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Abstract In this paper, we present a bacteriophagemodel that includes prophage, that
is, phage genomes that are incorporated into the host cell genome. The generalmodel is
described by an 18-dimensional system of ordinary differential equations. This study
focuses on asymptotic behaviour of the model, and thus the system is reduced to a
simple six-dimensional model, involving uninfected host cells, infected host cells and
phage.Weuse dynamical system theory to explore the dynamic behaviour of themodel,
studying in particular the impact of prophage on the equilibria and stability of phage
and host.We employ bifurcation and stability theory, centre manifold and normal form
theory to show that the system has multiple equilibrium solutions which undergo a
series of bifurcations, finally leading to oscillating motions. Numerical simulations
are presented to illustrate and confirm the analytical predictions. The results of this
study indicate that in some parameter regimes, the host cell population may drive the
phage to extinction through diversification, that is, if multiple types of host emerge;
this prediction holds even if the phage population is likewise diverse. This parameter
regime is restricted, however, if infecting phage are able to recombine with prophage
sequences in the host cell genome.
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1 Introduction

Bacteriophage, viruses that infect bacteria, are the most abundant life form on the
Earth, with recent estimates of over 1030 viral particles on the planet, largely in marine
ecosystems (Hendrix 2002). In particular, phage are believed to outnumber bacterial
host cells by about ten to one (Hendrix 2002). The analysis of sequenced prokaryote
genomes, however, has revealed another substantial reservoir of phage genetic mater-
ial:many bacterial species carry between seven and twenty phage genomeswithin their
bacterial DNA (Casjens 2003). This implies that the number of phage genomes inside
host cell DNA is of the same order of magnitude as the number of phage genomes
(individual free phage) in the environment.

Phage genetic material in bacterial DNA is typically the result of infection by
temperate bacteriophage. While both temperate and virulent phage have the ability to
infect and kill their bacterial host cells, temperate phage have the additional ability
to integrate their genetic code into the host cell DNA, leaving the host otherwise
unharmed (Stewart and Levin 1984). The phage genome is then replicated when the
host cell undergoes fission, and both daughter cells carry a copy of the phage genome.
Bacterial cells that carry phage genomes in their DNA are referred to as lysogens.

The copies of phage genetic material carried in bacterial genomes are called
prophage, indicating that in future, for example under stressful conditions or when the
host cell experiencesDNAdamage (Stewart andLevin 1984), prophage sequencesmay
be induced to produce phage. During this induction process, the prophage sequence
sets in motion the process of killing the lysogen and releasing a large number of viral
particles.

The impact of prophage on the evolutionary dynamics of bacteria and phage is par-
ticularly intruiguing because of the possibility of recombination. Through this process,
newly infecting phage can exchange genetic material with pre-existing prophage in
the host cell genome. This process has been well-documented in lactococcal phages
in particular (Moineau et al. 1994; Bouchard and Moineau 2000; Durmaz and Klaen-
hammer 2000; Labrie and Moineau 2007), but has also been recently observed in the
most well-studied phage-host system, bacteriophage Lamdba and E. coli (Meyer et al.
2012). In one instance, phage Lambda acquired an entirely new protein, a tail fibre,
from a prophage sequence in the host genome (Meyer, personal communication). In
another, phage ul36 exchanged 79% of its genome with endogenous prophages in the
host cell genome (Labrie and Moineau 2007).

This phenomenon raises some significant questions. Ifmany bacterial cells carry the
genetic record of seven to twenty previous infections, the bacterial genome carries a
substantial arsenal of phage sequences that could be used against it in future. What are
the implications of these prophage sequences on the evolutionary dynamics of hosts
and phage? What effect does recombination with previous temperate phage have on
the evolutionary arm’s race? In this contribution, we begin to address these questions
by developing a model of host cells and phage, including the possibility that phage in
previous generations may leave genetic material in the host genome, as prophage, and
that recombination may allow these genes to transfer back to the phage genome at a
later time. Themain aim of this study is to understand the importance of prophage, and
to investigate the striking ability of the virus to use host cells as a time capsule, carrying
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information that may be detrimental to the host cell itself. Although the evolution of
humans and their pathogens is clearly outside of the scope of this study, it is important
to note that over 8% of the human genome consists of proviral DNA (Casjens 2003),
and thus the possibility of carrying an arsenal of viral genes is certainly not limited to
bacterial genomes.

In the next section, we develop a full model of host cells and phage, including
the influence of prophage and the possibility of recombination. We then examine a
reduced model which includes only those populations that may persist as t → ∞. We
non-dimensionalize this reduced model, and examine the existence and stability of
the equilibria in the non-dimensionalized system. Finally, we investigate the effect of
recombination by examining differences in the model behaviour when the recombina-
tion rate is set to zero. In the discussion, we highlight several interesting predictions
of the model and explore their implications for temperate phages and their hosts.

2 The Model

The model we develop is an S-I-V type model based on a system of nonlinear ordinary
differential equations. Themodel follows the population densities of uninfected bacte-
rial hosts and infected hosts, as well as phage that may infect or lysogenize uninfected
hosts.

In general, phage infect host cells through receptor proteins expressed on the surface
of the host cell. The phage can only infect if it has a corresponding protein that will
bind to the receptor; in tailed phage, for example, the virus carries a tail fibre that must
match the host cell receptor in order to infect the cell. For simplicity, in our model each
host carries one type of receptor on its surface, either type J or type K ; each phage
likewise has either a J - or K -type tail fibre, determining the receptor through which
it can attach and thus which host cell population it can infect. The phage population
densities are denoted PJ and PK .

Once a phage has attached to the host, the host may become an infected host with
probability (1−p) or a lysogenwith probability p. Lysogens are considered uninfected
cells, but acquire the prophage corresponding to the type of phage that lysogenized
them. Each type of uninfected host cell population can thus be written as Hyz where
y ∈ {O, J, K , J K } represents the type of prophage the cell is carrying (if any) and
z ∈ {J, K } represents the type of receptor it is expressing. This yields a total of eight
types of uninfected host cells.

If an uninfected host becomes infected, it falls into one of the eight infected
population types denoted by Iyz , where y ∈ {O, J, K , J K } shows the type of
prophage the infected host is carrying, and z ∈ {J, K } defines which type of virus has
infected it. We use N to denote the total density of all uninfected and infected cells,
N = ∑

Hyz +∑
Iyz .

The uninfected bacterial population grows logistically with maximum growth rate
λ and carrying capacity K ; all infected and uninfected host cells contribute to this
carrying capacity. The death rate of uninfected host cells is denoted μ. The parameter
β gives the infection rate, assuming mass action kinetics, for both PJ and PK . Finally,
the infected host cells do not reproduce but their death rate is given by δ.
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An infected cell that was infected by a particular type of phage produces phage of
the same type, assuming it does not undergo recombination. A unique feature of this
model, however, is that infected cells that carry prophage may undergo recombination
to produce phage of the prophage type instead. Thus for example a cell of type HJK

carries prophage J and expresses receptor K . This cell can only be infected by Pk ,
and the resulting IJ K cell typically produces viral offspring of type PK . However
with probability r , recombination occurs between the infecting phage and the prophage
within the bacterial DNA. In this case, the infected cell IJ K will produce viral offspring
of type PJ .

We assume that infected cells produce new phage at a constant rate f , thus strictly
our model captures budding viruses, not lysis in which a burst of phage is released
simultaneously (Hubbarde et al. 2007). The clearance rate for the phage is d.

Finally, over evolutionary time, rare mutations allow the evolution of both host
receptors and phage tail fibres (see Koskella and Brockhurst 2014 for a recent review).
This allows for transitions: rare HJ J individuals, for example, will diversify through
mutation to become HJK , expressing an alternate receptor. Likewise PJ can diver-
sify to produce PK individuals, a process that can require up to four rare mutational
substitutions (Meyer et al. 2012).

These stochastic events could be modelled by including deterministic mutation
terms in the population dynamics, however this approach has the serious drawback
that rare mutational types would be continually generated at low densities – densities
corresponding to a fraction of a cell or virus. Including these deterministic approxi-
mations in the model can substantially alter the predicted dynamics on realistic time
scales, as demonstrated in the final section of the paper. Thus, we take a different
approach. We assume that mutation terms are negligible in determining the popula-
tion dynamics, equilibrium states and stability. However we acknowledge that over
evolutionary time scales, these rare transitions do occur, and thus we allow for the
existence of populations such as HJK , which may have been produced through the
diversification of HKK . In a final section of the paper, we address the implications
of diversification by exploring the impact of these rare mutational transitions on the
population dynamics.

The complete set of model equations is as follows.

2.1 Uninfected Host Cells

ḢO J = λHOJ
(
1 − N

K

)− μHOJ − βPJ HOJ ,

ḢOK = λHOK
(
1 − N

K

)− μHOK − βPK HOK ,

ḢJ J = λHJ J
(
1 − N

K

)− μHJ J − βPJ HJ J + pβPJ HOJ + pβPJ HJ J ,

ḢK K = λHKK
(
1 − N

K

)− μHKK − βPK HKK + pβPK HOK + pβPK HKK ,

ḢK J = λHK J
(
1 − N

K

)− μHK J − βPJ HK J ,

ḢJ K = λHJK
(
1 − N

K

)− μHJK − βPK HJK ,

ḢJ K J = λHJK J
(
1 − N

K

)− μHJK J − βPJ HJK J + pβPJ HK J + pβPJ HJK J ,
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ḢJ K K = λHJKK
(
1 − N

K

)− μHJKK − βPK HJKK + pβPK HJK + pβPK HJKK ,

(2.1)

where the dot represents differentiation with respect to time t .

2.2 Infected host cells

İO J = (1 − p)βPJ HOJ − δ IO J , İOK = (1 − p)βPK HOK − δ IOK ,

İ J J = (1 − p)βPJ HJ J − δ IJ J , İK K = (1 − p)βPK HKK − δ IK K ,

İK J = (1 − p)βPJ HK J − δ IK J , İ J K = (1 − p)βPK HJK − δ IJ K ,

İ J K J = (1 − p)βPJ HJK J − δ IJ K J , İ J K K = (1 − p)βPK HJKK − δ IJ K K .

(2.2)

2.3 Phage

ṖJ = (IO J + IK J + IJ J + IJ K J )(1 − r) f + (IJ K + 1
2 IJ K K

+ 1
2 IJ K J + IJ J )r f − dPJ ,

ṖK = (IOK + IJ K + IK K + IJ K K )(1 − r) f + (IK J

+ 1
2 IJ K J + 1

2 IJ K K + IK K )r f − dPK .

(2.3)

The 1
2 accompanying the IJ K K and IJ K J terms in the last two equations reflects the

assumption that when recombination occurs in an infected cell containing both types
of prophage, the probability that the infecting phage will recombine with the correct
type of prophage to give a different tail fibre is 1

2 .
Using the primary experimental literature for E. coli and phage lambda, we

have determined realistic parameter values for the system above, and are using this
newly developed model to investigate the complex dynamics of temperate phage and
prophage along several lines of enquiry. For the analyticalwork presented in this contri-
bution, however, system (2.1)–(2.3) can be reduced by noting that if phage populations
are nonzero, over time host cells acquire, but never lose, prophage. It is straightforward
to show that in the limit as t → ∞, all the host cells acquire both types of prophage
in their DNA. For the analysis of equilibria and stability, therefore, we can neglect the
transient dynamics of prophage acquisition, and focus on the populations remaining
at this limit. We thus consider the following reduced model:

Uninfected
host cells :

⎧
⎪⎪⎨

⎪⎪⎩

ḢJ K J = λHJK J
(
1 − N

K

)− μHJK J − βPJ HJK J + pβPJ HK J

+pβPJ HJK J ,

ḢJ K K = λHJKK
(
1 − N

K

)− μHJKK − βPK HJKK + pβPK HJK

+pβPK HJKK ;
Infected
host cells :

{
İ J K J = (1 − p)βPJ HJK J − δ IJ K J ,

İ J K K = (1 − p)βPK HJKK − δ IJ K K ;
Phage :

{
ṖJ = IJ K J (1 − r) f + 1

2 (IJ K K + IJ K J )r f − dPJ ,

ṖK = IJ K K (1 − r) f + 1
2 (IJ K J + IJ K K )r f − dPK ,

(2.4)
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Table 1 Parameters for the phage-host system

P Definition Values References

λ Birth rate of host cells 27.36 day−1 Suresh et al. (2009)

μ Death rate of host cells 1.02 day−1 Wang et al. (2010) and
Manuel et al. (2014)

δ Death rate of infected cells 27.27 day−1 De Paepe and Taddei
(2006)

d Virus clearance rate 13.88 day−1 De Paepe and Taddei
(2006)

p
Probability with which
virus becomes prophage

0.5

r
Probability of recombination
with prophage

0.0001

β Infection rate 1.5 × 10−6ml virus−1day
−1

Weitz et al. (2005)

f
Rate at which infected
cells produce virus

144.6 virus cell−1 day−1 De Paepe and Taddei
(2006)

K Carrying capacity of host cells 1 × 107 cell ml−1

where N is now simply N = HJK J + HJKK + IJ K J + IJ K K . The parame-
ters λ, μ, β, p, δ, f , r and d take positive real values, and 0 < p < 1,
0 < r < 1. The parameter values, listed in Table 1, have been chosen from the
primary experimental literature as denoted in the references. The recombination
probability is unknown, but assumed to be rare. The prophage acquisition proba-
bility is expected to vary widely with environmental conditions; we take p = 0.5
for simulation studies. The carrying capacity can be varied over several orders of
magnitude, depending on experimental protocols, however this parameter scales
out in the non-dimensionalized system. The P in the table stands for ‘parame-
ter’.

3 Dimensionless Model and Well-Posedness of Solutions

3.1 Dimensionless Model

In order to simplify the analysis in the following sections, we first apply scaling
on the state variables, the parameters and time to obtain a dimensionless model.
To achieve this, introducing the following scaling: HJK J = K x1, HJKK = K x2,
IJ K J = K x3, IJ K K = K x4, PJ = δ

(1−p)β x5, PK = δ
(1−p)β x6, and τ = δ t ,

into the simple six-dimensional model (2.4) yields the dimensionless system (where
we still use the dot to indicate differentiation with respect to the new time τ for
brevity):
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ẋ1 = x1
[
A(1 − x1 − x2 − x3 − x4) − B − x5

]
,

ẋ2 = x2
[
A(1 − x1 − x2 − x3 − x4) − B − x6

]
,

ẋ3 = x1 x5 − x3,

ẋ4 = x2 x6 − x4,

ẋ5 = (F + R) x3 + R x4 − D x5,

ẋ6 = R x3 + (F + R) x4 − D x6,

(3.1)

where the new parameters A, B, D, F and R take positive values, defined by

A = λ
δ
, B = μ

δ
, D = d

δ
, F = f (1−r)(1−p)βK

δ2
, R = f r(1−p)βK

2δ2
. (3.2)

With the parameter values given in Table 1, these new dimensionless parameters take
the typical values: A = 1.0033, B = 0.0374, D = 0.509, F = 2.9164(1 − p),
R = 0.0001458(1 − p). For example, taking p = 0.5, we have F = 1.4582 and
R = 0.00007292.

3.2 Well-Posedness of Solutions

First, we show the well-posedness of solutions of system (3.1). We have the following
theorem.

Theorem 3.1 All solutions of system (3.1) are non-negative if the initial conditions
are non-negative. Furthermore, they are bounded.

To prove the positivity of the solutions, we need the following lemma.

Lemma 3.2 (Proposition 1.1 in Chepyzov and Vishik 2002) The cone Rn+ is invari-

ant for the flow generated by the differential equation, dx
dt = f(x), if and only

if the function f(x) is quasi-positive, i.e. for every i = 1, 2, . . . , n the function
fi (x1, . . . , 0, . . . , xn) ≥ 0, where 0 stands at the i th position and x j ≥ 0 for j �= i .

Proof The non-negativity of solutions of system (3.1) is obvious by verifying the con-
ditions given in Lemma 3.2. To prove the boundedness of solutions, we first construct
the Lyapunov function, L1 = ∑4

i=1 xi + 1
F+2R (x5 + x6), which is positive definite

for (x1, x2, x3, x4, x5, x6) �= (0, 0, 0, 0, 0, 0). Then differentiating L1 with respect

to τ and then using (3.1), we obtain dL1
dτ

∣
∣
∣
(3.1)

= ∑4
i−1

dxi
dτ

+ 1
F+2R

(dx5
dτ

+ dx6
dτ

) =
(x1 + x2)

[
(A − B) − A(x1 + x2 + x3 + x4)

]− D
F+2R (x5 + x6). There are two cases.

Case 1 A ≤ B. In this case, dL1
dτ

∣
∣
∣
(3.1)

< 0 for
{
(x1, x2, x3, x4, x5, x6)

∣
∣ x1 + x2 + x5

+ x6 �= 0
}
; but dL1

dτ

∣
∣
(3.1) = 0 for

{
(x1, x2, x3, x4, x5, x6)

∣
∣ x1 = x2 = x5 = x6 =

0
}
. So, we only need to consider the second subcase for which the third and fourth

equations (3.1) become ẋi = − xi , i = 3, 4, implying that limτ→∞ xi = 0, i = 3, 4.
Thus, by LaSalle’s (1976) invariant principle, we know that the conclusion is true for
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the subcase. Combining the two subcases, we conclude that the origin of system (3.1)
is globally asymptotically stable (GAS), attracting all solutions of the system.

Case 2 A > B. For this case, it is easy to see that dL1
dτ

∣
∣
∣
(3.1)

< 0 when x1+x2+x3+
x4 > 1− B

A . Therefore, in the cone R
6+, all the solutions are attracted into the trapping

region�1, defined by�1 := {
(x1, x2, x3, x4, x5, x6)

∣
∣ x1 + x2 + x3 + x4 ≤ 1 − B

A

}
.

Now, within �1, where x3 + x4 ≤ 1 − B
A , we want to show that x5 and x6 are also

bounded. Consider the second Lyapunov function: L2 = x5+x6
F+2R . Then,

dL2
dτ

∣
∣
∣
(3.1)

= dx5
dτ + dx6

dτ = x3 + x4 − D
F+2R (x5 + x6) ≤ 1 − B

A − D
F+2R (x5 + x6),

where x3 + x4 ≤ 1− B
A has been used, which implies that dL2

dτ

∣
∣
∣
(3.1)

< 0 if x5 + x6 >

(A−B)(F+2R)
AD . Therefore, for A > B, together with �1, we define an attracting region

� as

� :={(x1, x2, x3, x4, x5, x6
) ∣
∣ x1+x2 + x3+x4 ≤ 1− B

A , x5 + x6 ≤ (A−B)(F+2R)
AD

}
,

(3.3)
and then all solution trajectories of system (3.1) are attracted into �.

Combining the discussions in Cases 1 and 2 completes the proof for Theorem 3.1.
�	

Now we consider the equilibrium solutions, their stability and bifurcations of the
model (3.1). First, note that due to symmetry, the system has an invariant manifold,
defined by

I1 := {
(x1, x2, x3, x4, x5, x6)

∣
∣x1 = x2, x3 = x4, x5 = x6

}
. (3.4)

which implies that in order for the dynamics of system (3.1) to be confined on this
invariant manifold, the initial point must chosen on this manifold. Though it is math-
ematical interesting, this exactly symmetric initial condition is very unlikely to occur
in nature. Therefore, here we concentrate on the analysis of the full six-dimensional
system (3.1), and in fact the dynamics on invariant manifold I1 is a special case of
the general system. Hence, we omit the analysis of the dynamics on I1, however we
summarize results in a corollary after Theorem 4.1 for the general system. Also, we
present the bifurcation diagram for the dynamics on I1 in Fig. 2b to allow comparison
with that of system (3.1) given in Fig. 2a.

4 Equilibrium Solutions, Stability and Bifurcations of System (3.1)

To find the equilibrium solutions of (3.1), we first find four possible groups from
the first two equations of (3.1) (i.e. setting ẋ1 = ẋ2 = 0): (i) x1 = x2 = 0, (ii)
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x1 = 1− B
A − x3 − x4 − x5

A , x2 = 0, (iii) x1 = 0, x2 = 1 − B
A − x3 − x4 − x6

A ; and

(iv)

{
A(1 − x1 − x2 − x3 − x4) − B − x5 = 0,
A(1 − x1 − x2 − x3 − x4) − B − x6 = 0,


⇒ x5 = x6.

Obviously, Group (i) gives the equilibrium solution E0 : (0, 0, 0, 0, 0, 0). For Group
(ii), it follows from x2 = 0 that either x3 = 0, or x1 = D

F+R , the former yields an

equilibrium solution: E1a : (1 − B
A , 0, 0, 0, 0, 0); while the latter results in another

equilibrium solution:

E2 : (
D∗, 0, D∗F∗, 0, F∗, R∗F∗), where D∗ = D

F+R , R∗ = R
F+R ,

F∗ = (F + R)(A − B) − AD

F + R + AD
. (4.1)

Similarly, Group (iii) gives two equilibrium solutions: E1b : (0, 1 − B
A , 0, 0, 0, 0),

and
E3 : (

0, D∗, 0, D∗F∗, R∗F∗, F∗). (4.2)

Finally, for Group (iv), we have x6 = x5, for which we obtain by a simple
manipulation that either x5 = 0, or x1 = x2 = D

F+2R . For x5 = 0, we have

x3 = x4 = x5 = x6 = 0 and x1 + x2 = 1 − B
A , which yields an equilibrium

line segment:

E1 : (x1, x2, 0, 0, 0, 0), satisfying x1 + x2 = 1 − B
A , x1 ≥ 0, x2 ≥ 0. (4.3)

It is easy to see that the equilibrium solutions E1a and E1b are special cases of the
equilibrium E1 (E1a and E1b are the two end points of E1). Hence, in the following,
we shall include the E1a and E1b into the discussion of E1. While for the second case
in Group (iv), namely x5 �= 0, we have a positive equilibrium, given by

E4 : (D∗∗, D∗∗, D∗∗F∗∗, D∗∗F∗∗, F∗∗, F∗∗),
where D∗∗ = D

F+2R , .F∗∗ = (F+2R)(A−B)−2AD
F+2R+2AD . (4.4)

Carrying out stability analysis on the above equilibrium solutions and considering
bifurcations among these equilibrium solutions, we obtain the following theorem, in
which the definitions are used:

E1s :
(
s
(
1 − B

A

)
, (1 − s)

(
1 − B

A

)
, 0, 0, 0, 0

)
,

E1(1−s) :
(
(1 − s)

(
1 − B

A

)
, s
(
1 − B

A

)
, 0, 0, 0, 0

)
,

B∗ = 2D∗
[
1+

√
(1−2s)2+4s(1−s)R∗2

] , for s ∈ [0, 1
2

]
,

B(1)
H = A

[
1 − 2D

F

(
1 + 2RD∗∗)]− 2R(1+D)

F ,

B(2)
H = A − 2A[(F+2R)(F+2R+2AD)(D2+3D+1)+4A2D3]

(F+2R)[(F+2R−A)2−(1+4D)A2] . (4.5)
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Theorem 4.1 For system (3.1), the trivial equilibrium E0 is GAS for B ≥ A, and
unstable for B < A. At the transcritical point B = A, the equilibrium (line segment)
E1 emerges from E0. The equilibrium points on this equilibrium line segment between
E1s and E1(1−s) are GAS for B ∈ (A(1 − B∗), A) and become unstable for B <

A(1 − B∗), indicating that the whole equilibrium line segment E1 (i.e. every point
on this line segment) is GAS for B ∈ (A(1 − D∗), A), while only the middle point
on E1 is GAS for B ∈ (A(1 − 2D∗∗), A). The equilibria E2 and E3 are always
unstable for positive parameter values. The equilibriumE4 is asymptotically stable for
B(1)
H < B < A

(
1−D∗∗) if A ≥ F+2R

1+√
1+4D

; ormax
{
B(1)
H , B(2)

H

}
< B < A

(
1−2D∗∗)

if A < F+2R
1+√

1+4D
. Hopf bifurcation occurs from E4 at B = B(1)

H when A ≥ F+2R
1+√

1+4D
,

or at B = max
{
B(1)
H , B(2)

H

}
< A

(
1 − 2D

F+2R

)
when A < F+2R

1+√
1+4D

.

Remark 1 Analogous to the basic reproductive number, we defineRH as the number
of host cells produced by a single host cell in its lifetime, assuming the bacterial
cell density is initially far from the carrying capacity and phage are absent. Clearly
RH = λ

μ
= A

B , and thus RH < 1 (RH > 1) is equivalent to B > A (B < A). For
convenience in this paper, we use B, rather then RH, as a perturbation parameter in
the analysis and bifurcation diagrams.

Proof To find stability of the equilibrium solutions, we use the Jacobian of system
(3.1). First, evaluating the Jacobian at the equilibrium E0 results in the characteristic
polynomial, P0(ξ) = (ξ − A + B)2(ξ + 1)2(ξ + D)2, which indicates that E0 is
asymptotically stable for B > A and becomes unstable for B < A. Moreover, E0 is
GAS for B ≥ A, as shown in the proof of Theorem 3.1 for Case 1. The critical point
is B = A.

For equilibrium E1, using x1 ∈ [0, 1 − B
A

]
as a free variable, we substitute E1 into

the Jacobian of (3.1) to obtain the characteristic polynomial, P1(ξ) = ξ (ξ + A −
B)(ξ4 + b1 ξ3 + b2 ξ2 + b3 ξ + b4), where

b1 = 2(1 + D), b2 = (1 + D)2 + 2D − (
1 − B

A

)(
F + R

)
,

b3 = (1 + D)
[
2D − (

1 − B
A

)(
F + R

)]
,

b4 = F(F + 2R)x1
(
1 − B

A − x1
)+ D

[
D − (

1 − B
A

)(
F + R

)]
.

E1 is asymptotically stable if the following conditions hold: b1 > 0, b4 > 0, �2 =
b1b2 − b3 > 0 and �3 = b3 �2 − b4 b21 > 0. Note that b1 > 0 is satisfied. Also
note that the above conditions imply that b2 > 0 and b3 > 0. However, b3 > 0, i.e.
1− B

A < 2D
F+R , or B > A(1−2D∗), guarantees b2 > 0.Moreover, under the condition

b3 > 0, we can show that

�2 = 2(1 + D)
[
(1 + D)2 + 2D − (

1 − B
A

)
(F + R)

]

− (1 + D)
[
2D − (

1 − B
A

)
(F + R)

] = 2(1 + D)3 + b3 > 0,
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and

�3 = (b1b2 − b3)b3 − b4b
2
1

= (1 + D)2
{[
2D − (

1 − B
A

)
(F + R)

]2 + 2(1 + D)2
[
2D − (

1 − B
A

)
(F + R)

]

+ 4D2 − 4F(F + 2R)x1
(
1 − B

A − x1
)}

≥ (1 + D)2
{[
2D − (

1 − B
A

)
(F + R)

]2+ 2(1 + D)2
[
2D − (

1 − B
A

)
(F + R)

]

+ 4D2 − F(F + 2R)
(
1 − B

A

)2}

= (1 + D)
[
(1 + D)

(
1 − B

A

)2
R2 + 2(D2 + 4D + 1) b3

]
> 0.

Thus, the only remaining condition for stability is b4 > 0. To verify this condition, let
x1 = s (1 − B

A ), s ∈ [0, 1]. Then, we have the equivalent condition:

b4 = s(1 − s) F(F + 2R)
(
1 − B

A

)2 − D(F + R)
(
1 − B

A

)+ D2 > 0.

First note that when 1 − B
A < D

F+R , i.e. B > A(1 − D∗), b4 > 0 for any s ∈
[0, 1], implying that any point on the equilibrium line segment x1 + x2 = 1 − B

A is
asymptotically stable for B > A(1 − D∗).

Next, consider B ≤ A(1−D∗). In this case, it is easy to see that not everypoint on the
equilibrium line segment is stable. For example, when B = A(1−D∗), b4 = 0 if s = 0
or s = 1. In other words, these two points become critical points and must be excluded
from the set of stable equilibrium points. That is, when B = A(1−D∗), except for the
two end points, every point on the equilibrium line segment is asymptotically stable.
If we further decrease B from A(1 − D∗), we would expect more unstable points to
appear on the equilibrium line segment. In fact, since 0 ≤ s(1−s) = 1

4 −(s− 1
2

)2 ≤ 1
4 ,

b4 attains its minimum at s = 0 for which (x1, x2) = (
(1 − B

A ), 0
)
, or at s = 1 for

which (x1, x2) = (
0, (1 − B

A )
)
; and its maximum at s = 1

2 for which x1 = x2 =
1
2 (1− B

A ). At the minimum value obtained when s = 0, or s = 1, b4 > 0 requires that
B > A(1 − D∗); while at its maximum value when s = 1

2 , it follows from b4 > 0
that B > A(1 − 2D∗∗). The above discussions indicate that the two end points of
the equilibrium line segment E1 are asymptotically stable for A(1 − D∗) < B < A,
while the middle point of the equilibrium line segment is asymptotically stable for
A(1 − 2D∗∗) < B < A, implying that the two end points have the smallest stability
interval, while the middle point has the largest stability interval. Any other points on
the equilibrium line segment E1 has stability interval between these two.

More precisely, for each value of s ∈ [0, 1
2 ], there exists an equilibrium point,

E1s, defined in (4.5) and due to symmetry, there also exists another equilibrium point,
E1(1−s) [also defined in (4.5)]. Then, the equilibrium points on the line segment E1
between these two equilibrium points, E1s and E1(1−s), are asymptotically stable for
A(1 − B∗) < B < A, and becomes unstable for B < A(1 − B∗), where B∗ is
determined from the inequality b4 > 0. So, for each value of s ∈ [0, 1

2 ], we can find
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a critical value B∗ from b4 > 0 such that

1 − B
A <

D
[
F+R−

√
(F+R)2−4s(1−s)F(F+2R)

2s(1−s)F(F+2R)
= 2D∗
[
1+

√
(1−2s)2+4s(1−s)R∗2

] ≡ B∗,

(4.6)
where B∗ ∈ [D∗, 2D∗∗] for s ∈ [

0, 1
2

]
. It is easy to see that B∗ is monotonically

increasing as s is varied from 0 to 1
2 , and thus B∗ is a one-to-one function of s on

s ∈ [0, 1
2 ]. Also note that the above condition guarantees b3 > 0 since 1− B

A < B∗ <

2D∗.
To prove the global stability of E1, we construct the Lyapunov function.

V1 = x1 − x1E − x1E ln x1
x1E

+ x2 − x2E − x2E ln x2
x2E

+ x3 + x4 + p1 x5 + p2 x6 (4.7)

where x1E = s(1 − B
A ), x2E = (1 − s)(1 − B

A ), and

p1 =
{

s
(1−s)F+R , s ∈ [0, 1

2

]
,

s
sF+R , s ∈ ( 12 , 1

]
,

p2 =
{

1−s
(1−s)F+R , s ∈ [0, 1

2

]
,

1−s
sF+R , s ∈ ( 12 , 1

]
,

Due to symmetry, we may only consider s ∈ [0, 1
2 ]. Then, differentiating V1 with

respect to τ and using (3.1) yields

dV1
dτ

∣
∣
∣
(3.1)

= dx1
dτ

− x1E
x1

dx1
dτ

+ dx2
dτ

− x2E
x2

dx2
dτ

+ dx3
dτ

+ dx4
dτ

+ 1
(1−s)F+R

[
s dx5dτ

+ (1 − s)dx6dτ

]

= (x1 − x1E)
[
(A − B) − A(x1 + x2 + x3 + x4) − x5

]

+ (x2 − x2E)
[
(A − B) − A(x1 + x2 + x3 + x4) − x6

]

+ x1 x5 − x3 + x2 x6 − x4

+ s
(1−s)F+R

[
(F + R)x3 + Rx4 − Dx5

]

+ 1−s
(1−s)F+R

[
Rx3 + (F + R)x4 − Dx6

]

= − A
(
1 − B

A − x1 − x2 − x3 − x4
)2

− A (x3 + x4)
(
1 − B

A − x1 − x2 − x3 − x4
)

− (1−2s)F
(1−s)F+R x3 − [ B

A − 1 + D
(1−s)F+R

][
sx5 + (1 − s)x6

]
.

Note that we have assumed that all solutions are attracted into the trapping region �

[see (3.3)] in which x1 + x2 + x3 + x4 ≤ 1 − B
A . Thus, when B > A(1 − B̄), where

B̄ = D
(1−s)F+R ∈ [ D

F+R , 2D
F+2R

] ≡ [D∗, D∗∗], (4.8)

dV1
dτ

∣
∣
∣
3.1

≤ 0 and equals zero only if x5 = x6 = 0, and x1 + x2 + x3 + x4 = 1 − B
A .

But when x5 = x6 = 0, the third and fourth equations of (3.1) yield x3(τ ) → 0
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and x4(τ ) → 0 as τ → ∞. Thus, dV1
dτ

∣
∣
∣
3.1

= 0 only if x1 + x2 = 1 − B
A , leading

to the equilibrium E1. Further, by applying LaSalle’s (1976) invariance principle, we
conclude that the equilibrium point on the line segment E1, defined by

(
s(1− B

A ), (1−
s)(1 − B

A ), 0, 0, 0, 0
)
, is GAS for A(1 − B̄) < B < A.

It remains to be shown that the B̄ used in proving the global stability of E1 is
equivalent to the B∗ used in proving the local stability of E1. To achieve this, we solve
for s in terms of B∗ using (4.6) and also solve for s in terms of B̄ using (4.8), and then
equate the resulting expressions to obtain

1

2

{
1 −

√

1 + 4(F+R)D∗∗
FB∗

[ D∗
B∗ − 1

]} = F + R

F

[
1 − D∗

B̄

]

from which we obtain

B̄ = 2D

F+2R+
√

F
( 2D
B∗ − F

)( 2D∗∗
B∗ − 1

) , for B∗ ∈ [D∗, 2D∗∗].

It is easy to see that B̄ = D∗ and B̄ = 2D∗∗ when B∗ = D∗ and B∗ = 2D∗∗,
respectively. Further, we have

dB̄

dB∗ =
F (F+R)
F+2R

( 2D
B∗
)2( 2D∗

B∗ − 1
)

[

F+2R+
√

F
( 2D
B∗ − F

)( 2D∗∗
B∗ − 1

)]2√
F
( 2D
B∗ − F

)( 2D∗∗
B∗ − 1

)
> 0,

for B∗ ∈ [D∗, 2D∗∗], indicating that B̄ is a continuous, monotonically increasing
function of B∗ and thus one-to-one on the interval B∗ ∈ [D∗, 2D∗∗]. This shows that
B̄ is equivalent to B∗, and thus we will use B∗ in the following for both local and
global stability analyses.

Summarizing the above discussions shows that the equilibrium points on the equi-
librium line segment E1 between E1s and E1(1−s) are GAS for B ∈ (A(1 − B∗), A

)
.

This clearly indicates that the whole equilibrium line segment (i.e. every point on the
line segment) is GAS for the minimum stability interval, only the middle point of the
equilibrium line segment reaches the maximal stability interval, and other equilibrium
points on this equilibrium line segment gain a global stability interval between these
two extremes. The result is illustrated in Fig. 1a–c, as well as in the bifurcation diagram
shown in Fig. 2a.

Next, evaluating the Jacobian of (3.1) on the equilibrium solutions E2 and E3 yields
the same characteristic polynomial:

P2/3(ξ) = (ξ + 1)(ξ + D)
(
ξ − F∗

F+R

){
ξ3 + (F+R)(1+D)+AD

F+R ξ2

+ AD[(F+R)(1+D)+AD2+(F+R)(A−B)]
(F+R)(F+R+AD)

ξ + D[(F+R)(A−B)−AD]
F+R

}
,

which clearly indicates that the equilibria E2 and E3 are always unstable when B <

A(1 − D∗).
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x2

E1

E10

E11/2

x1E110
(a)

x2

E1

E10

E11/2

x1E110

E

E1s

1(1−s)

(b)

x2

E1

E10

E11/2

x1E110
(c)

Fig. 1 Equilibrium line segment E1: a every point on E1 is asymptotically stable for B ∈ (A(1− D∗), A
)
,

b the points between E1s and E1(1−s) are asymptotically stable for B = B∗, and c only the middle point
on E1 is asymptotically stable for B = A(1 − 2D∗∗)

x1

BH

E1

E2,3

E4

E0

E1

x2

2D
F+2R

F+R
D

B
A

AD
F+RF+2R

2AD BA
=0

+

= (1−   )

A− A−0

(a)

D
F+2R

x1

2
1 B

A

F+2R
2AD

I1

I1

I1

I1 A B

(1−   )

A−

E1=

E2

E0=0
BH0

(b)

Fig. 2 a Bifurcation diagram for system (3.1), showing the equilibrium solutions E0 (in red), E1 (in blue),
E2/3 (in purple) and E4 (in green), and b bifurcation diagram restricted on the invariant manifold I1,

showing the equilibrium solutions EI10 (in red), EI11 (in blue) and EI12 (in green); with solid and dotted lines
to denote stable and unstable equilibrium solutions, respectively (Color figure online)

Finally, consider the stability of the equilibrium E4. Similarly, evaluating the Jaco-
bian of (3.1) on this equilibrium solution we obtain P4(ξ) = P4a(ξ) P4b(ξ), where

P4a(ξ) = ξ3 + (1 + D) ξ2 + 2RD
F+2R ξ + FD[(F+2R)(A−B)−2AD]

(F+2R)(F+2R+2AD)
,

P4b(ξ) = ξ3 + (F+2R)(1+D)+2AD
F+2R ξ2 + 2AD[(F+2R)(1+D)+2AD2+(F+2R)(A−B)]

(F+2R)(F+2R+2AD)
ξ

+ D[(F+2R)(A−B)−2AD]
F+2R .

Note that the existence condition for E4 requires (F+2R)(A−B)−2AD > 0, which
guarantees that all the coefficients in P4a(ξ) and P4b(ξ) are positive. Therefore, the
stability of E4 is determined by �2a > 0 and �2b > 0, where

�2a = D{2R(1+D)(F+2R+2AD)−F[(F+2R)(A−B)−2AD]}
(F+2R)(F+2R+2AD)

,
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�2b = D
(F+2R)2(F+2R+2AD)

{
2A
[(

(F + 2R)(1 + D)2 + 2AD2
)
(F + 2R + 2AD)

+D(F + 2R)2
]+ (A − B)(F + 2R)[(1 + 4D)A2 − (F + 2R − A)2

}
.

From �2a = 0, we can solve for B to obtain a Hopf critical point B(1)
H [see (4.5)].

Thus, �2a > 0 for B(1)
H < B < A(1− 2D∗∗). To have �2b > 0, we need to consider

two cases.
Case (i) A ≥ F+2R

1+√
1+4D

. For this condition, (1+ D)A2 − (F + 2R − A)2 ≥ 0, and
so �2b > 0.

Case (ii) A < F+2R
1+√

1+4D
. In this case, (1+ D)A2 − (F + 2R − A)2 < 0, and thus

�2b > 0 for B(2)
H < B < A(1 − 2D∗∗, where B(2)

H is defined in (4.5).
In summary, we conclude that the equilibrium E4 is asymptotically stable if

B(1)
H < B < A(1 − 2D∗∗) for A ≥ F+2R

1+√
1+4D

,

max
{
B(1)
H , B(2)

H

}
< B < A

(
1 − 2D∗∗) for A < F+2R

1+√
1+4D

.
(4.9)

Hopf bifurcation may occur from E4 at B = B(1)
H or B = B(2)

H . �	

To end this section, based onTheorem4.1we describe the dynamics on the invariant
manifold I1 in the following corollary. In this case, there is no equilibria E2/3, and E1

becomes EI1
1 . Define

EI1
0 : (0, 0, 0), EI1

1 : ( A−B
2A , 0, 0

)
, EI1

2 : (D∗∗, D∗∗F∗∗, F∗∗),

BI1
H = A − 2A{[(F+2R)(1+D)2+2AD2](F+2R+2AD)+D(F+2R)2}

(F+2R)[(F+2R−A)2−(1+4D)A2] . (4.10)

Corollary 4.2 For system (3.1) with x1 = x2, x3 = x4, x5 = x6 (i.e. restricted on the
invariant manifold I1), the trivial equilibrium EI1

0 is GAS for B ≥ A, and unstable for

B < A. At the transcritical point B = A, the equilibrium EI1
1 emerges from EI1

0 and
is GAS for A(1 − 2D∗∗) < B < A. It becomes unstable for 0 < B < A(1 − 2D∗∗).
At the transcritical point B = A(1 − 2D∗∗), the equilibrium EI1

2 bifurcates from EI1
1 ,

and is asymptotically stable for BI1
H < B < A(1 − 2D∗∗), where BI1

H denotes a Hopf

critical point. If A ≥ F+2R
1+√

1+4D
or A < F+2R

1+√
1+4D

but BII
H ≤ 0, there is no Hopf

bifurcation and EI1
2 is stable for 0 ≤ B < A(1 − 2D∗∗). Only if A < F+2R

1+√
1+4D

and

BI1
H > 0, then can a Hopf bifurcation occur from EI1

2 , leading to a family of limit
cycles.

The bifurcation diagrams for the general system (3.1) and the invariant manifold
I1 are shown in Fig. 2a, b, respectively, where BH denotes either B(1)

H or B(2)
H . A

comparison between these two bifurcation diagrams reveals that the equilibria E2/3
disappear on the invariant manifold I1, which forces x2 = x1, x4 = x3 and x6 = x5,
and therefore E2/3 become E4.
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5 Effects of Recombination: R = 0

A key novel feature of the model developed here is recombination, the ability of
infecting virus to exchange genetic material with prophage in the host cell genome. To
isolate the effects of recombination, we can compare the bifurcation analysis above
with analogous results obtained in the case when the recombination rate, r = 0 (R = 0
in the non-dimensionalized system).

Setting R = 0 in (3.1) we have

ẋ1 = x1
[
A(1 − x1 − x2 − x3 − x4) − B − x5

]
,

ẋ2 = x2
[
A(1 − x1 − x2 − x3 − x4) − B − x6

]
,

ẋ3 = x1 x5 − x3, ẋ4 = x2 x6 − x4,

ẋ5 = F x3 − D x5, ẋ6 = F x4 − D x6, (5.1)

Again, we have the invariant manifold, described by (3.4) and the dynamics on this
manifold are described by system (3.1) restricted to the invariant manifold I1 with
R = 0. However, for this special case, there exist two additional invariant manifolds,
described by

I2 := {
(x1, x2, x3, x4, x5, x6)

∣
∣x2 = x4 = x6 = 0

}
,

I3 := {
(x1, x2, x3, x4, x5, x6)

∣
∣x1 = x3 = x5 = 0

}
. (5.2)

These two invariant manifolds have some interesting properties, different from the
general model. In the following, we first consider the three invariant manifolds and
then briefly discuss the general case.

5.1 Invariant Manifolds

First, for the invariant manifold I1, simply setting R = 0 in Corollary 4.2 we have the
following corollary.

Corollary 5.1 For system (5.1) restricted to the invariant manifold I1, the trivial
equilibrium EI1

0 is GAS for B ≥ A, and unstable for B < A. At the transcritical

point B = A, the equilibrium EI1
1 emerges from EI1

0 and is GAS for A(1 − 2D/F) <

B < A. It becomes unstable for 0 < B < A(1 − 2D/F). At the transcritical point
B = A(1 − 2D/F), the equilibrium EI1

2 bifurcates from EI1
1 , and is asymptotically

stable for BI1
H < B < A(1 − 2D/F), where BI1

H denotes a Hopf critical point;

and BI1
H = 0 (meaning no Hopf critical point exists) if A ≥ F

1+√
1+4D

, and BI1
H =

A − 2A{[F(1+D)2+2AD2](F+2AD)+DF2}
F(F2−2FA−4DA2)

if A < F
1+√

1+4D
, at which EI1

2 loses stability

and a family of limit cycles bifurcates.

The bifurcation diagram shown in Fig. 2b is still valid here provided we set R = 0
in the figure.
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Next, we consider the invariant manifolds I2 and I3 which can be combined into
the study of the following unified system:

u̇1 = u1
[
A − B − A(u1 + u2) − u3

]
, u̇2 = u1 u3 − u2, u̇3 = F u2 − D u3,

(5.3)

which has three equilibrium solutions:

E
I2/3
0 : (0, 0, 0), E

I2/3
1 : (1 − B

A , 0, 0
)
,

E
I2/3
2 : ( D

F ,
D[F(A−B)−AD]

F(F+AD)
,

F(A−B)−AD
F+AD

)
. (5.4)

Define

B
I2/3
H = A − A

[
F(F+AD)(D2+3D+1)+A2D3

]

F
[
F2−A(F+AD)

] . (5.5)

Then, we have the following theorem. Its proof is similar to that for Theorem 4.1 and
thus omitted here for brevity.

Theorem 5.2 For system (5.3), the trivial equilibrium E
I2/3
0 is GAS for B ≥ A, and

unstable for B < A. At the transcritical point B = A, the equilibrium E
I2/3
1 emerges

from E
I2/3
0 and is GAS for A(1 − D/F) < B < A. It becomes unstable for 0 <

B < A(1− D/F). At the transcritical point B = A(1− D/F), the equilibrium E
I2/3
2

bifurcates fromE
I2/3
1 , and is asymptotically stable for B

I2/3
H < B < A(1−D/F), where

B
I2/3
H denotes a Hopf critical point. If A ≥ 2F

1+√
1+4D

or A < 2F
1+√

1+4D
but B

I2/3
H ≤ 0,

then no Hopf bifurcation occurs and E
I2/3
2 is stable for 0 ≤ B < A(1 − D/F). Only

if A < 2F
1+√

1+4D
and 0 < B

I2/3
H < A(1 − D/F), then can a Hopf bifurcation occur

from E
I2/3
2 , leading to a family of limit cycles.

The bifurcation diagram is depicted in Fig. 3a.

5.2 General Model

The analysis on the general model (5.1) is similar to that for the model (3.1) in which
R �= 0. The four equilibrium solutions are given by

E0
0 :(0, 0, 0, 0, 0, 0),

E0
1 :(x1, x2, 0, 0, 0, 0), x1 + x2 = 1,

E0
2 :( DF , 0, D[F(A−B)−AD]

F(F+AD)
, 0, F(A−B)−AD

F+AD , 0
)
,

E0
3 :(0, D

F , 0, D[F(A−B)−AD]
F(F+AD)

, 0, F(A−B)−AD
F+AD

)
,

E0
4 :( DF , D

F ,
D[F(A−B)−2AD]

F(F+2AD)
,

D[F(A−B)−2AD]
F(F+2AD)

,
F(A−B)−2AD

F+2AD ,
F(A−B)−2AD

F+2AD

)
,

(5.6)
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Fig. 3 a Bifurcation diagram for system (5.3), showing the equilibrium solutions E
I2/3
0 (in red), E

I2/3
1 (in

blue) and E
I2/3
2 (in green), and b bifurcation diagram for system (5.1), showing the equilibrium solutions

E00 (in red), E01 (in blue), E02/3 (in purple) and E04 (in green); with solid and dotted lines to denote stable
and unstable equilibrium solutions, respectively (Color figure online)

where the superscript 0 denotes R = 0. The stability of these equilibrium solutions is
similar to that of system (3.1). The only significant difference is that now for the spe-
cial case R = 0, the Hopf critical point of E4 coincides with its transcritical point. In
other words, the equilibrium E0

4 is always unstable once it bifurcates from E0
1. There-

fore, there is no Hopf bifurcation from E0
4, but there may exist persistent oscillating

motions when E0
4 becomes unstable.Without presenting the detailed analysis, we state

a theorem below for system (5.1) and show its bifurcation diagram in Fig. 3b.

Theorem 5.3 For system (5.1), the trivial equilibrium E0
0 is GAS for B ≥ A, and

unstable for B < A. At the transcritical point B = A, the equilibrium (line segment)
E0
1 emerges from E0

0. The equilibrium points on this equilibrium line segment between
E0
1r = (

s(1− B
A ), (1− s)(1− B

A ), 0, 0, 0, 0
)
and E0

1(1−s) = (
(1− s)(1− B

A ), s(1−
B
A ), 0, 0, 0, 0

)
are GAS for B ∈ (A(1 − B0∗), A), where B0∗ = D

(1−s)(F+R)
, and

become unstable for B < A(1−B0∗). The equilibria E0
2/3 and E

0
4 are always unstable

for positive parameter values.

6 Additional Two Invariant Manifolds Showing the Effects of
Recombination

In simulation, it has been shown that for system (3.1) or system (5.1) trajectories may
converge to the unstable equilibrium solutionsE2/3 for A(1−2D∗∗) < B < A(1−D∗)
[R = 0 for system (5.1)], if the initial condition is chosen in the formof (∗, 0, ∗, 0, ∗, ∗)

where ∗ denotes nonzero entries, as shown in Fig. 5 [for system (3.1)] and Fig. 7a [for
system (5.1)]. This seems to contradict the results of our stability analysis. A careful
consideration shows that the equilibrium solution E2 of system (3.1) or (5.1) is in the
form of (∗, 0, ∗, 0, ∗, ∗).Moreover, the second and fourth equations of the two systems
are given as ẋ2 = x2(· · · ) and ẋ4 = x2x6 − x4. This clearly shows that the dynamical
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solutions of the two equations remain as x2 = x4 = 0 if the initial conditions involve
x2(0) = x4(0) = 0. Therefore, starting from the initial condition given in the form of
(∗, 0, ∗, 0, ∗, ∗), the dynamics of the system are actually restricted to the following
invariant manifold:

I24 := {
(x1, x2, x3, x4, x5, x6)

∣
∣x2 = 0, x4 = 0

}
, (6.1)

and dynamics on this invariant manifold are described by the following equations:

ẋ1 = x1
[
A(1 − x1 − x3) − B − x5

]
,

ẋ3 = x1 x5 − x3,

ẋ5 = (F + R) x3 − D x5,

ẋ6 = R x3 − D x6, (6.2)

This system has three equilibrium solutions: E0 : (0, 0, 0, 0), E1 : (1− B
A , 0, 0, 0), and

E2 : (D∗, D∗F∗, F∗, R∗F∗). Note that now we do not have equilibrium solutions
E3 and E4. We have the following theorem. The proof is straightforward and omitted
here.

Theorem 6.1 For system (6.1), the trivial equilibrium E0 is GAS for B ≥ A, and
unstable for B < A. At the transcritical point B = A, the equilibrium E1 bifurcates
from E0, and is GAS for A(1 − D∗) < B < A. E2 loses its stability at the critical
point B = A(1 − D∗) at which the equilibrium E2 emerges and is asymptotically
stable for BH < B < A(1 − D∗), where BH = 0 if A ≥ 2(F+R)

1+√
1+4D

, and BH =
A − A[(1+3D+D2)(F+R)(F+R+AD)+A2D3]

(F+R)[(F+R)2−A(F+R+AD)] if A <
2(F+R)

1+√
1+4D

.

Similarly, we can define another invariant manifold:

I13 := {
(x1, x2, x3, x4, x5, x6)

∣
∣x1 = 0, x3 = 0

}
, (6.3)

and can obtain a similar dynamics for this sub-system. We omit the details for brevity.

7 Hopf Bifurcations

In this section,we considerHopf bifurcationswhichmay occur in themodels discussed
in previous sections, including the three-dimensional symmetricmodel on the invariant
manifold I1, the special three-dimensional symmetric model (5.3) on the invariant
manifolds I2/3, and the six-dimensional asymmetric model (3.1). For convenience, we
call the three-dimensional symmetric model on the invariant manifold I1 as system
(3.2)I1 Note that we’ll not consider the special three-dimensional symmetric system on
the invariant manifold I1 for model (5.1), since the analysis is exactly the same as that
for system (3.2)I1 . We also do not consider the special six-dimensional asymmetric
model (5.1), simply because it does not have Hopf bifurcation.
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7.1 Hopf Bifurcation in the three-Dimensional Symmetric Model (3.2)I1

For system (3.2)I1 , there exist three equilibrium solutions: EI1
0 , E

I1
1 and EI1

2 . It has been

shown that EI1
0 is GAs for B ≥ A, and becomes unstable for B < A. Equilibrium EI1

1

bifurcates from EI1
0 at the transcritical point B = A, and is GAS for A(1 − 2D∗∗) <

B < A, and becomes unstable for B < A(1 − 2D∗∗). At the transcritical point
B = A(1 − 2D∗∗), EI1

2 emerges from EI1
1 and stable for BI1

H < B < A(1 − 2D∗∗),
where BI1

H = 0 if A ≥ F+2R
1+√

1+4D
(no Hopf bifurcation). Therefore, the only possible

bifurcation from EI1
2 is Hopf bifurcation when A < F+2R

1+√
1+4D

, and the Hopf critical

point BI1
H is given in (4.10).

Theorem 7.1 For system (3.2)I1 , Hopf bifurcation can only occur from the equilib-
rium solution EI1

2 at the critical point BI1
H if A < F+2R

1+√
1+4D

. The Hopf bifurcation is

supercritical and thus the bifurcating limit cycles are stable.

Proof For convenience, let

C1 = F + 2R, C2 = C1 + 2AD,

C3 = C1(C1 − 2A) − 4A2D = (
A + C1√

1+4D−1

)( C1√
1+4D+1

− A
)
.

(7.1)

Then, at the Hopf critical point BI1
H , system (3.2)I1 has one negative eigenvalue r1,

and a purely imaginary pair ±i ωc, where

r1 = −(1 + D) − 2AD
C1

, ωc =
√

2AD(1+D)C2
C3

(
0 < A < F+2R

1+√
1+4D

)
. (7.2)

Now based on the associated eigenvectors of the above eigenvalues, introducing the
following affine transformation,

⎛

⎝
x1
x2
x3

⎞

⎠ =
⎛

⎜
⎝

D
C1

D[(F+2R)(A−B)−2AD]
C1C2

(F+2R)(A−B)−2AD
C2

⎞

⎟
⎠+

⎡

⎢
⎣

− DC2
(1+D)C1C2

ωcC3
2A(1+D)C1C2

DC3
(1+D)C3

1
D
C1

ωc
C1

−C2
C2
1

1 0 1

⎤

⎥
⎦

⎛

⎝
y1
y2
y3

⎞

⎠ ,

(7.3)
and the time scale τ1 = ωcτ as well as the perturbation B = BI1

H − α, into system
(3.2)I1 , we obtain

dy1
dτ1

= y2 + (α11y1 + α12y2)α + (· · · ) +
∑

i+ j+k=2

ai jk y
i
1y

j
2 y

k
3 ,

dy2
dτ1

= − y1 + (α21y1 + α22y2)α + (· · · ) +
∑

i+ j+k=2

bi jk y
i
1y

j
2 y

k
3 ,

dy3
dτ1

= − r1
ωc

y3 + (· · · ) +∑
i+ j+k=2 ci jk y

i
1y

j
2 y

k
3 . (7.4)
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where (· · · ) denotes other terms involving α which are not needed for computing the
normal form, and ai jk, bi jk and ci jk are coefficients expressed in terms of the original
parameters A, B, D, F and R. Here,

α11 = − D(1+D)C3
1C2C3

α∗(C1+2AD)2
, α22 = DC1C3[(1+D)C2

1C2+C3(C1+2AD)]
α∗(C1+2AD)2

,

α12 = ω1(1+D)C3
1C

2
3

2α∗A(C1+2AD)2
, α21 = − ωcDC1C3[(1+D)C2

1C2+C3(C1+2AD)]
α∗(1+D)(C1+2AD)2

,

α∗ = (1 + D)C1C3(DC1 + C2) + 2AD
[
(1 + D)C2

1C2 + C3(C1 + 2AD)
]
.

Then we can apply the formulas and algorithms developed in Yu (1998), Yu and
Huseyin (1988) to obtain the normal form up to third order terms as follows:

dρ

dτ1
= ρ

(
v0 α + v1 ρ2 + · · · ), dθ

dτ1
= ωc + t0 α + t1 ρ2 + · · · , (7.5)

where vi is called the i th focus values, and v0 and t0 are given by Yu and Huseyin
(1988)

v0 = 1
2 (α11 + α22) = DC1C2

3
2α∗(C1+2AD)

> 0,

t0 = 1
2 (α12 − α21) = ωcC1C3{(1+D)2C2

1C3+2AD[(1+D)C2
1C2+C3(C1+2AD)]}

4α∗A(1+D)(C1+2AD)2
, (7.6)

and v1 and t1 can be obtained by executing the Maple program given in Yu (1998).
Since the sign of v1 determines the stability of bifurcating limit cycles (i.e. to determine
whether the Hopf bifurcation is supercritical or subcritical), we present v1 here, given
by v1 = v1n

v2d
, in which

v1n = − DC3
{
D1C

4
3 + 2A (D2 + 2D3)C

3
3 + 8(1 + D)A3(D4 + 2D5)C

2
3

+ 32(1 + D)2A5(D6 + 2D7)C3 + 128D(1 + D)2A7(D8 + 2D9)
}
,

v1d = D10
{
(1 + D)2C2

3 + 2A(D11 + 2D12)C3

+ 32D(1 + D)A3[(1 + 2D)(F + 2R) + 2D(1 + D)A
]}

× {
(1 + D)2C2

3 + 2A(D13 + 2D14)C3 + 8D(1 + D)A3[(1 + 2D)F̃

+ 2D(1 + D)A
]}

, (7.7)

where C3 is given in (7.1), and other coefficients Di ’s are given below.

D1 = (1 + D)2(4D2 − D + 4),

D2 = (1 + D)(6D4 + 23D3 + 37D2 + 22D + 10)(F + 2R),

D3 = (3D6 + 47D5 + 144D4 + 194D3 + 135D2 + 50D + 8)A,

D4 = (D6 + 31D5 + 162D4 + 271D3 + 187D2 + 63D + 10)(F + 2R),

D5 = (1 + D)(11D5 + 119D4 + 218D3 + 121D2 + 29D + 2)A,
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D6 = (2D6 + 45D5 + 220D4 + 276D3 + 127D2 + 25D + 2)(F + 2R),

D7 = D(13D5 + 128D4 + 259D3 + 165D2 + 42D + 4)A,

D8 = (D6 + 21D5 + 105D4 + 158D3 + 93D2 + 23D + 2)(F + 2R),

D9 = D(5D5 + 46D4 + 101D3 + 74D2 + 21D + 2)A,

D10 = 2(1 + D)
[
(1 + D)(F + 2R) + 2DA

]2
, D11 = (1 + D)(1 + 7D)(F + 2R),

D12 = D(5D2 + 11D + 5)A, D13 = (1 + D)(1 + 4D)(F + 2R),

D14 = D(2 + D)(1 + 2D)A.

Because C3 > 0 due to A < F+2R
1+√

1+4D
and Di > 0 for all i , so v1n < 0 and v1d > 0,

indicating v1 < 0. Thus, the Hopf bifurcation is supercritical and bifurcating limit
cycles are stable, and the approximation of the amplitude of the periodic solutions
(limit cycles) can be obtained from the first equation of (7.5) as ρ = (− v0

v1
α)1/2

(v0 > 0, v1 < 0, α > 0). This agrees with the simulation presented in Sect. 7. �	

7.2 Hopf Bifurcation in the three-Dimensional Symmetric Model (5.3)

Next, we consider theHopf bifurcationwhich occurs in themodel (5.3) on the invariant
manifold I2/3 for the special case R = 0. The analysis for this three-dimensional
system is similar to that for system (3.2)I1 given in the previous subsection. Thus, we
outline the proof for the following theorem.

Theorem 7.2 For system (5.3), Hopf bifurcation can only occur from the equilibrium

solution E
I2/3
2 at the critical point B

I2/3
H = A − AD

F if A < 2F
1+√

1+4D
. The Hopf

bifurcation is supercritical and thus the bifurcating limit cycles are stable.

Proof For system (5.3), at the Hopf critical point B = B
I2/3
H , where B

I2/3
H is given

in (5.5), the eigenvalues are r1 = −(1 + D) − AD
F , and ±iωc, where ωc =

( AD(1+D)(F+AD)

F2−AF−DA2

)1/2. Then using a similar transformation as that given in (7.3) to
system (5.3), we obtain a normalized system similar to (7.4). Finally, applying the
Maple program (Yu 1998) yields the normal form (7.5), for which

v0 = − DFC̃2
3ωc

2(F+AD)[(1+D)2F4−(1+D)AF3−D(2D2+4D+3)A2F2−D2(2D+3)A3F−D3A4] ,

t0 = − DF[(1+D)F3−(1+2D)AF2+DA2F+D2A3]
2[(1+D)2F4−(1+D)AF3−D(2D2+4D+3)A2F2−D2(2D+3)A3F−D3A4] ,

(7.8)
and v1 = v1n

v2d
, where

v1n = − DC̃3
{
D1C̃

4
3 + A (D2 + D3) C̃

3
3 + (1 + D)A3(D4 + D5) C̃

2
3

+ (1 + D)2A5(D6 + D7) C̃3 + D(1 + D)2A7(D8 + D9)
}
,

v1d = D10
{
(1 + D)2C̃2

3 + A(D11 + D12)C̃3 + 4D(1 + D)A3

[
(1 + 2D)F + D(1 + D)A

]}{
(1 + D)2C̃2

3 + A(D13 + D14)C̃3

× +D(1 + D)A3[(1 + 2D)F + D(1 + D)A
]}

.

(7.9)
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Here, C̃3 = C3 |R=0 = F2 − AF − DA2 > 0 due to A < 2F
1+√

1+4D
, and Di ’s are

given in Appendix B with R = 0. This shows that v1 < 0, and therefore, the Hopf
bifurcation is supercritical and the bifurcating limit cycles are stable. �	

7.3 Hopf Bifurcation in the six-Dimensional Asymmetric Model (3.1)

For the general asymmetric model (3.1), to simplify the analysis, except B (i.e.μ), we
take the parameter values from Table 1 and choose p = 1

2 , and treat B as a bifurcation
parameter. Then, we have the following dimensionless parameter values:

A = 1.0033, D = 0.509, F = 1.4582, R = 0.00007292, (7.10)

showing that 1.0033 = A > F+2R
1+√

1+4D
= 0.531777. Thus, according to Theorem 4.3,

Hopf bifurcation may occur at the critical point B = B(1)
H if B(1)

H < A(1 − 2D∗∗).
Indeed, at B = A = 1.0033, the equilibrium E0 loses stability and the equilibrium E1
bifurcates. Then when B is further decreased to cross B = A(1−2D∗∗) = 0.302965,
the equilibrium E1 loses stability and bifurcates into equilibrium E4, which loses
stability at the Hopf critical point B = B(1)

H = 0.302708, leading to a family of limit
cycles. More precisely, we have the following result.

Theorem 7.3 For the parameter values given in (7.10), system (3.1) undergoes aHopf
bifurcation at the critical point B(1)

H = 0.302708. The Hopf bifurcation is supercritical
and thus the bifurcating limit cycles are stable.

Proof We use normal form theory to prove Theorem 7.3. To obtain the normal form
for this case, we first let B = 0.302708−α, where α is a perturbation parameter from
the Hopf critical point, and now α = 0 defines the Hopf critical point. At the critical
point, the equilibrium E4 given in (4.4) becomes

E4 : (0.349016, 0.349016, 0.000053, 0.000053, 0.000151, 0.000151),

and the linearized system of (3.1) has a pair of purely imaginary eigenvalues and four
real negative eigenvalues:

ξ = ± 0.007134 i, −0.000124, −0.700235, −1.508961, −1.508984.

With these eigenvalues, we obtain a set of corresponding eigenvectors, which yields
a linear transformation T , and then apply the affine transformation x = E4 + T y,
together with B = 0.302708 − α, into system (3.2)I1 to obtain the system

ẏ = J y + f(y, α), (7.11)
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where J is in the Jordan canonical form. Now we can use the formulae to find v0 and
t0:

v0 =1

2

[
d2 f1
dy1 dα

(0, 0) + d2 f2
dy2 dα

(0, 0)
]

= 0.065723,

t0 = 1
2

[
d2

f1
dy2 dα

(0, 0) + d2
f2

dy1 dα
(0, 0)

]

= 13.901119.

Then setting α = 0 and executing the Maple program (Yu 1998) on system (7.11) to
obtain

v1 = − 0.744051 × 102,v2 = − 0.265818 × 108, v3 = − 0.707090 × 1014, · · ·
t1 = − 0.325775 × 104,t2 = − 0.194141 × 1010, t3 = 0.418827 × 1016, · · ·

and thus the normal form is given by

ρ̇ = ρ (0.065723α − 74.405150 ρ2 + · · · ),
θ̇ = 0.007134 + 13.901119α − 3257.750850 ρ2 + · · · . (7.12)

It follows from v1 < 0 that the Hopf bifurcation is supercritical and so the bifurcating
limit cycles are stable, and the approximations of the amplitude and frequency of the
motion are given by

ρ ≈ 0.029721
√

α, ω ≈ 0.007134 + 11.023508α.

The proof of Theorem 7.3 is complete. �	

8 Numerical Simulation

To illustrate and confirm these analytical results, simulations for system (3.1) were
performed by numerical integration (ODE45 package inMATLAB). Parameter values
were as provided in Table 1, with the exception of μ, which was varied to explore the
stability regimes illustrated in Fig. 2a through changes in the composite parameter B =
μ/δ. We also tested our predictions in the absence of recombination, which implies
r = 0 and therefore R = 0 in the non-dimensionalized model. Results are plotted as
population densities versus time. Unless otherwise noted, we take initial conditions
with both types of uninfected host cells and both phage types, thus simulating the
invasion dynamics as well as equilibrium conditions.

In Fig. 4a we take B = 1.02 > A, such that the system approaches the trivial
equilibrium.When B is reduced slightly to B! = 0.9, the condition A(1−D∗) < B <

A holds, and the system converges, as expected, to equilibrium E1; only uninfected
host cells persist. This is illustrated in Fig. 4b.

Figure 5 illustrates the predicted effect of diversification. In this simulation we take
B = 0.5, such that A(1− 2D∗∗) < B < A(1− D∗). When the initial conditions only
include host cells with receptor J (neither HJKK nor IJ K K is present), the system
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Fig. 4 a Time course of system (3.1) with B = 1.02. Since B > A, the system approaches the trivial
equilibrium with all populations going extinct. Other initial conditions were HJK J = 2K

3 , HJKK = K
3 ,

IJ K J = IJ K K = 0 and PJ = 2× 105, PK = 3× 105. b Time course of system (3.1) with B = 0.9, such
that A(1 − D∗) < B < A. The system converges to E1 with only uninfected host cells remaining. Other
initial conditions were HJK J = 2K

3 , HJKK = K
3 , IJ K J = IJ K K = 0 and PJ = 2×105, PK = 3×105
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Fig. 5 Time course of system (3.1) with parameters in the range A(1 − 2D∗∗) < B < A(1 − D∗).
We take B = 0.5 and initial conditions HJK J = 2K

3 , HJKK = 0, IJ K J = K
3 , IJ K K = 0 and

PJ = 2 × 105, PK = 3 × 105. The system initially converges to equilibrium E2/3. At time t = 10, we
introduce HJKK = 100, and the system rapidly converges to E1, eliminating the phage populations

converges to equilibrium E2/3, which is unstable in the full system but stable on the
invariant manifold with HJKK = IJ K K = 0. Thus, when the complementary host
cell population HJKK is added, the equilibrium loses stability. The system converges
to the stable equilibrium E1 of the full system, and both phage populations decay to
zero. Thus the diversification of the host cell population from a single type to multiple
types can potentially drive both phage populations to extinction.
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Fig. 6 a, b show the time course for BH < B < A(1 − 2D∗∗). Here B = 0.3028, with initial conditions
HJK J = HJKK = K

3 , IJ K J = IJ K K = 0 and PJ = PK = 2 × 105. The system converges to the
stable equilibrium E4. c, d show the time course for 0 < B < BH. Here B = 0.25, with initial conditions
HJK J = 2K

3 , HJKK = K
3 , IJ K J = IJ K K = 0 and PJ = 2 × 105, PK = 3 × 105. We observe a stable

limit cycle

Figure 6 illustrates the cases BH < B < A(1 − 2D∗∗) and 0 < B < BH, respec-
tively. We observe stable convergence to equilibrium E4, with all populations present
(panels (a) and (b)), and a stable limit cycle around E4 (panels (c) and (d)) as expected.
We note that at the parameter values we have chosen from the literature, the parameter
regime BH < B < A(1 − 2D∗∗) is quite narrow, and thus our results predict that
oscillations would be commonly observed in natural phage-host systems.

Finally, we numerically investigated the effect of recombination, r . Starting in the
regime B < BH, we investigate a situation in which both types of phage are initially
present, and the host cells diversify to escape the phage. Thus we begin with type J
host cells, and both viral types, but at a later time introduce type K host cells.

In Fig. 7a, the resulting dynamics are shown in the absence of recombination. We
see that phage PK goes extinct early in the simulation because of the lack of type K
host cells. Later, when type K host cells are introduced, these host cells compete with
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Fig. 7 a Extinction of phage in the absence of recombination. A time course is shown for B = 0.037, and
initial conditions HJK J = 2K

3 , HJKK = 0, IJ K J = IJ K K = 0 and PJ = 2 × 105, PK = 3 × 105.
The parameter r was set to zero to analyse the absence of recombination. At time t = 10, HJKK = 100
is introduced (the host diversifies). Note that phage PK goes extinct at early times due to the lack of host
cells, while PJ goes extinct once the new type of host is introduced. Only uninfected host cells persist. b
Survival of phage in the presence of recombination. Parameter values and initial conditions are as described
for (a), with the exception that r = 0.0001. Recombination preserves the phage population from extinction

and reduce the population of type J host cells. The uninfected HJK J population is no
longer sufficiently large to maintain phage, and ultimately phage J is also unable to
survive. The system converges to E1.

In contrast, Fig. 7b illustrates the same results in the presence of recombination.
Before the introduction of the type K host cells, type K phage is present at low
levels due to recombination with prophage in the host cell genome. When type K host
cells are introduced, the system approaches a limit cycle in which all populations are
present. Thus recombination preserves the phage populations from extinction.

9 Conclusion and Discussion

Figure 2a succinctly summarizes our main results, and in this concluding section we
interpret the implications of those results in terms of the original model. Moving along
the x-axis of Fig. 2a corresponds, in the original model, to increasing the death rate
of host cells. Thus when the death rate is very high (far right), the host cell population
cannot sustain itself and the trivial equilibrium is stable. At intermediate death rates,
the host cells are able to sustain themselves, and the two types can coexist at any ratio,
such that the population densities sum to a constant. However in this region, the host
cell density is not sufficient to maintain the phage populations. Further to the left,
the host cell population densities are sufficiently high that the phage population can
invade, and all host and phage types are present at the stable equilibrium.

Stability analysis generally identifies equilibria that are stable to small perturba-
tions in all population densities. In phage-host systems in nature, however, not all
populations may be present, and rare mutations may be required to introduce pertur-
bations for populations that are initially at zero density. Thus perturbations away from
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boundaries at which one or more population densities are zero are qualitatively dif-
ferent from perturbations in other population densities. This consideration motivated
us to investigate situations in which not all populations are present initially.

An intriguing prediction emerges from this study when we take this approach.
In Fig. 7a, we illustrate a situation in which initially only one type of host, HJK J ,
exists. We allow both types of prophage to exist by recombination, although this
does not affect the result. If the system is in the parameter regime in the centre of
Fig. 2a (A(1 − 2D∗∗) < B < A(1 − D∗)), the system converges to equilibrium
E2/3; the host population sustains the PJ population, PK is produced at a low level by
recombination, and a mix of HJK J and IJ K J survive at equilibrium. Now however, if
the host diversifies and is able to produce HJKK individuals, the system will converge
to equilibrium E1, which includes only the two uninfected host cell populations. Thus,
by diversifying into two distinct populations, the host drives the phage populations to
extinction.

This prediction holds even if the phage is equally adept at diversifying; both types
of phage are present and nonetheless they do not persist. The underlying issue in this
example is that each type of phage requires a certain minimum density of susceptible
host cells, such that the basic reproductive ratio for that phage type exceeds one.When
only one type of host cell exists, that host type can grow to the carrying capacity, and
sustain the corresponding phage type; recombination will stably maintain the other
phage. However at the same parameter values, if two host cell types co-exist, neither
has sufficient density to maintain their phage predators. Expanding this to a real-world
situation with many host and phage types, we predict that host cell populations that
are able to diversify, such that only a subset of cells are susceptible to a specific phage
type, may be able to drive several phage types to extinction. One caveat is that this
phenomenon is only possible in the possibly limited parameter range A(1− 2D∗∗) <

B < A(1 − D∗). In terms of our original model and parameter values, we find
0.3030 < B < 0.6531.

A related prediction highlights the effect of recombination, as illustrated in Fig. 7b.
In this scenario, we take parameter values in the region B < A(1− 2D∗∗), and again
consider a situation in which initially only one type of host cell exists. In this region,
the host cell population stably maintains the corresponding phage population. We
then introduce the second host cell population by diversification. If recombination is
possible, the system converges to E4, and we observe all six populations at equilibrium
or in an oscillatory pattern. However this result critically depends on recombination.
If we set the recombination rate to zero, the system converges to E1 when the second
host cell type is introduced. Thus once again, diversification of the host population
can drive the viral population to extinction, but in this parameter regime extinction is
only possible if recombination does not occur. In other words, the ability to recombine
with prophage in the host genome is critically important to the phage population, and
can save the phage from extinction. The condition B < A(1 − 2D∗∗), in terms of
the parameter values of the original model, is B < 0.3030, and thus we expect this
scenario to be relevant to a wide range of host-phage systems.

Overall, theworkwe present here highlights the importance of prophage and recom-
bination to the equilibria of phage-host systems. Although the model simplifies many
aspects of the underlying biology, the clearest direction for future work is to relax the
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assumption that host cells express only one receptor type, as host cells are known to
up- and down-regulate various receptors in response to phage pressure (Meyer et al.
2012). Prophage can also confer immunity to further infection (Stewart and Levin
1984), and can be lost from the host genome over time (Stewart and Levin 1984); both
of these possibilities should be included in future work.

Finally, we would like to point out that in this paper we focus on the sta-
bility and bifurcation of equilibrium solutions, in particular on transcritical and
Hopf bifurcations. However, other bifurcations such as saddle-node bifurcations or
Bogdanov-Takens (B-T) bifurcations may also occur. For example, for the gen-
eral six-dimensional system (3.1), at the critical point defined by the condition
(F+2R)(A−B)−2AD = 0, the equilibrium E1 loses stability at a singularity with a
double zero eigenvalue, giving rise to B-T bifurcation. For the special six-dimensional
system (5.1), a triple-zero singularity can occur on the equilibrium solution E0

1 when
the condition F(A − B) − 2AD = 0 is satisfied. Also, for modelling, the maximum
growth rate λ in (2.4) [or A in the dimensionless system (3.1)] may be different for
the two equations. These dynamical analyses will be carried out in our future work.
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