2m are extracted from
~f 1 ¼ f 1ðwþHðw; mÞ; hðw; mÞ; m þ pðwÞÞ � DHðw; mÞCðw; mÞ þ T ðw; mÞ½J 0ðwþHðw; mÞÞ
þ f 1ðwþHðw; mÞ; hðw; mÞ; m þ pðmÞÞ� ð29Þ
and
~f 2 ¼ f 2ðwþHðw; mÞ; hðw; mÞ; m þ pðwÞÞ � Dhðw; mÞCðw; mÞ þ T ðw; mÞDhðw; mÞ½I þ DHðw; mÞ��1

� ½J 0ðwþHðw; mÞÞ þ f 1ðwþHðw; mÞ; hðw; mÞ; m þ pðmÞÞ�; ð30Þ
respectively. Note that ~f 1 and ~f 2 contain Tm and pm.
Now we can determine the mth order normal form coefficients Cm, and the nonlinear transformation coefficients Hm

and hm as well as the rescalings Tm and pm from Eq. (28) order by order starting from m = 2. Firstly, note from Eq. (23)
that the mth order coefficients ~f 1m and ~f 2m contain C, H, h, T and p coefficients whose orders are lower than m. There-
fore, the undetermined lower order coefficients may be involved in the two coefficients ~f 1m and ~f 2m. Secondly, since k0

only contains the eigenvalues of J0 (with zero real parts) and all eigenvalues of J1 have non-zero real parts, k0I � J1

cannot equal zero for any of its components. This suggests that hm can be uniquely determined from Eq. (28) as
hm ¼ ½k0I � J 1��1~f 2m; ð31Þ
or, by noting that [k0I � J1] is a diagonal matrix,
hðkÞm ¼
~f ðkÞ2m

k0 � kn0þk
ðk ¼ 1; 2; . . . ; n� n0Þ; ð32Þ
where hðkÞm and ~f ðkÞ2m are the kth components of hm and ~f 2m, respectively.
Finally, we need to solve the equation:
½k0I � J 0�Hm ¼ ~f 1m � Cm ð33Þ
to determine Cm and Hm. Note that ~f 1m contains the lower order coefficients of C, H, T and p, and thus unlike the
CNF computation, we may use the lower order H, h, T and p coefficients to eliminate Cm, leading to the SNF. Similarly,
due to the semi-simple property, the matrix [k0I � J0] is a diagonal matrix, one can rewrite Eq. (33) in the component
form:
ðk0 � kkÞH ðkÞm ¼ ~f ðkÞ1m � CðkÞm ðk ¼ 1; 2; . . . ; n0Þ; ð34Þ
where H ðkÞm , ~f ðkÞ1m and CðkÞm are the kth components of Hm, ~f 1m and Cm, respectively. Then when k0 � kk 5 0, we may un-
iquely determine
CðkÞm ¼ 0 and H ðkÞm ¼
~f 1m

k0 � kk
. ð35Þ
However, when k0 � kk = 0, we may use the lower order H, h, T and p coefficients involved in ~f 1m to possibly eliminate
CðkÞm . If there are no such lower order coefficients which can be used at this order, then CðkÞm ¼ ~f 1m. The rule determining
how to choose the lower order coefficients depends upon the singularity under consideration.

Having found the explicit formulas (32) and (34), it seems that the computation of the coefficients of the normal
form and nonlinear transformation is straightforward. However, it has been noted that directly employing these formu-
las can cause computation problem: A computer may quickly run out of its memory due to enormous algebraic manip-
ulations. As we know that in the computation of normal forms, higher order computations do not affect lower order
results, but lower order results influence all higher order calculations. In general, when one finishes k < m order com-
putations, one substitutes the lower order solutions into the original nonlinear function f to obtain the equation for
computing the mth order normal form. The expression of the resulting equation includes all order (<m and Pm) expres-
sions and one needs to extract the exact mth order part from the enormous large expression. In fact, the semi-simple
case has been considered with the ‘‘extract’’ method. It has been found that such an approach is not efficient and can
easily cause a computer ‘‘crash’’ even for a not very complicated problem. In order to overcome this difficulty, it needs
to directly find the expression which only belongs to the mth order equation. This can greatly reduce the computation
time and computer memory demanding. The detailed efficient computation approach will not be discussed in this paper.
Interested readers are referred to Refs. [22–26].
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3. The SNF for codimension-one singularity

In the previous section, we have developed an efficient computation method and derived recursive formulas for com-
puting the coefficients of the SNF and associated transformations (see Eqs. (31) and (34)). It has been shown that the
transformation for the non-critical variables, h, is uniquely determined by Eq. (31). However, computing the center
manifold part is not straightforward. (The computation of this part for the CNF is straightforward, uniquely deter-
mined by Eq. (33), see [23].) To find the SNF from Eq. (34) one must carefully consider not only the coefficients of
H, but also that of T and p which are implicitly involved in ~f 1. It should be emphasized that Eq. (34) does not contain
h coefficients since the kth order coefficients hk are solved and only solved from the kth order algebraic Eq. (31). This
implies that Eq. (34) only contains H, T and p which are associated with the center manifold variables, u and m. There-
fore, the final step in computing the SNF is to solve Eq. (34), which is similar to finding the SNF of a system which is
described on center manifold. However, we cannot obtain a general form or procedure applicable for all semi-simple
cases. One has to deal with the singularities case by case. In this paper, we focus on codimension-one singularities: single
zero and Hopf bifurcation. The SNF for the two singularities based on center manifold (i.e., the original system (3) is
not a general n-dimensional system, but described on center manifold) have been obtained in [22,29]. Therefore, in the
following we will outline the computation rules of the SNF for the two singularities.

3.1. The SNF for single zero

As discussed above, to find the computation rules of the SNF of single zero singularity, we may assume that the
original system is described on one-dimensional center manifold as follows:
dy
dt
¼ f ðy; lÞ ¼

X1
i¼1

a1il
iy þ

X1
i¼0

a2il
iy2 þ

X1
i¼0

a3il
iy3 þ � � � ð36Þ
which has an equilibrium x = 0 for any real values of l. The near-identity nonlinear transformation and the time scaling
are, respectively, given by
y ¼ wþ Hðw; lÞ ¼ wþ
X1
i¼1

b1il
iwþ

X1
i¼0

b2il
iw2 þ � � � ð37Þ
and
T 0 þ T ðw; lÞ ¼ 1þ
X1
i¼1

T 0il
i þ
X1
i¼0

T 1il
iwþ

X1
i¼0

T 3il
iw2 þ � � � ð38Þ
It has been shown [22] that the case of zero singularity does not need parameter scaling (reparametrization). Thus, in-
stead of m, the original parameter l is used in Eqs. (37) and (38).

It has been proved [22] that under the conditions:
a11 6¼ 0 and ak0 6¼ 0 ðk P 2Þ; ð39Þ
where ak0 is the first non-zero coefficients of aj0’s, the SNF of system (36) is given by
dw
ds
¼ a11lwþ ak0wk ðk P 2Þ; ð40Þ
up to any order.
Note that the coefficients a11 (for the 2nd order equation) and ak0 (for the kth order equation) are known coefficients

of the original system, indicating that the 2nd order equation cannot be reduced. The detailed procedure for computing
the coefficients of bij and Tij can be found in [22]. The above results are based on the assumption a11 5 0, which results
in the unfolding a11lw. Other possible unfolding may not be so simple if a11 = 0. However, they can be easily obtained
by executing the Maple program we developed to find the SNF. For example, suppose a11 = a12 = 0, but a13 5 0 and
a21 5 0, then the SNF is found to be
dw
ds
¼ a13l

3wþ a21lw2 þ ak0wk ðk P 2Þ. ð41Þ
The above rules obtained based on center manifold can be applied to solve the key Eq. (34) for the general original
system (3). However, it should be noted that the coefficient ak0 cannot be directly observed from the original equation
(e.g., usually the first equation of the system) since non-center manifold equations may have contributions to these coef-
ficients. This can be easily handled in symbolic computation.
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3.2. The SNF for Hopf bifurcation

We now turn to Hopf bifurcation. Again, we first discuss the system given on a 2-dimensional center manifold to find
the rules of computing the coefficients of the SNF and transformations. Suppose the system is described in complex
form:
dz

dt
¼

i 0

0 �i

� �
zþ f ðz; lÞ �

i 0

0 �i

� �
z

�z

� �
þ

f ðz;�z; lÞ
�f ðz;�z; lÞ

� �
; ð42Þ
where z ¼ ðz;�zÞT and f ¼ ðf ; �f ÞT, T represents transpose. �z and �f are complex conjugates of z and f, respectively.
Further, assume that
fk ¼
X

jþlþm¼k

ða1jlm þ ia2jlmÞzj�zllm;

H k ¼
X

jþlþm¼k

ðb1jlm þ ib2jlmÞwj �wlmm;

C2 ¼ ½ða1 þ ib1Þwþ ða2 þ ib2Þ�w�m;

Ck ¼ ðc1k þ ic2kÞwðkþ1Þ=2 �wðk�1Þ=2 ðk P 3; odd integerÞ;

t ¼ ðT 0 þ T ðw; �w; mÞÞs 1þ
X
k¼1

X
jþm¼k

tjm
1

2
ðwþ �wÞ

� �j

mm

 !
s;

l ¼ p0mþ pðmÞ ¼ mþ
X
j¼2

pjm
j;

ð43Þ
where C2 represents the linear unfolding.
Applying the 2nd-order (k = 2) equations of (34) yields the following solutions:
b1200 ¼ a2200; b2200 ¼ �a12001; b1020 ¼ �
1

3
a2020;

b2020 ¼
1

3
a1020; b1110 ¼ �a2110; b2110 ¼ a1110;

ð44Þ
and
a1 ¼ a1101; t01 ¼ �a2101;

b1011 ¼ �
1

2
a2011; b2011 ¼

1

2
a1011;

ð45Þ
which results in
b1 ¼ a2 ¼ b2 ¼ 0. ð46Þ
Next, for k = 3, similarly we can find the following solutions:
c13 ¼ a1210 � A1210;

t20 ¼ 2ðb23 � a2210 þ A2210Þ;

p2 ¼ �
1

a1101

ða1102 þ A1102Þ;

t02 ¼
a2101

a1101

ða1102 þ A1102Þ � ða2102 þ A2102Þ;

b2300 ¼ �
1

2
ða1300 þ A1300Þ;

b1300 ¼
1

2
a2300 þ A2300 þ

1

4
t20

� �
;

b2030 ¼
1

4
ða1030 � A1030Þ;
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b1030 ¼ �
1

4
ða2030 � A2030Þ

b2120 ¼
1

2
ða1120 � A1120Þ;

b1120 ¼ �
1

2
a2120 � A2120 þ

1

4
t20

� �
;

b2201 ¼ �ða1201 þ A1201Þ;

b1201 ¼ a2201 þ A2201;

b2021 ¼
1

3
ða1021 � A1021Þ;

b1021 ¼ �
1

3
ða2021 � A2021Þ;

b2111 ¼ a1111 � A1111;

b1111 ¼ �ða2111 � A2111Þ;

b2012 ¼
1

2
ða1012 � A1012 þ p2a1011Þ;

b1012 ¼ �
1

2
ða2012 � A2012 þ p2a2011Þ;

b1101 ¼ c2101 ¼ t11 ¼ 0;

ð47Þ
where Ajkl’s are known expressions, given in terms of aijlm’s. We can apply the above procedure to solve higher order
equations using the general rules given in [29]. Note that most of the equations are uniquely solved using the coefficients
bijlm.

Therefore, the complex SNF of Hopf bifurcation is given by
dw
ds
¼ iwþ a1101wmþ ða1210 � a1200a2110 � a2200a1110Þw2�uþ i

X1
m¼1

c2ð2mþ1Þwmþ1wm; ð48Þ
where c2j are explicitly obtained in terms of the original system coefficients aijlm’s.
Letting w = ReiH, where R and H are, respectively, the amplitude and phase of motion, and splitting the real and

imaginary parts in Eq. (48) results in the equations, given in polar coordinates:
dR
ds
¼ a1101mRþ ða1210 � a1200a2110 � a2200a1110ÞR3; ð49Þ

dH
ds
¼ 1þ c23R2 þ c25R4 þ � � � þ c2ð2mþ1ÞR2m þ � � � ð50Þ
Note that when we derive the SNF of Hopf bifurcation it has been assumed a1101 5 0. This is clear from Eq. (49)
that no linear universal unfolding will be present if a1101 = 0. The bifurcation and stability analysis can be carried out
using Eq. (49). The steady-state solutions are given by
ðIÞ R ¼ 0;

ðIIÞ R2 ¼ � a1101m
a1210 � a1200a2110 � a2200a1110

;
ð51Þ
where solution (I) actually represents the original equilibrium, while solution (II) denotes a family of limit cycles. The
stability of the steady-state solutions can be easily determined as follows: solution (I) is stable (unstable) if
a1101m < 0 (>0). Solution (II) is stable (unstable) if SLC � a1210 � a1200a2110 � a2200a1110 < 0 (>0). If SLC < 0, then the
existence of the limit cycles for a1101m > 0 implies that the original equilibrium and the periodic solution exchange their
stabilities at the critical point m = 0. This is called supercritical Hopf bifurcation. Otherwise, it is called subcritical Hopf
bifurcation.

The above analysis seems like a typical Hopf bifurcation analysis using the CNF. However, it should be noted that
all higher order terms (>3) have been removed from the SNF while the CNF has infinitely many higher order terms.
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Thus, Hopf bifurcation analysis based on the CNF up to 3rd-order terms means that all higher order terms in the CNF
are neglected. For the SNF, however, the exact 3rd-degree polynomial is used for the analysis.

The above procedure can be directly applied to the general original n-dimensional system (3). Symbolic program has
been coded using Maple.
4. Applications

In this section, we shall present two examples to demonstrate how to use the results obtained in the previous sections
to consider feedback control on bifurcations associated with single zero and Hopf singularities. The first example is the
well-known Lorenz system and the second one is a nonlinear electrical circuit.

4.1. The Lorenz system

The Lorenz system is given by [2]
dx
dt
¼ �pðx� yÞ;

dy
dt
¼ �xz� y;

dz
dt
¼ xy � z� r;

ð52Þ
where p and r are positive parameters, considered as control parameters. Note that system (52) is a special case of the
standard Lorenz equation (e.g., see [30]):
dx
dt
¼ �rðx� yÞ;

dy
dt
¼ qx� xz� y;

dz
dt
¼ xy � bz;

ð53Þ
which has one more parameter than system (52). One can easily show that system (52) is a special case of system (53) by
first setting b = 1 in Eq. (53). Then let p = r and r = q, and use a constant shift z ¼ ~z� r in system (53) to obtain the
standard Lorenz Eq. (52) for b = 1.

It can be shown that system (52) has three equilibrium solutions C0, C+ and C�, given by
C0 : xe ¼ ye ¼ 0; ze ¼ �r;

C� : x�e ¼ y�e ¼ �
ffiffiffiffiffiffiffiffiffiffiffi
r � 1
p

; z�e ¼ �1.
ð54Þ
Suppose the parameters p and r are positive, then C0 is stable for 0 6 r < 1, and a pitchfork bifurcation occurs at r = 1,
where equilibrium solution C0 bifurcates into either C+ or C�. The two equilibria C+ and C� are stable for 1 < r < rH,
where
rH ¼
pðp þ 4Þ

p � 2
ðp > 2Þ ð55Þ
indicates a critical point at which C+ and C� lose their stabilities, giving rise to Hopf bifurcation. To have rH = 16
which is used in [2], it follows from Eq. (55) that p = 4 or 8. Since the value of p = 4 has been used in [2], we choose
p = 8 in this paper.

In the following, we will consider two singularities of system (52): single zero and Hopf bifurcation. Although for the
zero case it is easy to find the stabilities of the equilibrium solutions from the original system (52), one cannot find the
post-critical bifurcation solutions as well as bifurcation equations directly from Eq. (52), but may obtain the bifurcation
equation using normal form theory.

4.1.1. Single zero

First consider single zero singularity and start from equilibrium C0. Let
z ¼ �r þ ~z and r ¼ rc þ l � 1þ l; ð56Þ
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where l is a perturbation parameter. Substituting Eq. (56) into (52) yields
Fig. 1.
solutio
dx
dt
¼ 4

5
x� 16

5
~z

� �
l� 4

5
xy þ 16

5
y~z;

dy
dt
¼ �y þ x2 � 3x~z� 4~z2;

d~z
dt
¼ �5~zþ 1

5
x� 4

5
~z

� �
l� 1

5
xy þ 4

5
y~x.

ð57Þ
At the critical point: rc = 1, the Jacobian of system (57) evaluated at the equilibrium x ¼ y ¼ ~z ¼ 0 has one zero and two
negative eigenvalues, 0,�1 and�9. Now applying the Maple program developed in this paper yields the following SNF:
dw
dt
¼ 4

5
wðl� w2Þ. ð58Þ
The near-identity transformation and time rescaling can be obtained up to an arbitrary order. For example, the results
up to 5th order are given as follows: The near-identity transformation is
x ¼ w� 906

625
l2 þ 566586

15625
l3 þ 84814353

78125
l4

� �
wþ 906

625
w5;

y ¼ w2 � 43

25
lþ 72

625
l2 þ 1117736

15625
l3

� �
w2 þ 43

25
� 5353

625
l

� �
w4;

~z ¼ 1

25
l� 8

625
l2 � 842

15625
l3 � 2795626

1953125
l4

� �
w� 1

25
� 67

625
l� 66

3125
l2

� �
w3 � 59

625
w5;

ð59Þ
and the time scaling is given by
T ¼ 4

25
l� 94

25
w2 � 32

625
l2 � 16

625
w2lþ 128

15625
l3 � 2240144

15625
w2l2 þ 26432

1953125
l4

� 7949170916

1953125
w2l3 þ 18372928

48828125
l5. ð60Þ
Note that the last two equations given in Eq. (59) represent the transformation between the center manifold and the
non-critical variables.

The governing Eq. (58) is a typical pitchfork bifurcation. Eq. (58) has three equilibrium solutions: w = 0 and
w ¼ � ffiffiffi

l
p ðl P 0Þ. The former is the original equilibrium solution x = y = 0, z = �r, which is stable when l < 0

(i.e., r < 1), while the latter is the post-critical bifurcation solution which is stable for l > 0 (i.e., r > 1). The bifurcation
solution is actually the approximation of the original equilibrium solutions C± in the vicinity of the critical point, l = 0.
Therefore, the bifurcation diagram, shown in Fig. 1(a), suggests that the equilibrium solution C0 bifurcates into equi-
librium solutions C± at the critical point r = 1 (or vice verser) and exchange their stabilities. The numerical simulation
result for l = 0.5 (or r = 1.5) is depicted in Fig. 1(b).
0

μ

w

-3

-2

-1

0

1

2

3

0 1 2 3 4

z

x
(b)(a)

Single zero singularity of the Lorenz equation (61): (a) bifurcation diagram; and (b) numerical simulation of bifurcation
n for r = 1.5 with the initial condition (x, y, z) = (4.0, 3.1, �2.1).
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4.1.2. Hopf bifurcation

Now we turn to consider Hopf bifurcation which plays an important role in studying limit cycles. It is well known
that the Lorenz system (52) can exhibit subcritical Hopf bifurcation arising from the equilibrium C+ or C�. Also it is
well known that the Lorenz system can have chaotic motion for certain parameter values. In fact, system (52) can have
chaos when r = 14. In the past two decades, there has been rapidly growing interest in controlling and anti-controlling
bifurcations and chaos (e.g., see [2,3]). There are a wide variety of promising potential applications of bifurcation and
chaos control. In general, the aim of bifurcation control is to design a controller such that the bifurcation characteristics
of a nonlinear system undergoing bifurcation can be modified to achieve some desirable dynamical behavior, such as
changing a Hopf bifurcation solution from subcritical to supercritical, eliminating chaotic motions, etc. In the follow-
ing, we will use the SNF obtained in the previous sections to show how to design a control system such that unstable
limit cycles become stable. First, we consider system (52) without control and then study a feedback control applied to
system (52).

Without control. For this case, the critical point at which Hopf bifurcation occurs is defined by Eq. (56). At the crit-
ical point the Jacobian of system (52) evaluated at C+ has a real eigenvalue �10 and a purely imaginary pair �2

ffiffiffi
6
p

.
Using a translation, given by
x ¼
ffiffiffiffiffiffiffiffiffiffiffi
r � 1
p

þ ~x; y ¼
ffiffiffiffiffiffiffiffiffiffiffi
r � 1
p

þ ~y; z ¼ �1þ ~z; ð61Þ
we move C+ to the origin and then apply an appropriate linear transformation to system (52) to find the following
system:
d~x
dt
¼ 2

ffiffiffi
6
p

~y þ 17

310
~xþ 19

ffiffiffi
6
p

310
~y � 39

155
~z

 !
lþ 344

7595
~x2 þ 2736

7595
~y2

� 432

155
~z2 þ 866

ffiffiffi
6
p

7595
~x~y � 228

1085
~x~z� 696

ffiffiffi
6
p

1085
~y~zþ � � � ;

d~y
dt
¼� 2

ffiffiffi
6
p

~x� 29
ffiffiffi
6
p

465
~xþ 1

155
~y þ 53

ffiffiffi
6
p

930
~z

 !
l� 1072

ffiffiffi
6
p

7595
~x2

� 48
ffiffiffi
6
p

7595
~y2 þ 236

ffiffiffi
6
p

155
~z2 � 4888

7595
~x~y þ 4352

ffiffiffi
6
p

3255
~x~z� 612

1085
~y~zþ � � � ;

d~z
dt
¼� 10~z� 2

93
~x�

ffiffiffi
6
p

186
~y þ 3

62
~z

 !
l� 256

4557
~x2 þ 48

1519
~y2

þ 12

31
~z2 � 160

ffiffiffi
6
p

4557
~x~y þ 120

217
~x~z� 22

ffiffiffi
6
p

217
~y~zþ � � � ;

ð62Þ
where l = r � 16 and � � � represents higher order terms.
Employing the Maple programs developed for computing the SNF of Hopf bifurcation yields the SNF:
dR
ds
¼R

3

124
mþ 139

53165
R2

� �
; ð63Þ

dH
ds
¼2

ffiffiffi
6
p
"

1þ 23

744
m� 3281317933639

319247852376600
R2 �

 
26339292381157493078902472268437

166438490308647816971712788230471875

� 6627347639944444075371091284247
ffiffiffi
6
p

60523087384962842535168286629262500

!
R4 þ � � �

#
. ð64Þ
The near-identity transformation, time scaling and parameter rescaling are also obtained. The time scaling and param-
eter rescaling are given:
l ¼mþ 61

3844
m2 � 2361289

10638961920
m3 þ 854409017

79153876684800
m4

� 1050588067437389

3395625322056302592000
þ 1948975

ffiffiffi
6
p

441678631901184

 !
m5 þ � � � ; ð65Þ
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T ¼ 245

2214144
m2 � 771331822487

79811963094150
w2 � 143045

25533508608
m3 þ 293860231

3140825826852864
m4

� 9258883163330958269601609110008247

15978095069630190429284427670125300000
þ 13254695279888888150742182568494

ffiffiffi
6
p

45392315538722131901376214971946875

 !
w4

þ 908362417529

651960061834810097664
þ 2321767

ffiffiffi
6
p

21200574331256832

 !
m5 þ � � � ; ð66Þ
where w = RcosH. The lengthy near-identity transformation is omitted.
It is easy to see from the first equation of (64) that the Hopf bifurcation is subcritical. Next, we shall apply a feed-

back control to system (52) such that the Hopf bifurcation becomes supercritical.
With control. The control of Hopf bifurcation of Lorenz system (52) has been considered in [2], where a feedback

control u, utilizing a washout filter, was proposed to obtain
dx
dt
¼ �pðx� yÞ;

dy
dt
¼ �xz� y;

dz
dt
¼ xy � z� r � u;

dv
dt
¼ y � cv;

ð67Þ
where v is the state of the washout filter used for control:
u ¼ �kcðy � cvÞ � knðy � cvÞ3; ð68Þ

with constant gains kc and kn, and c is a constant chosen for the filter. Note in Eq. (68) that we use negative sign for u

while positive sign is used in [2], where the numerical results showed that with c = 0.5, kc = 2.5, kn = 0.009 and p = 4,
the critical value rH is increased from 16 to about 36, and the limit cycles bifurcating from C+ are unstable.

We shall now present an analytical approach to study the controlled system (67) for p = 8. First it is easy to show
that the system still have three equilibrium solutions:
C0 : xe ¼ ye ¼ 0; ze ¼ �r; ve ¼ 0;

C� : x�e ¼ y�e ¼ �
ffiffiffiffiffiffiffiffiffiffiffi
r � 1
p

; z�e ¼ �1; v�e ¼ �
1

c

ffiffiffiffiffiffiffiffiffiffiffi
r � 1
p

.
ð69Þ
Comparing Eq. (69) with Eq. (55) indicates that the controlled system (55) keeps the equilibria of the original system
(52) unchanged, showing the advantage of introducing the washout filter. By a linear analysis with the aid of Hurwitz
criterion, one can easily find that when c = 0.5 and kc = 2.5 (kn does not affect linear stability), the equilibrium C+ is
stable for 1 < r < rH = 22.59470931 while the C� is stable for 1 < r < rH = 1.06728042. This suggests that, by noting
that both the two equilibria C± of the original system are (locally) stable for 1 < r < rH = 16, the feedback control
(68) is beneficial for the stability of the C+ since it receives 41.2% increase of stable interval over the original one. How-
ever, it dramatically decreases the stability of the C� with almost zero stable interval, indicating that this control strat-
egy is not good for simultaneously controlling the two Hopf bifurcations for C±. A better alternative control approach
has been proposed in [6], and later extended to consider difference equations [7] and time delay systems [8]. This ap-
proach will be used in the next example.

Let us consider C+ first. Similarly, we can shift C+ to the origin, at which the Jacobian of the system evaluated at the
critical point rH = 22.59470931 has four eigenvalues: One purely imaginary pair: ±6.57377850i and two negative real
eigenvalues: �0.39563830 and �10.10436170. We can apply a linear transformation to change system (67) into the fol-
lowing form:
d~x
dt
¼6:57377850~y � ð0:00236833~x� 0:10407365~y þ 0:01129543~zþ 0:06367725~vÞlþ � � � ;

d~y
dt
¼� 6:57377850~x� ð0:14454189~x� 0:04039567~y � 0:01615943~z� 0:02193977~vÞlþ � � � ;

d~z
dt
¼� 0:39563830~zþ ð0:01049911~xþ 0:00396952~y � 0:00194553~z� 0:00586872~vÞlþ � � � ;

d~v
dt
¼� 10:1043617~vþ ð0:00980539~x� 0:06341171~y þ 0:00568612~zþ 0:03608181~vÞlþ � � � ;

ð70Þ
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where � � � denote higher degree homogeneous polynomials of ~x, ~y, ~z, ~v and l. Applying the Maple program yields the
following SNF:
Fig. 2.
with (x
dR
ds
¼ R½0:01901367m� ð0:02031627kn � 0:00313739ÞR2�;

dH
ds
¼ 6:57377850þ 0:29963407k2

n � 0:04676775kn þ 0:00975412

kn � 0:15442729
R2 þ � � �

ð71Þ
A similar analysis on the equilibrium point C� leads to the following SNF:
dR
ds
¼ R½1:04131271m� ð0:42622679� 0:00711275knÞR2�;

dH
ds
¼ 0:20057843þ 0:00445422k2

n � 0:21102439kn þ 78:87634463

kn � 59:92429033
R2 þ � � � ð72Þ
It follows from the first equations of (71) and (72) that the Hopf bifurcation from the C+ is supercritical when
0:02031627kn � 0:00313739 > 0

kn � 0:15442729 6¼ 0

�
i.e., kn > 0:15442730; ð73Þ
while that from the C� is supercritical if
0:42622679� 0:00711275kn > 0

kn � 59:92429033 6¼ 0

�
i.e., kn < 59:92429032. ð74Þ
In order for both the Hopf bifurcations emerging from C+ and C� to be supercritical, it requires that
0:15442730 < kn < 59:92429032. ð75Þ
In other words, when the control parameters c, kc and kn are taken as c = 0.5, kc = 2.5 and kn 2 (0.15442730,
59.92429032), all the limit cycles bifurcating either from C+ or C� become stable. When the values of c and kc are var-
ied, the interval for kn is changed, and the new values of kn can be found using the above procedure. This becomes quite
easy by using the Maple program. It should be noted however that since the Hopf critical point on C� is
rH = 1.06728042 which is very close to the static bifurcation point rc = 1 at which C+ and C� bifurcate from the C0,
the equilibrium C� almost does not exist.

Some numerical simulation results are given in Figs. 2–4, which are the projections of the trajectories form the
4-dimensional space (x, y, z, v) into the 2-dimensional space (x, z). Fig. 2 shows the trajectories of the controlled system
(67) for p = 8, c = 0.5, kc = 2.5 and kn = 0.009. It is seen from Fig. 2(a) that when r = 20 2 (1, 22.59470931), the
trajectory converges to the equilibrium C+ even for an initial point not near the C+. When r = 23.5 > rH =
22.59470931, the bifurcating limit cycle is unstable and diverges to a chaotic attractor (see Fig. 2(b)).

Fig. 3 shows the numerical simulation results when p = 8, c = 0.5, kc = 2.5 (which are same as that for Fig. 2), but
kn = 10 2 (0.15442730, 59.92429032). It is observed that the periodic solutions bifurcating from C+ for
r > rH = 22.59470931 are all stable. For the values of r close to rH (see Fig. 3(a) in which r = 24, the bifurcating limit
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cycle is stable, as expected, from the analytical prediction. Even for larger values of r, shown in Fig. 3(b) where r = 35,
the numerical result still shows that the periodic solution is stable.

Similarly, Fig. 4 shows the numerical results related to C�, when p = 8, c = 0.5, kc = 2.5 and kn = 10 (same as that
used for Fig. 3), but for smaller r since rH = 1.06728042 for C�. It is seen that when r = 1.06 < rH, the trajectory con-
verges to C� (see Fig. 4(a)), but to a stable limit cycle when r = 1.12, shown in Fig. 4(b). It has been noted that unlike
the periodic solutions bifurcating from C+, the limit cycles bifurcating from C� are stable only if the values of r are
chosen close to the critical point rH. For example, when r = 1.13, the numerical simulation shows that the trajectory
diverges to infinity.

4.2. A nonlinear electrical circuit

A nonlinear electrical circuit, shown in Fig. 5, consists of an inductor, L, two capacitors C1 and C2, two resistors R1

and R2, a tunnel-diode and a conductance. Suppose L, C1, C2, R1 and R2 are linear components, and in addition, R1

may be varied. The tunnel-diode and the conductance are nonlinear elements, and they are voltage-controlled. The con-
ductance is a combination of a tunnel-diode and a current-reversing device. The characteristics of the tunnel diode is
given by [31] by
id ¼ f ðV dÞ¼4 0:01776V d � 0:10379V 2
d þ 0:22962V 3

d � 0:22631V 4
d þ 0:08372V 5

d . ð76Þ
Thus, the characteristics of the conductance is iG = �f(VG). The current in the inductor and the voltages across the
capacitors are chosen as the state variables (as shown in Fig. 5), leading to the following differential equations:
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Fig. 5. An electrical circuit.
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L
diL

dt
¼ �R1iL � V C1

;

C1
dV C1

dt
¼ �iG þ iL �

1

R2

ðV C1
� V C2

Þ;

C2

dV C2

dt
¼ �id þ

1

R2

ðV C1
� V C2

Þ.

ð77Þ
Denoting the state variables iL1
, V C1

and V C2
by x, y and z, respectively, we may rewrite Eq. (77) as
dx
dt
¼ �R1x� y;

dy
dt
¼ x� 0:001ðy � zÞ þ 0:01776y � 0:10379y2 þ 0:22962y3 � 0:22631y4 þ 0:08372y5;

dz
dt
¼ 0:001ðy � zÞ � 0:01776zþ 0:10379z2 � 0:22962z3 þ 0:22631z4 � 0:08372z5;

ð78Þ
where L, C1, C2 and R2 have been chosen respectively, the values 1, 1, 1 and 1000 in the corresponding units, while R1 is
treated as a control parameter.

System (78) has multiple equilibrium solutions obtained from _x ¼ _y ¼ _z ¼ 0. In this paper, we only consider bifur-
cations from the trivial solution x = y = z = 0, and pay particular attention to Hopf bifurcation. It is easy to obtain the
characteristic polynomial of system (78) evaluated at the trivial equilibrium solution as
P ðkÞ ¼ k3 þ ð0:002þ R1Þk2 þ ð0:9996845824þ 0:002R1Þkþ 0:01876� 0:0003154176R1.
Applying the Hurwitz criterion yields the stability condition for the trivial equilibrium:
0:0167600020 < R1 < 59:4767064362. ð79Þ
Further, it can be shown that a static bifurcation occurs at R1 = 59.4767064362 while a Hopf bifurcation emerges at
R1 = 0.0167600020. Suppose the current state of the system is under the selection of R1 = 30, and we decrease R1 until
R1 = 0.0167600020 at which the trivial equilibrium solution becomes unstable and it bifurcates into a family of limit
cycles as R1 further decreases.

Without control. First, consider the case without control. To obtain the stability condition using the SNF, let
R1 ¼ 0:0167600020� l; ð80Þ
and introduce the following transformation ðx; y; zÞT ¼ Qð~x;~y;~zÞ, where Q is given by
Q ¼
1:0000431639 0:0107620497 �0:0009999305

�0:0060001928 �1:0000825710 �0:0000019999

�0:0009999841 �0:0000127613 1:0000014998

2
64

3
75; ð81Þ
under which the transformed system is obtained as
d~x
dt
¼ 0:9998590413~y þ ð1:0000655704~xþ 0:0107622908~y � 0:0009999529~zÞl

� 0:0000000401~x2 � 0:0011171091~y2 þ 0:0001037875~z2 � 0:0000134046~x~y

� 0:0000002076~x~z� 0:0000000071~y~zþ � � � ;



Fig. 6.
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d~y
dt
¼ �0:9998590413~x� ð0:0060000928~xþ 0:0000645705~y � 0:0000059994~zÞl

þ 0:0000037366~x2 þ 0:1038052724~y2 � 0:0000008302~z2 þ 0:0012456004~x~y

þ 0:0000000042~x~zþ 0:0000004152~y~zþ � � � ;
d~z
dt
¼ �0:0187600020~zþ ð0:0009999716~xþ 0:0000107613~y � 0:0000009999~zÞl

þ 0:0000001038~x2 þ 0:0000002076~y2 þ 0:1037902594~z2 þ 0:0000000051~x~y

� 0:0002075769~x~z� 0:0000026490~y~zþ � � � ; ð82Þ

where � � � represents higher order terms. The new system clearly shows that its Jacobian evaluated at the origin
~x ¼ ~y ¼ ~z ¼ 0 is in the Jordan canonical form.

Executing the Maple program yields the following SNF:
dR
ds
¼ Rð0:5000005000mþ 0:0861699786R2Þ;

dH
ds
¼ 0:9998590408þ 0:0083811918m� 0:3163637547R2 þ � � � ð83Þ
The SNF clearly indicates that a subcritical Hopf bifurcation occurs at the critical point m = 0, and thus the bifurcating
limit cycles are unstable.

With control. Now, consider adding a feedback control to system (78). Unlike the first example where a washout
filter is introduced, here a direct feedback control is applied. It is required that the control does not change the equi-
librium x = y = z = 0, but convert the subcritical Hopf bifurcation to supercritical. There exist many ways to design the
feedback control. We take a simple one, given in the form of
u3 ¼ �kny3; ð84Þ
which is added to the third equation of Eq. (78). Then, under the same transformation (80), employing the Maple pro-
gram to obtain the following SNF for the controlled system:
dR
ds
¼ R½0:5000005000mþ ð0:0861699786� 0:3750754316knÞR2�;

dH
ds
¼ 0:9998590408þ 0:0104785841k2

n � 0:0126007750kn þ 0:0726815346

kn � 0:2297403970
R2 þ � � � ð85Þ
Thus, as long as
0:0861699786� 0:3750754316kn < 0

kn � 0:2297403970 6¼ 0

�
i.e., kn > 0:2297403971; ð86Þ
the Hopf bifurcation of the controlled system is supercritical.
The numerical simulation results of the electrical circuit are shown in Figs. 6 and 7, respectively for the uncontrolled

and controlled systems. It is seen from Figs. 6(a) and 7(a) that the trajectories converge to the origin x = y = z = 0 when
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R1 = 1.0 (i.e., l = �0.983239998) for both controlled and uncontrolled systems. This indicates that the origin
x = y = z = 0 is stable when l < 0. However, when R1 = 0.012 (i.e., l = 0.004760002) the trajectory of the uncontrolled
system diverges to infinity even from an initial point close to the origin (see Fig. 6(b)) implying that the origin is unsta-
ble and the Hopf bifurcation is subcritical; while the trajectory of the controlled system converges to a stable limit cycle
(see Fig. 7(b) where only the final limit cycle is shown and the initial point is marked by +). This indeed verifies that the
Hopf bifurcation of the controlled system becomes supercritical.

Note that the feedback control (84) changes the second equation of (78) to
dy
dt
¼ x� 0:001ðy � zÞ þ 0:01776y � 0:10379y2 � 0:27038y3 � 0:22631y4 þ 0:08372y5.
It is seen from the above equation that the sign of the third order term has been changed from positive to negative,
which renders the subcritical Hopf bifurcation to supercritical.
5. Conclusions

An efficient method with symbolic computation has been developed for computing explicit center manifold and the
simplest normal form with unfolding for general semi-simple cases, with particular attention given to codimension-one
singularities. The method combines center manifold theory and normal form theory into one unified procedure to
simultaneously obtain the coefficients of the simplest normal form and nonlinear transformations. It has been shown
that in addition to near-identity nonlinear transformation, time rescaling is needed for single zero singularity, while
both time and parameter rescaling are required for Hopf bifurcation. The explicit, recursive formulas have been imple-
mented using Maple. The results have been applied to the Lorenz system and a nonlinear electrical circuit to study con-
trolling Hopf bifurcation with a nonlinear state feedback control.
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