
Full Terms & Conditions of access and use can be found at
http://www.tandfonline.com/action/journalInformation?journalCode=tjbd20

Download by: [Shanghai Normal University] Date: 11 May 2016, At: 23:59

Journal of Biological Dynamics

ISSN: 1751-3758 (Print) 1751-3766 (Online) Journal homepage: http://www.tandfonline.com/loi/tjbd20

Complex dynamics in biological systems arising
from multiple limit cycle bifurcation

P. Yu & W. Lin

To cite this article: P. Yu & W. Lin (2016) Complex dynamics in biological systems arising
from multiple limit cycle bifurcation, Journal of Biological Dynamics, 10:1, 263-285, DOI:
10.1080/17513758.2016.1166270

To link to this article:  http://dx.doi.org/10.1080/17513758.2016.1166270

© 2016 The Author(s). Published by Taylor &
Francis.

Published online: 04 Apr 2016.

Submit your article to this journal 

Article views: 129

View related articles 

View Crossmark data

http://www.tandfonline.com/action/journalInformation?journalCode=tjbd20
http://www.tandfonline.com/loi/tjbd20
http://www.tandfonline.com/action/showCitFormats?doi=10.1080/17513758.2016.1166270
http://dx.doi.org/10.1080/17513758.2016.1166270
http://www.tandfonline.com/action/authorSubmission?journalCode=tjbd20&page=instructions
http://www.tandfonline.com/action/authorSubmission?journalCode=tjbd20&page=instructions
http://www.tandfonline.com/doi/mlt/10.1080/17513758.2016.1166270
http://www.tandfonline.com/doi/mlt/10.1080/17513758.2016.1166270
http://crossmark.crossref.org/dialog/?doi=10.1080/17513758.2016.1166270&domain=pdf&date_stamp=2016-04-04
http://crossmark.crossref.org/dialog/?doi=10.1080/17513758.2016.1166270&domain=pdf&date_stamp=2016-04-04


JOURNAL OF BIOLOGICAL DYNAMICS, 2016
VOL. 10, NO. 1, 263–285
http://dx.doi.org/10.1080/17513758.2016.1166270

Complex dynamics in biological systems arising frommultiple
limit cycle bifurcation

P. Yua and W. Linb

aDepartment of Applied Mathematics, Western University, London, Ontario, Canada; bCentre for
Computational Systems Biology, School of Mathematical Sciences, Fudan University, Shanghai, People’s
Republic of China

ABSTRACT
In this paper, we study complex dynamical behaviour in biological
systems due to multiple limit cycles bifurcation. We use simple epi-
demic and predator–prey models to show exact routes to new types
of bistability, that is, bistability between equilibrium and periodic
oscillation, and bistability between two oscillations, whichmaymore
realistically describe the real situations. Bifurcation theory and nor-
mal form theory are applied to investigate the multiple limit cycles
bifurcating from Hopf critical point.
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1. Introduction

It is well known that dynamical systems, arising in almost all fields of science and engi-
neering such as physics, mechanics, electronics, ecology, economy, biology, finance, etc.
can exhibit self-sustained oscillations, leading to limit cycles. The phenomenon of limit
cycle was first discovered by Poincaré [8] in late of the nineteenth century, who devel-
oped a breakthrough qualitative theory of differential equations which studies the general
behaviours of the system without obtaining a specific solution. In order to determine the
existence of limit cycles for a given differential equation and the properties of limit cycles,
Poincaré introduced the method of topographical systems, the Poincaré Map, the method
of small parameter [9] and the Annular Region Theorem. Ever since, the famous Poincaré
Map is still the most basic tool for studying the stability and bifurcations of periodic
orbits.

Since the mid of twentieth century, bifurcation theory was developed to promote the
study of limit cycles and computational methods were developed to approximate the solu-
tion of limit cycles. From the point of view of dynamical system theory, there are four
principal bifurcations in producing limit cycles: (i) Multiple Hopf bifurcations from a
centre or focus; (ii) Separatrix cycle bifurcations from homoclinic or heteroclinic orbits;
(iii) global centre bifurcation from a periodic annuli; and (iv) limit cycle bifurcations from
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264 P. YU ANDW. LIN

multiple limit cycles. Limit cycles bifurcating from a focus or a centre are called local bifur-
cations of limit cycles or small-amplitude limit cycles, which are usually studied by using
centre manifold theory and normal form theory (e.g. see [4, 5, 7]). Centre manifold and
normal form theories may be the two most popular and useful tools for studying local
bifurcations, in particular limit cycles of dynamical systems.

One well-known problem closely related to limit cycle theory is Hilbert’s 16th prob-
lem, which is one of the 23 mathematical problems proposed by D. Hilbert at the Second
International Congress of Mathematicians in 1900 [6]. Recently, a modern version of the
second part of Hilbert’s 16th problemwas formulated by S. Smale, and chosen as one of his
18most challengingmathematical problems for the twenty-first century [11]. This problem
is to find an upper bound on the number of limit cycles that a planar polynomial system
can have. If the problem is restricted to the vicinity of isolated fixed points, it is equiv-
alent to studying generalized Hopf bifurcations, and the main tasks become computing
the focus values (or normal form of Hopf bifurcation) of the point and determining centre
conditions. It is nowwell known that for quadratic systems themaximumnumber of small-
amplitude limit cycles around an isolated singular point is three [1]. However, globally, the
problem is unsolved even for quadratic systems. Usually, people thought that Hilbert’s 16th
problem is an abstract mathematical problem and hard to have any applications.

In order to find multiple limit cycles bifurcating from Hopf singularity, efficient com-
putational methods are essential, particularly in computing higher-order focus values or
higher-order normal form coefficients. When the dimension of a dynamical system asso-
ciated with Hopf bifurcation is more than two, centre manifold theory has to be used
together with the normal form computation. In the 1990’s computations of centre mani-
fold and normal forms were extensively studied and some efficient computational methods
were developed (e.g. see [5] and references therein). This is particularly useful in solving
real problems such as those arising in biology. Indeed, recent publications show that even
for two-dimensional epidemic model or predator–prey model, determining whether the
system can have more than one limit cycle bifurcating from a Hopf critical point is not
easy (e.g. see [10, 13, 19–21]). However, studying bifurcation of multiple limit cycles and
determining the number of limit cycles are so important for applications. For example,
in most disease models, due to difficulty of identifying multiple limit cycles, researchers
often merely study bistable states which involve only equilibrium solutions. Nevertheless,
in real situations, stable disease-free equilibrium and periodic diseasemotionmay co-exist,
and the motion can be generated from Hopf bifurcation. In such a more realistic case, one
must investigate bifurcation of limit cycles and determine their stability. More recently,
we have found two limit cycles in the vicinity of an equilibrium, with inner unstable and
outer stable, showing the interesting bistable phenomenon [18]. The simulation is shown
in Figure 1.

In this paper, we will apply the method of normal forms to study bifurcation of multiple
limit cycles in dynamical systems arising from biology. In particular, we investigate one
epidemicmodel and one predator–preymodel, and show that the former canhave two limit
cycles and the latter can exhibit three limit cycles for certain feasible parameter values. In
the next section, we shall present a summary on centre manifold theory and normal form
theory and their computations. Then, we consider the epidemicmodel in Section 3 and the
predator–prey model in Section 4. Numerical simulations are given in Section 5 to verify
the analytical predictions. Finally, conclusion is drawn in Section 6.
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JOURNAL OF BIOLOGICAL DYNAMICS 265

(a) (b)

Figure 1. Two limit cycles in an HIV model [18]: ẋ = 1 − Dx − (B + A y/(y + C)) x y, ẏ =
(B + Ay/(y + C))xy − y when B=D= 0.057, A= 0.01846287, C= 0.11969000: (a) three trajec-
tories with moving directions indicated; and (b) two limit cycles with the inner unstable and outer
stable.

2. Theory, methodology and computation

In this section, we briefly describe centre manifold theory and normal form theory, as
well as an efficient computational method. Consider a general nonlinear dynamical system
described in the form of

ẇ = Aw + F(w), w ∈ Rn, F(w) : Rn → Rn, (1)

where the dot denotes differentiation with respect to time t, Aw and F(w) represent the
linear and nonlinear parts of the system, respectively, and F(w) is assumed to be analytic.
Here, the matrix A is assumed diagonalizable, implying that the singularity of the system
is a semisimple case. Further, suppose w = 0 is an equilibrium of the system, leading to
F(0) = 0 and DwF(0) = 0. Denote the n eigenvalues of A by λi, i = 1, . . . , n, and without
loss of generality, we assume that there are k eigenvalues λj, j = 1, . . . , k ≤ n, having zero
real part. This indicates that system (1) has a k-dimensional centre manifold.

Then, by using a proper linear transformation w = Tz, we can transform system (1)
into

ż = Jz + f(z), (2)

where J is a diagonal matrix, and f(x) is expanded as

f(z) =
∑
m≥2

fm(z), where fm(z) =
∑
m(n)

fm(n)zm1
1 zm2

2 · · · zmn
n ,

in which m(n) denotes a vector (m1,m2, . . . ,mn) of n non-negative integers, satisfying∑n
j=1mj = m, and the index m(n) in the summation denotes that the summation goes

over all the sets form ≥ 2.
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266 P. YU ANDW. LIN

Suppose that the matrix J is given in the form of J = diag(J1, J2), where

J1 = diag(λ1, λ2, . . . , λk), J2 = diag(λk+1, λk+2, . . . , λn),

where J1 contains the eigenvalues with zero real part, while J2 involves the eigenvalues
with negative zero real part. This means that the system only contains centre manifold
and stable manifold. It should be noted that in general we can treat more general situation
mathematically for which J also contains eigenvalues with positive real part, meaning that
the system also contains an unstablemanifold. However, for real applications a systemwith
unstable manifold is usually unstable and the first task will be stabilizing the system, and
therefore, without loss of generality, we assume there is no unstablemanifold in the system.

Let z = (xT , yT)T , where x = (x1, x2, . . . , xk)T and y = (y1, y2, . . . , yn−k)
T . Then, sys-

tem (2) can be rewritten as

ẋ = J1x + f1(x, y),

ẏ = J2y + f2(x, y).
(3)

2.1. Centremanifold theory

Using the centre manifold theory [2], we can represent the centre manifold of system (3)
as a (local) graph,

Wc = {(x, y) | y = H(x)}, H(0) = DH(0) = 0, (4)

whereH : U → Rn−k is defined on some neighbourhood U ⊂ Rk of the origin.
We now consider the projection of the vector field on y = H(x) onto the centre

eigenspace, and obtain the differential equation describing the dynamics on the centre
manifold, given by

ẋ = J1x + f1(x, H(x)). (5)

Since H(x) is tangent to y = 0, the solutions of Equation (5) provide a good approxima-
tion of the flow restricted to the centre manifold Wc. More precisely, if the origin x = 0
of Equation (5) is locally asymptotically stable (respectively, unstable), then the origin of
system (3) is also locally asymptotically stable (respectively unstable).

The centre manifold can be found as follows: Substituting y = H(x) into the second
equation of (3) and using the chain rule yield

N (H(x)) = DH(x)[J1x + f1(x,H(x))] − J2H(x) − f2(x,H(x)) = 0, (6)

with the boundary conditionsH(0) = DH(0) = 0. The nonlinear differential equation for
H cannot, of course, be solved exactly in most cases (to do so would imply that a solution
of the original equation had been found), but its solution can be approximated arbitrarily
closely as a Taylor series at x = 0, described in the following theorem.

Theorem 2.1 [2]: If a function φ(x), with φ(0) = Dφ(0) = 0, can be found such that
N (φ(x)) = O(‖x‖p) for some p > 1 as ‖x‖ → 0, then it follows that

H(x) = φ(x) + O(‖x‖p) as ‖x‖ → 0. (7)
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Thus, we can approximateH(x) as closely as we wish by seeking series solutions of (6).
Note that by using centre manifold theory, we have reduced the n-dimensional differ-
ential system (3) to the k-dimensional differential system and keep the local dynamics
unchanged.

2.2. Normal form theory

Having applied centre manifold theory to obtain the simple differential system (5) which
describes the dynamical behaviour of the system restricted to the centre manifold, now
we want to further simplify the differential system (5) by applying normal form theory. To
achieve this, rewrite Equation (5) as

ẋ = J1x + f1(x) = J1x + f21(x) + f31(x) + · · · + fs1(x) + O(‖x‖s+1), (8)

where fs1 denotes the sth-degree homogeneous polynomial in x. Define Ms as the linear
space of vector fields whose elements are homogeneous polynomials of degree s, and thus
fs1 ∈ Ms, s = 2, 3, . . .. Next, we introduce the near-identity transformation:

x = u + Q(u) = u + q2(u) + q3(u) + · · · + qs(u) + O(‖u‖s+1), (9)

where qs ∈ Ms, s = 2, 3, . . ., into Equation (8) to obtain the normal form,

u̇ = J1u + C(u) = J1u + c2(u) + c3(u) + · · · + cs(u) + O(‖u‖s+1), (10)

where cs ∈ Ms, s = 2, 3, . . .. The procedure of normal form method is to use the transfor-
mation qs to simplify cs ‘as simple as possible’ order by order for s = 2, 3, . . .. Note that the
s-order transformation qs does not affect the lower-order normal form terms cj, j < s but
affect all higher-order normal form terms cj, j > s. Therefore, assuming that the normal
form reduction up to order s−1 has been preformed, we can introduce the transformation
x = u + qs(u), and differentiating it gives

ẋ = [I + Dqs(u)]u̇. (11)

Now, we introduce the map, called homological operator, as follows:

L : Ms → Ms, with L(X) = [X, L] = DLX − DXL, ∀X ∈ Ms, (12)

where [•, •] is called Lie bracket operation, with L = J1x, and define the subspace induced
by themap as L(Ms). ThusMs = L(Ms) ⊕ Gs, whereGs is the complement for L(Ms) inMs.

Then, it follows from Equation (11) that

u̇ = [I + Dqs(u)]−1f1[u + qs(u)]

= [I − Dqs(u) + O(‖u‖2(s−1))]

[
J1(u + qs(u)) +

s∑
k=2

f1(u + qs(u)) + O(‖y‖s+1)

]

= J1u + DLqs(u) + f21(u) + · · · + fs−1
1 (u) + fs1(u) − Dqs(u)L + O(‖u‖s+1)

= J1u + c2(u) + · · · + cs−1(u) + fs1(u) + Lqs(u) + O(‖u‖s+1). (13)

Here it should be noted that cj = fj1, j = 2, 3, . . . , s − 1 since it is assumed that the normal
form reduction has been performed up to order s−1. Now, to simplify the s-order term,

D
ow

nl
oa

de
d 

by
 [

Sh
an

gh
ai

 N
or

m
al

 U
ni

ve
rs

ity
] 

at
 2

3:
59

 1
1 

M
ay

 2
01

6 



268 P. YU ANDW. LIN

∀fs1 ∈ Ms, we need to find suitable qs ∈ Ms such that fs1(u) + Lqs(u) = cs(u) becomes as
simple as possible, where Lqs(u) ∈ L(Ms) and cs(u) ∈ Gs. Therefore, once the basis of
L(Ms) is found, one can determine the basis of the complementary space Gs and thus the
‘form’ of the normal form. It is well known that the normal form is not unique since the
basis is not unique.

2.3. Normal form computation

From the view point of computation, it seems computing centremanifold and normal form
is straightforward. But actually designing an efficient algorithm is not an easy task. As a
matter of fact, many researchers have devoted to develop efficient computational meth-
ods on normal forms (e.g. see [3, 5, 15, 17]). Recently, an explicit recursive formula has
been developed for computing the normal form together with centre manifold for gen-
eral n-dimensional differential systems associatedwith semisimple singularities.We briefly
outline the approach as follows. Rewrite Equations (9) and (10) as

x = u + Q(u) = u +
∑
m≥2

∑
m(k)

qm(k)u
m1
1 um2

2 · · · umk
k ≡ q(u), (14)

and

u̇ = J1u + C(u) = J1u +
∑
m≥2

∑
m(k)

cm(k)u
m1
1 um2

2 · · · umk
k , (15)

respectively, and then the centre manifold can be expressed in the new variable u as

y = H(q(u)) =
∑
m≥2

∑
m(k)

hm(k)u
m1
1 um2

2 · · · umk
k ≡ h(u). (16)

Combining the centre manifold and normal form computations yields the following
equations,

Du

(
Q(u)

h(u)

)
J1u −

(
JoQ(u)

Jrh(u)

)
=
(
F1(u)

F2(u)

)
− Du

(
Q(u)

h(u)

)
C(u) −

(
C(u)

0

)
, (17)

whereF1(u) = f1(q(u), h(u)),F2(u) = f2(q(u), h(u)). Comparing the coefficients on both
sides of Equation (17), we obtain the recursive formulas for the coefficients of the centre
manifold and the normal form as well as the associated nonlinear transformation.

For convenience, we express the powers of q(u) and h(u), for j ≥ 0, as

qj(u) =
∞∑
m=j

∑
m(k)

qjm(k)u
m1
1 um2

2 · · · umk
k ,

hj(u) =
∞∑

m=2j

∑
m(k)

hjm(k)u
m1
1 um2

2 · · · umk
k .

(18)

Then, the following result is obtained.
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Theorem 2.2 [12]: For any fixed s(k), s ≥ 2, let� = ∑k
i=1 λisi. Then the recursive formulas

for the coefficients of the nonlinear transformation (14), the normal form (15) and the centre
manifold (16) of system (3), that is, qs(k), cs(k) and hs(k), are given below.

(1) For qs(k) and cs(k), if � − λj = 0, j = 1, . . . , k, then

qs(k),j = 0, cs(k),j = as(k),j − bs(k),j,

otherwise,

qs(k),j = as(k),j − bs(k),j
� − λj

, cs(k),j = 0.

(2) For hs(k), the formulas are given by

hs(k),j−k = as(k),j − bs(k),j
� − λj

, j = k + 1, . . . , n,

where

as(k) =
s∑

m=2

∑
m(n)

j=s∑
j(n)

∑
j1(k)

∑
j2(k)

· · ·
∑
jn(k)

fm(n)qm1
j1(k),1 · · · qmk

jk(k),k
hmk+1
jk+1(k),1

· · · hmn
jn(k),n−k,

bs(k) =
k∑

i=1

s−1∑
l=2

∑
l(k)

(si + 1 − li)
(
qs(k)−l(k)+ei(k)
hs(k)−l(k)+ei(k)

)
cl(k),i,

qjs(k) =
s−1∑
l=j−1

∑
l(k)≤s(k)

qj−1
l(k)qs(k)−l(k),

hjs(k) =
s−2∑

l=2j−2

∑
l(k)≤s(k)

hj−1
l(k)hs(k)−l(k).

The proof for this theorem and Maple program can be found in [12].

2.4. Bifurcation ofmultiple limit cycles

Nowwe discuss how to determine themaximal number of limit cycles whichmay bifurcate
from a Hopf critical point. Suppose that the normal form of system (1) has been obtained
in the polar coordinates up to the (2k + 1)th order term:

ṙ =r(v0 + v1r2 + v2r4 + · · · + vkr2k),

θ̇ =ωc + t1r2 + t2r4 + · · · + tkr2k,
(19)

where r and θ denote the amplitude and phase of motion, respectively. Both vk and tk are
explicitly expressed in terms of the original system’s coefficients. vk is called the kth-order
focus value of the Hopf-type critical point (the origin). The zero-order focus value v0 is
obtained from linear analysis.
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270 P. YU ANDW. LIN

The basic idea of finding k small-amplitude limit cycles of system (1) around the origin
is as follows: First, find the conditions based on the original system’s coefficients such that
v0 = v1 = · · · = vk−1 = 0 (note that v0 = 0 is automatically satisfied at the critical point),
but vk �= 0, and then perform appropriate small perturbations to prove the existence of k
limit cycles. This indicates that the procedure for finding multiple limit cycles involves two
steps: Computing the focus values (i.e. computing the coefficients of the normal form) and
solving multivariate coupled nonlinear polynomial equations: v0 = v1 = · · · = vk−1 = 0.
In the following theorem, we give sufficient conditions for the existence of small-amplitude
limit cycles. (The proofs can be found in [16].)

Theorem 2.3: Suppose that the focus values depend on k parameters, expressed as

vj = vj(ε1, ε2, . . . , εk), j = 0, 1, . . . , k, (20)

satisfying

vj(0, . . . , 0) = 0, j = 0, 1, . . . , k − 1, vk(0, . . . , 0) �= 0,

and det
[
∂(v0, v1, . . . , vk−1)

∂(ε1, ε2, . . . , εk)
(0, . . . , 0)

]
�= 0. (21)

Then, for any given ε0 > 0, there exist ε1, ε2, . . . , εk and δ > 0with |εj| < ε0, j = 1, 2, . . . , k
such that the equation ṙ = 0 has exactly k real positive roots (i.e. system (1) has exactly k limit
cycles) in a δ-ball with its centre at the origin.

3. An epidemic model with a nonlinear incidence rate

The first system we consider in this section for bifurcation of multiple limit cycles is an
epidemic model with a nonlinear incidence rate. Detailed dynamical analysis including
saddle-node bifurcation, Hopf bifurcation and homoclnic bifurcation was given in [10]. In
[10] the critical conditions on Hopf bifurcation are given in terms of system parameters.
Moreover, the stability of bifurcating limit cycles is determined by calculating the first focus
value. In particular, in Theorem2.6 of [10], it wasmentioned that there are at least two limit
cycles if the first focus value vanishes. But no further discussions are given in [10] on how
to obtain the conditions for the existence of two limit cycles. Here, we want to show that
this epidemic model actually can have maximal two limit cycles due to Hopf bifurcation,
and derive the explicit conditions on the existence of two limit cycles. It should be noted
that the Hopf bifurcation condition and the first-order focus value obtained in this paper
are different from that given [10], though they are equivalent. Our simple formulas help
us to compute higher-order focus values for analysing bifurcation of multiple limit cycles.
Consider the normalized system (1.3) in [10] describing the epidemic model:

İ = I2

1 + pI2
(A − I − R) − mI,

Ṙ = qI − R,
(22)

where I and R denote the number of infective individuals and the number of removed
individuals, respectively, and all the four parameters, p,A,m and q, take positive values.
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The system has a disease-free equilibrium E0 = (0, 0), which is a stable node, and a disease
equilibrium (a positive equilibrium), E1 = (I1,R1), where R1 = qI1 and I1 is determined
by the equation:

(mp + q + 1)I21 − AI1 + m = 0. (23)

Therefore,

(a) there is no positive equilibrium if A2 < 4m(mp + q + 1);
(b) there is one positive equilibrium if A2 = 4m(mp + q + 1); and
(c) there are two positive equilibria if A2 > 4m(mp + q + 1).

Regarding the bifurcation of multiple limit cycles in system (22), we have the following
result.

Theorem 3.1: For any real values of I1 ∈ (0, 1/
√
3E), (E > 0), if the parameters satisfy

A = 4(4 − 3EI21 + 3I21)
9EI32

, p = 1
3I21

− E,

m = 4 − 3EI21 + 3I21
3EI21 + 2

, q = 4 − 3EI21
9EI41(2 + 3EI21)(9E2I

4
1 + 6I21 + 8)

,

then system (22) can have two limit cycles due toHopf bifurcation. The condition under which
only one limit cycle exists is also given.

Proof: To find themaximal number of limit cycles which can bifurcate from aHopf critical
point, we will not explicitly solve the positive equilibrium (like what is done in [10]) since
the explicit expression involving square root will cause very messy calculations in comput-
ing higher-order focus values. The Jacobian matrix evaluated at the positive equilibrium
has the trace, given by

Tr(J) = −(3pm + p + 2q + 3)I21 + 2AI1 − m − 1, (24)

Now, linearly solving Equation (23) and Tr(J) = 0 form and q yields

m = 1 + (1 + p)I21
1 − pI21

and q = AI1(1 − pI21) − (1 + pI21)
2 − 2I21

I21(1 − pI21)
. (25)

Then, the determinant of the Jacobian matrix becomes

det(J) = (1 + pI21)[AI1(1 − pI21) − 2(1 + p)I21 − 2]
1 − pI21

. (26)

It is obvious that m>0 requires that 1 − pI21 > 0, and a Hopf bifurcation can occur if
AI1(1 − pI21) > 2[1 + (1 + p)I21] which in turn guarantees q>0. Multiplying 1 + pI2 on
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both sides of the equations in (22) and then introducing the following transformation into
the resulting equation,

(
I
R

)
=
(
I1
qI1

)
+
⎡
⎣ 1 0

p + 1
I21

ωc

I21

⎤
⎦(x1

x2

)
, (27)

whereωc =
√

(1 + pI21)[AI1(1 − pI21) − 2 − 2(1 + p)I21]/(1 − pI21), with time scaling t →
ωct, yielding a new system:

ẋ1 =x2 − 1 + (1 + p)I21
ωcI1(1 − pI21)

x21 + 2
I1
x1x2 − 1 + (1 + p)I21

ωcI1(1 − pI21)
x31 + 1

I21
x21x2,

ẋ2 = − x1 − (1 − pI21)(1 + 2pAI31) + (1 − p)I21 − 3p(1 + p)I41)
ω2
c I1(1 − pI21)

x21 + 2
ωcI1

x1x2

− (1 + AI)pI21 + I21 + 1
ω2
c I21

x31 + 1
ωcI21

x21x2, (28)

whose linear part is in Jordan canonical form.
Next, applying theMaple program [12, 14] to system (28) we obtain the first focus value,

given by

v1 = (1 + 2p)(3pAI31 + 4pI21 + 4I21 − AI1 + 4)
8(1 + pI21)[AI1(1 − pI21) − 2(1 + p)I21 − 2]

. (29)

Note that the denominator of v1 is positive. Solving v1 = 0 for A yields

A = 4(1 + I21 + pI21)
I1(1 − 3pI21)

, (30)

which requires 1 − 3pI21 > 0 in order for A > 0. Under the condition (30), executing the
Maple program yields the second focus value,

v2 = 1 + 2p
32I21(1 + pI21)

(31)

which clearly shows that v2 > 0 for positive parameter values, implying that system (22)
can exhibit at most two small-amplitude limit cycles due to Hopf bifurcation, and the outer
is unstable (due to v2 > 0) and the inner is stable. Note that the system contains four free
parameters, and so mathematically it may be possible to find at most four limit cycles
without the physical restriction on the parameters.

Finally, we want to find the feasible positive parameters for the existence of the two limit
cycles. Let

p = 1
3I21

− E, E > 0. (32)

Then, p>0 requires

0 < I1 <
1√
3E

, ∀E > 0, (33)
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which guarantees A>0 and

m = 4 − 3EI21 + 3I21
3EI21 + 2

> 0. (34)

Further, under the condition (33), the q given in Equation (25) becomes

q = 4 − 3EI21
9EI41(2 + 3EI21)(9E2I

4
1 + 6I21 + 8)

> 0. (35)

Consequently, substituting Equation (32) into Equation (31) results in

v2 = 2 + 3I21 − 6EI21
32I41(4 − 3EI21)

> 0, (due to the condition (33)). (36)

Moreover, we may also discuss the existence of only one limit cycle, for which v1 �= 0,
that is,

OneLC := 3pAI31 + 4pI21 + 4I21 − AI1 + 4 �= 0.

In order to find the above condition given in terms of the system parameters, we eliminate
I1 from Equation (23) and Tr(J) = 0 (see Equation (24)) to obtain the solution for I1,

I1 = 2m2p + mq + 2m − q − 1
A(mp + p + 1)

,

and a resultant equation,

Res = (1 − m)(pm + 1 + p)A2 + (m − 1)2q2 + 2(m − 1)(2m2p + 2m − 1)q

+ (2m2p + 2m − 1)2 = 0.

Then, with Res = 0, substituting the solution I1 into OneLC �= 0 yields the following
condition:

0 �=p(1 − m)[(1 + m)p + 1]A2 + p(1 − m)2q2 − (1 − m)[2(m2 + m + 2)p2 + 3(m + 1)

p + 1]q − (1 + 2p)[2m(2m + m2 + 2)p2 + (4m2 + 5m + 2)p + 2m + 1],

under which there exists only one small-amplitude limit cycle. �

It is noted in [10] that one unstable limit cycle is obtained when A=10.02,m=4.0,
q=3.6,p=0.2, for which v1 ≈ 0.555787 > 0. In fact, for one limit cycle, we can choose
some parameter values to obtain a stable limit cycle, since v1 changes its sign around
the value of A given in Equation (30). For example, by choosing A = 23,m = 11

4 , q =
187
10 , p = 1

5 (which yields I1 = 1) we obtain v1 = − 1
240 < 0, leading to a stable limit cycle;

and if taking A = 21,m = 11
4 , q = 167

10 , p = 1
5 (which also yields I1 = 1) then we have

v1 = 7
1488 > 0, leading to an unstable limit cycle.

D
ow

nl
oa

de
d 

by
 [

Sh
an

gh
ai

 N
or

m
al

 U
ni

ve
rs

ity
] 

at
 2

3:
59

 1
1 

M
ay

 2
01

6 



274 P. YU ANDW. LIN

To end this section, we give a set of parameter values for model (22) to exhibit two limit
cycles as follows: Taking E=1 yields 0 < I1 < 1√

3
≈ 0.577. Then, choosing I1 = 1

2 results
in

p = 1
3
, A = 128

9
, m = 16

11
, q = 2093

99
, v0 = v1 = 0, v2 = 5

26
. (37)

Hence, proper perturbations on the parameters can be chosen such that 0 < v0 � −v1 �
v2 to yield two limit cycles, with the outer stable and the inner unstable, both enclosing the
stable equilibrium E1. A more detailed numerical example with computer simulation will
be given in Section 5.1.

4. A predator–preymodel with negative effect of prey on its predator

The next system we consider in this section is a predator–prey model with negative effect
of prey on its predator [13], described by

Ẋ = X
(
r1 + α12Y

b2 + Y
− β1Y

e1 + X
− d1X

)
,

Ẏ = Y
(
r2 − β2X

e2 + Y
− d2Y

)
,

(38)

where X and Y represent population densities of the predator and prey, respectively. r1 is
the intrinsic growth rate of the predator, d1 is the intensity of intraspecific competitions,
while r1/d1 represents the carrying capacity of the predatorwhen in isolation from the prey.
Similarly, r2 is the intrinsic growth rate of the prey, d2 is the intensity of intranspecific com-
petition, while r2/d2 represents the carrying capacity of the prey when in isolation from
the predator.When r1 = β1 = 0, system (38) becomes the Rosenzweig–MacArthurmodel.
Both cases r1 = β1 = 0 and r1β1 �= 0 were discussed in [13] for a preliminary study of the
transition of system states. Complex dynamics and bifurcations such as Hopf bifurcation
were not investigated in [13].

In this section, we will consider two cases for bifurcations of multiple limit cycles, one
is for r1 = β1 = 0 and the other for β1 = 0, but r1 �= 0. In order to simplify the system and
reduce the number of parameters, introducing the following scaling,

X = d1
r2
, Y = d2

r2
, τ = r2t, A = α12

r2
, r = r1

r2
,

B1 = β1d1
d2r2

, B2 = β2d2
d1r2

, E1 = e1d1
r2

, E2 = e2d2
r2

, E3 = b2d2
r2

,

into system (38), we obtain (still using the notation t for τ )

ẋ = x
(
r + Ay

E3 + y
− B1y

E1 + y
− x

)
,

ẏ = y
(
1 − B2x

E2 + y
− y

)
,

(39)

which now contains only six parameters: r,A,B1,B2,E2 and E3. Now, the first case is given
by B1 = r = 0, and the second case is defined by B1 = 0. In the following, we first consider
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the first case and then the second case. We will show that there are feasible positive param-
eter values for both cases such that system (39) can have maximal three small-amplitude
limit cycles though the second case has less restrictions on the parameters.

4.1. Case B1 = r = 0

For this case, system (39) becomes

ẋ = x
(

Ay
E3 + y

− x
)
,

ẏ = y
(
1 − B2x

E2 + y
− y

)
,

(40)

which only contains four parameters: A,B2,E2 and E3. Ideally, four limit cycles might
be possible if feasible parameter values exist. However, due to physical limitation on the
parameters, we can have three limit cycles for system (40), as stated in the following
theorem.

Theorem 4.1: System (40) can have three small-amplitude limit cycles bifurcating from the
origin due to Hopf bifurcation, with the parameters satisfying the following conditions:

0 < y2 < 0.266, 0 < E2 < 1 − 2y2, E3 >
y22(1 − E2 − 2y2)

E2 + y22
,

where y2 is determined from the equation: AB2y2 − (1 − y2)(E2 + y2)(E3 + y2) = 0.

Proof: First, note that system (40) has three equilibrium solutions, two of them are
boundary equilibria and one is a positive equilibrium:

E0 : (0, 0), E1 : (0, 1), E2 :
(

(1 − y2)(E2 + y2)
B2

, y2
)
, (41)

where y2 is determined from the following equation:

AB2y2 − (1 − y2)(E2 + y2)(E3 + y2) = 0. (42)

It can be shown that E0 is a degenerate saddle and E1 is a saddle. For the equilibrium E2,
suppose J2 is the Jacobian matrix of system (40) evaluated at this positive equilibrium.
Then, solving the equation Tr(J2) = 0 and Equation (42) for A and B2 yields

A = (E3 + y2)(1 − E2 − 2y2)
E2 + y2

, B2 = E2 + (1 − y2)y22 + E2(E2 + y2)
y2(1 − E2 − 2y2)

. (43)

The positivity condition on A and B2 requires that

0 < E2 < 1 − 2y2, 0 < y2 < 1
2 . (44)
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Next, multiplying (E2 + y)(E3 + y) on both sides of the equations in (40) and then
introducing the following linear transformation into the resulting equation,

(
x
y

)
=
(

(1−y2)(E2+y2)
B2
y2

)
+
⎡
⎣ 1 0

(E3 + y2)(E2 + y2)
E3(1 − E2 − 2y2)

ωc(E2 + y2)
y2E3(1 − E2 − 2y2)2

⎤
⎦(x1

x2

)
, (45)

where

ωc =
√

(y2(1 − E2 − 2y2)(E3 + y2)[E3(E2 + y22) − y22(1 − E2 − 2y2)], (46)

with time scaling t → ωct, yields the system:

ẋ1 = x2 + f1(x1, x2),

ẋ2 = −x1 + f2(x1, x2),
(47)

where f1 and f2 are both 4th-degree polynomials. Note that under the conditions given in
Equation (44), ω2

c > 0 requires that

E3 >
y22(1 − E2 − 2y2)

E2 + y22
. (48)

Now, we apply the Maple program in [12, 14] for system (47) to obtain the focus values
vi, i = 1, 2, . . . , 4, all of them are functions of E2,E3 and y2. v1 is given by

v1 = (1 − y2)(E3 + y2)(E2 + y2)
8y2E3(1 − E2 − 2y2)3[2y32 + E2E3 + (E2 + E3 − 1)y22]

× {2y62 + 6E2y52 + (E22 + E2E3 − E2 + E3)[3y42 − (1 − E3)y32 − E22E3]

− 6E22E3y2(E2 + y2)}. (49)

and other lengthy higher-order focus values are not listed here for brevity. Since there are
three free parameters, the best result we expect is that we may find conditions such that
v1 = v2 = v3 = 0, but v4 �= 0, possibly yielding four small-amplitude limit cycles.

Since the factor in the script bracket in v1 is not a linear function in any of its vari-
ables E2,E3 and y2, we eliminate E3 from the two pairs of equations v1 = v2 = 0 and
v1 = v3 = 0, and obtain two solutions for E3: E3a(E2, y2) and E3b(E2, y2), and two resul-
tant equations. Then, we use theMaple built-in command resultant(R12,R13,E2) to obtain a
single-variate resultant equation R123(y2) = 0, which yields 11 real positive solutions such
that R12(E2, y2) = R13(E2, y2) = 0 with positive solutions of E2. Next, we verify these 11
solutions by checking if the two solutions E3a and E3b are equal, E3a(E2, y2) = E3b(E2, y2).
It is found that there are only two solutions satisfying this condition:

S1 : y2 = 0.22599842 . . . , E2 = 0.04109062 · · · , E3 = 0.28091409 · · · ,
S2 : y2 = 0.21468192 · · · , E2 = 0.02586831 · · · , E3 = 0.12300053 · · · .

Finally, we want to verify if these two solutions satisfyA > 0,B2 > 0 and ω2
c > 0. It is easy

to use Equations (54) and (57) to obtain that

For S1 : A = 0.96207726 · · · , B2 = 0.48196508 · · · , ω2
c = 0,

For S2 : A = 0.76474062 · · · , B2 = 0.38855298 · · · , ω2
c < 0,
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indicating that no solutions exist for system (40) to have four limit cycles. Thus, the next
best result could be three limit cycles.

To find feasible parameter values for the existence of three limit cycles, we only need
to solve the resultant equation R12(E2, y2) = 0 with E3 = E3a(E2, y2). For the convenience
of choosing the perturbations later to obtain three limit cycles, we may solve the equation
v1 = 0 (v1 given in Equation (49)) for E3 to obtain a solution, and then solve the resultant
equation R12(E2, y2) = 0. Note that feasible solutions must satisfy the conditions given in
Equations (44) and (48).Now there is one free parameter, wemayuse a numerical searching
in the interval y2 ∈ (0, 0.5) to find feasible solutions from the equation R12 = 0. It can
be shown that R12 = 0 has real positive solutions for y2 ∈ (0, 0.266). For example, letting
y2 = 0.13, we have only one feasible solution:

S1 : y2 = 0.13, E2 = 0.01939683 · · · , E3 = 0.74997712 · · · ,
A = 4.11353863 · · · , B2 = 0.20728245 · · · , ωc = 0.03521529 · · · . (50)

for which v0 = v1 = v2 = 0, but v3 �= 0. Thus, proper perturbations can be chosen on the
parameters to obtain three small-amplitude limit cycles. �

A more detailed numerical example with computer simulation will be given in
Section 5.2.

4.2. Case B1 = 0

Now we turn to a more general case with only B1 = 0. For this case, system (39) can be
rewritten as

ẋ = x
(
r + Ay

E3 + y
− x

)
,

ẏ = y
(
1 − B2x

E2 + y
− y

)
,

(51)

Ideally, five limit cyclesmight be possible if feasible parameter values are allowed.However,
due to physical limitation on the parameters, we can still have only three small-amplitude
limit cycles for system (51).

Theorem 4.2: For system (51), if the following conditions hold:

0 < y3 < 0.21, 0 < E2 < 1 − 2y3, E3 >
y23(1 − E2 − 2y3)

E2 + y23
,

0 < r < min
{
y3(1 − E2 − 2y3)

E2 + y3
,

y3(1 − E2 − 2y3)[E3(E2 + y23) − y23(1 − E2 − 2y3)]
E3(E2 + y3)(1 − y3)(E2 + y3)

}
,

then the system can have three small-amplitude limit cycles bifurcating from the origin due
to Hopf bifurcation.
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278 P. YU ANDW. LIN

Proof: To prove this result, we first find four equilibrium solutions for system (51), three
of them are boundary equilibria and one is positive equilibrium:

E0 : (0, 0), E1 : (r, 0), E2 : (0, 1), E3 :
(

(1 − y3)(E2 + y3)
B2

, y3
)
, (52)

where y3 is determined from the following equation:

B2[r(E3 + y3) + Ay3] − (1 − y3)(E2 + y3)(E3 + y3) = 0. (53)

Suppose J3 is the Jacobian matrix of system (51) evaluated at the positive equilibrium E3.
Then, solving the equation Tr(J3) = 0 and Equation (53) for A and B2 yields

A = (E3 + y3)[y3(1 − E2 − 2y3) − r(E2 + y3)]
y3(E2 + y3)

, B2 = (1 − y3)(E2 + y3)2

y3(1 − E2 − 2y3)
. (54)

In order to have A>0 and B2 > 0, it requires that

0 < y3 < min
{
1,
1 − (1 + r)E2

2 + r

}
, for (1 + r)E2 < 1. (55)

Next, multiplying (E2 + y)(E3 + y) on both sides of the equations in (51) and then
introducing the following transformation into the resulting equation,

(
x
y

)
=
(

(1−y3)(E2+y3)
B2
y3

)
+
⎡
⎣ 1 0

−y3(E3 + y3)(E2 + y3)
Ẽ3

ωc(E2 + y3)
Ẽ3(E2 + 2y3 − 1)

⎤
⎦(x1

x2

)
, (56)

where Ẽ3 = E3[r(E2 + y3) − y3(1 − E2 − 2y3)] and

ωc =
√√√√ (E3 + y3){y3(1 − E2 − 2y3)[E3(E2 + y23) − y23(1 − E2 − 2y3)]

− rE3(1 − y3)(E2 + y3)2}
, (57)

with time scaling t → ωct, yields the system in the form of (47). Now, similarly, we
apply the Maple program in [12, 14] to system (47) to obtain the focus values vi, i =
1, 2, . . . , 5, all of them are functions of r,E2,E3 and y3. Thus, the best result we expect is
that we may choose them such that v1 = v2 = v3 = v4 = 0, v5 �= 0, possibly yielding five
small-amplitude limit cycles.

First, we try to find if there exist feasible parameter values for the existence of five limit
cycles. To achieve this, we need to find feasible parameter values such that v1 = v2 = v3
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= v4 = 0. Solving r from the equation v1 = 0 we obtain a solution for r = rn/rd, where

rn =y3{4y73 + 2(7E2 − 1)y63 + 6(2E22 + E2E3 − 2E2 + E3)y53
+ (3E2 + 2E3 − 5)(E22 + E2E3 − E2 + E3)y43
+ (E32E3 + E22E

2
3 − E32 − 15E22E3 + 2E22 + E2E3 − E23 − E2 + E3)y33

+ 6E3E22(1 − 3E2)y23 − 2E3E22(4E
2
2 + E2E3 − 4E2 + E3)y3

+ E22E3(1 − E2)(E22 + E2E3 − E2 + E3)},
rd =E3{4y63 + (13E2 + 2E3 − 3)y53 + (14E22 + 7E2E3 − 7E2 − E3 + 1)y43

+ E2(5E22 + 8E2E3 − 4E3 + 3)y33
+ E2(3E22E3 + 10E22 − 4E2E3 + 2E2 + E3)y23
+ E22(7E

2
2 − E2 + 2E3)y3 + E32(E

2
2 + E2E3 − E2 + E3)},

(58)

and then v2, v3 and v4 are expressed in terms of E2,E3 and y3. The numerators of
these equations are respectively 3rd-degree, 8th-degree and 13th-degree polynomials with
respect to E3. To solve these equations, we eliminate E3 from the two pairs of equa-
tions v2 = v3 = 0 and v2 = v4 = 0, and obtain two solutions for E3: E3a(E2, y3) and
E3b(E2, y3), and two resultant equations, R23(E2, y3) = 0 and R24(E2, y3) = 0, where R23
andR24 are respectively 31th-degree and 79th-degree polynomialswith respect toE2. Elim-
inating E2 from these two equations is difficult. So we use the Maple built-in command
resultant(R23,R24,E2) to obtain a single-variate resultant equation R234(y3) = 0. Solving
this equation for positive y3 we obtain 62 real positive solutions, among which only 17
solutions lead to R23(E2, y3) = R24(E2, y3) = 0 with positive solutions of E2. Next, we ver-
ify these 17 solutions by checking if the two solutions E3a and E3b are equal, E3a(E2, y3) =
E3b(E2, y3). We find that there are only 3 solutions satisfying this condition:

S1 : y3 = 0.27736160 · · · , E2 = 0.01462471 · · · , E3 = 0.15329046 · · · ,
S2 : y3 = 0.15343514 · · · , E2 = 0.05932713 · · · , E3 = 0.15470647 · · · ,
S3 : y3 = 0.32478609 · · · , E2 = 4.51650721 · · · , E3 = 0.08362686 · · · .

Finally, we want to verify if these three solutions satisfy A > 0,B2 > 0 and ω2
c > 0. It is

easy to use Equations (54) and (57) to obtain that

For S1 : A = 1.01016268 · · · , B2 = 0.51579028 · · · , ω2
c = 0,

For S2 : A = 0.66063599 · · · , B2 = 0.39406752 · · · , ω2
c < 0,

For S3 : A = −0.00109093 · · · , B2 = −11.69604925 · · · , ω2
c < 0.

So, none of the 3 solutions is a candidate for system (51) to exhibit five limit cycles. There-
fore, there do not exist feasible parameter values for the existence of five limit cycles in
system (51). Thus, the next best result could be four limit cycles.

To find feasible parameter values for the existence of four limit cycles, we only need
to solve v2 = v3 = 0 (v1 = 0 has been solved for r), and thus if there are solutions they
should have infinitely many solutions. Now we only need to solve the resultant equation
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R23(E2, y3) = 0 with E3 = E3a(E2, y3). It follows from Equations (54) and (57) that A >

0,B2 > 0 and ωc > 0 need the following conditions to be satisfied:

0 < y3 <
1
2
, 0 < E2 < 1 − 2y3, E3 >

y23(1 − E2 − 2y3)
E2 + y23

,

0 < r < min
{
y3(1 − E2 − 2y3)

E2 + y3
,

y3(1 − E2 − 2y3)[E3(E2 + y23) − y23(1 − E2 − 2y3)]
E3(E2 + y3)(1 − y3)(E2 + y3)

}
,

(59)

and r = rn/rd, where rn and rd are given in Equation (58). Since now there is one free
parameter, we may use a numerical searching for y3 in the interval y3 ∈ (0, 0.5) to find
feasible solutions from the equation R23 = 0. It can be shown that R23 = 0 has no real
positive solutions which satisfy the conditions in Equation (59). Hence, there do not exist
feasible parameter values for the existence of four limit cycles in system (51). Thus, the
next best result could be three limit cycles.

To find feasible parameter values for the existence of three limit cycles, we only need to
solve v2 = 0 (v1 = 0 has been solved for r), and thus if there are solutions they should have
infinitely many solutions. To achieve this we can numerically search the region in the 2-
dimensional parameter space, 0 < y3 < 1

2 , 0 < E2 < 1 − 2y3, and we have indeed found
the feasible solutions which exist for 0 < y3 < 0.21. For example, letting y3 = 0.051 and
E2 = 0.15, we have two feasible solutions:

S1 :
E3 = 0.26883962 · · · , A = 0.33314675 · · · , B2 = 1.00504742 · · · ,
r = 0.13666915 · · · , ωc = 0.00512429 · · · ,

S2 :
E3 = 0.34246578 · · · , A = 0.37420939 · · · , B2 = 1.00504742 · · · ,
r = 0.141287007 · · · , ωc = 0.00502891 · · · ,

for which v0 = v1 = v2 = 0, but v3 �= 0. Thus, proper perturbations can be chosen on the
parameters to obtain three small-amplitude limit cycles. �

Remark 1: Similarly, wemay follow the procedure given in Section 3 to discuss the condi-
tions for which the predator–preymodel (40) or (51)may have only one or two limit cycles.
Since the main purpose of this paper is to show how to get maximal number of limit cycles
from Hopf bifurcation, we shall not discuss further on this here.

5. Numerical simulation

In this section, we present numerical simulations for the two models, considered in
Sections 3 and 4, to verify the analytical predictions obtained in the previous two sections.

5.1. The endemicmodel (eqn22)

For the epidemic model (22), it has been shown in Section 3 that the maximal number
of small-amplitude limit cycles bifurcating from a Hopf critical point is two and the outer
is unstable. We take the critical parameter values given in Equation (37), and choose two
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small perturbations ε1 and ε2:

p = 1
3
, A = 128

9
+ ε1, m = 16

11
+ ε2, q = 2093

99
, with ε1 = 0.5, ε2 = 0.048,

for which the first three focus values associated with the disease equilibrium (I1,R1) =
(0.52343041, 11.06605899) are given by

v0 = 0.00001744, v1 = −0.00596757, v2 = 0.17419119.

Therefore, the polynomial equation, v0 + v1r2 + v2r4 = 0, yields two positive roots: r1 =
0.0568 and r2 = 0.1762, which roughly measures the amplitudes of the two bifurcating
limit cycles. The simulation is shown in Figure 2. The large limit cycle is unstable with
neighbouring trajectories diverging from this limit cycle, as shown in Figure 2(a). For a
clear view, Figure 2(b) depicts the two limit cycles, with solid curve and dotted curve to
denote the stable and unstable limit cycles, respectively. For this example, it is seen that
the analytical predictions agree well with the simulation, predicting the correct dynamical
behaviour.

For planar dynamical systems, unstable limit cycles can be identified by using so called
time-reversible numerical integration scheme, that is,merely taking negative time steps in a
regular numerical integration approach. This technique changes α-limit sets toω-limit sets
and thus unstable limit cycles become ‘stable’ by using this technique. In fact, the unstable
limit cycle shown in Figure 2(a) is obtained by using a fourth-order Runge–Kutta method
with negative time step. Once the unstable limit cycle is identified, the stable limit cycle
can be alternatively determined by checking the eigenvalues of the linearized system at
the endemic equilibrium. Indeed, at these perturbed parameter values, the eigenvalues are
0.8720 × 10−5 ± i2.2650, implying that the endemic equilibrium is an usable focus, and
thus theremust exist at least one stable limit cycle between the equilibrium and the unstable
limit cycle, as confirmed by the simulation shown in Figure 2(b). However, it should be

(a) (b)

Figure 2. Simulation of the endemic Model (22) for p = 0.33333333, A = 14.72222222, m =
1.50254546, q = 21.14141414, showing the existence of two limit cycles enclosing the disease equi-
librium (I1, R1) = (0.52343041, 11.06605899): (a) trajectories diverging from the outer limit cycle; and
(b) two limit cycles, enclosing a stable equilibrium, with the outer unstable (dotted curve) and the inner
stable (solid curve).
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pointed out that this time-reversible integration technique does not work for dynamical
systems with dimension higher than two.

For this endemic model, it is noted that bistable phenomenon appears, with one stable
node at the origin and one stable limit cycle enclosing a positive equilibrium solution. The
attracting region for the stable limit cycle is inside the unstable limit cycle, while the whole
area outside the unstable limit cycle is the attracting region of the stable node (the origin). It
should be pointed out that the single unstable limit cycle shown in [10] indicates a bistable
phenomenon with purely (two) equilibria. This new type of bistability found in this paper
reveals a more complex but more realistic situation: the predicted state may not be neces-
sarily an equilibrium (either the disease-free equilibrium or the disease equilibrium), but
may also involve disease periodic oscillation. This implies that the infective individuals and
removed individuals are not necessarily fixed, but in a more realistically, mutually stable
periodic motion.

5.2. The predator–preymodel (eqn38)

In Section 4, we have considered the predator–prey model (38) for two cases: B1 = r = 0
and B1 = 0. Since both the two cases can have maximal three limit cycles, we shall only
present a simulation for the first case. That is, we shall use system (40) to perform computer
simulation. According to Equation (50), for the critical parameter values:

E2 = 0.01939683, E3 = 0.74997712, A = 4.11353863, B2 = 0.20728245,

the first four focus values are v0 = v1 = v2 = 0, v3 = −0.00604292 < 0, implying that the
outer limit cycle is stable. We take the following three perturbations:

E2 = 0.01939683 − ε1, quadE3 = 0.74997712 − ε2, A = 4.11353863 + ε3,

with ε1 = 0.001, ε2 = 0.0002 and ε3 = 0.0000001, for which the positive equilibrium
solution is given by

E2 :
(

(1 − y2)(E2 + y2)
B2

, y2
)

= (0.63214554, 0.12999997),

and the first four focus values become

v0 = 0.26550341 × 10−8, v1 = −0.76075773 × 10−5, v2 = 0.00090754,

v3 = −0.01606573.

Thus, the equation v0 + v1r2 + v2r4 + v3r6 = 0 gives the three positive roots: r1 =
0.01909893, r2 = 0.09886666, r3 = 0.21529098, which are the approximations of the three
limit cycles. The simulation for this case is given in Figure 3, where Figure 3(a) shows the
convergence of trajectories to the outer limit cycle; while Figure 3(b) depicts the three limit
cycles, with solid curve and dotted curve to represent the stable and unstable limit cycles,
respectively. It can be seen that for this example the amplitudes of the simulated limit cycles
agree very well with the analytical predictions.

Similarly, for the perturbed parameter values, the Jacobian matrix of the system evalu-
ated at the positive equilibrium has the eigenvalues: 0.7595 × 10−8 ± i0.0332, indicating
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(a) (b)

Figure 3. Simulation of the predator–prey model (40) for E2 = 0.01839684, E3 = 0.73192174, A =
4.19123136, B2 = 0.20423339, showing the existence of three limit cycles enclosing the equilibrium
(x2, y2) = (0.63214554, 0.12999997): (a) trajectories converging to the outer limit cycle; and (b) three
limit cycles, enclosing an unstable equilibrium, with the outer and the inner stable (solid curve) and the
middle one unstable (dotted curve).

that the positive equilibrium is an unstable focus. Therefore, if there is another stable limit
cycle enclosing the equilibrium, then there must also have an unstable limit cycle between
the two stable limit cycles. As a matter of fact, the smaller stable limit cycle is confirmed by
the simulation, but the convergence speed is extremely slow, while the unstable limit cycle
can be identified by using the time-reversible numerical integration scheme.

For this predator–prey model, it is again seen that bistable phenomenon occurs, but
nowboth stable states are limit cycles, with no equilibria, showing a new interesting bistable
phenomenon in biological systems. The two attracting regions are separated by an unstable
limit cycle. The region inside the unstable limit cycle is the attracting region for the small
stable limit cycle, while the region outside the unstable limit cycle is the attracting region
for the large stable limit cycle. This implies that in real situation the predator and prey
can be balanced on two periodic motions, either a small oscillation or a large oscillation
depending upon the initial conditions.

6. Conclusion

In this paper, we have applied normal form theory to investigate bifurcation of multiple
limit cycles for one epidemicmodel and one predator–preymodel. New interesting bistable
phenomenonhas been found,whichmay involve equilibria and oscillatingmotions. In par-
ticular, for the epidemic model, we have shown that two limit cycles can bifurcate from
a Hopf critical point, indicating that the infective individuals and removed individuals
are not necessarily fixed, but can be on a mutually stable periodic motion. For the preda-
tor–preymodel, three limit cycles have been obtained fromHopf bifurcation, which reveals
that the predator and prey can be dynamically balanced either on a small oscillation or on
a large oscillation depending upon the initial conditions. Moreover, it has been shown that
due to physical restriction on system parameters, the maximal number of limit cycles may
be hard to reach. However, for some cases, two or three limit cycles are possible to obtain.
Hence, the complex dynamical behaviour of a biological system not only depends upon
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the number of free parameters contained in the system, but also on the physical restriction
on those parameters.
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