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Extinctions Caused by Host-Range Expansion\ast 

Pei Yu\dagger , Pantea Pooladvand\ddagger , Mark M. Tanaka\ddagger , and Lindi M. Wahl\S 

Abstract. Nearly all emerging diseases in humans are a result of host-range expansion, in which a pathogen
of one species evolves the ability to infect a new host species. To present a rigorous analysis of
pathogen host-range expansion, we derive a Lotka--Volterra dynamical system with two competing
host species and a single parasite species; the parasite infects only one of the host species. We
provide a stability and bifurcation analysis of this model. We then ask what happens if the parasite
evolves the ability to infect the alternate host, extending the model to include a parasite population
with an expanded host range. We derive explicit global stability and bifurcation conditions for this
four-dimensional model in terms of the system parameters. We demonstrate that only four outcomes
may occur following the range expansion of a parasite or pathogen, and provide both local and global
asymptotic stability conditions for these outcomes. While three of these outcomes were expected, the
fourth is counterintuitive, predicting that host-range expansion can drive the original host species
to extinction. For example, a native species could be driven to extinction by a longstanding native
parasite if that parasite acquires the ability to infect a cultivated species. We briefly discuss the
phenomena driving this unexpected prediction and its implications.
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1. Introduction. The dynamic interaction between parasites and their hosts has been
one of the richest and most significant topics in population modelling [2, 26], and remains of
critical public health importance [4, 21, 22, 31]. While the underlying dynamical systems are
often closely related to well-studied predator-prey models [5, 19, 20], host-parasite dynamics
differ in a number of key aspects. In particular, with relatively short generation times and
large population sizes, parasites often have immense adaptive potential, and can evolve rapidly
to exploit new resources or avoid immune pressures [3, 17].

One of the most important consequences of this adaptive potential is that parasites can,
and do, expand their host range [8, 9]. Nearly all emerging diseases in humans over the last
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century are zoonoses [15]; that is, they emerged when a parasite expanded its host range
to humans. For this reason, public health authorities uniformly aim to minimize host-range
expansion by potential pathogens [25, 37]. In contrast, the use of bacteriophages (viruses that
infect bacteria) as therapeutic agents has necessitated the development of laboratory protocols
that are specifically designed to increase parasite host range [32]. Recent work has highlighted
an emerging view that host range is a dynamic feature of parasite species, including both rapid
shifts to new hosts [1, 35] and the gain and loss of hosts over longer time scales [9].

Given the importance of host-range expansions to human health, ecosystem health, and
biodiversity [1, 7, 9], realistic predictions of the long-term impacts of such expansions are
essential. It has long been appreciated that when a parasite expands its range to infect a new
host, the new host may be threatened by extinction. This has been discussed, for example,
in the context of unintended range expansions for biocontrol agents [27] or other introduced
pathogens [1], for plant pathogens [35], and for emerging infectious diseases of wildlife [7],
including primates [30].

Despite this sustained interest in empirical studies of both ecological and disease dynam-
ics, host-range expansion has been relatively understudied in rigorous mathematical models.
Models that include a predator and two potential prey species have been well-studied, and
these form a foundation for the host-range expansion model we develop here. For example,
motivated by work demonstrating that a predator could stabilize the co-existence of two prey
species [6, 28, 29], Hsu completed a global stability analysis of a system of two competing
prey and a single predator [12]; a full bifurcation analysis followed [34]. This early model has
been extended to include predator switching [13, 24] and spatial dimensions [14, 16], while
impulsive [40] and delay [23] differential equation formulations have also been studied. The
underlying model [12] has also been extended to study the stabilizing effects of predators
in more generalized settings [10, 11, 33, 36]. In the absence of competition between species,
global stability properties of both the two-predator one-prey and one-predator two-prey mod-
els are now known [18].

Building on this work, here we develop a model that allows for a rigorous study of host-
range expansion. We begin by analyzing a system in which a parasite infects only one of
two competing species. We then answer the question: what happens if a parasite evolves
the ability to infect the alternate host? We delineate the range of outcomes that may occur
following range expansion, providing both local and global asymptotic stability conditions for
these outcomes. We demonstrate that when a parasite expands its range to infect a new host,
the new host may be driven, deterministically, to extinction. While this result makes intuitive
sense, our work reveals another surprising prediction: when a parasite expands its range to
infect a new host, the new host may survive but the original host may go extinct as a result
of the range expansion. The latter result is paradoxical, since the range expansion burdens
the new species, a competitor of the original host.

In section 2, we present a simple Lotka--Volterra system with two competing host species
and a single parasite species. In this three-dimensional (3-d) model, the parasite infects only
one of the host species. We provide an analysis of the existence, stabilit,y and bifurcations
among the six equilibria of this model. In section 3, we extend this model to include a para-
site population with an expanded host range, and find the equilibria of this four-dimensional
model. In section 4 we examine the boundedness of solutions to these models, while in sec-
tion 5 we provide global stability and bifurcation analyses of the four-dimensional model.
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HOST-RANGE EXPANSION 1679

Section 6 uses these results to derive relevant conclusions about host-range expansion in nat-
ural settings. We conclude in section 7 with a brief discussion of the main results, focussing
on the unexpected prediction described above.

2. Three-dimensional model: Before host-range expansion. We begin by deriving a
simple host-parasite model that includes a focal species (species 1), and its parasite. We also
include a competitor (species 2) of the focal species, which, for example, occupies a similar
ecological niche. The competitor is a potential host for the parasite, but in this model we
determine the dynamics when the parasite has not (yet) expanded its host range.

In this model, the density of each host population (Ni, i\in \{ 1,2\} ) has intrinsic growth rate
ri per unit time, and grows logistically with carrying capacity Ki. The parasite population,
with density P , infects host N1 with mass-action kinetics. To model obligately lethal parasites,
infection occurs at rate \alpha 1N1P and kills the host. To model nonlethal parasites, we can take
\alpha 1N1P to be the increased death rate (reduced lifespan) of hosts due to parasitism. The
parameter \beta 1 is the conversion factor, at infection, between hosts and parasites. For example,
if the parasite is a lytic virus infecting a bacterium, \beta 1 represents the burst size. We assume
that the production of new parasites occurs instantaneously when hosts are infected, thus
assuming that any delay in the production of parasites is negligible. In the absence of the
host, the parasite population decays at per capita rate \delta . In addition, species j reduces the
growth rate of species i with mass action kinetics, described by competition coefficient \gamma ij .
These assumptions yield:

host:
dN1

dt
= r1N1

\biggl( 
1 - N1

K1

\biggr) 
 - \alpha 1N1P  - \gamma 12N1N2,

competitor:
dN2

dt
= r2N2

\biggl( 
1 - N2

K2

\biggr) 
 - \gamma 21N1N2,

parasite:
dP

dt
= \beta 1\alpha 1N1P  - \delta P .

(1)

In the absence of the competitor, system (1) yields the standard Lotka--Volterra predator-
prey model with a logistic growth term. For convenience, we provide equilibria and stability
results for this reduced model in the Supplementary Material (section SM1). We also note that
if the parasite could infect both hosts, system (1) would be equivalent to the two-prey-one-
predator system studied in [12]. That study, however, used the predation rate on the second
host (which is zero in our system) as a scaling parameter in the nondimensionalization.

In the Supplementary Material (M160558 01.pdf [local/web 1.54MB]), we demonstrate
that system (1) can alternatively be nondimensionalized as

dN1

dt
= r1N1

\biggl( 
1 - N1

K1

\biggr) 
 - N1N2  - N1P,

dN2

dt
= r2N2

\biggl( 
1 - N2

K2

\biggr) 
 - N1N2,

dP

dt
=BN1P  - P ,

(2)

which we will use as the basis for the analysis to follow. We will refer to system (2) as the
``3-d model.""

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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The 3-d model has six equilibrium solutions:

E\mathrm{k} = (N1\mathrm{k}, N2\mathrm{k}, P\mathrm{k}), k= 0, 1, 2, 3, 4, 5,(3)

where

N10 =N20 = P0 = 0, N11 =K1, N21 = P1 = 0, N12 = P2 = 0, N22 =K2,

(4)

N13 =
K1r2(K2  - r1)

g
, N23 =

K2r1(K1  - r2)

g
, P3 = 0, g=K1K2  - r1r2,

N14 =
1

B
, N24 = 0, P4 = r1

\biggl( 
1 - 1

BK1

\biggr) 
,

N15 =
1

B
, N25 =K2

\biggl( 
1 - 1

r2B

\biggr) 
, P5 = r1

\biggl( 
1 - 1

BK1

\biggr) 
 - N25 = r1  - K2 +

g

K1r2B
.

We first consider the existence and stability conditions for the equilibrium solutions
E\mathrm{k}, k= 0,1,2,3,4, and have the following result.

Theorem 2.1. The equilibria E0, E1 and E2 exist for positive parameter values. The equi-
librium E3 exists for (K2  - r1)(K1  - r2)> 0, and E4 exists if K1 >

1
B . E0 is always unstable;

E1 is locally asymptotically stable (LAS) for r2 <K1 <
1
B ; E2 is LAS for r1 <K2; E3 is LAS

for K1 <
1
B < r2, K2 < r1, or

1
B <K1 < r2, K2 < r1 < r\ast 1, where

r\ast 1 =
K1K2(Br2  - 1)

r2(BK1  - 1)
;(5)

E4 is LAS for r2 <
1
B (<K1). There are three transcritical bifurcations: one between E1 and

E3 at r2 = K1; one between E2 and E3 at r1 = K2; and one between E1 and E4 at K1 =
1
B .

No Hopf bifurcation or Bogdanov--Takens (B-T) bifurcation can occur from these first five
equilibrium solutions.

The proof is given in section SM2.2. Next, we consider the equilibrium solution E5 for
which we have the following theorem.

Theorem 2.2. The equilibrium E5 exists if

r2 >
1

B
, K1 >

1

B
, and r1 > r\ast 1.(6)

It is LAS for

1

B
<K1 \leq r2, r1 > r\ast 1 or

1

B
< r2 <K1, r1 > r1\mathrm{H},(7)

where

r1\mathrm{H} =
K1(Br2  - 1)

2r2[B(BK1  - 1) +Br2  - 1]

\biggl\{ 
(B + 1)K2  - r2(Br2  - 1)

+

\sqrt{} 
[(B + 1)K2  - r2(Br2  - 1)]2 + 4r2K2[B(BK1  - 1) +Br2  - 1]

\biggr\} 
.

(8)

Moreover, E5 is globally asymptotically stable (GAS) for r2 \geq K1 and r1 > r\ast 1. A transcrit-
ical bifurcation occurs between E4 and E5 at the critical point r2 = 1

B ; another transcritical

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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HOST-RANGE EXPANSION 1681

bifurcation happens between E3 and E5 at the critical point r1 = r\ast 1. Hopf bifurcation occurs
from E5 at the critical point r1 = r1\mathrm{H}, but B-T bifurcation cannot occur from E5.

Proof. The proof of existence and LAS conditions is provided in section SM2.2 of the
Supplementary Material.

To prove that E5 is GAS for r2 \geq K1 and r1 > r\ast 1, we construct the Lyapunov function:

V35 =N1  - N15  - N15 ln
N1

N15
+N2  - N25  - N25 ln

N2

N25
+

1

B

\biggl( 
P  - P5  - P5 ln

P

P5

\biggr) 
.

Then, computing the derivative of V35 with respect to time t, along the trajectory of system
(2), we obtain

dV35

dt

\bigm| \bigm| \bigm| \bigm| 
(2)

=

\biggl( 
1 - N15

N1

\biggr) 
dN1

dt
+

\biggl( 
1 - N25

N2

\biggr) 
dN2

dt
+

1

B

\biggl( 
1 - P5

P

\biggr) 
dP

dt

= (N1  - N15)

\biggl[ 
r1

\biggl( 
1 - N1

K1

\biggr) 
 - N2  - P

\biggr] 
+ (N2  - N25)

\biggl[ 
r2

\biggl( 
1 - N2

K2

\biggr) 
 - N1

\biggr] 
+

1

B
(P  - P5) (BN1  - 1)

= - r1
K1

(N1  - N15)
2  - (N1  - N15)(N2  - N25) - (N1  - N15)(P  - P5)

 - r2
K2

(N2  - N25)
2  - (N2  - N25)(N1  - N15) + (P  - P5)(N1  - N15)

= - 1

K1r1
[r1(N1  - N15) +K1(N2  - N25)]

2  - r1r2  - K1K2

K2r1
(N2  - N25)

2.

For r2 \geq K1 and r1 > r\ast 1 =
K1K2(Br2 - 1)
r2(BK1 - 1) , it is easy to prove that

r1 > r\ast 1 =K2
BK1r2  - r2 + r2  - K1

BK1r2  - r2
=K2

\biggl[ 
1 +

r2  - K1

r2(BK1  - 1)

\biggr] 
\geq K2,

yielding r1r2 > K1K2. Thus, \mathrm{d}V35

\mathrm{d}t \leq 0, and equals zero only if N1 = N15 and N2 = N25, at
which system (2) reduces to

0 =N15

\biggl[ 
r1

\biggl( 
1 - N15

K1

\biggr) 
 - N25  - P

\biggr] 
=N15(P5  - P ),

0 =N25

\biggl[ 
r2

\biggl( 
1 - N25

K2

\biggr) 
 - N15

\biggr] 
= 0,

dP

dt
= P (BN15  - 1) = 0.

This implies that P is a constant, which is solved from the first equation as P = P5, leading
to the equilibrium E5. So, the GAS of E5 is proved by the LaSalle's Invariance Principle.

When r2 <K1, we have
1
B < r2 <K1 which ensures r\ast 1 < r\ast \ast 1 < r1\mathrm{H}. Hence, E5 is LAS when

r1 > r1\mathrm{H}; and unstable for r1 < r1\mathrm{H}. Hopf bifurcation occurs at the critical point r1 = r1\mathrm{H}.
More precisely, we can use a direct calculation to prove that K1K2

r2
> r1\mathrm{H}:

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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1682 P. YU, P. POOLADVAND, M. M. TANAKA, AND L. M. WAHL

K1K2

r2
 - r1\mathrm{H}

= 4K1K2
2B

2(K1 - r2)

4r22(Br2 - 1)2+4r2K2B2(K1 - r2)+2r2(Br2 - 1)
\surd 

[(B+1)K2 - r2(Br2 - 1)]2+4r2K2[B(BK1 - 1)+Br2 - 1]

> 0 due to
1

B
< r2 <K1.

Thus, E5 is LAS but not GAS for r1\mathrm{H} < r1 \leq K1K2

r2
, and GAS for r1 >

K1K2

r2
.

It seems that B-T bifurcation may occur from E5 when a2 = a3 = 0, yielding two zero
eigenvalues, by choosing r2 = 1

B which gives a3 = 0, with r\ast 1 = r\ast \ast 1 = 0, then a2 = 0 yields
K1 =

1
B . If r2 =K1 \not = 1

B (BK1 > 1), then a2 = a3 = 0 leads to r1 = r\ast 1 = r\ast \ast 1 =K2. However, a
careful check shows that these two zero eigenvalues form a semisimple case (i.e., the linearized
system can still have two linearly independent eigenvectors corresponding to the two zero
eigenvalues), not a double-zero eigenvalue (non-semi-simple case). Therefore, B-T bifurcation
is not possible from the equilibrium E5.

We give an example of Hopf bifurcation from E5 in the Supplementary Material (section
SM2.3).

3. Four-dimensional model: After host-range expansion. We now expand system (1),
assuming that the parasite has expanded its host range, such that some evolved parasite
lineage can infect both the original host and the competitor. The expanded system has the
following form:

host:
dN1

dt
= r1N1

\biggl( 
1 - N1

K1

\biggr) 
 - \alpha 1N1P  - (1 - c)\alpha 1N1Q - \gamma 12N1N2,

competitor:
dN2

dt
= r2N2

\biggl( 
1 - N2

K2

\biggr) 
 - \alpha 2N2Q - \gamma 21N1N2,

parasite:
dP

dt
= \beta 1\alpha 1N1P  - \delta P,

evolved parasite:
dQ

dt
= \beta 21(1 - c)\alpha 1N1Q+ \beta 22\alpha 2N2Q - \delta Q .

(9)

Here, Q is the population density of the evolved parasite, which is able to infect the competitor
species at rate \alpha 2. We note that \alpha 2 could be greater than or less than \alpha 1, such that the evolved
parasite is not necessarily well-adapted to the competitor. Similarly, the parameter c \in (0,1)
is a potential cost to generalization, that is, the evolved parasite may not be able to infect
the original host with full efficacy. The conversion rate (burst size) of the evolved parasite
is \beta 2i after infecting host i, and we assume for simplicity that the decay rate of the evolved
parasite, \delta , is unchanged.

Once again, system (9) can be nondimensionalized (see Supplementary Material (M160558
01.pdf [local/web 1.54MB])) to yield

dN1

dt
= r1N1

\Bigl( 
1 - N1

K1

\Bigr) 
 - N1N2  - N1P  - \~cN1Q,

dN2

dt
= r2N2

\Bigl( 
1 - N2

K2

\Bigr) 
 - N1N2  - AN2Q,

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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HOST-RANGE EXPANSION 1683

dP

dt
=BN1P  - P,

dQ

dt
= \~DN1Q+EN2Q - Q.

(10)

We will refer to system (10) as the ``4-d model.""
The 4-d model admits 10 equilibrium solutions. For the convenience of the following

analysis, denote the 10 equilibrium solutions as

E\mathrm{k} = (N1\mathrm{k}N2\mathrm{k}, P\mathrm{k}, Q\mathrm{k}), k= 0, 1, . . . , 9,(11)

where Q\mathrm{k} = 0, k= 0, 1, . . . , 5, while N1\mathrm{k}, N2\mathrm{k}, and P\mathrm{k} are given in (4), and

N16 =
1
\~D
, Q6 =

r1
\~c

\biggl( 
1 - 1

\~DK1

\biggr) 
, N26 = P6 = 0,

N27 =
1

E
, Q7 =

r2
A

\biggl( 
1 - 1

EK2

\biggr) 
, N17 = P7 = 0,

N18 =
N18\mathrm{n}

E8\mathrm{d}
, N28 =

N28\mathrm{n}

E8\mathrm{d}
, Q8 =

Q8\mathrm{n}

E8\mathrm{d}
, P8 = 0, in which

N18\mathrm{n} =K1[EK2(Ar1 - \~c r2) - (AK2 - \~c r2)],

N28\mathrm{n} =K2[(Ar1 - \~cK1) - K1
\~D(Ar1 - \~c r2)],

Q8\mathrm{n} = g+ \~DK1r2(r1  - K2) +EK2r1(r2  - K1),

E8\mathrm{d} = \~DN18\mathrm{n} +EN28\mathrm{n},

N19 =
1

B
, N29 =

1

BE
(B  - \~D), Q9 =

1

ABEK2
\{ r2[BEK2  - B + \~D] - EK2\} ,

P9 =

\biggl( 
1 - 1

BK1

\biggr) \Biggl[ 
r1  - 

K1\{ AK2(B  - \~D) + \~c [r2(BEK2  - B + \~D) - EK2]\} 
AEK2(BK1  - 1)

\Biggr] 
.

(12)

Note that the first six equilibrium solutions, E0--E5, are those of the 3-d model with the
addition of Q= 0.

4. Boundedness of solutions. In order to consider the global behavior of the models, we
need to study the behavior of solutions and their boundedness. Positivity of solutions is easy
to prove. Thus we only discuss the boundedness of the solutions for the 3-d and 4-d models
in this section.

Unlike the two-dimensional (2-d) model which naturally has bounded solutions for all
positive parameter values (see Supplementary Material (section SM1.2)), the 3-d and 4-d
models need a condition on the parameters to guarantee boundedness. This condition certainly
does not mean that the system cannot have solutions without this condition, but simply means
that the solutions are not guaranteed to be bounded without this condition. In fact, we will see
that if the LAS condition for an equilibrium satisfies (or includes) the boundedness condition,
then it is GAS; while if the LAS condition does not satisfy the boundedness condition, then
adding the condition to the LAS condition guarantees GAS of the equilibrium.

For the 3-d and 4-d models, we have the following result.
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1684 P. YU, P. POOLADVAND, M. M. TANAKA, AND L. M. WAHL

Theorem 4.1. The trapping region for the solutions of the 3-d model (2) is defined as an
elliptic paraboloid:

\Omega 3\mathrm{d} =

\biggl\{ 
(N1,N2, P )

\bigm| \bigm| \bigm| 0\leq P \leq B

\biggl[ 
r1N1 + r2N2  - 

r1
K1

N2
1  - r2

K2
N2

2  - 2N1N2

\biggr] \biggr\} 
(13)

if the following condition is satisfied:

C3\mathrm{d}
\mathrm{b}\mathrm{d}

\bigtriangleup 
=

r1r2
K1K2

 - 1> 0.(14)

For the 4-d model (10), the trapping region is defined as an hyperelliptic paraboloid:

\Omega 4\mathrm{d} =

\biggl\{ 
(N1,N2, P,Q)

\bigm| \bigm| \bigm| 0\leq P +
\~cB
\~D
Q\leq B

\biggl[ 
r1
K1

N2
1 +

\~cE
\~DA

r2
K2

N2
2

+

\biggl( 
1 +

\~cE
\~DA

\biggr) 
N1N2  - 

\biggl( 
r1N1 +

\~cE
\~DA

r2N2

\biggr) \biggr] \biggr\} (15)

if the following condition holds:

C4\mathrm{d}
\mathrm{b}\mathrm{d}

\bigtriangleup 
=

r1r2
K1K2

 - ( \~DA+ \~cE)2

4\~c \~DAE
> 0.(16)

Proof. For the 3-d model (2), we construct the Lyapunov function:

V3\mathrm{d} =N1 +N2 +
1

B
P,(17)

which is a positive definite and radially unbounded function of the system state variables. By
a direct calculation, we obtain

dV3\mathrm{d}

dt

\bigm| \bigm| \bigm| \bigm| 
(2)

=
dN1

dt
+

dN2

dt
+

1

B

dP

dt

= r1N1

\biggl( 
1 - N1

K1

\biggr) 
 - N1N2  - N1P + r2N2

\biggl( 
1 - N2

K2

\biggr) 
 - N1N2 +

1

B
P (BN1  - 1)

= - 
\biggl[ 
r1
K1

N2
1 +

r2
K2

N2
2 + 2N1N2  - (r1N1 + r2N2) +

1

B
P

\biggr] 
.

(18)

Then, \mathrm{d}V3\mathrm{d}

\mathrm{d}t

\bigm| \bigm| 
(2)

= 0 defines a boundary, as given in (13), and \mathrm{d}V3\mathrm{d}

\mathrm{d}t

\bigm| \bigm| 
(2)

< 0 if trajectories are

outside this boundary, implying that all trajectories are attracted to \Omega 3d. To guarantee that
the base of the elliptic paraboloid is an ellipse, rather than a hyperbola (unbounded), we will
show that the condition (14) is needed.

Similarly, for the 4-d model (10), we construct the following Lyapunov function:

V4\mathrm{d} =N1 +
\~cE
\~DA

N2 +
1

B
P +

\~c
\~D
Q(19)
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HOST-RANGE EXPANSION 1685

to obtain

dV4\mathrm{d}

dt

\bigm| \bigm| \bigm| \bigm| 
(10)

= - 
\biggl[ 
r1
K1

N2
1 +

\~cE
\~DA

r2
K2

N2
2 +

\biggl( 
1 +

\~cE
\~DA

\biggr) 
N1N2  - 

\biggl( 
r1N1 +

\~cE
\~DA

r2N2

\biggr) 
+

1

B
P +

\~c
\~D
Q

\biggr] 
.

(20)

Then, \mathrm{d}V4\mathrm{d}

\mathrm{d}t

\bigm| \bigm| 
(10)

= 0 defines the boundary given in (15).

To derive the conditions (14) and (16), we need only consider the quadratic form in the
square bracket of (18) and (20) involving N1 and N2, and write them in the general form of

\~Q=C1N
2
1 +C2N

2
2 +C3N1N2  - C4N1  - C5N2, Ck > 0, k= 1,2, . . . ,5,(21)

where Ck denote, respectively, the coefficients of N2
1 , N

2
2 , N1N2, N1, and N2 in the quadratic

form. Next, introducing the following rotation transformation,

N1 =X cos\theta  - Y sin\theta , N2 =X sin\theta + Y cos\theta 

into (21) yields

\~Q=
1

2
[C1 +C2 + (C1  - C2) cos(2\theta ) +C3 sin(2\theta )]X

2

+
1

2
[C1 +C2  - (C1  - C2) cos(2\theta ) - C3 sin(2\theta )]Y

2

+ [(C1  - C2) - C3 cos(2\theta )] XY

 - (C4 sin\theta +C5 sin\theta )X  - (C5 cos\theta  - C4 sin\theta )Y.

(22)

Setting the term of XY in \~Q equal to zero we have two cases: C2 = C1 or C2 \not = C1. For
C2 =C1, we obtain \theta = \pi 

4 , and

\~Q=

\biggl( 
C1 +

C3

2

\biggr) 
X2 +

\biggl( 
C1  - 

C3

2

\biggr) 
Y 2  - 1\surd 

2
(C5 +C4)X  - 1\surd 

2
(C5  - C4)Y

=
1

2
(2C1 +C3)

\biggl[ 
X  - C5 +C4\surd 

2(2C1 +C3)

\biggr] 2
+

1

2
(2C1  - C3)

\biggl[ 
Y  - C5  - C4\surd 

2(2C1  - C3)

\biggr] 2
 - C1(C5  - C4)

2 +C4C5 (2C1  - C3)

(2C1 +C3)(2C1  - C3)

which is an ellipse if 2C1 >C3.
Next, consider C2 \not =C1. Vanishing the term XY in \~Q yields

tan2\theta =
C3

C1  - C2
=\Rightarrow cos2\theta =

| C1  - C2| \sqrt{} 
(C1  - C2)2 +C2

3

, \theta \in 
\Bigl( 
 - \pi 
4
,
\pi 

4

\Bigr) 
.(23)
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1686 P. YU, P. POOLADVAND, M. M. TANAKA, AND L. M. WAHL

Then, (22) is simplified to

\~Q=
1

2

\biggl( 
C1 +C2 \pm 

\sqrt{} 
(C1  - C2)2 +C2

3

\biggr) \Biggl[ 
X  - C5 sin\theta +C4 cos\theta 

C1 +C2 \pm 
\sqrt{} 

(C1  - C2)2 +C2
3

\Biggr] 2

+
1

2

\biggl( 
C1 +C2 \mp 

\sqrt{} 
(C1  - C2)2 +C2

3

\biggr) \Biggl[ 
Y  - C5 cos\theta  - C4 sin\theta 

C1 +C2 \mp 
\sqrt{} 

(C1  - C2)2 +C2
3

\Biggr] 2

 - 1

2

\left[  \Biggl( C5 sin\theta +C4 cos\theta 

C1 +C2 \pm 
\sqrt{} 

(C1  - C2)2 +C2
3

\Biggr) 2

+

\Biggl( 
C5 cos\theta  - C4 sin\theta 

C1 +C2 \mp 
\sqrt{} 

(C1  - C2)2 +C2
3

\Biggr) 2
\right]  ,

where the positive and negative signs correspond to the cases C1 > C2 and C1 < C2, respec-
tively. It is easy to see that \~Q represents an ellipse if

C1 +C2  - 
\sqrt{} 

(C1  - C2)2 +C2
3 > 0 \Leftarrow \Rightarrow 4C1C2  - C2

3 > 0.

Note that the case C2 =C1 is a special case included in 4C1C2  - C2
3 > 0.

Now, for the 3-d model, we have

C1 =
r1
K1

, C2 =
r2
K2

, C3 = 2 =\Rightarrow 4C1C2  - C2
3 = 4C3d

bd > 0,

and for the 4-d model, we obtain

C1=
r1
K1

, C2=
\~cE
\~DA

r2
K2

, C3=1+
\~cE
\~DA

=\Rightarrow 4C1C2  - C2
3 = 4C4d

bd > 0.

Note in the proof of Theorem 2.2 that the stability condition of E5 for the 3-d model does
satisfy r1r2 >K1K2, leading to the conclusion that E5 is GAS.

5. Stability of equilibria in the 4-d model. In the following subsections, we first summa-
rize the stability results for the equilibrium solutions of E0-E7, and then present a detailed
analysis for the equilibrium solutions E8 and E9.

5.1. Stability of \bfE \bfzero -\bfE \bfseven .
Theorem 5.1. The equilibria E0, E1, and E2 exist for positive parameter values. The

equilibrium E3 exists for (K2  - r1)(K1  - r2) > 0, E4 exists if K1 > 1
B , E5 exists if r2 >

1
B , K1 >

1
B , r1 > r\ast 1, E6 exists for K1 >

1
\~D
, and E7 exists for E > 1

K2
. E0 is always unstable;

E1 is LAS for r2 <K1 <min\{ 1
B , 1

\~D
\} ; E2 is LAS for r1 <K2 <

1
E ; E3 is LAS if the following

conditions hold:

K1 <
1

B
< r2, K2 < r1 or

1

B
<K1 < r2, K2 < r1 < r\ast 1

together with B <
g

r2K1(K2  - r1)
and E <

g - \~Dr2K1(K2  - r1)

K2r1(K1  - r2)
,

(24)

where r\ast 1 is given in (5); E4 is LAS for r2 <
1
B <min\{ K1,

1
\~D
\} ; E5 is LAS for

1

B
<K1 < r2, r1 > r\ast 1 or

1

B
< r2 <K1, r1 > r1\mathrm{H},

together with E <
Br2

K2(Br2  - 1)
and \~D<

Br2  - EK2(Br2  - 1)

r2
,

(25)
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HOST-RANGE EXPANSION 1687

where r1\mathrm{H} is given in (9); E6 is LAS for

B < \~D and r2 <
1
\~D
+

Ar1
\~c

\biggl( 
1 - 1

\~DK1

\biggr) 
;(26)

and E7 is LAS for

r1 <
1

E
+

\~c r2
A

\biggl( 
1 - 1

EK2

\biggr) 
.(27)

There exist seven transcritical bifurcations shown in the following table:

Equilibria : (E1,E3) (E1,E4) (E1,E6) (E2,E3) (E2,E7) (E3,E5) (E4,E5),

Critical Point : r2=K1 BK1=1 \~D=1 r1=K2 EK2=1 r1=r\ast 1 Br2=1.

A Hopf bifurcation can only occur from E5 at the critical point r1 = r1\mathrm{H}. But B-T bifur-
cations cannot happen from any of the seven equilibria.

The proof is given in the Supplementary Material (section SM4.2). We provide a numerical
example of the Hopf bifurcation from E5 in the Supplementary Material (section SM4.3).

We now demonstrate that all equilibrium solutions E1--E7 are GAS when they are LAS
with the additional boundedness condition (16). We note that the conclusions in the following
theorem about the GAS of the equilibria E1--E5 are also true for the 3-d model (2), with the
proof using the boundedness condition C3\mathrm{d}

\mathrm{b}\mathrm{d} instead of C4\mathrm{d}
\mathrm{b}\mathrm{d}, setting

\~cE
\~DA

= 1, and neglecting the
term Q in the Lyapunov function.

Theorem 5.2. The seven equilibria E1--E7 of the 4-d model (10) are GAS if, in addition,
to their LAS conditions, the boundedness condition (16) is also satisfied.

Proof. The following seven Lyapunov functions are used to prove the GAS of the seven
equilibria E1--E7 (Vk for E\mathrm{k}). Since the proofs are similar, we only outline the proofs for E1,
E3, and E5.

V1 =N1  - N11  - N11 ln

\biggl( 
N1

N11

\biggr) 
+

\~cE
\~DA

N2 +
1

B
P +

\~c
\~D
Q,

V2 =N1 +
\~cE
\~DA

\biggl[ 
N2  - N22  - N22 ln

\biggl( 
N2

N22

\biggr) \biggr] 
+

1

B
P +

\~c
\~D
Q,

V3 =N3  - N13  - N13 ln

\biggl( 
N1

N13

\biggr) 
+

\~cE
\~DA

\biggl[ 
N2  - N23  - N23 ln

\biggl( 
N2

N23

\biggr) \biggr] 
+

1

B
P +

\~c
\~D
Q,

V4 =N4  - N14  - N14 ln

\biggl( 
N1

N14

\biggr) 
+

\~cE
\~DA

N2 +
1

B

\biggl[ 
P  - P4  - P4 ln

\biggl( 
P

P4

\biggr) \biggr] 
+

\~c
\~D
Q,

V5 =N5  - N15  - N15 ln

\biggl( 
N1

N15

\biggr) 
+

\~cE
\~DA

\biggl[ 
N2  - N25  - N25 ln

\biggl( 
N2

N25

\biggr) \biggr] 
+

1

B

\biggl[ 
P  - P4  - P4 ln

\biggl( 
P

P4

\biggr) \biggr] 
+

\~c
\~D
Q,

V6 =N1  - N16  - N16 ln

\biggl( 
N1

N16

\biggr) 
+

\~cE
\~DA

N2 +
1

B
P +

\~c
\~D

\biggl[ 
Q - Q6  - Q6 ln

\biggl( 
Q

Q6

\biggr) \biggr] 
,

V7 =N1 +
\~cE
\~DA

\biggl[ 
N2  - N27  - N27 ln

\biggl( 
N2

N27

\biggr) \biggr] 
+

1

B
P +

\~c
\~D

\biggl[ 
Q - Q7  - Q7 ln

\biggl( 
Q

Q7

\biggr) \biggr] 
.

(28)
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Define

dV \mathrm{k}

dt
=

r1
K1

\biggl[ 
N1  - N1\mathrm{k} +

K1

2r1

\biggl( 
1 +

\~cE
\~DA

\biggr) 
(N2  - N2\mathrm{k})

\biggr] 2
+

\~cE
\~DAK2r1

C4\mathrm{d}
\mathrm{b}\mathrm{d} (N2  - N2\mathrm{k})

2.(29)

It is seen that \mathrm{d}V k

\mathrm{d}t \geq 0 if C4\mathrm{d}
\mathrm{b}\mathrm{d} > 0.

Differentiating V1 with respect to time t and computing it along the trajectory of (10) we
obtain

dV1

dt

\bigm| \bigm| \bigm| \bigm| 
(10)

=

\biggl( 
1 - N11

N1

\biggr) 
dN1

dt
+

\~cE
\~DA

dN2

dt
+

1

B

dP

dt
+

\~c
\~D

dQ

dt

= - dV 1

dt
 - \~cE

\~DA
(K1  - r2)N2  - 

\biggl( 
1

B
 - K1

\biggr) 
P  - \~c

\biggl( 
1
\~D
 - K1

\biggr) 
Q,

(30)

which shows that \mathrm{d}V1

\mathrm{d}t

\bigm| \bigm| 
(10)

\leq 0 for (N1,N2, P,Q) \not = E1 if the LAS condition r1 < K1 <

min\{ 1
B , 1

\~D
\} and the boundedness condition C4\mathrm{d}

\mathrm{b}\mathrm{d} > 0 are satisfied, and \mathrm{d}V1

\mathrm{d}t

\bigm| \bigm| 
(10)

= 0 only if

(N1,N2, P,Q) = E1. This implies that E1 is GAS under these conditions by the Lyapunov
function theory.

Using the function V3 gives

dV3

dt

\bigm| \bigm| \bigm| \bigm| 
(10)

=

\biggl( 
1 - N13

N1

\biggr) 
dN1

dt
+

\~cE
\~DA

\biggl( 
1 - N23

N2

\biggr) 
dN2

dt
+

1

B

dP

dt
+

\~c
\~D

dQ

dt

= - dV 3

dt
 - 1

B
(1 - BN13)P  - \~c

\~D
(1 - \~DN13  - EN23)Q,

which leads to \mathrm{d}V3

\mathrm{d}t

\bigm| \bigm| 
(10)

\leq 0 for (N1,N2, P,Q) \not = E3 if Cbd4d > 0, as well as BN13 < 1 and
\~DN13 + EN23 < 1. The latter two conditions are the LAS conditions for E3 given in (24)
expressed in B and E. \mathrm{d}V3

\mathrm{d}t

\bigm| \bigm| 
(10)

= 0 only if (N1,N2, P,Q) = E3. Thus, E3 is GAS under these

conditions.
For E5, we obtain

dV5

dt

\bigm| \bigm| \bigm| \bigm| 
(10)

=

\biggl( 
1 - N15

N1

\biggr) 
dN1

dt
+

\~cE
\~DA

\biggl( 
1 - N25

N2

\biggr) 
dN2

dt
+

1

B

\biggl( 
1 - P5

P

\biggr) 
dP

dt
+

\~c
\~D

dQ

dt

= - dV 5

dt
 - \~c

\~D
(1 - \~DN15  - EN25)Q,

from which we have that \mathrm{d}V5

\mathrm{d}t

\bigm| \bigm| 
(10)

\leq 0 for (N1,N2,Q) \not = (N15,N25, P5) if C
4\mathrm{d}
\mathrm{b}\mathrm{d} > 0, and \~DN15 +

EN25 < 1, which is equivalent to the LAS condition for E5 given in (25) expressed in \~D.
\mathrm{d}V5

\mathrm{d}t

\bigm| \bigm| 
(10)

= 0 if (N1,N2,Q) = (N15,N25, P5) under which the first three equations of system

(10) are reduced to

0 =
1

B

\biggl[ 
r1

\biggl( 
1 - 1

BK1

\biggr) 
 - N25  - P

\biggr] 
, 0 =N25

\biggl[ 
r1

\biggl( 
1 - N25

K2

\biggr) 
 - 1

B

\biggr] 
,

dP

dt
= P (BN15 - 1) = 0,

yielding N2 =N25 and P = P5. Hence, E5 is GAS by the LaSalle's Invariance Principle.
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HOST-RANGE EXPANSION 1689

The above results show that all equilibrium solutions E1-E7 are GAS when the LAS
conditions and the boundedness condition (16) are satisfied.

Remark 1. A natural question arises: Does the LAS condition for an equilibrium always
satisfy the GAS condition (16)? The answer is no, since LAS equilibria are sometimes GAS,
but not always. For example, the equilibrium E5 of the 3-d model is LAS and also GAS under
the same stability conditions, 1

B <K1 \leq r2 and r1 > r\ast 1. In contrast, consider equilibria E2 and
E4 of the 3-d model. The equilibrium E2 = (0,K2,0) exists for any positive parameter values,
and is LAS for r2 <K1; while the equilibrium E4 = ( 1

B ,0, r2(1 - 1
BK1

)) exists for K1 >
1
B , and

is LAS for r2 <
1
B . Thus, these two equilibria can co-exist for certain parameter values. With

the addition of the boundedness condition C3\mathrm{d}
\mathrm{b}\mathrm{d} > 0; however, it can be seen that there exists

a wide range of parameter values such that either E2 or E4 is GAS, but not both. This is
certainly true because a system cannot have more than one GAS equilibrium. We describe this
result further and provide numerical examples in section SM3 of the Supplementary Material.

5.2. Stability and bifurcation analysis of equilibrium \bfE \bfeight . Turning our attention to equi-
librium E8, we have the following result.

Theorem 5.3. The equilibrium E8 exists if one of the following two conditions holds:

(C1) N18\mathrm{n} > 0, N28\mathrm{n} > 0, Q8\mathrm{n} > 0;
(C2) N18\mathrm{n} < 0, N28\mathrm{n} < 0, Q8\mathrm{n} < 0.

(31)

Further, equilibrium E8 under the condition (C2) is unstable; E8 under the condition (C1) is
LAS if the following conditions are satisfied:

BN18 < 1, a18 > 0, a28 > 0, a38 > 0, \Delta 28 = a18a28  - a38 > 0,(32)

where

a18 =
1

K1K2E8\mathrm{d}
(r1K2N18\mathrm{n} + r2K1N28\mathrm{n}),

a28 =
1

E2
8\mathrm{d}

\biggl[ \biggl( 
r1r2
K1K2

 - 1

\biggr) 
N18\mathrm{n}N28\mathrm{n} + (\~c \~DN18\mathrm{n} +AEN28\mathrm{n})Q8\mathrm{n}

\biggr] 
\equiv 1

E2
8\mathrm{d}

a28\mathrm{n},

a38 =
N18\mathrm{n}N28\mathrm{n}Q8\mathrm{n}

K1K2E2
8\mathrm{d}

.

(33)

Moreover, E8 is GAS under the conditions (C1), BN18 < 1, and C4\mathrm{d}
\mathrm{b}\mathrm{d} > 0. Three transcritical

bifurcations can occur: one between E8 and E7 at the critical point determined by N18\mathrm{n} = 0;
the second one between E8 and E6 at the critical point determined by N28\mathrm{n} = 0; and the third
one between E8 and E3 at the critical point determined by Q8\mathrm{n} = 0. Hopf bifurcation occurs at
the critical point defined by \Delta 28 = 0. No B-T bifurcation can occur from E8.

Proof. The proof of the existence and LAS conditions are given in the Supplementary
Material (section SM4.2). Before discussing Hopf bifurcation from E8, we find the condition
under which E8 is GAS. In other words, the LAS condition (32) does not guarantee GAS of
E8. GAS requires the boundedness condition C4\mathrm{d}

\mathrm{b}\mathrm{d} to be added. To prove this, we construct
the Lyapunov function:

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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1690 P. YU, P. POOLADVAND, M. M. TANAKA, AND L. M. WAHL

V8 =N1  - N18  - N18 ln
N1

N18
+

\~cE
\~DA

\biggl( 
N2  - N28  - N28 ln

N2

N28

\biggr) 
+

1

B
P +

\~c
\~D

\biggl( 
Q - Q8  - Q8 ln

Q

Q8

\biggr) 
.

(34)

Then, differentiating V8 and using (10) we obtain

dV8

dt

\bigm| \bigm| \bigm| \bigm| 
(10)

=

\biggl( 
1 - N18

N1

\biggr) 
dN1

dt
+

\~cE
\~DA

\biggl( 
1 - N28

N2

\biggr) 
dN2

dt
+

1

B

dP

dt
+

\~c
\~D

\biggl( 
1 - Q8

Q

\biggr) 
dQ

dt

= (N1  - N18)

\biggl\{ 
r1

\biggl( 
1 - N1

K1

\biggr) 
 - N2  - P  - \~cQ - 

\biggl[ 
r1

\biggl( 
1 - N18

K1

\biggr) 
 - N18  - \~cQ8

\biggr] \biggr\} 
+

\~cE
\~DA

(N2 - N28)

\biggl\{ 
r2

\biggl( 
1 - N2

K2

\biggr) 
 - N1 - AQ - 

\biggl[ 
r2

\biggl( 
1 - N28

K2

\biggr) 
 - N28 - AQ8

\biggr] \biggr\} 
+N1P  - 1

B
P +

\~c
\~D
(Q - Q8)[ \~DN1 +EN2  - 1 - ( \~DN18 +EN28  - 1)]

= - dV 8

dt
 - 
\biggl( 

1

B
 - N18

\biggr) 
P,

where \mathrm{d}V 8

\mathrm{d}t is given in (29), which clearly shows that under the conditions (C1) and (16),
\mathrm{d}V8

\mathrm{d}t \leq 0, and equals zero only if N1 =N18, N2 =N28, and P = 0. When N1 =N18, N2 =N28,
and P = 0, the first and the last equations in system (10) are reduced to

0 =N18

\biggl[ 
r1

\biggl( 
1 - N18

K1

\biggr) 
 - N28 - \~cQ

\biggr] 
= \~cN18 (Q8  - Q) ,

dQ

dt
=Q( \~DN18+EN28 - 1) = 0,

which shows that Q is a constant, and it can be derived from the first equation as Q = Q8.
Therefore, by the LaSalle's Invariance Principle, we know that E8 is GAS under the given
conditions. Note that the existence condition (C1) and the boundedness condition C4\mathrm{d}

\mathrm{b}\mathrm{d} > 0
imply the LAS condition of E8 since

C4\mathrm{d}
\mathrm{b}\mathrm{d} > 0 =\Rightarrow r1r2

K1K2
>

( \~DA+ \~cE)2

4\~c \~DAE
\geq 1.

Now, we consider possible Hopf bifurcation from E8, which requires the condition \Delta 28 = 0.
Since a18 > 0 and a38 > 0 under the existence condition (C1), we know that E8 is LAS
if BN18 < 1, a28 > 0, and \Delta 28 > 0. Take B < 1

N18
. Then, it is not difficult to see that

\Delta 28 = a18a28 - a38 crosses zero before a28 does. Therefore, besides the transcritical bifurcation
discussed above, when ak8 > 0 (k = 1,2,3), the only possible bifurcation is Hopf bifurcation.
To prove that Hopf bifurcation can occur from E8, it suffices to show that \Delta 28 can reach zero
under the conditions N\mathrm{k}8\mathrm{n} > 0, k= 1,2,3, and a28\mathrm{n} > 0. A direct computation yields

\Delta 28 =
1

K1K2E3
8\mathrm{d}

\Bigl[ 
(K2r1N18\mathrm{n} +K1r2N28\mathrm{n})a28\mathrm{n}  - N18\mathrm{n}N28\mathrm{n}Q8\mathrm{n}( \~DN18\mathrm{n} +EN28\mathrm{n})

\Bigr] 
=

1

K1K2E3
8\mathrm{d}

\biggl\{ \biggl( 
r1r2
K1K2

 - 1

\biggr) 
(K2r1N18\mathrm{n} +K1r2N28\mathrm{n})N18\mathrm{n}N28\mathrm{n}(35)
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HOST-RANGE EXPANSION 1691

+[\~c \~DK2r1N
2
18\mathrm{n}+K1AEr2N

2
28\mathrm{n}+K1K2( \~DA+ \~cE)N18\mathrm{n}N28\mathrm{n}]Q8\mathrm{n}

\biggr\} 
\equiv 1

K1K2E3
8\mathrm{d}

\Delta 28\mathrm{n}.

It is easy to see that the existing E8 is LAS for r1r2 \geq K1K2 under which a28 > 0 and \Delta 28 > 0.
Therefore, Hopf bifurcation is possible only if r1r2 <K1K2. Also, it can be seen from the first
line of (35) that \Delta 28 crosses zero before a28 does. To identify possible Hopf bifurcation, we
consider the boundary conditions N18\mathrm{n}=N28\mathrm{n}=Q8\mathrm{n}=a28\mathrm{n}=\Delta 28\mathrm{n} = 0 as lines/curves in the
r1-r2 plane (see Figure 1a). We choose specific parameter values (see the figure caption) to
generate the bifurcation diagram with r1 and r2 as the perturbation parameters, where the
purple dotted, green solid, blue dotted, red solid, and black dotted curves denote the graphs,
N28\mathrm{n} = 0, Q8\mathrm{n}=0, a28\mathrm{n}=0, \Delta 28\mathrm{n}=0, and r1r2=K1K2, respectively (Figure 1a). N18\mathrm{n} does not
appear in the diagram since N18\mathrm{n} > 0 in the first quadrant of the r1-r2 plane.

Note that the four curves Q8\mathrm{n}=a28\mathrm{n}=\Delta 28n=r1r2  - K1K2=0 intersect at the same point
(r1, r2) = (K2,K1), and another four curves Q8\mathrm{n}=a28\mathrm{n}=\Delta 28n=N28\mathrm{n}=0 intersect at the same
point (r1, r2) = (0, 1

\~D
), while the two curves N28\mathrm{n} = r1r2  - K1K2 = 0 intersect at the point

(r1, r2) = (r1\mathrm{s}, r2\mathrm{s}), where

r1\mathrm{s} =
2\~c \~DK1K2\sqrt{} 

\~c2 + 4\~c \~DAK2( \~DK1  - 1) + \~c
, r2\mathrm{s} =

K1K2

r1\mathrm{s}
.

Q8n=0

a28n=0

r1r2 = K1K2

N28n=0
Δ28n=0

(K2,K1) 

(r1s,r2s) 

r1

     r2 

(a) (b)

     K2 

K1

W1=0

 K1 = K2

AK2=cK1˜

EK2=DK1˜

Figure 1. Bifurcation diagrams for the equilibria of the 4-d model (10). (a) Equilibrium E8 with \~c = 2
5
,

E = 1
5
, K2 = 1, \~D = 2, K1 = 4, A = 1

50
. The purple dashed, green, blue dashed, red, and black dashed curves

denote N28\mathrm{n} = 0, Q8\mathrm{n} = 0, a28\mathrm{n} = 0, \Delta 28\mathrm{n} = 0, and r1r2 =K1K2, respectively; and N18\mathrm{n} > 0 in the first quadrant.
(b) Equilibrium E9 with \~c = 2

5
, \~D = 4

5
, A = 1, E = 5

2
. The dashed black, blue, and green lines represent the

equations, K2 = K1, AK2 = \~cK1, and EK2 = \~DK1, respectively; and the solid red curve plots the function
W1 = 0.
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1692 P. YU, P. POOLADVAND, M. M. TANAKA, AND L. M. WAHL

In the triangular region bounded by the purple, blue, and black dotted curves, we have
N18\mathrm{n} > 0, N28\mathrm{n} > 0, Q8\mathrm{n} > 0, a28\mathrm{n} > 0. Inside this triangle, \Delta 28\mathrm{n} > 0 on the right side of the
red curve, and \Delta 28\mathrm{n} < 0 on the left side of the red curve, implying that E8 is LAS on the right
side of the red curve, and loses its stability when r1 and r2 are varied to cross the red curve,
and limit cycles bifurcate from E8 when the (r1, r2) takes values in the triangle bounded by
the blue and red curves. We present a numerical example, including the use of normal form
theory [38] to find the first focus value, in section SM4.4 of the Supplementary Material.

We also assess whether B-T bifurcation from E8 can occur at the critical point, determined
by a28 = a38 = 0, which yields two zero eigenvalues. There are only two possibilities: N18 =
Q8 = 0 and N28 = Q8 = 0. N18 = N28 = 0 is not allowed since it causes E8\mathrm{d} = 0. However,
solving these two cases results in no solution, leading to a zero divisor. Hence, B-T bifurcation
is not possible from E8.

5.3. Stability and bifurcation analysis of equilibrium \bfE \bfnine . We have the following theorem.

Theorem 5.4. The equilibrium E9 exists for

B > \~D, K1 >
1

B
, E >

B  - \~D

BK2
, r2 >

EK2

BEK2  - B + \~D
,

r1 >
K1\{ AK2(B  - \~D) + \~c [r2(BEK2  - B + \~D) - EK2]\} 

AEK2(BK1  - 1)
,

(36)

and is LAS under the following conditions:

ak9 > 0, k= 1,2,3,4, \Delta 29 = a19a29  - a39 > 0, \Delta 39 = a39\Delta 29  - a319a49 > 0,(37)

where

a19 =
r1

BK1
+

r2N29

K2
,

a29 =
1

B

\biggl( 
r1r2
K1K2

 - 1

\biggr) 
N29 +AEN29Q9 +

\~c \~D

B
Q9 + P9,

a39 =N29

\Biggl\{ 
r2
K2

P9 +
1

B

\Biggl[ 
\~c

\Biggl( 
\~Dr2
K2

 - E

\Biggr) 
+A

\biggl( 
Er1
K1

 - \~D

\biggr) \Biggr] 
Q9

\Biggr\} 
,

a49 =AEN29P9Q9.

(38)

Two transcritical bifurcations can occur: one is between E9 and E5 at the critical point de-
termined by Q9 = 0; and the other is between E9 and E8 at the critical point determined by
P9 = 0. Hopf bifurcation occurs at the critical point, determined by \Delta 39 = 0, together with
ak9 > 0, k= 1,2,3,4 and \Delta 29 > 0. No B-T bifurcation can happen from E9.

Proof. For a proof of existence and LAS conditions, see the Supplementary Material
(section SM4.2). Now, we consider Hopf bifurcation from E9. It is known [39] that Hopf
bifurcation occurs at the critical point determined by \Delta 39 = 0, with the other stability con-
ditions ak9 > 0, k = 1,2,3,4, and \Delta 29 > 0 still hold. It is easy to see that a19 > 0, a29 > 0
when E9 exists, and that there are many parameter values satisfying a29 > 0 and a39 > 0. If
a39 > 0, then we know that \Delta 29 crosses zero before a29 does (see (37)). Moreover, it can be
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HOST-RANGE EXPANSION 1693

seen from (37) that \Delta 39 crosses zero before \Delta 29 does. Therefore, when E9 exists, besides the
transcritical bifurcations, the only possible bifurcation is Hopf bifurcation.

To find the Hopf critical point, we need to identify feasible parameter values such that
the above mentioned Hopf conditions are satisfied. We may follow the approach used in the
analysis of E8, treating r1 and r2 as perturbation parameters. However, this is very difficult
due to the complex expressions involved. We instead use the parameter B as the bifurcation
parameter, and take additional restrictions on the parameters to simplify the computation. It
can be seen from (38) that there exist many parameter values such that a29 > 0 and a39 > 0.
However, it is not easy to find the conditions such that \Delta 29 > 0 and \Delta 39 = 0. To simplify the
analysis, we take

r1 =K2, r2 =K1,(39)

which does not impose much restriction in satisfying the Hopf condition. We can see that
a29 > 0 under this condition, and there still exists a range of parameter values such that
a39 > 0. With (39), we have

N29 =
B  - \~D

BE
, Q9 =

BK1(EK2  - 1) + \~DK1  - EK2

ABEK2
, P9 =

1

K1
(AK2  - \~cK2)Q9.

Then, ak9 > 0, k = 1,2,3,4, as long as N29 > 0, Q9 > 0, and P9 > 0. With the condition (39),
a direct computation yields

\Delta 29 =
BK1(EK2  - 1) + \~DK1  - EK2

AB3E2K2
1K

2
2

\times \{ AK3
1 (B  - \~D)2+K2[A( \~DK2

1+EK2
2 )+\~cK1(K1 - K2)](B - \~D)+ \~DAEK3

2\} ,

\Delta 39 =
(B  - \~D)2(AK2  - \~cK1)[BK1(EK2  - 1) + \~DK1  - EK2]

2

A2B6E4K2
1K

4
2

\times (K2  - K1)\{ B[AK1( \~DK1  - EK2) +EK2(AK2  - \~cK1)]

 - ( \~DK1  - EK2)(A \~DK1  - EK2 \~c)\} .

Solving \Delta 39 = 0 we obtain the Hopf critical point,

B\mathrm{H} =
( \~DK1  - EK2)(A \~DK1  - EK2 \~c)

AK1( \~DK1  - EK2) +EK2(AK2  - \~cK1)
,(40)

under which

\Delta 29| B=B\mathrm{H}
=

E2K2
2 (AK2  - \~cK1)

2 (K1  - K2)[A \~DK2
1  - EK1K2 \~c+A(K2  - K1)]

AK2
1 (

\~DK1  - EK2)2( \~DK1  - EK2)2
.

Now, summarizing the conditions B > 0, B > \~D, Q9 > 0, P9 > 0, and \Delta 29| B=B\mathrm{H}
> 0, we have

the following conditions which need to be satisfied:

AK2  - \~cK2 > 0,

(\~cE  - \~DA)W1 > 0,

( \~DK1  - EK2)(A \~DK1  - \~cEK2)W1 > 0,

( \~DK1  - EK2)W1W2 > 0,

(K1  - K2)W2 > 0,

(41)
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1694 P. YU, P. POOLADVAND, M. M. TANAKA, AND L. M. WAHL

where

W1 =AK1( \~DK1  - EK2) +EK2(AK2  - \~cK1),

W2 =A \~DK2
1  - EK1K2\~c+A(K2  - K1).

There are two cases: \~cE  - \~DA> 0, W1 > 0 and \~cE  - \~DA< 0, W1 < 0. It can be shown that
the second case does not have solutions. For the first case, \~cE > \~DA and AK2 > \~cK2 yields
EK2 > \~DK1, which leads to W2 < 0 using the 4th condition, and so K2 > K1 by the 5th
condition. Then it is easy to verify that A \~DK1 < \~cEK2. Finally, checking W1 > 0 we have

A
\Bigl( 
\~DK2

1  - EK1K2 +EK2
2

\Bigr) 
> \~cEK1K2,

which needs \~DK2
1  - EK1K2 + EK2

2 > 0, yielding a sufficient condition E \leq 4 \~D. Then, it
follows from \~DA < \~cE \leq 4 \~c \~D that A < 4 \~c. Summarizing the above analysis we obtain the
following solutions:

E \leq 4 \~D, A< 4 \~c, K2 >K1, AK2 > \~cK1, EK2 > \~DK1, W1 > 0.(42)

As an example, in Figure 1b we plot the three lines and a curve:

K2 =K1, AK2 = \~cK1, EK2 = \~DK1, W1 = 0,

on the K1-K2 plane. As long as we choose the values (K1,K2) above the top red curve
(W1 = 0), all the required conditions are satisfied.

It is clear in Figure 1b that even with the restrictions r1 = K2 and r2 = K1, a wide
range of parameter values still satisfies the conditions for the Hopf critical point, as long as
(K1,K2) takes values from the region above the top red curve. (Without this restriction, even
more parameter values should satisfy the Hopf bifurcation conditions, but the computation
is unwieldy.) We provide an illustrative example, including the use of normal form theory
to further analyse the existence and stability of limit cycles, in the Supplementary Material
(section SM4.5).

5.4. GAS of \bfE \bfnine . We end this section with the following theorem.

Theorem 5.5. The equilibrium E9 is GAS when the conditions for existence (36) and LAS
(37) are satisfied, along with the additional boundedness condition (16).

Proof. Following our previous approach, we construct the Lyapunov function:

V9 =N1  - N19  - N19 ln
N1

N19
+

\~cE
\~DA

\biggl( 
N2  - N29  - N29 ln

N2

N29

\biggr) 
+

1

B

\biggl( 
P  - P9  - P9 ln

P

P9

\biggr) 
+

\~c
\~D

\biggl( 
Q - Q9  - Q9 ln

Q

Q9

\biggr) 
.

(43)
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HOST-RANGE EXPANSION 1695

Then, differentiating V9 and using (10) we obtain

dV9

dt

\bigm| \bigm| \bigm| \bigm| 
(10)

=

\biggl( 
1 - N19

N1

\biggr) 
dN1

dt
+

\~cE
\~DA

\biggl( 
1 - N29

N2

\biggr) 
dN2

dt
+

1

B

\biggl( 
1 - P9

P

\biggr) 
dP

dt
+

\~c
\~D

\biggl( 
1 - Q9

Q

\biggr) 
dQ

dt

= (N1  - N18)

\biggl\{ 
r1

\biggl( 
1 - N1

K1

\biggr) 
 - N2  - P  - \~cQ - 

\biggl[ 
r1

\biggl( 
1 - N18

K1

\biggr) 
 - N18  - \~cQ8

\biggr] \biggr\} 
+

\~cE
\~DA

(N2  - N28)

\biggl\{ 
r2

\biggl( 
1 - N2

K2

\biggr) 
 - N1  - AQ - 

\biggl[ 
r2

\biggl( 
1 - N28

K2

\biggr) 
 - N28  - AQ8

\biggr] \biggr\} 
+

1

B
(P  - P9) [BN1  - 1 - (BN19  - 1)]

+
\~c
\~D
(Q - Q9)[ \~DN1 +EN2  - 1 - ( \~DN19 +EN29  - 1)]

= - dV 9

dt
,

where \mathrm{d}V 9

\mathrm{d}t is given in (29). This indicates that \mathrm{d}V9

\mathrm{d}t

\bigm| \bigm| 
(10)

\leq 0 for N1 \not = N19, N2 \not = N29, and

equals zero only if N1 =N19 and N2 =N29. When N1 =N19, N2 =N29, system (10) is reduced
to

0 =N19

\biggl[ 
r1

\biggl( 
1 - N19

K1

\biggr) 
 - N29  - P  - \~cQ

\biggr] 
=N19 [(P9  - P ) + \~c (Q9  - Q)] ,

0 =N29

\biggl[ 
r2

\biggl( 
1 - N29

K2

\biggr) 
 - N19  - AQ

\biggr] 
=AN29(Q9  - Q),

dP

dt
= P (BN19  - 1) = 0,

dQ

dt
= \~DQ(N19 +EN29  - 1) = 0,

which shows that P and Q are constants, and can be derived from the first and second
equations to get P = P9 and Q = Q9. Therefore, by the LaSalle's Invariance Principle, we
know that E9 is GAS under the given conditions.

6. Host-range expansion. We are now able to address a number of important biological
questions regarding host-range expansion. We are interested in situations in which the host,
competitor, and parasite stably co-exist before the range expansion. We ask the following:
what outcomes are possible if the parasite successfully expands its host range? We therefore
restrict our interest to parameter regions for which the following conditions hold: (A) E5

is GAS in the 3-d model but unstable in the 4-d model; and (B) at least one of E6--E9 is
LAS in the 4-d model. Condition (B) requires that for the range expansion to be considered
successful, there must be at least one LAS equilibrium in which Q is nonzero.

In the Supplementary Material (section SM5), we demonstrate that the only states that
can be bistable, among E6--E9, is the pair (E6,E7). However, we are also able to show that
it is not possible for condition (A) to hold together with both E6 and E7 LAS Supplementary
Material (section SM4.6). Thus, if condition (A) holds, there are no bistable pairs among
equilibria that include the evolved parasite. We can then ask: which of E6--E9 can be either
LAS or GAS under these conditions?
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1696 P. YU, P. POOLADVAND, M. M. TANAKA, AND L. M. WAHL

We first demonstrate that there is a range of parameter values such that condition (A)
holds, together with either LAS E6 (E7 unstable) or LAS E7 (E6 unstable). This implies that
host-range expansion can result in either the deterministic extinction of the original host, or
the deterministic extinction of the novel host (competitor). We give the following examples
to illustrate these two cases.

Example 1. For the case that E5 is GAS for the 3-d model but unstable for the 4-d model,
with LAS E6 (E7 unstable), we choose the parameter values:

\~c=
2

5
, B =

1

2
, \~D=

3

5
, K1 =

5

2
, A=

1

2
, K2 = 2, r1 = 8, r2 = 3, E =

1

2
,

under which the four characteristic polynomials are

P3\mathrm{d}(E5) = \lambda 3 +
37

5
\lambda 2 + 6\lambda +

14

15
,

P4\mathrm{d}(E5) =
1

225
(15\lambda  - 8)(15\lambda 3 + 111\lambda 2 + 90\lambda + 14),

P4\mathrm{d}(E6) =
1

18
(\lambda + 1)(6\lambda + 1)(3\lambda 2 + 16\lambda + 8),

P4\mathrm{d}(E7) = \lambda (\lambda  - 6)(\lambda + 3)(\lambda + 1).

For the case that E5 is GAS for the 3-d model but unstable for the 4-d model, with LAS E7

(E6 unstable), we take the parameter values from Example 1, except that K2 = 1, r1 = 101/60,
and E = 2. In this case the four characteristic polynomials are

P3\mathrm{d}(E5) = \lambda 3 +
176

75
\lambda 2 +

41

60
\lambda +

1

300
,

P4\mathrm{d}(E5) =
1

4500
(15\lambda  - 13)(300\lambda 3 + 704\lambda 2 + 205\lambda + 1),

P4\mathrm{d}(E6) =
1

155520
(144\lambda  - 91)(6\lambda + 1)(180\lambda 2 + 202\lambda + 101),

P4\mathrm{d}(E7) =
1

120
(60\lambda + 1)(\lambda + 1)(2\lambda 2 + 3\lambda + 3).

We can similarly show that there is a range of parameter values for which condition (A)
holds, together with either the LAS of E8 (E9 unstable) or E9 (E8 unstable). The former
case can be confirmed by considering parameter values as in Example 1, but with r2 = 6; the
latter case can be confirmed by taking the same parameter values but substituting r2 = 6 and
B = 4/5. Finally, we note that in each of the four numerical examples above, the boundedness
condition (16) is satisfied. Thus by Theorem 5.2, each of the four equilibria is, in fact, GAS
under the parameter values in the four examples.

Although these examples demonstrate that GAS equilibria of all four types (E6 through
E9) are possible under condition (A), we would like to demonstrate, in particular, that there
is a wide range of parameter values under which E7, corresponding to the extinction of the
original host, is LAS after a host-range expansion. To do this, we further consider the stability
conditions of E6 and E7 under condition (A).

Summarizing the conditions for the co-existence of the four equilibria E5 (3-d), E5 (4-d),
E6 (4-d), and E7 (4-d) gives

r2 >
1

B
, K1 >

1

B
, \~DK1 > 1, EK2 > 1, r1 > r\ast 1 =

K1K2

BK1  - 1

\biggl( 
B  - 1

r2

\biggr) 
.
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HOST-RANGE EXPANSION 1697

The stability conditions for the four equilibria are given below:

E5 (3-d):
1

B
<K1 \leq r2, r1 > r\ast 1,

E5(4-d):
1

B
<K1 \leq r2, r1 > r\ast 1,

E <
Br2

K2(Br2  - 1)
, \~D<B  - EK2

\Bigl( 
B  - 1

r2

\Bigr) 
,

E6 (4-d): B < \~D, r2 <
1
\~D
+

A

\~c

\Bigl( 
1 - 1

\~DK1

\Bigr) 
r1,

E7 (4-d): r1 <
1

E
+

\~c

A

\Bigl( 
1 - 1

EK2

\Bigr) 
r2.

Now, suppose E5 (3-d) is stable but E5 (4-d) is unstable (condition (A)). Then, combining
the co-existence condition and the stability of E5 (3-d), E6 and E7 yields

1

B
<K1 \leq r2, \~DK1 > 1, EK2 > 1, r1 >

K1K2

BK1  - 1

\biggl( 
B  - 1

r2

\biggr) 
,

r2 <
1
\~D
+

A

\~c

\biggl( 
1 - 1

\~DK1

\biggr) 
r1, r1 <

1

E
+

\~c

A

\biggl( 
1 - 1

EK2

\biggr) 
r2.

The bifurcation diagram showing the above conditions is given in Figure 2. It is shown
that E5 (3-d) is GAS for the parameter values located in the purple shaded region, bounded
by r2 >K1 and r1 >

K1K2

BK1 - 1(B - 1
r2
). Note that there exists a vertical asymptote at r1 =

K1K2

K1 - 1

B

r1

r2

K1
(K2,K1)

1
B

1
D̃

K2
1
E

K1K2

K1− 1
B

r1 = K1K2

BK1−1

(
B − 1

r2

)
@
@R

@@I
L1 : r2=

1
D̃
+A

c̃

(
1− 1

D̃K1

)
r1

@@I
L2 : r1=

1
E + c̃

A

(
1− 1

EK2

)
r2

�
�+

E5 (3-d) GAS

Figure 2. Bifurcation diagram projected on the r1-r2 parameter plane, showing the possibility for bistability
between E5 (3-d) and E6 (4-d), or E5 (3-d) and E7 (4-d), but not both.
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1698 P. YU, P. POOLADVAND, M. M. TANAKA, AND L. M. WAHL

and the region on the right side of this asymptote satisfying r1 >
K1K2

BK1 - 1(B - 1
r2
) must be below

the r1 axis since r2 < 0, and therefore, this region does not contain biologically meaningful
parameter values. E6 is LAS in the region on the right of the line L1 and E7 is LAS in the
region on the left of the line L2.

As shown in the Supplementary Material (section SM4.6), it is impossible to have co-
stable equilibria E5 (3-d), E6 and E7, which can also be seen on geometric grounds from this
bifurcation diagram (not shown). Thus, depending upon on the position of the intersection
point of the two lines L1 and L2 (the red circle in the figure), i.e., depending on the parameter
values, E5 (3-d) is co-stable with E6 or E7 or neither.

The most interesting prediction of our analysis is that host-range expansion can drive
the original host to extinction. This situation occurs in the bifurcation diagram Figure 2
when the purple region overlaps with the region to the left of line L2. To maximize this
parameter regime, we may let L2 pass through the lower-right corner of the red square:
(r1, r2) = ( K1K2

K1 - 1

B

,K1), which yields

\~c

A
=

K1K2

\Bigl( 
1 - 1

EK2

\Bigr) 
+ 1

BE

K2
1

\Bigl( 
1 - 1

BK1

\Bigr) \Bigl( 
1 - 1

EK2

\Bigr) .
Figure 3 demonstrates that the purple region may be entirely contained within the green
region, showing a large region of r1-r2 space in which host-range expansion would lead to the
extinction of the original host.

r1

r2

K1
(K2,K1)

1
B

1
D̃

K2
1
E

K1K2

K1− 1
B

r1 = K1K2

BK1−1

(
B − 1

r2

)
@
@R

@@I
L2 : r1=

1
E + c̃

A

(
1− 1

EK2

)
r2

�
�+

E5 (3-d) GAS

Figure 3. Bifurcation diagram projected on the r1-r2 parameter plane, showing a large region (purple) in
which E5 is stable in the 3-d model but unstable in the 4-d model, while E7 is LAS in the 4-d model.
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0 10 20 30 40 50
time (non-dimensionalized)

10 -2

10 -1

10 0

10 1

10 2

po
pu

la
tio

n 
si

ze
 (n

on
-d

im
en

si
on

al
iz

ed
)

competitor

host

parasite

evolved parasite
N1
N2
P
Q

Figure 4. Simulated time history of a host-range expansion that drives the original host to extinction. The
3-d model (2.2) is integrated numerically up until the vertical grey line. The final conditions of the 3-d model
are then taken as initial conditions of the 4-d model (3.2), along with a small population of the evolved parasite,
Q. In the absence of Q, we observe the GAS of E5 (3-d), while in the 4-d model the solution approaches the
LAS E7. We see that the novel host sustains the evolved parasite at high densities, driving the original host to
extinction. Parameters are B = 1, K1 = 2, K2 = 3, r1 = 6, and r2 = 8 in both models with \~c= 1

2
, \~D= 3

5
, E = 1,

A= 2
15

in the 4-d model.

Choosing parameter values within the purple region, we simulate the timecourse of the 3-d
model, approaching the GAS E5 as expected (Figure 4). At time 25, we use the final conditions
of the 3-d simulation as initial conditions for the 4-d model, adding a small population of
the evolved parasite, Q. The resulting time course shows that the original host is driven to
extinction, while the solution approaches the LAS equilibrium E7.

7. Discussion and conclusions. We study a system of a host and parasite, along with
a second potential host species that is not infected by the parasite. We demonstrate that if
the parasite successfully expands its host range, only four outcomes are possible, as described
below.

As expected, host-range expansion can drive the novel host to extinction (E6). This result
makes intuitive sense since, by definition, a host-range expansion occurs when the parasite
becomes able to infect and kill the new host. Concerns in the ecological literature centering
on the risks of host-range expansion typically address this outcome [1, 7, 27].

Alternatively, host-range expansion can cause the emergence of a new, generalist parasite
that stably co-exists with both old and new hosts, and the original parasite (E9). The evolution
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1700 P. YU, P. POOLADVAND, M. M. TANAKA, AND L. M. WAHL

of generalist parasites, via a ``jump"" to a new host, has been reported in many contexts [9, 27],
most notably in the emergence of zoonotic disease [15]. Such expansions may be facilitated
by genetic innovations, physiological or ecological stressors [35].

Rather than stably co-existing, however, the emergence of the generalist can also cause
the extinction of the original, specialist parasite (E8). Given that the two parasite species
compete for hosts, this potential outcome is not surprising, and situations in which a generalist
predator outcompetes a specialist predator have been previously described [33, 36].

Along with these three outcomes, however, our work reveals a fourth possibility: host-
range expansion can, in some parameter regimes, drive the original host species to extinction
(E7), along with the original specialist parasite. This is unexpected, since the original host and
its parasite were at stable equilibrium before the range expansion, and the range expansion
involves death in the novel host species, a competitor for the original host.

What factors cause the original host to go extinct? While the stability conditions for
E7 make it clear that this behavior depends in a complex way on many parameters, we
suggest that this can occur when the parasite density that is sustainable by the novel host is
higher than the parasite density sustained by the original host. Thus, the parasite population
markedly increases when the new host can be infected, driving the original host to extinction.
This explanation only holds, however, if the parasite is a more important factor in regulating
population sizes than the competition between the two species. The implications of this
outcome are that relatively small populations may be at risk of extinction if their parasites
gain the ability to infect a related species with a much larger population size. For example,
native species could be driven extinct by parasites with which they have stably co-existed
for centuries if those parasites become able to infect and thrive on species introduced and
maintained by humans.

While we have focused in this section on the biological implications of our work, we note
that achieving these results involved several technical challenges. Bifurcation analysis is widely
applied to study nonlinear dynamical systems, yet in real-world applications these techniques
have been mainly restricted to lower-dimensional systems. It is difficult to apply bifurcation
analysis to higher-dimensional (e.g., 4-d or 5-d) models, in particular when a substantial num-
ber of system parameters are involved. In this paper, we explored the bifurcation behaviors
for a 4-d model with 13 parameters, and derived all equilibria and their stability conditions,
expressed explicitly in terms of the system parameters. In particular, we obtained the stabil-
ity conditions for several Hopf bifurcations, which play an important role in the oscillatory
behaviors of predator-prey systems. Thus, in addition to the biological insights made possible
in this work, our study offers an important example of how to approach a full bifurcation
analysis of a high-dimensional dynamical system.

Despite the relative complexity of the models we present here, our conclusions remain
limited by a number of key simplifying assumptions. We assume well-mixed populations of
parasites and hosts, ignoring any spatial considerations. We likewise use mass-action kinetics
to describe the infection process, an assumption that could be invalid in parameter regimes
with large numbers of hosts and few parasites, such that single parasites are modelled as
infecting multiple hosts. Most importantly, we ignore transient dynamics and focus entirely
on equilibrium and stability results. Each of these simplifying assumptions suggests a possible
direction for further work.
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HOST-RANGE EXPANSION 1701

It has long been recognized that adding a predator can stabilize the dynamics between
competitor species [6, 28, 29]. In contrast, here we report the surprising result that adding
a parasite, through host-range expansion, can in many cases destabilize the coexistence of
two competing species. Our approach could also be applied to the question of host-range
contraction, that is, the emergence of a specialist parasite through loss-of-function mutations
in the generalist. This case would require the analysis of a 3-d model that includes only
the generalist, rather than the specialist, before the host-range contraction. This simple idea
points to a wealth of interesting and important problems surrounding dynamic changes in the
host range of pathogens.

Acknowledgments. The authors are grateful to the reviewers for insightful comments that
strengthened the work.

Author contributions. The first author conducted stability and bifurcation analyses and
wrote the manuscript. The second author conducted equilibria and stability analyses. The
third author designed the study, developed the models, and wrote the manuscript. The fourth
author designed the study, developed the models, and wrote the manuscript.

REFERENCES

[1] S. Altizer, D. Harvell, and E. Friedle, Rapid evolutionary dynamics and disease threats to biodi-
versity , Trends Ecol. Evol., 18 (2003), pp. 589--596, https://doi.org/10.1016/j.tree.2003.08.013.

[2] R. M. Anderson and R. M. May, Infectious Diseases of Humans: Dynamics and Control, Oxford
University Press, 1992.

[3] B. Bohannan and R. Lenski, Linking genetic change to community evolution: Insights from studies
of bacteria and bacteriophage, Ecol. Lett., 3 (2000), pp. 362--377, https://doi.org/10.1046/j.1461-
0248.2000.00161.x.

[4] F. Brauer, Mathematical epidemiology: Past, present, and future, Infect. Dis. Model., 2 (2017),
pp. 113--127, https://doi.org/10.1016/j.idm.2017.02.001.

[5] A. Campbell, Conditions for the existence of bacteriophage, Evolution, 15 (1961), pp. 153--165,
https://doi.org/10.1111/j.1558-5646.1961.tb03139.x.

[6] N. Cramer and R. May, Interspecific competition, predation and species diversity: A comment ,
J. Theoret. Biol., 34 (1972), pp. 289--293, https://doi.org/10.1016/0022-5193(72)90162-2.

[7] P. Daszak, A. A. Cunningham, and A. D. Hyatt, Emerging infectious diseases of wildlife--
Threats to biodiversity and human health, Science, 287 (2000), pp. 443--449, https://doi.org/10.1126/
science.287.5452.443.

[8] P. A. de Jonge, F. L. Nobrega, S. J. Brouns, and B. E. Dutilh, Molecular and evolutionary determi-
nants of bacteriophage host range, Trends Microbiol., 27 (2019), pp. 51--63, https://doi.org/10.1016/
j.tim.2018.08.006.

[9] M. J. Farrell, A. W. Park, C. E. Cressler, T. Dallas, S. Huang, N. Mideo, I. Morales-
Castilla, T. J. Davies, and P. Stephens, The ghost of hosts past: Impacts of host extinction
on parasite specificity , Philos. Trans. Roy. Soc. B, 376 (2021), 20200351, https://doi.org/10.1098/
rstb.2020.0351.

[10] H. Freedman and P. Waltman, Persistence in models of three interacting predator-prey populations,
Math. Biosci., 68 (1984), pp. 213--231, https://doi.org/10.1016/0025-5564(84)90032-4.

[11] J. Hofbauer and K. Sigmund, On the stabilizing effect of predators and competitors on ecological
communities, J. Math. Biol., 27 (1989), pp. 537--548, https://doi.org/10.1007/bf00288433.

[12] S. Hsu, Predator-mediated coexistence and extinction, Math. Biosci., 54 (1981), pp. 231--248, https://
doi.org/10.1016/0025-5564(81)90088-2.

[13] V. Hutson, Predator mediated coexistence with a switching predator , Math. Biosci., 68 (1984),
pp. 233--246, https://doi.org/10.1016/0025-5564(84)90033-6.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

07
/2

4/
24

 to
 1

29
.1

00
.5

8.
76

 . 
R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

https://doi.org/10.1016/j.tree.2003.08.013
https://doi.org/10.1046/j.1461-0248.2000.00161.x
https://doi.org/10.1046/j.1461-0248.2000.00161.x
https://doi.org/10.1016/j.idm.2017.02.001
https://doi.org/10.1111/j.1558-5646.1961.tb03139.x
https://doi.org/10.1016/0022-5193(72)90162-2
https://doi.org/10.1126/science.287.5452.443
https://doi.org/10.1126/science.287.5452.443
https://doi.org/10.1016/j.tim.2018.08.006
https://doi.org/10.1016/j.tim.2018.08.006
https://doi.org/10.1098/rstb.2020.0351
https://doi.org/10.1098/rstb.2020.0351
https://doi.org/10.1016/0025-5564(84)90032-4
https://doi.org/10.1007/bf00288433
https://doi.org/10.1016/0025-5564(81)90088-2
https://doi.org/10.1016/0025-5564(81)90088-2
https://doi.org/10.1016/0025-5564(84)90033-6


1702 P. YU, P. POOLADVAND, M. M. TANAKA, AND L. M. WAHL

[14] T. Ikeda and M. Mimura, An interfacial approach to regional segregation of two competing species
mediated by a predator , J. Math. Biol., 31 (1993), pp. 215--240, https://doi.org/10.1007/bf00166143.

[15] K. E. Jones, N. G. Patel, M. A. Levy, A. Storeygard, D. Balk, J. L. Gittleman, and
P. Daszak, Global trends in emerging infectious diseases, Nature, 451 (2008), pp. 990--993.

[16] Y. Kan-on and M. Mimura, Singular perturbation approach to a 3-component reaction-diffusion system
arising in population dynamics, SIAM J. Math. Anal., 29 (1998), pp. 1519--1536, https://doi.org/
10.1137/S0036141097318328.

[17] K. Koelle, M. Kamradt, and M. Pascual, Understanding the dynamics of rapidly evolving pathogens
through modeling the tempo of antigenic change: Influenza as a case study , Epidemics, 1 (2009),
pp. 129--137, https://doi.org/10.1016/j.epidem.2009.05.003.

[18] A. Korobeinikov and G. Wake, Global properties of the three-dimensional predator-prey Lotka-Volterra
systems, Adv. Decis. Sci., 3 (1999), pp. 155--162, https://www.emis.de/journals/HOA/JAMDS/
Volume3 2/162.pdf.

[19] B. R. Levin and J. J. Bull, Population and evolutionary dynamics of phage therapy , Nat. Rev. Micro-
biol., 2 (2004), pp. 166--173.

[20] B. R. Levin, F. M. Stewart, and L. Chao, Resource-limited growth, competition, and predation: A
model and experimental studies with bacteria and bacteriophage, Am. Nat., 111 (1977), pp. 3--24.

[21] S. Lion and S. Gandon, Evolution of spatially structured host-parasite interactions, J. Evol. Biol., 28
(2015), pp. 10--28, https://doi.org/10.1111/jeb.12551.

[22] N. Mideo, S. Alizon, and T. Day, Linking within- and between-host dynamics in the evolutionary
epidemiology of infectious diseases, Trends Ecol. Evol., 23 (2008), pp. 511--517, https://doi.org/
10.1016/j.tree.2008.05.009.

[23] D. Mukherjee, Co-existence of competing prey with a shared predator , Math. Comput. Model. Dyn.
Syst., 11 (2005), pp. 111--121, https://doi.org/10.1080/13873950500052538.

[24] D. Mukherjee and A. Roy, Global stability of prey-predator systems with predatory switching , Biosys-
tems, 27 (1992), pp. 171--178, https://doi.org/10.1016/0303-2647(92)90071-6.

[25] F. A. Murphy, Emerging zoonoses, Emerg. Infect. Dis., 4 (1998), pp. 429--435.
[26] M. A. Nowak and R. M. May, Virus Dynamics: Mathematical Principles of Immunology and Virology,

Oxford University Press, 2001.
[27] D. W. Onstad and M. L. McManus, Risks of host range expansion by parasites of insects, BioScience,

46 (1996), pp. 430--435, http://www.jstor.org/stable/1312877.
[28] R. T. Paine, Food web complexity and species diversity , Am. Nat., 100 (1966), pp. 65--75, https://

doi.org/10.1086/282400.
[29] J. Parrish and S. Saila, Interspecific competition, predation and species diversity , J. Theoret. Biol., 27

(1970), pp. 207--220, https://doi.org/10.1016/0022-5193(70)90138-4.
[30] A. B. Pedersen and T. J. Davies, Cross-species pathogen transmission and disease emergence in pri-

mates, EcoHealth, 6 (2009), pp. 496--508, https://doi.org/10.1007/s10393-010-0284-3.
[31] R. M. Penczykowski, A. Laine, and B. Koskella, Understanding the ecology and evolution

of host-parasite interactions across scales, Evol. Appl., 9 (2016), pp. 37--52, https://doi.org/
10.1111/eva.12294.

[32] A. Ross, S. Ward, and P. Hyman, More is better: Selecting for broad host range bacteriophages, Front.
Microbiol., 7 (2016), 1352.

[33] S. J. Schreiber, Generalist and specialist predators that mediate permanence in ecological communities,
J. Math. Biol., 36 (1997), pp. 133--148, https://doi.org/10.1007/s002850050094.

[34] Y. Takeuchi and N. Adachi, Existence and bifurcation of stable equilibrium in two-prey, one-predator
communities, Bull. Math. Biol., 45 (1983), pp. 877--900, https://doi.org/10.1007/bf02458820.

[35] M. Thines, An evolutionary framework for host shifts - Jumping ships for survival , New Phytol., 224
(2019), pp. 605--617, https://doi.org/10.1111/nph.16092.

[36] J. Vandermeer and M. Pascual, Competitive coexistence through intermediate polyphagy , Ecol. Com-
plex., 3 (2006), pp. 37--43, https://doi.org/10.1016/j.ecocom.2005.05.005.

[37] World Health Organization, A Brief Guide to Emerging Infectious Diseases and Zoonoses, Technical
report, WHO Regional Office for South-East Asia, New Delhi, India, 2014.

[38] P. Yu, Computation of normal forms via a perturbation technique, J. Sound Vib., 211 (1998), pp. 19--38,
https://doi.org/10.1006/jsvi.1997.1347.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

07
/2

4/
24

 to
 1

29
.1

00
.5

8.
76

 . 
R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

https://doi.org/10.1007/bf00166143
https://doi.org/10.1137/S0036141097318328
https://doi.org/10.1137/S0036141097318328
https://doi.org/10.1016/j.epidem.2009.05.003
https://www.emis.de/journals/HOA/JAMDS/Volume3_2/162.pdf
https://www.emis.de/journals/HOA/JAMDS/Volume3_2/162.pdf
https://doi.org/10.1111/jeb.12551
https://doi.org/10.1016/j.tree.2008.05.009
https://doi.org/10.1016/j.tree.2008.05.009
https://doi.org/10.1080/13873950500052538
https://doi.org/10.1016/0303-2647(92)90071-6
http://www.jstor.org/stable/1312877
https://doi.org/10.1086/282400
https://doi.org/10.1086/282400
https://doi.org/10.1016/0022-5193(70)90138-4
https://doi.org/10.1007/s10393-010-0284-3
https://doi.org/10.1111/eva.12294
https://doi.org/10.1111/eva.12294
https://doi.org/10.1007/s002850050094
https://doi.org/10.1007/bf02458820
https://doi.org/10.1111/nph.16092
https://doi.org/10.1016/j.ecocom.2005.05.005
https://doi.org/10.1006/jsvi.1997.1347


HOST-RANGE EXPANSION 1703

[39] P. Yu, Closed-form conditions of bifurcation points for general differential equations, Internat. J. Bifur.
Chaos, 15 (2005), pp. 1467--1483, https://doi.org/10.1142/s0218127405012582.

[40] Y. Zhang, B. Liu, and L. Chen, Extinction and permanence of a two-prey one-predator system with im-
pulsive effect , Math. Med. Biol., 20 (2003), pp. 309--325, https://doi.org/10.1093/imammb/20.4.309.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

07
/2

4/
24

 to
 1

29
.1

00
.5

8.
76

 . 
R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

https://doi.org/10.1142/s0218127405012582
https://doi.org/10.1093/imammb/20.4.309

	Introduction
	Three-dimensional model: Before host-range expansion
	Four-dimensional model: After host-range expansion
	Boundedness of solutions
	Stability of equilibria in the 4-d model
	Stability of <0:inline-formula ><0:tex-math 0:notation="LaTeX" 0:version="MathJax" ><?LDGXML	E0?></0:tex-math></0:inline-formula>-<0:inline-formula ><0:tex-math 0:notation="LaTeX" 0:version="MathJax" ><?LDGXML	E7?></0:tex-math></0:inline-formula>
	Stability and bifurcation analysis of equilibrium <0:inline-formula ><0:tex-math 0:notation="LaTeX" 0:version="MathJax" ><?LDGXML	E8?></0:tex-math></0:inline-formula>
	Stability and bifurcation analysis of equilibrium <0:inline-formula ><0:tex-math 0:notation="LaTeX" 0:version="MathJax" ><?LDGXML	E9?></0:tex-math></0:inline-formula>
	GAS of <0:inline-formula ><0:tex-math 0:notation="LaTeX" 0:version="MathJax" ><?LDGXML	E9?></0:tex-math></0:inline-formula>

	Host-range expansion
	Discussion and conclusions
	Acknowledgments
	Author contributions

	References

