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In this paper, bifurcation of limit cycles is considered for planar cubic-order systems 
with an isolated nilpotent critical point. Normal form theory is applied to compute 
the generalized Lyapunov constants and to prove the existence of at least 9 small-
amplitude limit cycles in the neighborhood of the nilpotent critical point. In 
addition, the method of double bifurcation of nilpotent focus is used to show that 
such systems can have 10 small-amplitude limit cycles near the nilpotent critical 
point. These are new lower bounds on the number of limit cycles in planar cubic-
order systems near an isolated nilpotent critical point. Moreover, a set of center 
conditions is obtained for such cubic systems.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

Dynamical systems can exhibit self-sustained oscillations, called limit cycles, which may appear in almost 
all fields of science and engineering. Developing limit cycle theory is not only theoretically significant, but also 
practically important. Limit cycles theory is closely related to the well-known Hilbert’s 16th problem, one 
of the 23 mathematical problems proposed by D. Hilbert in 1900 [25]. A modern version of this problem was 
included in the 18 most challenging mathematical problems proposed by S. Smale for the 21st century [35].

Consider the following planar differential system:

dx

dt
= Pn(x, y), dy

dt
= Qn(x, y), (1.1)

where Pn(x, y) and Qn(x, y) are nth-degree polynomials in x and y. The second part of Hilbert’s 16th 
problem is to find an upper bound on the number of limit cycles that system (1.1) can have. This upper 
bound, denoted as H(n), is called Hilbert number. For general quadratic polynomial systems, four limit 
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cycles were found in 1979 [33,14], which were also obtained recently in near-integrable quadratic systems [46]. 
However, whether H(2) = 4 or not is still an open question. For cubic-degree polynomial systems, many 
results have been obtained on the low bound of the Hilbert number, and the best result so far is H(3) ≥
13 [26,27]. In real applications, bifurcation of limit cycles due to Hopf bifurcation is a common phenomenon, 
but real systems often have dimension higher than two [24,49,50]. In such a case, the system can be first 
reduced to a 2-dimensional dynamical system by using center manifold theory (e.g., see [24,19]) and then 
to study the limit cycles bifurcation in the reduced system.

Later, Arnold [7] posed the weak infinitesimal Hilbert’s 16th problem, which is closely related to the 
so-called near-Hamiltonian system [20]:

dx

dt
= Hy(x, y) + ε pn(x, y), dy

dt
= −Hx(x, y) + ε qn(x, y), (1.2)

where H(x, y), pn(x, y) and qn(x, y) are all polynomial functions in x and y, and 0 < ε � 1 is a small pertur-
bation parameter. Then, the problem on the study of number of limit cycles is transformed to investigating 
the zeros of the Abelian integral or the (first-order) Melnikov function:

M(h, δ) =
∮

H(x,y)=h

qn(x, y) dx− pn(x, y) dy, (1.3)

where H(x, y) = h for h ∈ (h1, h2) defines a closed orbit, and δ is a vector parameter, representing the 
parameters (or coefficients) involved in the polynomials pn(x, y) and qn(x, y).

When the study of Hilbert’s 16th problem is restricted to the vicinity of an isolated fixed point, which 
is either an elementary focus or a center, it becomes an investigation on generalized Hopf bifurcations, and 
the number of bifurcating small-amplitude limit cycles is usually denoted by M(n). It is well known that 
M(2) = 3, obtained by Bautin in 1952 [9]. For n = 3, many results have been obtained, divided into two 
categories. For systems with an elementary focus, the best result obtained so far is 9 limit cycles [44,13,
31]. On the other hand, for systems with a center, there are also a few results obtained in the past two 
decades. In 1995, Żoła̧dek [52] first proposed a rational Darboux integral, and claimed the existence of 11
small-amplitude limit cycles around a center, which was reinvestigated recently and proved that this system 
can actually have only 9 limit cycles [45,40]. After more than ten years, another two cubic-order systems 
were constructed to show 11 limit cycles [15,11]. Recently, the system considered in [15] was used by Yu 
and Tian to show the existence of 12 small-amplitude limit cycles around a singular point, which is the best 
result so far for cubic systems.

To consider bifurcation of limit cycles associated with a singularity of focus, Lyapunov constants are 
needed to solve the center-focus problem and to determine the number and stability of bifurcating limit cy-
cles. There mainly exist three methods for computing Lyapunov constants: the method of normal forms [24,
16,42], the method of Poincaré return map or focus value method [6,30], and the method of Lyapunov 
function [34,17]. Other approaches can be found, for example, in [24]. To demonstrate the basic idea of 
these methods, without loss of generality, assume that system (1.1) has a singularity of focus at the origin, 
and that the Jacobian of the system evaluated at the origin has a purely imaginary pair: ± iωc. Then, by 
using the method of normal forms with the aid of a computer algebra system such as Maple or Mathematica 
(e.g., see [24,42,38,39]) we compute the normal form to obtain the Lyapunov constants Lk which are used 
to determine the number of bifurcating limit cycles around the critical point. vk (k = 0, 1, 2, · · · ).

The above mentioned three methods for computing Lyapunov constants have also been used to study the 
center-focus problem associated with nilpotent critical points, see for example [2,12,32]. But the method 
of normal forms was only recently applied to compute the so-called generalized Lyapunov constants in 
determining the lower bound of cyclicity [3]. It is well known that it is more difficult to distinguish focus 
from center when the singular point is degenerate. In [4] Andreev considered the local phase portraits of 
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analytic systems with the origin being a nilpotent singular point, which however does not distinguish focus 
from center. Later, Takens developed a normal form theory for systems with nilpotent center of foci [36], 
and Moussu obtained the C∞ normal form for analytic nilpotent centers [32]. Further, Berthier and Moussu 
studied the reversibility of nilpotent centers [10], while Teixeria and Yang applied a convenient normal form 
to investigate the relationship between reversibility and the center-focus problem, and then studied the 
reversibility of certain types of polynomial vector fields [37]. Recently, by using Melnikov function method 
Han and Li [22], and Zhao and Fan [51] considered polynomial Hamiltonian systems with elementary centers 
to obtain lower bounds on the Hilbert number. Moreover, Han et al. [23] studied polynomial Hamiltonian 
systems with a nilpotent singular point, and obtained necessary and sufficient conditions for determining 
the number of limit cycles bifurcating in quadratic and cubic Hamiltonian systems with a nilpotent singular 
point which may be a center, a cusp or a saddle. However, it should be pointed out that the Melnikov 
function method used in the above mentioned articles [23,22,51] can not be applied to study the systems 
considered in this paper, since our systems here are not Hamiltonian, nor even integrable.

The main goal of this paper is to consider bifurcation of limit cycles in cubic polynomial systems and 
apply our general normal form computation method to obtain new lower bounds on the number of limit 
cycles. More specifically, we will show that cubic polynomial systems can have at least 9 small-amplitude 
limit cycles around an isolated nilpotent critical point, and at least 10 small-amplitude limit cycles near an 
isolated nilpotent critical point. Moreover, a set of center conditions is obtained for such cubic systems. In 
the next section, we present some basic formulations and preliminary results which are needed in proving 
our main results in Sections 3, 4 and 5. Conclusion is drawn in Section 6.

2. Mathematical formulation and preliminary results

In this section, we present some basic formulas and preliminary results which will be used in the following 
sections. Consider the differential system:

dx

dt
= y + F1(x, y) =

∞∑
j+k

ajkx
jyk,

dy

dt
= F2(x, y) =

∞∑
j+k

bjkx
jyk,

(2.1)

where F1 and F2 are analytic in the neighborhood of the origin, with power series beginning from second 
order. As long as the limit cycles bifurcation is considered near the origin, system (2.1) with a nilpotent 
center at the origin is more difficult to analyze than the general system (1.1) with an element center or focus 
at the origin, since the conventional normal form of Hopf bifurcation [24,19] can be directly applied to the 
latter but not the former. In fact, there exist conventional normal forms for system (2.1) associated with 
Bogdanov–Takens bifurcation (i.e., the linearized system contains a double-zero eigenvalue at the origin) [24,
19], which is however not able to be directly applied to study bifurcation of limit cycles near the origin. 
Therefore, a modified normal form of system (2.1) needs to be developed to study bifurcation of limit cycles 
near the origin. In real applications, many physical systems involve a number of parameters and can thus 
have higher co-dimensional singularity such as Bogdanov–Takens bifurcation (which is characterized by a 
double-zero eigenvalue at a critical point, leading to a nilpotent singular point), and thus it is interesting 
and important to explore the periodic solutions near such a critical point. For example, in the 2-dimensional 
HIV model [48], a critical point with Bogdanov–Takens bifurcation is identified for certain parameter values 
and thus the system can be put in the form of system (2.1) in the vicinity of the critical point. Limit cycles 
due to Hopf bifurcation have been obtained near this critical point and even multiple limit cycles can be 
found if more parameters are treated as bifurcation parameters. Moreover, homoclinic orbits are identified 
near this degenerate singular point [48].
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To mathematically analyze bifurcation of limit cycles for system (2.1) near the origin, we first present 
the following result [4,2,3], which can be used to determine the monodromy of the origin of system (2.1).

Lemma 2.1. (Theorem 2.1 in [3]) Assume that the origin of system (2.1) is an isolated singularity. Define 
two functions f(x) and φ(x) as

φ(x) = ∂F1(x, f(x))
∂x

+ ∂F2(x, f(x))
∂y

,

ψ(x) = F2(x, f(x)) = a xα + O(xα+1), a �= 0, α ≥ 2,

where y = f(x) is the solution of the equation, y + F1(x, y) = 0, passing through the origin (0, 0). Write 
φ(x) = bxβ +O(xβ+1), b �= 0 and β ≥ 1, or φ(x) ≡ 0. Then, the origin of system (2.1) is monodromic if 
and only if a <0, α=2n −1 (n ≥ 1) being an odd number, and one of the following three conditions holds:

(i) β > n − 1;
(ii) β = n − 1, and b2 + 4an < 0;
(iii) φ ≡ 0.

Under the above conditions, we can apply the classical normal form theory, with the following near-
identity transformation,

x = u +
k∑

i+j=2
h1iju

ivj , y = v +
k∑

i+j=2
h2iju

ivj , (2.2)

to obtain the conventional normal form [19,24]:

du

dτ
= v + O(‖(u, v)‖k+1),

dv

dτ
= −u2n−1 +

k−1∑
j≥β

(Aju
j+1 + Bju

jv) + O(‖(u, v)‖k+1).
(2.3)

This conventional normal form can not be directly used to find the limit cycles bifurcating from the origin. 
However, if we use the idea of the simplest normal form theorem (or unique normal form theory) (e.g., 
see [8,43,47,18]) and introduce a time rescaling,

τ =
(
1 +

k∑
i+j=2

h3iju
ivj

)
t, (2.4)

into system (2.3), we obtain

du

dτ
= v + O(‖(u, v)‖k+1),

dv

dτ
= −u2n−1 + v

k−1∑
j≥β

Bju
j + O(‖(u, v)‖k+1),

(2.5)

where Bj is called the jth-order generalized Lyapunov constant. We have developed an algorithm with 
explicit recursive formulas for computing Bj for the general system (2.1), with a computationally efficient 
Maple program which can be easily implemented on a computer using Maple. It has been noted that Liu 
and Li [28] have developed a different method to compute the so-called quasi Lyapunov constants, which are 
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equivalent to the generalized Lyapunov constants. However, their method is only applicable for cubic-order 
systems. Before we particularly consider bifurcation of limit cycles in cubic-order systems with an isolated 
nilpotent critical point, we present few examples, which have been investigated in [3,5,1], to illustrate the 
general applicability of our method. The method of normal forms has been used in [3] to study bifurcation 
of limit cycles, and many examples are presented in this paper. For example, consider the system,

dx

dt
= − y,

dy

dt
= x5 + a x6 + y (b x3 + c x4).

(2.6)

Note in the first equation of (2.6) that the first term is −y rather than y. But this does not affect the normal 
forms computation provided we apply a transformation y → −y if it is necessary for executing a computer 
program. We used the normal form computation method developed in [3] and coded a Maple program to 
obtain the following normal form:

du

dτ
= − v,

dv

dτ
= u5 + v

[
bu3 +

(
c− 5

7ab
)
u4 +

( 36
49 a

2b− 6
7ac)u

5

+ 13
294a

2(21c− 19ab)u6 + 80
1029a

3(13ab− 14c)u8 + O(u8)
]
,

(2.7)

which is exactly the same as that given in [3] except the coefficient 6
7 which was typed as 6 in [3]. We have 

used our method and executed our Maple program to obtain the following generalized Lyapunov constants:

B4 = c− 5
7 ab, B6 = 13

294 a
2(21c− 19ab), B8 = − 729

19208 a
4(33ab− 35c),

B10 = − 5113889
118590192 a6(47ab− 49c), · · ·

It is seen that B4 and B6 are exactly the same as that given in (2.7). Further, it is easy to verify that setting 
B4 = B6 = 0 leads to B2k = 0, k ≥ 4.

In [5], the authors consider a special case – homogeneous polynomial systems and developed a special 
approach to calculate the generalized Lyapunov constants. Their methodology is computationally efficient, 
but can not be applied even to consider a simple cubic polynomial system. The 5th-order homogeneous 
polynomial system considered in [5] is given by

dx

dt
= y + Ax4y + Bx3y2 + Cx2y3 + Dxy4 + Ey5,

dy

dt
= −x5 + Qx4y + Kx3y2 + Lx2y3 + Mxy4 + Ny5.

(2.8)

Using our Maple program, we obtain the following generalized Lyapunov constants:

B4 = Q, B8 = B + L, B12 = 1
7
[
2L(K + 2A) + 3(D + 5N)

]
,

B16 = 2
11
[
(2A + K)(KL + 3N) + L(C + 2M)

]
,

B20 = 14
81
[
LM(2A + K) + 3N(C + 2M)

]
, B24 = 20

741L
3(2A + K),

where B4(k−1) = 0 has been set zero when computing B4k for k = 2, 3, . . . , 6. They are the same as that 
given in [5], at most different by a positive constant factor.
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Another special type of systems called quasi-homogeneous system is considered in [1], which takes the 
general form:

dx

dt
= y +

∞∑
i=0

Pq−p+2is(x, y),

dy

dt
=

∞∑
i=0

Qq−p+2is(x, y),
(2.9)

where p, q ∈ N, p ≤ q, s = (n + 1)p − q > 0, n ∈ N, and Pi and Qi are quasi-homogeneous polynomials in 
x and y with Qq−p+2s(1, 0) < 0. The origin of this system is a nilpotent and monodromic isolated singular 
point. The authors used their method developed in [1] to obtain the center conditions for the origin of the 
following system,

dx

dt
= y + a1x

5 + a2x
2y + a3x

7 + a4x
4y + a5xy

2,

dy

dt
= −x7 + b1x

4y − a2xy
2 + b3x

6y + b4x
3y2 + b5y

3.

(2.10)

Executing our Maple program, we obtain the following generalized Lyapunov constants for the above system:

B4 = 5a1 + b1, B6 = 7a3 + b3, B8 = a5 + 3b5 − 2a1(b4 + 2a4),

B10 = −2(2a4 + b4)(a3 − a1a2 + 4a3
1),

B12 = − 2
5 (b4 + 2a4)

[
a5 − a1(4a4 − b4 − 50a2a2

1 + 200a4
1)
]
,

B14 = −2
7a1(b4 + 2a4)(a2 − 4a2

1)(b4 − a4 + 62a2
1 − 268a4

1),

B16 = 4
9a

4
1(a2 − 4a2

1)(3a4 − 62a2
1 + 268a4

1)(5a4 − 12a2
2 + 146a2a

2
1 − 492a4

1),

B18 = − 64
2475a

5
1(a2−4a2

1)(9a2
2−187a2a

2
1+704a4

1)(387a2
2−4681a2a

2
1+13282a4

1),

B20 = 32
975a

5
1(a2 − 4a2

1)(9a2
2 − 187a2a

2
1 + 704a4

1)

×(1953a3
2 − 27694a2

2a
2
1 + 130023a2a

4
1 − 201730a6

1),

where B2(k−1) = 0 has been used in computing B2k for k = 3, 4, . . . , 10. Based on these generalized 
Lyapunov constants, we have the following result.

Proposition 2.1. The origin of system (2.10) is a center if and only if one of the following conditions is 
satisfied:

(i) 5a1 + b1 = 7a3 + b3 = 2a4 + b4 = a5 + 3b5 = 0;
(ii) a1 = a3 = a5 = b1 = b3 = b5 = 0; and
(iii) b1 = −5a1, a2 = 4a2

1, b5 = a1b4, a5 = a1(4a4 − b4), a3 = b3 = 0.

Note that the three center conditions are given in Theorem 3.1 of [1], but the condition b = −5a1 in (iii) 
was typed as b1 = −a1 in [1], and in addition, the conditions a3 = b3 = 0 were missed in (iii). It is easy to 
verify that under the condition (i) system (2.10) is a Hamiltonian system with the Hamiltonian function:

H(x, y) = 1
y2 + 1

x8 + a1x
5y + 1

a2x
2y2 + a3x

7y + 1
a4x

4y2 − b5xy
3.
2 8 2 2
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For the condition (ii), it is easy to see that system (2.10) is a reversible system since it is invariant under 
the transformation (y, t) → (−y, −t).

For the condition (iii), we present a simple proof different from that given in [1]. In fact, for this case, 
we use the following integrating factor,

I(iii) = 4a4b4(b4 − 2a4)(1 + a4x
4 + 4a1a4xy)b4−1

[2 + b4x4 + 4a1b4xy + b4(2a4 − b4)y2]1+2a4
,

to obtain the first integral,

F (x, y) = (1 + a4x
4 + 4a1a4xy)b4

[2 + b4x4 + 4a1b4xy + b4(2a4 − b4)y2]2a4
.

Now, we return to cubic-order systems with an isolated nilpotent critical point and want to find the 
maximal number of limit cycles which bifurcate in the neighborhood of the critical point. In [28], Liu and 
Li have considered the following cubic polynomial system,

dx

dt
= y − 2xy − (a4 − a7)x2y + a6y

2 + a2xy
2 + a5y

3,

dy

dt
= −2x3 + a1x

2y + y2 + a4xy
2 + a3y

3,

(2.11)

which contains 7 free parameters. Thus, by adding a linear perturbation, the authors applied their approach 
to prove the existence of at least 8 small-amplitude limit cycles bifurcating from the origin. In fact, using 
our method, we can find the generalized Lyapunov constants as follows:

B2 = a1,

B4 = 2 (a2 + 3a3),

B6 = 4 a7
3 (3a3 − 5a6),

B8 = 4 a6a7
105 (735 − 105a4 + 71a7),

B10 = 8
11025 a6a7

(
176400 + 18375a5 + 5460a7 + 12250a2

6 − 32a2
7
)
,

B12 = 32 a6a7
573024375

(
30866913000 + 2089303650a7 − 1188495000a2

6

+ 29397690a2
7 − 15232875a2

6a7 − 110996a3
7
)
,

B14 = −32 a6a7
59727219749071875

(
44389456322515920000 + 2155807164550977000a7

− 1647138037233150000a2
6 − 11437991172477450a2

7 − 910916029415875a3
7

− 22121192499656250a4
6 + 798220526556a4

7
)
,

B16 = 32 a6a7
1839468651303921997968984375

(
9423379312441682897451542400000

+ 1514298765681319947369112800000a7

+ 82859324997946429848009339000a2
7

+ 1864567030459291902188584650a3
7

+ 14562086011231729200961815a4 − 2666191085683953547508a5),
7 7
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where B2k is the kth generalized Lyapunov constant, and B2(k−1) has been set zero in computing B2k for 
k = 2, 3, · · · , 8. It is noted that the quasi Lyapunov constants, λk, k = 1, 2, · · · , 8 obtained in [28], are 
indeed given by λk = 1

2k+1 B2k, k = 1, 2, · · · , 8. Then, by applying proper perturbations to show that there 
exist parameter values satisfying B2 = B3 = · · · = 0, but B16 �= 0, implying the existence of 7 limit cycles. 
In addition, the linear perturbation gives one more limit cycle to achieve 8 limit cycles [28]. Later, the same 
authors considered the following system in [29],

dx

dt
= y − 2b02xy + a02y

2 + a21x
2y + a12xy

2 + a03y
3,

dy

dt
= −2x3 + b02y

2 + b21x
2y + b12xy

2 + b03y
3,

(2.12)

which is obviously the same as system (2.11), and can have 8 small-amplitude limit cycles bifurcating from 
the origin. Moreover, in [29], the authors applied the so called method of double bifurcation of nilpotent 
focus to get 9 small-amplitude limit cycles, with the distribution of 7 ⊃ (1 ∪ 1). That is, there are three 
singular points, one of which is the origin and other two are near the origin with one limit cycle around 
each of them, and 7 limit cycles enclose these two limit cycles. The basic idea is to apply perturbation to 
system (2.12) to obtain a perturbed system as follows:

dx

dt
= y − 2b02xy + a02y

2 + a21x
2y + a12xy

2 + a03y
3,

dy

dt
= 4δεy + b02y

2 + b12xy
2 + b03y

3 − (x2 − ε2)(2x− b21y),
(2.13)

where δ and ε are perturbation parameters, satisfying 0 < |δ| � 1, 0 < ε � 1. It is easy to see that system 
(2.13) has three fixed points: (x, y) = (ε, 0), (−ε, 0) and (0, 0). Thus, at δ = ε = 0, we have the 8 generalized 
Lyapunov constants showing the existence of 7 limit cycles around the origin (0, 0). Then, by taking proper 
perturbation values of δ and ε, we can find two small-amplitude limit cycles inside the 7 limit cycles, each 
of them encloses one of the two singular points (ε, 0) and (−ε, 0). More details about the method of double 
bifurcation of nilpotent focus can be found in [29]. Although this approach does not give all 9 limit cycles 
around the origin, it does have one more limit cycle near the origin, compared with the result obtained 
in [28].

Recently, we have studied bifurcation of near-Hamiltonian systems, described by

dx

dt
= ∂H(x, y, μ1)

∂y
+ ε P (x, y, μ2),

dy

dt
= − ∂H(x, y, μ1)

∂x
+ εQ(x, y, μ2),

(2.14)

where H(x, y, μ1) is an nth-degree real polynomial in x and y and P, Q are mth-degree of polynomials in x
and y, and μ1 and μ2 are vector parameters, and 0 <ε �1 is a small perturbation parameter. The function 
H(x, y, μ1) is called the Hamiltonian of system (2.14). When ε = 0, the origin is a nilpotent center of the 
system.

The monodromy of the origin of system (2.14)|ε=0 has been studied in [21] and detailed classification 
conditions are given. Very recently, we have applied our new method to consider the following cubic near-
Hamiltonian system:

dx

dt
= y + 2xy + 3 a1 y

2 + 2 a2 x
2y + 3 a3 xy

2 + 4 a4 y
3,

dy = − 4x3−y2−2a2xy
2−a3y

3+ε (δx+δy+xy+b1y
2+b2x

2y+b3xy
2+b4y

3),
(2.15)
dt
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which contains 9 free parameters (with δ being the linear perturbation parameter), and shown that there 
exist at least 9 small-amplitude limit cycles around the origin [41], in which the generalized Lyapunov 
constants are obtained as follows:

B0 = 1
2δ,

B2 = b2 − 1,

B4 = 12b4 + 24a1 b1 + 2a2 − 1,

B6 = 4(a3 − 5a1) b3 + 8 [2a1(5−a2)−5a3] b1+16a4+20a1(a3−3a1)−(2a2−1)2,

B8 = 3
a3−5a1

{
8
[
(7 + 2a2)(2a2a

2
1 + a2

3 − 2a3a1) + 16(5a1 − a3)a1a4
]
b1

+ 2a3 − 8a2a3 + 88a2
3a1 − 224a2

1a3 + 8a2
2a3 − 12a3

3 + 24a2a
2
1a3

− 8a2a
2
3a1 + 140a3

1 − 20a2
2a1 + 8a3

2a1 − 3a1 + 14a2a1

− 16(2a3 − 3a1 + 2a2a1) a4
}
,

...

B18 = · · ·

where B0, B2, · · · , B2(k−1) have been set zero in computing B2k for k = 1, 2, · · · , 9. Then, by using proper 
perturbations on the 9 parameters, it has been shown in [41] that there exist at least 9 small-amplitude 
limit cycles around the origin.

3. 9 limit cycles in a cubic-order system around a nilpotent critical point

In this section, we present our main result of this paper. Consider the cubic polynomial system (2.11)
with an additional parameter a8 and two linear perturbation parameters δ1 and δ2:

dx

dt
= y + δ1 y + (a8 − 2)xy − (a4 − a7)x2y + a6y

2 + a2xy
2 + a5y

3,

dy

dt
= − δ1 x + δ2 y − 2x3 + a1x

2y + y2 + a4xy
2 + a3y

3,

(3.1)

where 0 < δ1, |δ2| � 1. Now system (3.1) can yield 9 limit cycles around the origin, but the computation 
becomes much more demanding.

In this section, we will consider bifurcation of limit cycles all around the origin of system (3.1), yielding 
9 limit cycles, and in the next section, we will apply the method of double bifurcation of nilpotent focus to 
system (3.1) to obtain 10 limit cycles near the origin.

Theorem 3.1. For system (3.1) with a nilpotent critical point at the origin, there exist at least 9 small-
amplitude limit cycles around the origin.

Proof. First, let the two linear perturbation parameters equal zero, δ1 = δ2 = 0. Then we apply the method 
of normal forms and our developed Maple program to system (3.1) to obtain

B2 = a1. (3.2)
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We set a1 = 0 to have B2 = 0. Then, B4 is given by

B4 = 2
(
a2 + 3a3 − a6a8

)
. (3.3)

Similarly, letting

a2 = − 3a3 + a6a8, (3.4)

we obtain B4 = 0. Then, the next two generalized Lyapunov constants B6 and B8 become

B6 = 6
15 (10a7−7a2

8+25a8) a3 − 2
15
[
a8(5a4−14a8+50) − (9a8 − 50)a7

]
a6

= 4
3 (3a3 − 5a6) a7 − 2

15
[
3(7a8 − 25)a3 + (5a4 − 9a7 − 14a8 + 50)a6

]
a8,

B8 = − 2
875

[
25a8(23a8 − 105)a4 − 5(460a7 + 1255a8 − 241a2

8 − 2100)a7

− 3a8(62a3
8 − 1435a2

8 + 8500a8 − 14875)
]
a3

− 4
875

{[
875a4−5(42a8−265)a7+62a3

8−1645a2
8+8950a8−14875

]
a7

− (875a5 − 62a3
8 + 1435a2

8 − 8500a8 + 14875)a8
}
a6

= 4
35
[
(46a3 − 53a6)a7 − 35a4a6 − 210a3 + 595a6

]
a7

− 2
875

{
25(23a8−105)a3a4 +

[
5(241a8 − 1255)a3 − 2(210a7 − 62a2

8

+ 1645a8 − 8950)a6
]
a7 − 3(62a3

8 − 1435a2
8 + 8500a8 − 14875)a3

− 2(875a5 − 62a3
8 + 1435a2

8 − 8500a8 + 14875)a6
}
a8,

(3.5)

where B6 = 0 has been used to compute B8. It follows from (3.4) and (3.5) that we may classify two cases: 
(A) a6a8 = 0 and (B) a6a8 �= 0.

Case (A) a6a8 = 0. In this case, a2 = − 3a3. If a6 = 0, then a3 = 0 yields B6 = B8 = 0, and in fact all 
B2k = 0, k = 5, 6, · · · , 10. This gives a condition

C1 : a1 = a2 = a3 = a6 = 0, (3.6)

under which all the generalized Lyapunov constants, B2k, k = 1, 2, . . . , 10 vanish. Similarly, if a8 = 0, then 
a7 = 0 yields B6 = B8 = 0, and this gives another condition,

C2 : a1 = a7 = a8 = 0, a2 = − 3 a3, (3.7)

under which B2k = 0, k = 1, 2, . . . , 10.
Next, we want to investigate under the condition a6a8 = 0, what is maximal number of limit cycles which 

can bifurcate from the origin of system (3.1). We first consider a6 = 0, a3 �= 0 and then a8 = 0, a7 �= 0. The 
case a6 = a8 = 0 is not considered since it yields special cases of C1.

Case (A1) a6 = 0, a3 �= 0. For this case, B6 = 0 yields a solution a7 = 1
10 (7a8 − 25)a8 with a8 �= 0 since 

a8 = 0 leads to a special case of C2. Then, B8 becomes

B8 = −a3a8
[
50 (23a8 − 105)a4 − 3(313a3

8 − 3300a2
8 + 11225a8 − 12250)

]
.
875
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This shows that taking a8 = 105
23 yields B8 = − 5040

279841a3 �= 0, implying that 4 limit cycles can be obtained. 
Suppose a8 �= 105

23 , we solve B8 = 0 for a4 and then substitute this solution into B10 to obtain

B10 = 2a3a8
65625(23a8−105)2

[
1250 (127a8 − 525)(23a8 − 105)2a5

+ 3(a8−5)2(843883a5
8 − 17214695a4

8 + 140051325a3
8

− 568007125a2
8 + 1148437500a8 − 926100000)

]
.

Clearly, setting a8 = 525
127 gives B10 = 95644595200

12587618744067a3 �= 0, yielding 5 limit cycles around the origin. If 
choosing a root of the second factor in B10, then a5 = 0 (due to B10 = 0) and B12 becomes a function 
in a3, giving 6 limit cycles. For example, letting a8 = 5 we have B12 = −9480

77 a3
3 �= 0. Now suppose 

(127a8 − 525)(23a8 − 105) �= 0, and the second factor in B10 is also nonzero. Then, we solve B10 = 0 for a5
and use this solution to simplify B12 and B14 to obtain

B12 = − a3a8
6015625(23a8−105)3(127a8−525) G1(a2

3, a8),

B14 = − a3a8
782031250(23a8−105)4(127a8−525)2 G2(a2

3, a8),

B16 = − a3a8
625625000000(23a8−105)5(127a8−525)2 G3(a2

3, a8),

where Gi, i = 1, 2, 3 are polynomials in a2
3 and a8 and linear with respect to a2

3. In particular,

G1 = 187500(697a8 − 2695)(127a8 − 525)(23a8 − 105)3a2
3

− (a8 − 5)2
(
1377405099237a9

8 − 50096385469230a8
8

+ 808738100674975a7
8 − 7606204683786500a6

8

+ 45929013487571875a5
8 − 184655576500018750a4

8

+ 494307270802515625a3
8 − 849570999768750000a2

8

+ 850698925256250000a8 − 378119684250000000
)
,

which shows that taking a8 = 2695
697 yields 6 limit cycles. Next, suppose a8 �= 2695

697 . Then, the second factor 
in G1 must be nonzero since a3 �= 0. We solve the equation G1 = 0 for a2

3 and substitute this solution into 
B14 and B16 to obtain two polynomial equations in a8. It can be shown that there exist 3 real solutions for 
a8 such that a2

3 > 0 and B14 = 0, but B16 �= 0, implying that maximal 8 limit cycles can bifurcate from the 
origin of system (3.1).

The following analysis will be more or less similar to the above discussion.

Case (A2) a8 = 0, a7 �= 0. In this case, B6 = 0 yields a3 = 5
3 a6 with a6 �= 0 since a6 = 0 gives a special case 

of C1. For this solution, B8 = 4a6a7
105 (71a7 + 735 − 105a4). Letting a4 = 71a7+735

105 yields B8 = 0 and

B10 = a6a7
11025 (12250a2

6 − 32a2
7 + 5460a7 + 176400 + 18375a5),

from which we can solve for a5 and substitute the solution into B12, B14 and B16 to obtain their simplified 
expressions in a2

6 and a7, which are linear with respect to a2
6. In particular, B12 is given by

B12 = − 32a6a7
573024375

[
18375(829a7 + 64680)a2

6 + 110996a3
7 − 29397690a2

7

− 2089303650a − 30866913000
]
.
7
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It is easy to see that taking a7 = −64680
829 yields B12 = −204812940525512704

472300192081 a6 �= 0, giving 6 limit cycles. 
Suppose a7 �= −64680

829 . Then, solving B12 = 0 gives a solution for a2
6, which is substituted into B14 and B16

to obtain two polynomial equations in a7. It can be shown that there exists only one real solution for a7
such that a2

6 > 0 and B14 = 0, but B16 �= 0, implying that maximal 8 limit cycles can bifurcate from the 
origin of system (3.1).

Summarizing the above results, we have shown that when a6a8 = 0, the maximal number of limit cycles 
can bifurcate from the origin of system (3.1) is 8. So, to find 9 limit cycles, we must consider the case 
a6a8 �= 0.

Case (B) a6a8 �= 0. For convenience, define

H1 = 10a7 − (7a8 − 25) a8,

H2 = − (9a8 − 50) a7 + (5a4 − 14a8 + 50) a8,

H3 = 5a4a8 − (9a8 − 20)a7 + (7a8 − 25)a8.

(3.8)

Then, B6 can be rewritten as B6 = 6
15 a3H1 − 2

15 a6H2, which shows that if B6 = 0, then H1 = 0 implies 
H2 = 0 due to a6a8 �= 0. Hence, in order to have B6 =0, we need to investigate three cases: H1 = H2 = 0; 
H1 �= 0, H2 = 0; and H1H2 �= 0.

Case (B1) H1H2 �= 0. First we consider the generic case, H1H2 �= 0, under which solving B6 = 0 yields a 
solution for a3:

a3 = H2

3 H1
a6. (3.9)

Next, from the output of our Maple program, we obtain the generalized Lyapunov constant B8, which is 
linear in a5. Thus, solving B8 = 0 for a5 yields

a5 = 1
1050a8H1

{
100 a2

7 a4(105 − 23a8) + 10a4a7a8(17a2
8 − 315a8 + 1050)

+ 25a2
4a

2
8(23a8 − 105) + 5a2

7(4a7 − a2
8 + 4a8)(81a8 − 355)

−
[
a4a

2
8 − (4a7−a2

8+4a8)a7
](

186a3
8−2695a2

8+12400a8−18375
)}

.

(3.10)

With the above solutions of a1, a2, a3 and a5, other higher-order generalized Lyapunov constants are ob-
tained as

B10 = − 2 a6
826875 a8 H2

1
F0 F1,

B12 = − a6
136434375 a8 H3

1
F0 F2,

B14 = − a6
2483105625000 a2

8 H3
1
F0 F3,

B16 = − a6
223479506250000 a2

8 H4
1
F0 F4,

B18 = − a6
53188122487500000000 a3

8 H5
1
F0 F5,

(3.11)

where

F0 = a4 a
2
8 − (4a7 − a2

8 + 4a8)a7, (3.12)
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and F1, F2, · · · , F5 are functions in a4, a7, a8 and a2
6. Note that if F0 = 0, then all the generalized Lyapunov 

constants B2k, k ≤ 10 vanish. The condition F0 = 0 together with the solutions a1, a2, a3 and a5 gives the 
following condition:

C3 : a1 =a5 =0, a2 =a6
(
a8−2− 2a7

a8

)
, a3 = 2

3a6
(
1+ a7

a8

)
, a4 = a7(4a7+4a8−a2

8)
a2
8

, (3.13)

under which B2k = 0, k = 1, 2, . . . , 10.
In order to find the maximal number of limit cycles bifurcating from the origin, we need to use the 

parameters a4, a6, a7, a8 to find the solutions such that F1 = F2 = F3 = F4 = 0, but F5 �= 0 (or B18 �= 0). 
Therefore, in the following, we shall first try to find the solutions from the equations, F1 = F2 = F3 = F4 = 0, 
and then verify if the condition B18 �= 0 is satisfied for these solutions. Since all Fi, i = 1, 2, 3, 4 are functions 
in a2

6 and in particular, F1 is linear in a2
6, given by

F1 = 4593750 a8 a
2
6 H3

+ 1250a2
4a8

[
315(37a8 − 175)a7 − (9619a2

8 − 80430a8 + 165375)a8
]

− 25a4
[
50(7513a2

8 − 11445a8 − 110250)a2
7 − 5a8(38427a3

8 + 77630a2
8

− 2608725a8 + 6615000)a7 − a2
8(201212a4

8 − 3697415a3
8 + 24846075a2

8

− 72736125a8 + 78553125)
]
− 500a3

7(1062a2
8 − 44885a8 + 186375)

− 25a2
7
(
66303a4

8 − 544520a3
8 + 3396875a2

8 − 18947250a8 + 38587500
)

− 10a7a8
(
137382a5

8 − 2395130a4
8 + 13673725a3

8 − 22645625a2
8

− 37261875a8 + 108871875
)

+ a2
8(7a8 − 25)

(
11112a5

8 − 215450a4
8

+ 1330375a3
8 − 2339375a2

8 − 4081875a8 + 12403125
)
.

(3.14)

There are two cases: H3 = 0 and H3 �= 0.
First, we consider H3 = 0 from which we obtain

a4 = 1
5a8

[
(9a8 − 20) a7 − (7a8 − 25) a8

]
, (3.15)

which is substituted into the higher-order generalized Lyapunov constants to yield

B10 = 4a6
1378125a2

8
(a8 − 5)(2a7 − a8)F 1,

B12 = 2a6
227390625a3

8
(a8 − 5)(2a7 − a8)F 2,

B14 = a6
2069254687500a4

8
(a8 − 5)(2a7 − a8)F 3,

B16 = a6
186232921875000a5

8
(a8 − 5)(2a7 − a8)F 4,

where F 1 is a function in a7 and a8, while F 2, F 3 and F 4 are functions in a7, a8 and a2
6. It can be shown 

that (a8 − 5)(2a7 − a8) = 0 yields B2k = 0, k = 1, 2, . . . , 10. In fact, a8 = 5 indeed gives a condition,

C4 : a1 = a5 = 0, a8 = 5, a2 = 2a6, a3 = a6, a4 = a7 − 2, (3.16)

under which all B2k, k ≤ 10 vanish. However, 2a7 − a8 = 0 yields a special case of C3.
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For other solutions solved from F 1 = F 2 = F 3 = 0, it can be shown that maximal 8 limit cycles can 
be obtained. First it has been noted that the coefficient of a2

6 in F 2 is 93a2
8 − 725a8 + 1400. Letting this 

coefficient equal zero yields polynomials F 1 and F 2 in a7 and it can be shown that there exist four real 
solutions such that F 1 = 0 (i.e., B10 = 0), but F 2 �= 0 (i.e., B12 �= 0), implying the existence of 6 limit 
cycles. When 93a2

8 − 725a8 + 1400 �= 0, we can solve a2
6 from F 2 = 0, and then F 3 and F 4 also become 

polynomials in a7 and a8. One can show that there exist four real solutions such that F1 = F 3 = 0, but 
F 4 �= 0, implying that maximal 8 limit cycles can bifurcate from the origin.

Now, suppose H3 �= 0. Substituting the solution of a2
6 = A6(a4, a7, a8), solved from F1 = 0, into F2, F3

and F4, we obtain

F2 = − 4
875 H3

G1, F3 = − 16
875 H3

G2, F4 = − 12
765625 H3

G3, (3.17)

where G1, G2 and G3 are respectively, 4th-, 5th- and 7th-degree polynomial functions in a4. To solve the 
equations G1 = G2 = G3 = 0 for real solutions of the parameters, a4, a7 and a8, we first use the Maple 
built-in command eliminate to eliminate a4 from the three equations: G1 = G2 = G3 = 0, yielding a solution 
a4 = a4(a7, a8), and two resultants:

R12 = R0 R12a, R13 = R0 (93a2
8 − 725a8 + 1400) R13a,

where the common factor R0 is given by

R0 = a8 H1 (a8 − 5)(9a8 − 35)

×
[
55125(3a8 − 4)2a2

7 − 10a2
8
(
18552a2

8 − 128825a8 + 223475
)
a7

−a2
8
(
1852a4

8 − 194325a3
8 + 1770175a2

8 − 5548375a8 + 5788125
)]
,

(3.18)

and R12a and R13a are lengthy polynomials in a7 and a8 (with 888 terms in R12a and 1380 terms in R13a), 
which are not listed here for brevity. First, consider R0. If R0 =0, then all generalized Lyapunov constants 
vanish. Since a8H1 �= 0 and a8 = 5 has been considered in the condition C4, we only need to consider other 
two factors. For the big factor, we can show that letting this factor equal zero yields H3 = 0, violating the 
assumption. For a8 = 35

9 , we get one more condition, given below:

C5 :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a1 = 0,

a8 = 35
9 ,

a2 = a6(52488a2
7−161595a7+115150)

9(81a7−140)(81a7−70) ,

a3 = a6(59049a2
7−144585a7+75950)

9(81a7−140)(81a7−70) ,

a4 = 59049a2
7−119070a7+34300

945(81a7−140) ,

a5 = 2(27a7−70)(81a7−35)(243a7−350)(162a7−245)
2679075(81a7−140)2 ,

a6 = ±2 (81a7−70)(243a7−280)
2835

√
70(81a7−140)

(
a7 > 140

81
)
,

(3.19)

under which B2k = 0, i = 1, 2, . . . , 10.
For the remaining parts in R12 and R13, we first consider the solution solved from the simple factor 

of R13, 93a2
8 − 725a8 + 1400 = 0, which gives two real solutions: a±8 = 725±5

√
193

186 . Substituting the two 
solutions into the equation R12a = 0 to solve for a7, yielding 15 real solutions corresponding to a+

8 and 
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11 real solutions corresponding to a−8 . It can be verified that among the 26 solutions, 2 solutions violate 
the assumption H3 �= 0, 12 ones yield a2

6 = A6(a4(a7, a8), a7, a8) < 0, and other 12 ones lead to B16 �= 0, 
implying that maximal 8 limit cycles can be obtained from the solutions a±8 . Hence, the feasible solutions 
for 9 limit cycles must be found from the equations R12a = R13a = 0. Since R12a and R13a are respectively 
23rd- and 29th-degree polynomials in a7, we apply the Maple built-in command resultant to eliminate a7

from the two equations: R12a = R13a = 0 to obtain a resultant in a8:

R123 = C123 a
326
8 (9a8 − 35)2(a8 − 5)5

×(3a8 − 10)8(697a8 − 2695)(549a8 − 1645) R123a R123b,

where C123 is a big integer, and R123a (which contains 284 terms) and R123b (which includes 1454 terms) 
are respectively 283th- and 1453th-degree integer polynomials in a8, each term having a very big integer 
coefficient. It can be shown that the polynomial R123b does not have solutions satisfying R12a = R13a = 0. 
Thus, we only need to consider the linear factors in R123 and the factor R123a. Since a8 �= 0, the linear 
factors have the solutions: a8 = 1645

549 , 10
3 , 2695

697
35
9 and 5. a8 = 5 has been considered above in the condition 

C4, and a direct computation shows that the solution a8 = 10
3 leads to that R12a(a7) and R13a(a7) have no 

common factors. Moreover, for a8 = 2695
697 , we have a7 = 388080

485809 , which yields H1 = 0 and so is not allowed. 
Therefore, we only need to consider two values of a8: 1645

549 and 35
9 . Each of them yields a unique solution 

of a7 satisfying R12a(a7) = 0 and R13a(a7) = 0. But both them yield a zero divisor for solution a4(a7, a8). 
Thus, for these two values of a8, we need reconsider possible bifurcation of limit cycles by investigating the 
solutions of the equations: G1 = G2 = G3 = 0.

(1) a8 = 1645
549 . For this value, R12a(a7) and R13a(a7) have a common root a7 = 101990

301401 under which

B12 = a6(301401a4−49538)
11163a4−10744 B12a(a4), B14 = a6(301401a4−49538)

11163a4−10744 B14a(a4),

where B12a and B14a are respectively 3rd- and 4th-degree polynomials in a4. Note that 11163a4−10744 =
0 yields H3 = 0 and so is not allowed, while 301401a4 − 49538 = 0 yields a special case of C3. Moreover, 
it is easy to show that B12a(a4) has 3 real roots, and all of them satisfy a2

6 = A6(a4(a7, a8), a7, a8) > 0
and B14a �= 0, implying that there are 6 solutions to yield 7 limit cycles around the origin.

(2) a8 = 35
9 . For this case we obtain a7 = 140

81 , and

B12 = 56a6(81a4−68)
345191655699(9a4−8) (78121827a3

4 − 206422182a2
4 + 180139302a4 − 51948944),

B14 = 28a6(81a4−68)
363486813451047(9a4−8) (601147458765a4

4 − 2125734770745a3
4

+ 2802717403668a2
4 − 1634221389834a4 + 355795637488).

Note that 9a4 − 8 = 0 is not allowed since it yields H3 = 0, and 81a4 − 68 = 0 gives a special case of C3. 
The 3rd-degree polynomial in B12 has one real solution satisfying a2

6 = A6(a4(a7, a8), a7, a8) > 0 and 
B14 �= 0, implying the existence of 7 limit cycles.

Therefore, none of the solutions obtained from the linear factors can give 9 limit cycles.
Next, consider the factor R123a. It has 53 real roots for a8, each of them yields a unique solution for a7 by 

verifying the common roots of the equations R12a(a7) = 0 and R13a(a7) = 0, leading to 53 sets of solutions 
(a7, a8). Moreover, all the 53 sets of solutions satisfy G1 = G2 = G3 = 0 (i.e., F2 = F3 = F4 = 0), but only 
24 of them yield a2

6A6(a4(a7, a8), a7, a8) > 0. These 24 sets of solutions are
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(a7, a8) = ( 4.398089 · · · ,−14.54122 · · · ), (−66.19700 · · · ,−10.81905 · · · ),

( 0.451595 · · · ,−0.019793 · · · ), (−0.545773 · · · , 0.891421 · · · ),

(−9.202151 · · · , 0.916847 · · · ), (−0.689736 · · · , 2.248118 · · · ),

(−3.237553 · · · , 2.525801 · · · ), (−2.635767 · · · , 2.674894 · · · ),

( 0.911863 · · · , 3.171373 · · · ), ( 0.916134 · · · , 3.199575 · · · ),

(−0.495531 · · · , 3.233994 · · · ), (−0.411833 · · · , 3.357596 · · · ),

( 0.782354 · · · , 3.464452 · · · ), (−0.819658 · · · , 3.530177 · · · ),

( 2.323788 · · · , 3.574264 · · · ), ( 2.331817 · · · , 3.578910 · · · ),

( 0.506545 · · · , 3.728333 · · · ), ( 2.897285 · · · , 4.335131 · · · ),

( 2.989399 · · · , 4.350327 · · · ), ( 3.262858 · · · , 4.519013 · · · ),

( 5.444113 · · · , 4.999836 · · · ), ( 5.206692 · · · , 5.053923 · · · ),

( 5.639909 · · · , 5.872529 · · · ), ( 14.51426 · · · , 8.193654 · · · ).

Then, for each set of the above solutions, we can find corresponding solutions for a4(a7, a8), a6 =
±
√
A5(a4(a7, a8), a7, a8), a5, a3 and a2. Thus, there are in total 48 solutions, satisfying B2 = B4 = · · · =

B16 = 0, but B18 �= 0. For example, taking the fourth solution, we have

a1 = 0, a2 = −0.1481082002 · · · , a3 = 0.3895415095 · · · ,

a4 = 0.2161600548 · · · , a5 = 0.3785873532 · · · , a6 = 1.1448190280 · · · ,

a7 = −0.5457733466 · · · , a8 = 0.8914215289 · · · ,

(3.20)

for which

B2 = B4 = · · · = B16 = 0, B18 = − 0.2676264978 · · · �= 0. (3.21)

Moreover, using the above critical parameter values, we obtain

det
[
∂(B2,B4,B6,B8,B10,B12,B14,B16)

∂(a1,a2,a3,a4,a5,a6,a7,a8)

]
=− 490.0663780732 · · · �= 0. (3.22)

Therefore, proper perturbations on a8, a7, a4, a6, a5, a3, a2 and a1 can be taken to obtain 8 small-amplitude 
limit cycles around the origin.

Finally, we consider the linear perturbations which yields one more small-amplitude limit cycle. Actually, 
with the small linear perturbed terms, the origin becomes a focus with eigenvalues 12

[
δ2±

√
δ2
2−4δ1(1+δ1)

]
, 

showing that the zeroth-order focus value is v0 = 1
2 δ2. At δ2 = 0, the origin becomes an elementary center 

with a purely imaginary pair: ± i
√
δ1(1+δ1). Then, by using normal form theory, a simple calculation shows 

that the first Lyapunov coefficient v1 is given by

v1 = 1
2

[
a1 + (3a3+2a1−a8a6−2a6+a2) δ1 + (3a3+a1+a2) δ2

1
]
.
8(1+δ1)
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Note that v1 = 1
8 a1 and B2 = a1 when δ1 = δ2 = 0, which are in the same order of a1 (just by difference 

of a positive constant factor). Thus, we can properly perturb δ2 such that v0B2 < 0 and |v0| � |B2| to get 
the 9th small-amplitude limit cycle around the nilpotent critical point (the origin).

Case (B2) H1 = H2 = 0. Solving H1 = H2 = 0 we have a7 = 1
10 (7a8−25)a8 and a4 = 3

50 (3a8−10)(7a8−25). 
There are three cases.

(1) a8 = 25
7 . Then, a4 = a7 = 0, and B8 = 100

16807 [12a3 + (2401a5 − 8)a6]. Letting a5 = 8
2401 yields a3 = 0

and

B10 = − 200a6
51883209 (12353145a2

6 − 10712),

B12 = −100a6
9321683217 (1723910797a2

6 + 596648),

which clearly indicates that 6 limit cycles can be obtained. If a5 �= 8
2401 , then we have a3 =

− 1
12a6(2401a5 − 8), which is substituted into B10 to obtain

B10 = − 25a6
86436 a5

[
84035(117649a2

6 − 80)a5 + 16470860a2
6 − 20448

]
. (3.23)

It is easy to verify that a5 = 0 gives a special case of C3. If a5 �= 0, then a2
6 = 80

117649 results in 
B10 = 57800

21609 a6 �= 0, yielding 5 limit cycles. If a2
6 �= 80

117649 , then we solve a5 from B10 = 0, which 
simplifies B12 and B12 as

B12 = −32a6(4117715a2
6−5112)

2936330213355(117649a2
6−80)3 (1343441218276120425a6

6

− 48401735626048910a4
6 + 31519505743936a2

6 − 6072768000),

B14 = 16a6(4117715a2
6−5112)

2618619284269989(117649a2
6−80)3 (502164369560774582445a6

6

− 14623351347578446270a4
6 + 12842075888066880a2

6

− 3507925999104).

Again, one can verify that 4117715a2
6 − 5112 = 0 gives a special case of C3. Otherwise, solving B12 = 0

gives one real positive solution a2
6 for which B14 �= 0, indicating the existence of 7 limit cycles.

(2) a8 = 10
3 . Then, we have a4 = 0 and a7 = −5

9 , under which B8 = 40
1701 [45a3 +(567a5−25)a6]. If a5 = 25

567 , 
then a3 = 0 and

B10 = − 200a6
964467 (178605a2

6 − 1774), B12 = − 400a6
31827411 (3880737a2

6 − 21869),

which clearly shows that there exist solutions for the existence of 6 limit cycles. If a5 �= 25
567 , then 

a3 = a6(25−567a5)
45 , and B10 becomes

B10 = −8a6a5

567
[
(189(3969a2

6 − 61)a5 + 26460a2
6 − 83

]
.

a5 = 0 again yields a special case of C3. It is easy to see that 3969a2
6 − 61 = 0 gives a solution for the 

existence of 5 limit cycles. If 3969a2
6 − 61 �= 0, then similarly we can prove that there exist 6 solutions 

for the existence of 7 limit cycles.
(3) (7a8 − 25)(3a8 − 10) �= 0. Then a4a7 �= 0. Since a6 �= 0, we solve B8 = 0 to obtain

a5 = 1 (a8 − 5)(17a2
8 − 139a8 + 280)

[
15a3 − a6(7a8 − 15)

]
,
1750a6
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and then

B10 = −a8(15a3+15a6−7a8a6)
6890625a6

B10a, B12 = −a8(15a3+15a6−7a8a6)
11369531250 B12a,

where B10a and B12a are polynomials in a3, a6 and a8. It is easy to verify that 15a3 + 15a6 − 7a8a6 = 0
yields a special case of C3. Following a similar procedure as used above, we can show that there exist 8
solutions for the existence of 7 limit cycles.

Case (B3) H1 �= 0, H2 = 0. For this case, H2 = 0 yields a4 = 1
5a8

[(14a8 − 50)a8 + (9a8 − 50)a7], and then 
B6 = 0 requires a3 = 0 due to H1 �= 0. Then, we solve B8 = 0 to obtain a solution for a5, given by

a5 = − 1
875a2

8

[
10a2

7(21a2
8 − 290a8 + 875) − a7a8(a8 − 5)(62a2

8 − 1335a8 + 4725)

− a2
8(62a3

8 − 1435a2
8 + 8500a8 − 14875)

]
,

under which

B10 = − 4a6(a7+a8)
1378125a2

8
B10a(a2

6, a7, a8), B12 = − 2a6(a7+a8)
227390625a2

8
B12a(a2

6, a7, a8),

where B10a and B12a are polynomials in a2
6, a7 and a8, and in particular,

B10a = 4593750a2
6a

2
8 − 250a2

7(3969a3
8 − 80750a2

8 + 526575a8 − 1102500)

+ 5a7a8(74208a4
8 − 2425625a3

8 + 25885100a2
8 − 110354125a8

+ 162618750) + a2
8(3704a5

8 + 598890a4
8 − 16370125a3

8

+ 135606125a2
8 − 455039375a8 + 541603125).

Note that a7 + a8 = 0 gives a special case of C3. So solving B10a for a2
6 and substitute the solution into 

B12 and B14 to obtain two polynomial equations in a7 and a8. Solving these two polynomial equations, we 
obtain 10 sets of solutions (a7, a8) such that a2

6 > 0 and B16 �= 0. This shows that there exist 20 solutions 
for the existence of 8 limit cycles.

Summarizing the above results obtained for Cases (A) and (B) shows that the maximal number of 
small-amplitude limit cycles which can bifurcate from the origin is 9.

The proof of Theorem 3.1 is complete. �
4. 10 limit cycles in a cubic-order system near a nilpotent critical point

In this section, we consider system (3.1) again, and will use the method of double bifurcation of nilpotent 
focus to show that the system can have 10 small-amplitude limit cycles near the origin. To achieve this, we 
add different perturbations to system (3.1) to obtain the following perturbed system:

dx

dt
= y + (a8 − 2)xy − (a4 − a7)x2y + a6y

2 + a2xy
2 + a5y

3,

dy

dt
= 4δεy + y2 + a4xy

2 + a3y
3 − (x2 − ε2)(2x− a1y),

(4.1)

where 0 < |δ| � 1, 0 < ε � 1. Then, for system (4.1) we have the following result.

Theorem 4.1. For system (4.1) with a nilpotent critical point at the origin, there exist at least 10 small-
amplitude limit cycles near the origin.
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Proof. The proof has two steps. In the first step, let δ = ε = 0. Then, as shown in the previous section, 
we obtain the critical parameter values given in (3.20) such that the conditions in (3.21) and (3.22) are 
satisfied, and thus we obtain 8 small-amplitude limit cycles around the origin by perturbing the coefficients 
a1, a2, . . . , a8.

In the second step, by choosing proper values of δ and ε, we can use the method of double bifurcation of 
nilpotent focus [29] to find two more small-amplitude limit cycles near the origin. In fact, for small δ and ε, 
the origin of system (4.1) becomes a saddle, having eigenvalues ε 

[
2δ ±

√
4δ2+2

]
, and two foci arising from 

the symmetric singular points at (±ε, 0), with eigenvalues 2ε
[
δ±

√
1+(a8−2)ε+(a7−a4)ε2

]
, indicating that 

the zeroth-order focus values associated with the two foci is given by v0 = 2ε δ. When δ = 0, the origin is 
still a saddle (with eigenvalues ±

√
2 ε), while the two foci become elementary centers and Hopf bifurcations 

occur at the two singular points, with the critical eigenvalues ±i ωc, where ωc=2ε2
√

1+(a8−2)ε+(a7−a4)ε2

≈ 2ε2. A direct calculation shows that the first Lyapunov constant, associated with the two Hopf critical 
points, is given by

v1 = ε3

2[1+(a8−2)ε+(a7−a4)ε2]
{
3a3a8 − 2a6(a8 + a7) +

[
6a3a7 − a6a8(a4 + a7)

]
ε
}
,

where the critical conditions a1 = 0 and a2 = −3a3 + a6a8 (see (3.2) and (3.4)) have been used. With the 
critical solution (3.20), v1 ≈ 0.50065566 ε3 > 0. Thus, we can perturb δ = 0 to δ < 0 such that |δ| � ε3, 
leading to bifurcations of two small-amplitude limit cycles around the two symmetric singular points (±ε, 0). 
Then, by proper perturbations on other parameters to get B2 < 0 and v1 � |B2|, and so on higher-order 
generalized Lyapunov constants. These two additional limit cycles are enclosed by the 8 small-amplitude 
limit cycles, giving rise to 10 small-amplitude limit cycles with the distribution of 8 ⊃ (1 ∪ 1). �

5. Center conditions for the nilpotent critical point

In this section, we will present a set of center conditions for system (3.1) under which the nilpotent critical 
point – the origin, becomes a center. First of all, it requires δ1 = δ2 = 0. Then, based on the generalized 
Lyapunov constants, we can find the conditions under which the origin of system (3.1) is a center. As a 
matter of fact, the critical conditions Ci, i = 1, 2, 3, 4, 5 have been shown in the proof of Theorem 3.1 to be 
the candidates for the center conditions of the origin since they yield all the generalized Lyapunov constants 
to vanish.

Theorem 5.1. When δ1 = δ2 = 0, the origin of system (3.1) is a center if and only if one of the following 
conditions is satisfied:

C1: a1 = a2 = a3 = a6 = 0;
C2: a1 = a7 = a8 = a2 + 3a3 = 0;
C3: a1 = a5 = a2−a6

(
a8−2 − 2a7

a8

)
= 3a3−2a6

(
1 + a7

a8

)
= a4+ a7(a2

8−4a8−4a7)
a2
8

= 0 (a8 �= 0);

C4: a1 = a5 = a8 − 5 = a2 − 2a6 = a3 − a6 = a4 − a7 + 2 = 0.

Proof. The necessity of the conditions Ci, i = 1, 2, 3, 4 has been proved in Theorem 3.1 since all these 
conditions and C5 yield the generalized Lyapunov constants B2k, k = 1, 2, . . . , 10 to vanish. No other 
possible center conditions have been found from the proof of Theorem 3.1. So we only need to prove the 
sufficiency of these conditions.
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First, consider the condition C1. Under C1 system (3.1) becomes

dx

dt
= y + (a8 − 2)xy − (a4 − a7)x2y + a5 y

3,

dy

dt
= − 2x3 + y2 + a4 xy

2.

(5.1)

It is easy to see that system (5.1) is a reversible system since the system is invariant under the transformation: 
(y, t) → (−y, −t). Hence, the origin of system (5.1) is a center.

For condition C2, system (3.1) becomes

dx

dt
= y − 2xy − a4 x

2y + a6 y
2 − 3a3 xy

2 + a5 y
3,

dy

dt
= − 2x3 + y2 + a4 xy

2 + a3 y
3,

(5.2)

which is a Hamiltonian system with the Hamiltonian function,

H(x, y) = 1
2 y2 + 1

2 x4 − xy2 − a4

2 x2y2 + a6

3 y3 − a3xy
3 + a5

4 y4.

Next, consider the condition C3 under which system (3.1) can be written as

dx

dt
= y + (a8 − 2)xy + 2a7(a2

8−2a8−2a7)
a2
8

x2y + a6y
2 + a6

(
a8 − 2 − 2a7

a8

)
xy2,

dy

dt
= − 2x3 + y2 − a7(a2

8−4a8−4a7)
a2
8

xy2 + 2
3 a6

(
1 + a7

a8

)
y3.

(5.3)

It can be shown that there exist integrating factors under different conditions, given by

I1 =
[
(a2

8 − 2a8 − 2a7)x + a8
] − a2

8
a2
8−2a8−2a7 ,

if (a2
8 − 2a8 − 2a7)(3a2

8 − 8a8 − 8a7)

× (a2
8 − 3a8 − 3a7)(a2

8 − 4a8 − 4a7)(a8 + a7) �= 0,

I2 = 6a4
8

a4
8y

2{2a6y+3[1+(a8−2)x]}−12 [6+6a8x+3a2
8x

2+a3
8x

3] ,

if a2
8 − 2a8 − 2a7 = 0,

I3 = 1
(a8x + 4)4 , if 3a2

8 − 8a8 − 8a7 = 0,

I4 = 1
(a8x + 3)3 , if a2

8 − 3a8 − 3a7 = 0,

I5 = 1
(a8x + 2)2 , if a2

8 − 4a8 − 4a7 = 0,

I6 = 1
(a8x + 1) , if a8 + a7 = 0,

(5.4)

such that system (5.3) has the following corresponding first integrals:
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F1(x, y) = I1

{
1
2y

2+ a8−2
2 xy2+ a6

3 y3+ a7(a2
8−2a8−2a7)

a2
8

x2y2+ a6
3
(
a8−2− 2a7

a8

)
xy3

+ (a2
8−2a8−2a7)x+a8

(3a2
8−8a8−8a7)(a2

8−3a8−3a7)(a2
8−4a8−4a7)(a8+a7)

×
[
2(a2

8 − 3a8 − 3a7)(a2
8 − 4a8 − 4a7)(a8 + a7)x3

− 3a8(a8 + a7)(a2
8 − 4a8 − 4a7)x2 + 6a2

8(a8 + a7)x + 3a3
8

]}
,

F2(x, y) = 2 ln a2
8 − ln I2 − a8x,

F3(x, y) = y2[8a6y+3(3a8x−8x+4)]
96(a8x+4)3 + 8[9a2

8x
2+54a8x+88]

3a4
8(a8x+4)3 + 1

a4
8

ln(a8x + 4)2,

F4(x, y) = y2[2a6y+2(a8−3)x+3]
18(a8x+3)2 + 2a3

8x
3+12a2

8x
2−36a8x−135

a4
8(a8x+3)2 − 9

a4
8

ln(a8x + 3)2,

F5(x, y) = y2[4a6y+3x(a8−4)+6
]

24(a8x+2) + a3
8x

3−6a2
8x

2−16a8x+16
a4
8(a8x+2) + 12

a4
8

ln(a8x + 2)2,

F6(x, y) = 1
6 y

2(2a6y − 6x + 3) + (2a2
8x

2−3a8x+6)x
3a3

8
− 1

a4
8

ln(a8x + 1)2.

(5.5)

Now, for the condition C4, system (3.1) becomes

dx

dt
= y + 3xy + 2x2y + a6y

2 + 2a6 xy
2,

dy

dt
= − 2x3 + y2 + (a7 − 2)xy2 + a6 y

3.

(5.6)

We apply the following transformation and time rescaling

u = x

1 + x
, v = y

1 + x
, t = (1 − u)2τ =⇒ x = u

1 − u
, y = v

1 − u
, (5.7)

to system (5.6) to obtain

du

dτ
= v

[
1 − u2 + a6 v(1 − u2)

]
,

dv

dτ
= u

[
− 2u2 + (a7 − 4)v2 − a6 v

3].
(5.8)

This is a reversible system since it is invariant under the transformation (u, τ) → (−u, −τ). Hence, the 
origin of system (5.8) is a center, implying that the origin of the original system (3.1) is a center since the 
origin is invariant under the transformation (5.7). �

Finally, consider the condition C5 (see Eqn. (3.19)). This condition is necessary for the origin of system 
(3.1) being a center has been proved in Theorem 3.1. For sufficiency of this condition, we have the following 
conjecture.

Conjecture 5.1. The condition C5 is also sufficient for the origin of system (3.1) being a center.

6. Conclusion

In this paper, we have shown that planar cubic polynomial vector fields with an isolated nilpotent 
critical point can have at least 9 small-amplitude limit cycles around the critical point and at least 10
small-amplitude limit cycles near the critical point with the distribution of 8 ⊃ (1 ∪ 1). Normal form theory 
has been applied to compute the generalized Lyapunov constants, and then to determine the number of 
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bifurcating limit cycles near the critical point. Moreover, a set of center conditions for the nilpotent point 
has been obtained for such cubic polynomial systems. It has demonstrated the general applicability of our 
method and program to solve different types of polynomial systems with a nilpotent singular point.
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