SUPPLEMENTARY MATERIALS: Extinctions Caused by Host-Range Expansion*

Pei Yu^{\dagger}, Pantea Pooladvand ${ }^{\ddagger}$, Mark M. Tanaka ${ }^{\ddagger}$, and Lindi M. Wahl ${ }^{\S}$

SM1. Two-dimensional host-parasite model. The host-range expansion models in the main text are based on a well-known host-parasite model. In this model, the density of the host population (N) has intrinsic growth rate r per unit time, and grows logistically with carrying capacity K. The parasite population, with density P, infects the host with massaction kinetics at rate α, and with a conversion factor β between hosts and parasites. For example, if the parasite is a lytic virus infecting a bacterium, β represents the burst size. In the absence of the host, the parasite population decays at per capita rate δ. These assumptions yield:

$$
\begin{align*}
& \frac{\mathrm{d} N}{\mathrm{~d} t}=r N\left(1-\frac{N}{K}\right)-\alpha N P, \tag{SM1}\\
& \frac{\mathrm{~d} P}{\mathrm{~d} t}=\beta \alpha N P-\delta P .
\end{align*}
$$

This model is equivalent to well-studied predator-prey models with a logistic growth term for the prey species [SM1]. Equilibria and stability results for (SM1) are rederived here for clarity, providing consistency with the models in the main paper.

SM1.1. Equilibria and stability. System (SM1) admits three equilibrium solutions:

$$
\begin{array}{lll}
\text { Trivial Equilibrium } & \mathrm{E}_{0}: \quad(N, P)=(0,0) \\
\text { Bounded Equilibrium } & \mathrm{E}_{1}: \quad(N, P)=(K, 0) \tag{SM2}\\
\text { Positive Equilibrium } & \mathrm{E}_{2}: \quad(N, P)=\left(N_{2}, P_{2}\right),
\end{array}
$$

where

$$
\begin{equation*}
N_{2}=\frac{\delta}{\alpha \beta}, \quad P_{2}=\frac{r}{\alpha}\left(1-\frac{\delta}{\alpha \beta K}\right)=\frac{r}{\alpha}\left(1-\frac{N_{2}}{K}\right) . \tag{SM3}
\end{equation*}
$$

For the existence and stability of the equilibrium, we have the following theorem.
Theorem SM1.1. The equilibria E_{0} and E_{1} exist for positive parameter values, while the equilibrium E_{2} exists for $\delta<\alpha \beta K . \mathrm{E}_{0}$ is always unstable; E_{1} is GAS for $\delta>\alpha \beta K$, and

[^0]unstable for $\delta<\alpha \beta K ; \mathrm{E}_{2}$ exists and is GAS for $\delta>\alpha \beta K$. A transcritical bifurcation occurs between the equilibria E_{1} and E_{2}, at the critical point $\delta=\alpha \beta K$.

Proof. The stability of the equilibria is determined by the Jacobian matrix,

$$
J(N, P)=\left[\begin{array}{cc}
r\left(1-\frac{2 N}{K}\right)-\alpha P & -\alpha N \\
\beta \alpha P & \beta \alpha N-\delta
\end{array}\right]
$$

Then,

$$
J\left(\mathrm{E}_{0}\right)=\left[\begin{array}{cc}
r & 0 \\
0 & -\delta
\end{array}\right]
$$

shows that E_{0} is always unstable (a saddle).

$$
J\left(\mathrm{E}_{1}\right)=\left[\begin{array}{cc}
-r & -\frac{\alpha}{K} \\
0 & \alpha \beta K-\delta
\end{array}\right]
$$

indicates that E_{1} is LAS for $\delta>\alpha \beta K$.

$$
J\left(\mathrm{E}_{2}\right)=\left[\begin{array}{cc}
-\frac{r \delta}{\alpha \beta K} & -\frac{\delta}{\beta} \\
r \beta\left(1-\frac{\delta}{\alpha \beta K}\right) & 0
\end{array}\right]
$$

gives

$$
\operatorname{Tr}\left(J\left(\mathrm{E}_{2}\right)\right)=-\frac{r \delta}{\alpha \beta K}<0, \quad \operatorname{det}\left(J\left(\mathrm{E}_{2}\right)\right)=r \delta\left(1-\frac{\delta}{\alpha \beta K}\right)
$$

Thus, E_{2} is LAS for $\operatorname{det}\left(J\left(\mathrm{E}_{2}\right)\right)>0$, i.e., $\delta<\alpha \beta K$. This implies that a transcritical bifurcation occurs between E_{1} and E_{2} at the critical point $\delta=\alpha \beta K$.

Next, we consider the global asymptotic stability (GAS) for E_{1} and E_{2}. First, consider E_{1}. To achieve this, we construct the Lyapunov function,

$$
V_{1}=N-K-K \ln \left(\frac{N}{K}\right)+\frac{1}{\beta} P
$$

Then, differentiating V_{1} with respect to time t and evaluating it along the trajectory of system (SM1), we obtain

$$
\begin{align*}
\left.\frac{\mathrm{d} V_{1}}{\mathrm{~d} t}\right|_{(\mathrm{SM} 1)} & =\left(1-\frac{K}{N}\right) \frac{\mathrm{d} N}{\mathrm{~d} t}+\frac{1}{\beta} \frac{\mathrm{~d} P}{\mathrm{~d} t} \\
& =(N-K)\left[r\left(1-\frac{N}{K}\right)-\alpha P\right]+\alpha N P-\frac{\delta}{\beta} P \tag{SM4}\\
& =-\frac{r}{K}(N-K)^{2}-\frac{1}{\beta}(\delta-\alpha \beta K) P .
\end{align*}
$$

Hence, when $\delta>\alpha \beta K,\left.\frac{\mathrm{~d} V_{1}}{\mathrm{~d} t}\right|_{(\mathrm{SM} 1)}<0$ as long as $(N, P) \neq(K, 0)$, and $\left.\frac{\mathrm{d} V_{1}}{\mathrm{~d} t}\right|_{(\mathrm{SM} 1)}=0$ only if $(N, P)=(K, 0)$. This indicates that E_{1} is attractive, and thus, together with its LAS, E_{1} is GAS for $\delta>\alpha \beta K$.

Similarly, we can show that E_{2} is GAS for $\delta<\alpha \beta K$. Let

$$
V_{2}=N-N_{2}-N_{2} \ln \left(\frac{N}{N_{2}}\right)+\frac{1}{\beta}\left(P-P_{2}-P_{2} \ln \left(\frac{P}{P_{2}}\right)\right)
$$

Then,

$$
\begin{align*}
\left.\frac{\mathrm{d} V_{2}}{\mathrm{~d} t}\right|_{(\mathrm{SM} 1)} & =\left(1-\frac{N_{2}}{N}\right) \frac{\mathrm{d} N}{\mathrm{~d} t}+\frac{1}{\beta}\left(1-\frac{P_{2}}{P}\right) \frac{\mathrm{d} P}{\mathrm{~d} t} \\
& =\left(N-N_{2}\right)\left[r\left(1-\frac{N}{K}\right)-\alpha P\right]+\left(P-P_{2}\right)\left(\alpha N-\frac{\delta}{\beta}\right) \tag{SM5}\\
& =-\frac{r}{K}\left(N-N_{2}\right)^{2},
\end{align*}
$$

which implies that $\left.\frac{\mathrm{d} V_{2}}{\mathrm{~d} t}\right|_{(\mathrm{SM} 1)}<0$ as long as $N \neq N_{2}$, and $\left.\frac{\mathrm{d} V_{2}}{\mathrm{~d} t}\right|_{(\mathrm{SM} 1)}=0$ when $N=N_{2}$. If $N=N_{2}$, we have

$$
\begin{aligned}
0 & =r N_{2}\left(1-\frac{N_{2}}{K}\right)-\alpha N_{2} P \\
\frac{\mathrm{~d} P}{\mathrm{~d} t} & =P\left(\beta \alpha N_{2}-\delta\right)=0
\end{aligned}
$$

which shows that P is a constant and equals $P=\frac{r}{\alpha}\left(1-\frac{N_{2}}{K}\right)$, leading to the equilibrium E_{2} for $N_{2}<K$. Therefore, by the LaSalle's Invariance Principle, we know that E_{2} is GAS for $\delta<\alpha \beta K$, i.e., $N_{2}<K$.

SM1.2. Boundedness of solutions. To study the boundedness of solutions to the 2-d model, system (SM1), we construct the Lyapunov function:

$$
\begin{equation*}
V_{2 \mathrm{~d}}=\beta N+P . \tag{SM6}
\end{equation*}
$$

Differentiating $V_{2 \mathrm{~d}}$ with respect to time t and computing it along the trajectory of the 2 -d model (SM1) we obtain

$$
\left.\frac{\mathrm{d} V_{2 \mathrm{~d}}}{\mathrm{~d} t}\right|_{(\mathrm{SM} 1)}=-\frac{\beta r}{K} N(N-K)-\delta P<0, \quad \text { for } \quad N>K
$$

Thus, we can construct the trapping region in the $N-P$ plane, using the condition $\left.\frac{\mathrm{d} V_{2 d}}{\mathrm{~d} t}\right|_{(\mathrm{SM} 1)}=0$, bounded by the N-axis and the parabola:

$$
P=-\frac{\beta r}{K \delta} N(N-K)=\frac{\beta r}{4 \delta}-\frac{\beta r}{K \delta}\left(N-\frac{K}{2}\right)^{2} .
$$

Define the trapping region for the 2 -d model as

$$
\begin{equation*}
\Omega_{2 \mathrm{~d}}=\left\{(N, P) \left\lvert\, 0 \leq P \leq \frac{\beta r}{4 \delta}-\frac{\beta r}{K \delta}\left(N-\frac{K}{2}\right)^{2}\right.\right\} . \tag{SM7}
\end{equation*}
$$

Hence, for any positive parameter values, the solutions of the 2 -d model are attracted to $\Omega_{2 \mathrm{~d}}$.
Note that the three equilibria $\mathrm{E}_{0}, \mathrm{E}_{1}$ and E_{2} are located on $\Omega_{2 \mathrm{~d}}$.

SM2. 3-d system.

SM2.1. Nondimensionalisation. We nondimensionalise the system in the following way:

$$
\begin{aligned}
& t=\bar{\phi} \bar{\delta}, \quad r_{1}=\frac{\bar{r}_{1}}{\bar{\delta}}, \quad r_{2}=\frac{\bar{r}_{2}}{\bar{\delta}}, \quad K_{1}=\frac{\bar{\gamma}_{21}}{\bar{\delta}} \bar{K}_{1}, \quad K_{2}=\frac{\bar{\gamma}_{12} \bar{K}_{2}}{\bar{\delta}}, \\
& N_{1}=\frac{\bar{\gamma}_{21}}{\bar{\delta}} \bar{N}_{1}, \quad N_{2}=\frac{\bar{\gamma}_{12}}{\bar{\delta}} \bar{N}_{2}, \quad P=\frac{\bar{\alpha}_{1}}{\bar{\delta}} \bar{P}, \quad B=\frac{\bar{\beta}_{1} \bar{\alpha}_{1}}{\bar{\gamma}_{21}} .
\end{aligned}
$$

The bars signify the parameters and variables that appear in the original system. The nondimensionalised system is:

$$
\begin{aligned}
\frac{d N_{1}}{d t} & =r_{1} N_{1}\left(1-\frac{N_{1}}{K_{1}}\right)-N_{1} N_{2}-N_{1} P, \\
\frac{d N_{2}}{d t} & =r_{2} N_{2}\left(1-\frac{N_{2}}{K_{2}}\right)-N_{1} N_{2}, \\
\frac{d P}{d t} & =B N_{1} P-P .
\end{aligned}
$$

SM2.2. Local stability of 3-d system. Here, we provide the proof of Theorem 2.1 concerning the existence and LAS conditions of equilibria E_{0} to E_{4}.

Proof. The existence condition for E_{3} can be easily deduced from $N_{13}>0$ and $N_{23}>0$ as $g\left(K_{2}-r_{1}\right)>0$ and $g\left(K_{1}-r_{2}\right)>0$, leading to $\left(K_{2}-r_{1}\right)\left(K_{1}-r_{2}\right)>0$. The existence condition for E_{4} requires $1-\frac{1}{B K_{1}}>0$, i.e., $K_{1}>\frac{1}{B}$.

The stability conditions of the equilibria can be derived from the Jacobian matrix:

$$
J\left(N_{1}, N_{2}, P\right)=\left[\begin{array}{ccc}
r_{1}\left(1-\frac{2 N_{1}}{K_{1}}\right)-N_{2}-P & -N_{1} & -N_{1} \tag{SM8}\\
-N_{2} & r_{2}\left(1-\frac{2 N_{2}}{K_{2}}\right)-N_{1} & 0 \\
B P & 0 & B N_{1}-1
\end{array}\right] .
$$

Thus, it is straightforward to obtain the stability conditions for $\mathrm{E}_{0}, \mathrm{E}_{1}$ and E_{2} by evaluating the Jacobian (SM8) at these equilibria as follows: E_{0} is always a saddle; E_{1} is LAS for $r_{2}<K_{1}<\frac{1}{B}$; and E_{2} is LAS for $r_{1}<K_{2}$. Next, evaluating the Jacobian matrix at E_{3} yields $J\left(\mathrm{E}_{3}\right)$ whose characteristic polynomial can be written as

$$
\mathrm{P}\left(J\left(\mathrm{E}_{3}\right)\right)=\left[\lambda-\frac{1}{g} B K_{1} r_{2}\left(K_{2}-r_{1}\right)+1\right]\left(\lambda^{2}-\operatorname{Tr}_{3} \lambda+\operatorname{Det}_{3}\right),
$$

where

$$
\operatorname{Tr}_{3}=-\frac{1}{g} r_{1} r_{2}\left(K_{1}-r_{2}+K_{2}-r_{1}\right), \quad \operatorname{Det}_{3}=-\frac{1}{g} r_{1} r_{2}\left(K_{1}-r_{2}\right)\left(K_{2}-r_{1}\right) .
$$

Noticing that $g=K_{1} K_{2}-r_{1} r_{2}$ and that the condition $\left(K_{1}-r_{2}\right)\left(K_{2}-r_{1}\right)>0$ must hold for the existence of E_{3}, we find that $\operatorname{Tr}_{3}<0$. Thus, we only need to consider Det_{3} and the linear factor in $\mathrm{P}\left(J\left(\mathrm{E}_{3}\right)\right)$. The equilibrium E_{3} is LAS if

$$
\text { Det }_{3}>0 \quad \text { and } \quad \frac{1}{g} B K_{1} r_{2}\left(K_{2}-r_{1}\right)-1<0 .
$$

Clearly, Det $_{3}>0$ leads to $r_{1}>K_{2}$ and $r_{2}>K_{1}$, which is then combined into the above second condition to yield

$$
K_{1}<\frac{1}{B}<r_{2}, K_{2}<r_{1}, \quad \text { or } \quad \frac{1}{B}<K_{1}<r_{2}, \quad K_{2}<r_{1}<r_{1}^{*},
$$

where r_{1}^{*} is given in (5).
Evaluating the Jacobian matrix at E_{4} yields the characteristic polynomial

$$
\mathrm{P}\left(J\left(\mathrm{E}_{4}\right)\right)=\left(\lambda+\frac{1}{B}-r_{2}\right)\left[\lambda^{2}+\frac{r_{1}}{B K_{1}} \lambda+r_{1}\left(1-\frac{1}{B K_{1}}\right)\right] .
$$

Since the existence condition for E_{4} requires $K_{1}>\frac{1}{B}$, we can conclude that E_{4} is LAS if $r_{2}<\frac{1}{B}\left(<K_{1}\right)$.

It is easy to see that E_{1} and E_{3} exchange their stability at $r_{2}=K_{1} ; \mathrm{E}_{2}$ and E_{3} exchange their stability at $r_{1}=K_{2}$; and E_{1} and E_{4} exchange their stability at $K_{1}=\frac{1}{B}$. Therefore, transcritical bifurcations occur between E_{1} and E_{3}, between E_{2} and E_{3}, as well as between E_{1} and E_{4}. No Hopf bifurcation can occur from these 5 equilibria since none of the 5 corresponding characteristic polynomials can have a pair of purely imaginary eigenvalues; Nor can B-T bifurcation happen since B-T bifurcation appears at the coexistence of Hopf and saddle-node bifurcations.

We next provide the proof of the existence and LAS conditions for E_{5}.
Proof. The existence conditions for E_{5} require $N_{25}>0$ and $P_{5}>0 . N_{25}>0$ gives $r_{2}>\frac{1}{B}$, and $P_{5}>0$ yields

$$
K_{1}>\frac{1}{B} \quad \text { and } \quad r_{1}-K_{2}+\frac{g}{K_{1} r_{2} B}>0 \quad \Longrightarrow \quad r_{1}>r_{1}^{*} .
$$

Hence, E_{5} exists under the conditions: $r_{2}>\frac{1}{B}, K_{1}>\frac{1}{B}$ and $r_{1}>r_{1}^{*}$.
To find the stability of E_{5}, we evaluate the Jacobian matrix (SM8) at E_{5} to obtain the characteristic polynomial:

$$
\begin{equation*}
P_{5}\left(\mathrm{E}_{5}\right)=\lambda^{3}+a_{1} \lambda^{2}+a_{2} \lambda+a_{3}, \tag{SM9}
\end{equation*}
$$

where

$$
\begin{align*}
& a_{1}=\frac{1}{B}\left(B r_{2}-1+\frac{r_{1}}{K_{1}}\right), \\
& a_{2}=\frac{B\left(B K_{1}-1\right)+B r_{2}-1}{B^{2} K_{1}}\left(r_{1}-r_{1}^{* *}\right), \quad \text { in which } r_{1}^{* *}=\frac{K_{1} K_{2}(B+1)\left(B r_{2}-1\right)}{r_{2}\left[B\left(B K_{1}-1\right)+B r_{2}-1\right]}, \tag{SM10}\\
& a_{3}=\frac{\left(B r_{2}-1\right)\left(B K_{1}-1\right)}{B^{2} K_{1}}\left(r_{1}-r_{1}^{*}\right) .
\end{align*}
$$

E_{5} is LAS if

$$
\begin{equation*}
a_{k}>0, k=1,2,3 \quad \text { and } \quad \Delta_{2}=a_{1} a_{2}-a_{3}>0 \tag{SM11}
\end{equation*}
$$

With the existence conditions for E_{5}, it is clear that $a_{1}>0$ and $a_{3}>0 . a_{2}>0$ requires $r_{1}>r_{1}^{* *} . a_{3}=0$ gives two solutions $r_{2}=\frac{1}{B}$ and $r_{1}=r_{1}^{*}$. Therefore, a transcritical bifurcation
occurs between E_{4} and E_{5} at $r_{2}=\frac{1}{B}$. Another transcritical bifurcation happens between E_{3} and E_{5} at $r_{1}=r_{1}^{*}$.

Now under the conditions: $r_{2}>\frac{1}{B}, K_{1}>\frac{1}{B}$ and $r_{1}>\max \left\{r_{1} *, r_{1}^{* *}\right\}$, we consider the stability condition Δ_{2}, which is obtained as $\Delta_{2}\left(r_{1}\right)=\frac{1}{B^{3} K_{1}^{2} r_{2}} \Delta_{2 \mathrm{a}}\left(r_{1}\right)$, where

$$
\begin{aligned}
\Delta_{2 \mathrm{a}}\left(r_{1}\right)= & r_{2}\left[B\left(B K_{1}-1\right)+B r_{2}-1\right] r_{1}^{2} \\
& -K_{1}\left(B r_{2}-1\right)\left[(B+1) K_{2}-r_{2}\left(B r_{2}-1\right)\right] r_{1}-K_{1}^{2} K_{2}\left(B r_{2}-1\right)^{2}
\end{aligned}
$$

Since Δ_{2} and $\Delta_{2 \mathrm{a}}$ have the same sign, in the following we will consider $\Delta_{2 \mathrm{a}}$. A simple calculation shows that

$$
\begin{aligned}
\Delta_{2 \mathrm{a}}\left(r_{1}^{*}\right) & =\frac{K_{1}^{2} K_{2}\left(B r_{2}-1\right)^{2} B\left[\left(B K_{1}-1\right) r_{2}+K_{2}\right]}{r_{2}\left(B K_{1}-1\right)^{2}}\left(r_{2}\right), \\
\Delta_{2 \mathrm{a}}\left(r_{1}^{* *}\right) & =\frac{K_{1}^{2} K_{2}\left(B r_{2}-1\right)^{2} B^{2}}{B\left(B K_{1}-1\right)+B r_{2}-1}\left(r_{2}-K_{1}\right), \\
r_{1}^{*}-r_{1}^{* *} & =\frac{K_{1} K_{2}\left(B r_{2}-1\right) B}{r_{2}\left[B\left(B K_{1}-1\right)+B r_{2}-1\right]\left(B K_{1}-1\right)}\left(r_{2}-K_{1}\right),
\end{aligned}
$$

which indicate that

$$
\begin{array}{ll}
\Delta_{2 \mathrm{a}}\left(r_{1}^{*}\right) \geq 0, \quad \Delta_{2 \mathrm{a}}\left(r_{1}^{* *}\right) \geq 0, \quad r_{1}^{*} \geq r_{1}^{* *} \quad \text { if } \quad r_{2} \geq K_{1}, \\
\Delta_{2 \mathrm{a}}\left(r_{1}^{*}\right)<0, \quad \Delta_{2 \mathrm{a}}\left(r_{1}^{* *}\right)<0, \quad r_{1}^{*}<r_{1}^{* *} \quad \text { if } \quad r_{2}<K_{1} .
\end{array}
$$

Since $\Delta_{2 \mathrm{a}}\left(r_{1}\right)$ is a quadratic polynomial in r_{1}, its graph in the $r_{1}-\Delta_{2 \mathrm{a}}$ plane is open upwards. Also, note that $\Delta_{2 \mathrm{a}}\left(r_{1}\right)$ always has a unique positive root, denoted as $r_{1 \mathrm{H}}$. Therefore, when $\frac{1}{B}<K_{1} \leq r_{2}$ and $r_{1}>r_{1}^{*}, \Delta_{2 \mathrm{a}}\left(r_{1}\right)>\Delta_{2 \mathrm{a}}\left(r_{1}^{*}\right) \geq 0$ (i.e., $\Delta_{2}>0$), implying that E_{5} is LAS. Note that $r_{1}^{*} \geq r_{1}^{* *}>r_{1 \mathrm{H}}$ when $r_{2} \geq K_{1}$.

SM2.3. Example: Hopf bifurcation in the 3-d system. We give an example of Hopf bifurcation from E_{5} yielding a stable limit cycle in the 3-d model as follows. Let

$$
K_{1}=2, \quad K_{2}=1, \quad r_{2}=\frac{3}{2}, \quad B=1
$$

Then, we have

$$
r_{1}^{*}=\frac{2}{3}, \quad r_{1}^{* *}=\frac{8}{9}, \quad r_{1 \mathrm{H}}=1
$$

which gives the frequency at the Hopf critical point $r_{1}=r_{1 \mathrm{H}}=1$, as $\omega_{c}=\frac{\sqrt{3}}{6}$. Using the method of normal forms (e.g. [SM2]), we obtain the first focus value, $v_{1}=-\frac{45}{208}<0$, implying that the Hopf bifurcation is supercritical, and the bifurcating limit cycle is stable. The simulation for this example with $r_{1}=0.95$, yielding perturbation $\mu=r_{1}-r_{1 \mathrm{H}}=-0.05$, is shown in Figure SM1.

SM3. Example: LAS does not necessarily imply GAS. Here we demonstrate that LAS of an equilibrium does not necessarily imply GAS. As described in the main text, in the 3-d model (2) the equilibrium $\mathrm{E}_{2}=\left(0, K_{2}, 0\right)$ exists for any positive parameter values, and is LAS for $r_{2}<K_{1}$; while the equilibrium $\mathrm{E}_{4}=\left(\frac{1}{B}, 0, r_{2}\left(1-\frac{1}{B K_{1}}\right)\right)$ exists for $K_{1}>\frac{1}{B}$, and is LAS

Figure SM1. Simulated stable limit cycle from the Hopf bifurcation of the 3-d model (10) around E_{5}, with $B=1, K_{1}=2, K_{2}=1, r_{1}=\frac{19}{20}$ and $r_{2}=\frac{3}{2}$, and the initial condition $\left(N_{1}, N_{2}, P\right)=(1.4,0.6,0.1)$.
for $r_{2}<\frac{1}{B}$. Thus, these two equilibria can co-exist for certain parameter values. For example, taking

$$
B=\frac{1}{2}, \quad r_{1}=1, \quad K_{2}=2, \quad r_{2}=\frac{3}{2}, \quad K_{1}=3,
$$

we have bistable E_{2} and E_{4}. The simulation, as shown in Figure SM2(a), indicates the existence of a separatrix between the two tracking areas for E_{2} and E_{4}.

Now, it is easy to show that the GAS of these two equilibria needs the boundedness condition $\mathrm{C}_{\mathrm{bd}}^{3 \mathrm{~d}}(\mathrm{see}(14))$. For E_{4} (a similar proof for E_{2}), we use the Laypunov function

$$
V_{3 \mathrm{~d}}^{\mathrm{E}_{4}}=N_{1}-\frac{1}{B}-\frac{1}{B} \ln \left(\frac{1}{B K_{1}}\right)+N_{2}+\frac{1}{B}\left(P-P_{3}-P_{3} \ln \left(\frac{P}{P_{3}}\right)\right),
$$

and then use the formulas in (29) and (30) to obtain

$$
\left.\frac{\mathrm{d} V_{3 \mathrm{~d}}^{\mathrm{E}_{4}}}{\mathrm{~d} t}\right|_{(2)}=-\frac{r_{1}}{K_{1}}\left[N_{1}-\frac{1}{B}+\frac{K_{1}}{r_{1}} N_{2}\right]^{2}-\frac{1}{K_{2} r_{1}} \mathrm{C}_{\mathrm{bd}}^{3 \mathrm{~d}} N_{2}^{2}-\left(\frac{1}{B}-r_{2}\right) N_{2},
$$

which clearly shows why the LAS condition is not enough for E_{4} to be GAS, and the boundedness condition $\mathrm{C}_{\mathrm{bd}}^{3 \mathrm{~d}}>0$ is needed. By adding this condition, it can be seen that there exists a wide range of parameter values such that E_{2} or E_{4} is GAS, but not both simultaneously (clearly, since a system cannot have more than one GAS equilibrium). We choose the following two parameter sets (satisfying $r_{1} r_{2}>K_{1} K_{2}$) for simulation to demonstrate that either one of them may be GAS:

$$
\begin{array}{lllll}
\text { for } \mathrm{E}_{2}: & B=\frac{1}{2}, & r_{1}=1, & K_{2}=2, & r_{2}=2,
\end{array} K_{1}=\frac{3}{2}, ~ 子 \begin{array}{llll}
\\
\text { for } \mathrm{E}_{4}: & B=\frac{1}{2}, & r_{1}=4, & K_{2}=2,
\end{array} r_{2}=\frac{3}{2}, \quad K_{1}=\frac{5}{2} .
$$

Figure SM2. Simulated trajectories of the 3-d model (2) converging to E_{2} or E_{4} : (a) LAS for $B=\frac{1}{2}$, $r_{1}=1, K_{2}=2, r_{2}=\frac{3}{2}, K_{1}=3$, from the initial point $(2,3,0.5)$ to $\mathrm{E}_{2}=(0,2,0)$ (the blue curve), and from the initial point $(3,1,0.5)$ to $\mathrm{E}_{4}=\left(2,0, \frac{1}{3}\right)$ (the red curve); and (b) GAS for $B=\frac{1}{2}, r_{1}=1, K_{2}=2, r_{2}=2$, $K_{1}=\frac{3}{2}$, from ($100,100,100$) to $\mathrm{E}_{2}=(0,2,0)$ (the blue curve), and for $B=\frac{1}{2}, r_{1}=4, K_{2}=2, r_{2}=\frac{3}{2}$, $K_{1}=\frac{5}{2}$, from $(100,100,100)$ to $\mathrm{E}_{4}=\left(2,0, \frac{4}{5}\right)$ (the red curve).

The simulation of the 3-d model for the above parameter values is shown in Figure SM2(b), with the initial point $\left(N_{1}, N_{2}, P\right)=(100,100,100)$. It is shown that the blue curve, corresponding to the first set of parameter values, converges to $\mathrm{E}_{2}=(0,2,0)$, while the red curve converges to E_{4}.

SM4. 4-d System.

SM4.1. Nondimensionalisation. We nondimensionalise the system in the following way:

$$
\begin{aligned}
& t=\bar{t} \bar{\delta}, \quad r_{1}=\frac{\bar{r}_{1}}{\bar{\delta}}, \quad r_{2}=\frac{\bar{r}_{2}}{\bar{\delta}}, \quad K_{1}=\frac{\bar{\gamma}_{21}}{\bar{\delta}} \bar{K}_{1}, \quad K_{2}=\frac{\bar{\gamma}_{12}}{\bar{\delta}} \bar{K}_{2}, \\
& N_{1}=\frac{\bar{\gamma}_{21}}{\bar{\delta}} \bar{N}_{1}, \quad N_{2}=\frac{\bar{\gamma}_{12}}{\bar{\delta}} \bar{N}_{2}, \quad P=\frac{\bar{\alpha}_{1}}{\bar{\delta}} \bar{P}, \quad Q=\frac{\bar{\alpha}_{1}}{\bar{\delta}}, \\
& A=\frac{\bar{\alpha}_{2}}{\bar{\alpha}_{1}}, \quad B=\frac{\bar{\beta}_{1} \bar{\alpha}_{1}}{\bar{\gamma}_{21}}, \quad D=\frac{\bar{\beta}_{21} \bar{\alpha}_{1}}{\bar{\gamma}_{21}}, \quad E=\frac{\bar{\beta}_{22} \bar{\alpha}_{2}}{\bar{\gamma}_{12}} .
\end{aligned}
$$

The bars signify parameters and variables that appear in the original equations. The nondimensional system is:

$$
\begin{aligned}
& \frac{d N_{1}}{d t}=r_{1} N_{1}\left(1-\frac{N_{1}}{K_{1}}\right)-N_{1} P-(1-c) N_{1} Q-N_{1} N_{2}, \\
& \frac{d N_{2}}{d t}=r_{2} N_{2}\left(1-\frac{N_{2}}{K_{2}}\right)-A N_{2} Q-N_{1} N_{2},
\end{aligned}
$$

$$
\begin{aligned}
& \frac{d P}{d t}=B N_{1} P-P \\
& \frac{d Q}{d t}=D(1-c) N_{1} Q+E N_{2} Q-Q .
\end{aligned}
$$

Note, parameter c has not been replaced from the nondimensionalised system. For simplicity of notation in the following sections, we introduce $\tilde{D}=D(1-c)$ and $\tilde{c}=1-c$.

SM4.2. Local stability in 4-d system. The stability conditions for the equilibrium solutions of system (10) are obtained from the Jacobian matrix of the 4 -d model, given by
(SM12)

$$
\begin{aligned}
& J\left(N_{1}, N_{2}, P, Q\right) \\
& \quad=\left[\begin{array}{cccc}
r_{1}\left(1-\frac{2 N_{1}}{K_{1}}\right)-N_{2}-P-\tilde{c} Q & -N_{1} & -N_{1} & -\tilde{c} N_{1} \\
-N_{2} & r_{2}\left(1-\frac{2 N_{2}}{K_{2}}\right)-N_{1}-A Q & 0 & -A N_{2} \\
B P & 0 & B N_{1}-1 & 0 \\
\tilde{D} Q & E Q & 0 & \tilde{D} N_{1}+E N_{2}-1
\end{array}\right] .
\end{aligned}
$$

The proof of Theorem 5.1 for LAS of equilibria $\mathrm{E}_{0}-\mathrm{E}_{7}$ is as follows.
Proof. The proof is similar to that for Theorem 2.1 and Theorem 2.2 in the 3-d model. The only difference is that one additional stability condition may come from the equation $\frac{\mathrm{d} Q}{\mathrm{~d} t}$. For E_{2}, this additional condition is $E K_{2}-1>0$. For E_{3}, this condition is derived from the 4th eigenvalue,

$$
\lambda_{4}=K_{1} \tilde{D} r_{2}\left(r_{1}-K_{2}\right)+E K_{2} r_{1}\left(r_{2}-K_{1}\right)+g<0,
$$

which yields the required conditions given in (24). For E_{4}, this condition is $B>\tilde{D}$. For E_{5}, this condition comes from $\lambda_{4}=\frac{\tilde{D}}{B}+E K_{2}\left(1-\frac{1}{B r_{2}}\right)-1<0$. For E_{6} and E_{7}, a direct calculation yields the characteristic polynomials:

$$
\begin{aligned}
& P\left(J\left(\mathrm{E}_{6}\right)\right)=\left[\lambda^{2}+\frac{r_{1}}{K_{1} \tilde{D}} \lambda+\frac{r_{1}\left(K_{1} \tilde{D}-1\right)}{K_{1} \tilde{D}}\right]\left(\lambda+1-\frac{B}{\tilde{D}}\right)\left[\lambda+\frac{A r_{1}\left(K_{1} \tilde{D}-1\right)+\tilde{c} K_{1}\left(1-r_{2} \tilde{D}\right)}{K_{1} \tilde{c} \tilde{D}}\right], \\
& P\left(J\left(\mathrm{E}_{7}\right)\right)=(\lambda+1)\left[\lambda^{2}+\frac{r_{2}}{E K_{2}} \lambda+\left(1-\frac{1}{E K_{2}}\right) r_{2}\right]\left[\lambda+\frac{1}{E}+\frac{\tilde{c} r_{2}}{A}\left(1-\frac{1}{E K_{2}}\right)-r_{1}\right],
\end{aligned}
$$

which directly yield the stability conditions for E_{6} and E_{7}, as given in the theorem.
Transcritical bifurcations and Hopf bifurcation can be similarly obtained as those described in Theorem 2.1 and Theorem 2.2. The fact that no B-T bifurcation can occur from $\mathrm{E}_{1}-\mathrm{E}_{5}$ has been discussed in the proof for Theorem 2.2. For E_{6}, it can be seen from the characteristic polynomial $P\left(J\left(\mathrm{E}_{6}\right)\right)$ that three combinations come from $K_{1} \tilde{D}-1=\tilde{D}-B=A r_{1}\left(K_{1} \tilde{D}-\right.$ 1) $+\tilde{c} K_{1}\left(1-r_{2} \tilde{D}\right)=0$; while for E_{7}, there is only one possibility: $r_{1}=K_{2}=\frac{1}{E}$. However, similarly, we can verify that the two zero eigenvalues obtained for these four cases are not a double-zero eigenvalue. Therefore, B-T bifurcation is not possible from either E_{6} or E_{7}.

The proof of existence and LAS conditions in Theorem 5.3 for E_{8} is as follows.
Proof. The existence conditions for E_{8} directly follow from the conditions $N_{18}>0, N_{28}>0$ and $Q_{8}>0$, which are equivalent to that $N_{18 \mathrm{n}}>0, N_{28 \mathrm{n}}>0$ and $Q_{8 \mathrm{n}}>0$ since $\mathrm{E}_{8 \mathrm{~d}}=$ $\tilde{D} N_{18 \mathrm{n}}+E N_{28 \mathrm{n}}$.

Using a direct computation we obtain the characteristic polynomial for E_{8} as follows:

$$
P\left(\mathrm{E}_{8}\right)=\left(\lambda+1-B N_{18}\right)\left(\lambda^{3}+a_{18} \lambda^{2}+a_{28} \lambda+a_{38}\right),
$$

where a_{18}, a_{28} and a_{38} are given in (33). Thus, according to the Routh-Hurwitz criterion, we know that E_{8} is LAS if the conditions given in (32) are satisfied. It is easy to see that $a_{18}>0$ and $a_{38}>0$ under the existence condition $\left(\mathrm{C}_{1}\right)$. Thus, E_{8} satisfying the existence condition $\left(\mathrm{C}_{2}\right)$ is unstable. The transcritical bifurcation is determined by $a_{38}=0$, which yields following three transcritical bifurcations:

$$
\begin{align*}
& \text { between }\left(\mathrm{E}_{8}, \mathrm{E}_{3}\right) \text { at } Q_{8}=0 \Longrightarrow \tilde{D}=\frac{1}{r_{2}}\left[1+\frac{r_{1}\left(K_{1}-r_{2}\right)\left(1-E K_{2}\right)}{K_{1}\left(K_{2}-r_{1}\right)}\right], \\
& \text { between }\left(\mathrm{E}_{8}, \mathrm{E}_{6}\right) \text { at } N_{28}=0 \Longrightarrow r_{2}=\frac{1}{\tilde{D}}+\frac{A r_{1}\left(\tilde{D} K_{1}-1\right)}{\tilde{c} \tilde{D} K_{1}}, \tag{SM13}\\
& \text { between }\left(\mathrm{E}_{8}, \mathrm{E}_{7}\right) \text { at } N_{18}=0 \Longrightarrow r_{1}=\frac{1}{E}+\frac{\tilde{c} r_{2}\left(E K_{2}-1\right)}{A E K_{2}} .
\end{align*}
$$

Finally, we provide the proof of Theorem 5.4 for existence and LAS of E_{9}.
Proof. The existence conditions are directly derived from $N_{19}>0, N_{29}>0, P_{9}>0$ and $Q_{9}>0$. The stability of E_{9} is determined from its characteristic polynomial

$$
P\left(J\left(\mathrm{E}_{9}\right)\right)=\lambda^{4}+a_{19} \lambda^{3}+a_{29} \lambda^{2}+a_{39} \lambda+a_{49},
$$

where the $a_{k 9}$ are given in (38). Then by the Routh-Hurwitz criterion, we know that E_{9} is LAS under the conditions given in (37).

Transcritical bifurcations occur at the critical point determined by $a_{49}=0$, which gives two possibilities: one from $Q_{9}=0$, resulting in the critical point,

$$
r_{2}=\frac{E K_{2}}{B E K_{2}-B+D},
$$

and the other from $P_{9}=0$, yielding the critical point,

$$
r_{1}=\frac{K_{1}\left\{A K_{2}(B-\tilde{D})+\tilde{\tilde{c}}\left[r_{2}\left(B E K_{2}-B+\tilde{D}\right)-E K_{2}\right]\right\}}{A E K_{2}\left(B K_{1}-1\right)} .
$$

Note that $N_{29}=0$ does not yield critical point. B-T bifurcation might occur at a critical point determined by $P_{9}=Q_{9}=0$, leading to the critical point,

$$
\left(r_{1}, r_{2}\right)=\left(\frac{K_{1}(B-\tilde{D})}{E\left(B K_{1}-1\right)}, \frac{E K_{2}}{B E K_{2}-B+\tilde{D}}\right),
$$

under which the Jacobian matrix of (10) becomes

$$
J\left(\mathrm{E}_{9}\right)=\left[\begin{array}{cccc}
\frac{\tilde{D}-B}{B E\left(B K_{2}-1\right)} & -\frac{1}{B} & -\frac{1}{B} & -\frac{\tilde{C}}{B} \\
\frac{\tilde{D}-B}{B E} & \frac{\tilde{D}-B}{B\left(B E K_{2}-B+\tilde{D}\right)} & 0 & \frac{A(\tilde{D}-B)}{B E} \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right],
$$

which does show two zero eigenvalues, but this is a semi-simple case. Hence, no B-T bifurcation can occur from E_{9}.

Figure SM3. Simulated stable limit cycle from the Hopf bifurcation of the 4-d model (10) around E_{5}, projected in the $N_{1}-N_{2}-P$ space, with $\tilde{c}=\frac{3}{4}, A=B=1, K_{1}=2, K_{2}=1, r_{1}=\frac{19}{20}$ and $r_{2}=\frac{3}{2}, E=2, \tilde{D}=\frac{1}{4}$, and the initial condition $\left(N_{1}, N_{2}, P, Q\right)=(1.4,0.6,0.1,0.5)$.

SM4.3. Example: Hopf bifurcation from E_{5} in the 4-d system. We give a numerical example of the Hopf bifurcation from E_{5} in the 4-d model by choosing the following parameter values:

$$
\tilde{c}=\frac{3}{4}, \quad K_{1}=2, \quad B=1, \quad r_{2}=\frac{3}{2}, \quad K_{2}=1, \quad E=2, \quad \tilde{D}=\frac{1}{4} .
$$

Note that the parameter A is not fixed; though it appears in the equations, it does not render into the normal form, and thus does not affect the solution of periodic solutions bifurcating from the Hopf bifurcation and their stability. For the above chosen parameter values, we obtain the first focus value, $v_{1}=-\frac{98}{297}<0$, implying that the Hopf bifurcation is supercritical, and the bifurcating limit cycle is stable. The simulation for this example with $A=1$ and $r_{1}=0.95$, yielding perturbation $\mu=r_{1}-r_{1 \mathrm{H}}=-0.05$, as shown in Figure SM3.

SM4.4. Hopf bifurcation from E_{8} in the 4-d system. Here we present a numerical example of limit cycles bifurcating from E_{8} in the 4-d system.

As an example, we choose $r_{2}=\frac{3}{2}$. Then, $\Delta_{28 \mathrm{n}}=0$ gives a solution $r_{1 \mathrm{H}}=1.50864904 \cdots$. With these parameter values, we need $B<\frac{1}{N_{18}}=2.32066172 \cdots$. Taking $B=\frac{1}{2}$ yields the following eigenvalues:

$$
\lambda_{1,2}= \pm i \omega_{c}, \quad \lambda_{3}=-0.78454421 \cdots, \quad \lambda_{4}=-1.19884994 \cdots,
$$

where

$$
\omega_{c}=0.66328460 \cdots
$$

Further, we apply normal form theory and the Maple program [SM2] to find the first focus value, $v_{1}=-0.22557240 \cdots<0$, implying that the Hopf bifurcation is supercritical and bifurcating limit cycle is stable. Taking $r_{1}=1.4$ which gives the perturbation $\mu=r_{1}-r_{1 \mathrm{H}}=$ $-0.10864904 \cdots$, we simulate system (10) to obtain the result, shown in Figure SM4.

Figure SM4. Simulated periodic solution bifurcating from the Hopf bifurcation of the 4-d model (10) around E_{8} with $\tilde{c}=\frac{2}{5}, E=\frac{1}{5}, K_{2}=1, \tilde{D}=2, K_{1}=4, A=\frac{1}{50}, B=\frac{1}{2}, r_{1}=\frac{7}{5}$ and $r_{2}=\frac{3}{2}$. The red, blue, black and green curves denote the solutions for N_{1}, N_{2}, P and Q, respectively.

SM4.5. Hopf bifurcation from E_{9} in the 4-d system. Here we provide a numerical example and demonstrate the use of normal form theory to analyse the existence and stability of limit cycles bifurcating from E_{9} in the 4-d system.

As an illustrative example, we choose $K_{1}=2, K_{2}=3$ with the parameter values given in fig. 1b, and $r_{1}=K_{2}=3, r_{2}=K_{1}=2$ to obtain the follow solutions at the Hopf critical point:

$$
\begin{aligned}
& N_{19}=\frac{1}{B}=\frac{235}{413}, \quad N_{29}=\frac{90}{413}, \quad P_{9}=\frac{99}{70}, \quad Q_{9}=\frac{9}{7}, \\
& a_{19}=\frac{825}{826}, \quad a_{29}=\frac{13581}{5782}, \quad a_{39}=\frac{22275}{40474}, \quad a_{49}=\frac{40095}{40474}, \\
& \Delta_{2}=\frac{1225125}{682276}, \quad \Delta_{3}=0 .
\end{aligned}
$$

With the above parameter values, the Jacobian matrix of system of (10), evaluated at E9 has a pair of purely imaginary eigenvalues, $\lambda_{1,2}= \pm \frac{3 \sqrt{3}}{7} i$, and a complex conjugate, $\lambda_{3,4}=$ $-\frac{825}{1652} \pm \frac{3 \sqrt{469535}}{1652} i$.

We then use normal form theory [SM2] to further analyse the existence and stability of limit cycles. We first we introduce the affine transformation,

$$
\left(\begin{array}{c}
N_{1} \\
N_{2} \\
P \\
Q
\end{array}\right)=\left(\begin{array}{c}
\frac{235}{413} \\
\frac{90}{413} \\
\frac{99}{70} \\
\frac{9}{7}
\end{array}\right)+\left[\begin{array}{cccc}
0 & \frac{2350 \sqrt{3}}{13629} & -\frac{887125}{3813288} & \frac{3995 \sqrt{469535}}{3813288} \\
0 & -\frac{1175 \sqrt{3}}{4543} & -\frac{25715}{317774} & \frac{73 \sqrt{469535}}{317774} \\
1 & 0 & \frac{150337}{107720} & -\frac{3 \sqrt{469535}}{21544} \\
-\frac{235}{154} & 0 & 1 & 0
\end{array}\right]\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right)
$$

into system (10) to obtain the following new system,

$$
\begin{aligned}
\frac{\mathrm{d} x_{1}}{\mathrm{~d} t}= & \frac{3 \sqrt{3}}{7} x_{2}-\frac{66409517185}{1698769590623616} x_{3}^{2}-\frac{41416598193685}{566256530207872} x_{4}^{2}-\frac{4304515 \sqrt{3}}{16718163} x_{1} x_{2} \\
& -\frac{36313501075}{91993030808} x_{1} x_{3}+\frac{142139661 \sqrt{469535}}{91993030808} x_{1} x_{4}+\frac{32951204945 \sqrt{3}}{91993030808} x_{2} x_{3} \\
& -\frac{36313501075}{91993030808} x_{1} x_{3}+\frac{158904802639 \sqrt{469535}}{849384795311808} x_{3} x_{4} \\
\frac{\mathrm{~d} x_{2}}{\mathrm{~d} t}= & -\frac{3 \sqrt{3}}{7} x_{1}+\frac{134996846225527 \sqrt{3}}{5096308771870848} x_{3}^{2}-\frac{265906698812887 \sqrt{3}}{5096308771870848} x_{4}^{2}+\frac{6926835}{5572721} x_{1} x_{2} \\
& +\frac{14858896695 \sqrt{3}}{91993030808} x_{1} x_{3}-\frac{46145193 \sqrt{1408605}}{91993030808} x_{1} x_{4}-\frac{55225937195}{68994773106} x_{2} x_{3} \\
& -\frac{86729495 \sqrt{469535}}{68994773106} x_{2} x_{4}-\frac{3051914871181 \sqrt{1408605}}{12740771929677120} x_{3} x_{4}, \\
\frac{\mathrm{~d} x_{3}}{\mathrm{~d} t}= & -\frac{825}{1652} x_{3}+\frac{3 \sqrt{469535}}{1652} x_{4}-\frac{9239078245811425}{23782774268730624} x_{3}^{2}-\frac{8848091432227725}{7927591422910208} x_{4}^{2} \\
& +\frac{1973676875 \sqrt{3}}{5149194204} x_{1} x_{2}-\frac{410130054625}{42500780233296} x_{1} x_{3}+\frac{8605231175 \sqrt{469535}}{42500780233296} x_{1} x_{4} \\
& +\frac{146567022395 \sqrt{3}}{3863707293936} x_{2} x_{3}-\frac{1083056015 \sqrt{1408605}}{42500780233296} x_{2} x_{4}+\frac{20190528960079 \sqrt{469535}}{11891387134365312} x_{3} x_{4}, \\
\frac{\mathrm{~d} x_{4}}{\mathrm{~d} t}= & -\frac{3 \sqrt{469535}}{1652} x_{3}-\frac{825}{1652} x_{4}+\frac{88182934432388039 \sqrt{469535}}{203033543932153337088} x_{3}^{2}-\frac{39476290370207 \sqrt{469535}}{23782774268730624} x_{4}^{2} \\
& -\frac{17187499325 \sqrt{1408605}}{43958670919548} x_{1} x_{2}+\frac{3571562359735 \sqrt{469535}}{36282916081647952} x_{1} x_{3}-\frac{376877455285}{3863707293936} x_{1} x_{4} \\
& -\frac{6538692508395 \sqrt{1400605}}{362829160851647952} x_{2} x_{3}-\frac{3072800769425 \sqrt{3}}{42500780233296} x_{2} x_{4}-\frac{1987385800275749}{3963795711455104} x_{3} x_{4},
\end{aligned}
$$

whose Jacobian matrix evaluated at the origin is in the Jordan canonical form,

$$
J=\left[\begin{array}{cccc}
0 & \frac{3 \sqrt{3}}{7} & 0 & 0 \\
-\frac{3 \sqrt{3}}{7} & 0 & 0 & 0 \\
0 & 0 & -\frac{825}{1652} & \frac{3 \sqrt{469535}}{1652} \\
0 & 0 & -\frac{3 \sqrt{469535}}{1652} & -\frac{825}{1652}
\end{array}\right]
$$

In general, one needs to apply center manifold theory first and then apply normal form theory to find the normal form. The method with the Maple program developed in [SM2] combines the two steps in one unified step to obtain the following normal form in polar coordinates up to 3rd-order terms,

$$
\begin{aligned}
\frac{\mathrm{d} r}{\mathrm{~d} t} & =r\left(\alpha_{1} \mu-\frac{66992230264625}{717665999785812} r^{2}\right) \\
\frac{\mathrm{d} \theta}{\mathrm{~d} t} & =\frac{3 \sqrt{3}}{7}+\alpha_{2} \mu-\frac{126325590652475 \sqrt{3}}{1174362545104056} r^{2}
\end{aligned}
$$

where μ is the perturbation, defined as $\mu=B-B_{\mathrm{H}}$, and the coefficients α_{1} and α_{2} are obtained from the linear analysis, given by

$$
\alpha_{1}=-\frac{103823}{59780098}, \quad \alpha_{2}=\frac{41860550 \sqrt{3}}{269010441}
$$

Figure SM5. Simulated periodic solution bifurcating from the Hopf bifurcation of the 4-d model (10) around E_{9} with $\tilde{c}=\frac{2}{5}, \tilde{D}=\frac{4}{5}, A=1, E=\frac{5}{2}, B=1, r_{1}=K_{2}=3$ and $r_{2}=K_{1}=2$. The red, blue, black and green curves denote the solutions for N_{1}, N_{2}, P and Q, respectively.
where α_{1} is called transversal condition. r and θ represent the amplitude and phase of motion, respectively. Then, the approximations of the amplitude and frequency of the motion are obtained from the normal form as

$$
\bar{r}=\sqrt{-\frac{1564636568814}{84096629481125}} \mu, \quad \omega=\frac{3 \sqrt{3}}{7}+\frac{311746597115153 \sqrt{3}}{1977952725396060} \mu .
$$

It is seen that since the coefficient of r^{2} in the amplitude equation is negative, the Hopf bifurcation is supercritical and bifurcating limit cycle is stable. We choose the perturbation $\mu=1-\frac{413}{235}=-\frac{178}{235} \approx 0.75744681$ for simulation, which yields

$$
\begin{aligned}
\bar{r} & =\sqrt{\frac{5925644877636}{420483147405625}} \approx 0.11871170 \\
\omega & =\frac{1528906400302039 \sqrt{3}}{4944881813490150} \approx 0.53553222
\end{aligned}
$$

The simulation result is shown in Figure SM5. Comparing it with the simulation for E_{8} (see Figure SM4), we note that there the absolute value of the perturbation, $\mu \approx-0.10864904$, is much smaller than that for E_{9}, while the amplitude of oscillation for E_{8} is larger than that for E_{9}; this implies that the impact of the parameter r_{1} (or r_{2}) is stronger than that of parameter B.

SM4.6. Host-range expansion from \mathbf{E}_{5}. Here we present the proof that it is not possible to find parameter values for which the host, parasite and competitor stably co-exist in the 3-d model, but if the parasite expands its host range, E_{5} loses stability and both E_{6} and E_{7} are stable in the 4 -d model.

Theorem SM4.1. There are no feasible parameter values such that the equilibrium E_{5} of the 3-d model is stable, while it is unstable for the 4-d model, simultaneously with both E_{6} and E_{7} being LAS.

Proof. Consider the conditions:

$$
\frac{1}{B}<K_{1} \leq r_{2}, \quad r_{1}>r_{1}^{*}
$$

under which E_{5} is GAS for the 3-d model, while for the 4-d model, its stability needs two more conditions:

$$
E<\frac{B r_{2}}{K_{2}\left(B r_{2}-1\right)}, \quad \tilde{D}<B-E K_{2}\left(B-\frac{1}{r_{2}}\right) .
$$

Note that E_{6} exists for $K_{1} \tilde{D}>1$, and is LAS for

$$
B<\tilde{D}, \quad \text { and } \quad r_{2}<\frac{1}{\tilde{D}}+\frac{A r_{1}}{\tilde{c}}\left(1-\frac{1}{\tilde{D} K_{1}}\right)
$$

It is easy to see that E_{5} (for the 4 -d model) is unstable for $B<\tilde{D} . \mathrm{E}_{7}$ exists for $E K_{2}>1$, and is LAS for

$$
r_{1}<\frac{1}{E}+\frac{\tilde{c} r_{2}}{A}\left(1-\frac{1}{E K_{2}}\right)
$$

Summarizing the above discussions, we have the following conditions required for E_{5} being GAS for the 3-d model; unstable for the 4-d model; and E_{6} and E_{7} both LAS:

$$
\begin{align*}
& \frac{1}{B}<K_{1} \leq r_{2}, \quad r_{1}>r_{1}^{*}=\frac{K_{1} K_{2}\left(B r_{2}-1\right)}{r_{2}\left(B K_{1}-1\right)} \\
& \tilde{D} K_{1}>1, \quad B<\tilde{D}, \quad r_{2}<\frac{1}{\tilde{D}}+\frac{A r_{1}}{\tilde{c}}\left(1-\frac{1}{\tilde{D} K_{1}}\right) \triangleq r_{2 c}, \tag{SM14}\\
& E K_{2}>1, \quad r_{1}<\frac{1}{E}+\frac{\tilde{c} r_{2}}{A}\left(1-\frac{1}{E K_{2}}\right) \triangleq r_{1 c} .
\end{align*}
$$

It follows from $K_{1} \leq r_{2}<r_{2 c}$ that

$$
\begin{equation*}
K_{1}<\frac{1}{\tilde{D}}+\frac{A r_{1}}{\tilde{c}}\left(1-\frac{1}{\tilde{D} K_{1}}\right) \Longrightarrow\left(K_{1}-\frac{1}{\tilde{D}}\right)\left(K_{1}-\frac{A r_{1}}{\tilde{c}}\right)<0 \quad K_{1}<\frac{A r_{1}}{\tilde{c}} \tag{SM15}
\end{equation*}
$$

We use $r_{1}<r_{1 c}$ and $r_{2}<r_{2 c}$ to obtain that

$$
\begin{align*}
r_{1} & <\frac{1}{E}+\frac{\tilde{c} r_{2}}{A}\left(1-\frac{1}{E K_{2}}\right)<\frac{1}{E}+\frac{\tilde{c} r_{2 c}}{A}\left(1-\frac{1}{E K_{2}}\right) \\
& =\frac{1}{E}+\frac{\tilde{c}}{\tilde{D} A}\left(1-\frac{1}{E K_{2}}\right)+r_{1}\left(1-\frac{1}{E K_{2}}\right)\left(1-\frac{1}{\tilde{D} K_{1}}\right) \tag{SM16}\\
\Longrightarrow r_{1} & <\frac{K_{1}\left[\tilde{D} K_{2}+\tilde{c}\left(E K_{2}-1\right)\right]}{A\left(\tilde{D} K_{1}+E K_{2}-1\right)} \triangleq r_{1}^{a} .
\end{align*}
$$

Then, using $K_{1}<\frac{A r_{1}}{\tilde{c}}<\frac{A r_{1}^{a}}{\tilde{c}}$ yields

$$
\begin{equation*}
K_{1}<\frac{K_{1}\left[A \tilde{D} K_{2}+\tilde{c}\left(E K_{2}-1\right)\right]}{\tilde{c}\left(\tilde{D} K_{1}+E K_{2}-1\right)} \quad \Longrightarrow \quad A K_{2}>\tilde{c} K_{1} \tag{SM17}
\end{equation*}
$$

Further, it is easy to prove that

$$
K_{2}-r_{1}^{a}=\frac{\left(E K_{2}-1\right)\left(A K_{2}-\tilde{c} K_{1}\right)}{A\left(\tilde{D} K_{2}+\left(E K_{2}-1\right)\right.}>0 \quad \Longrightarrow \quad r_{1}<r_{1}^{a}<K_{2}
$$

However, noticing that

$$
r_{1}>r_{1}^{*}=\frac{K_{1} K_{2}\left(B r_{2}-1\right)}{r_{2}\left(B K_{1}-1\right)}=K_{2} \frac{B K_{1}-\frac{K_{1}}{r_{2}}}{B K_{1}-1} \geq K_{2}, \quad \text { due to } \quad r_{2} \geq K_{1}
$$

we know that no feasible parameter values exist for the case that E_{5} is GAS for the 3-d model but unstable for the 4-d model, simultaneously with LAS E_{6} and E_{7}.

For the second stability condition for $\mathrm{E}_{5}: \frac{1}{B}<r_{2}<K_{1}, r_{1}>r_{1 \mathrm{H}}$, we should have the same conclusion, since the stability conditions for E_{5} (4-d model), E_{6} and E_{7} are same.

SM5. Bistable states. Finally, we consider possible bistable states or co-existence of equilibria, since this is not only an interesting theoretical question, but also an important phenomenon in determining the possible outcomes of host-range expansions. To aid the reader, we provide a visualization of the equilibria of the $3-\mathrm{d}$ and 4 -d models in Figure SM6.

It is obvious that the 2-d model (SM1) cannot have coexistence of equilibria. The 3-d model (2) can have bistability only between E_{1} and E_{2}, as well as between E_{2} and E_{4}. The situation becomes much more complex for the 4 -d model (10). There are two groups, one of them is an "easier group", which can be identified by directly comparing the stability conditions; while the other is a "harder group", all of which involve the equilibrium E_{8}, and which require tedious computation such as that demonstrated in the proof of Theorem 4.1. In order to show the existence of bistability, for each case we present a concrete example, without identifying all possible parameter values. More precisely, we have the following result.

Theorem SM5.1. The 2-d model (SM1) does not have bistable states. For the 3-d model (2), bistable stable states can only exist in the equilibrium pairs $\left(\mathrm{E}_{1}, \mathrm{E}_{2}\right)$ and $\left(\mathrm{E}_{2}, \mathrm{E}_{4}\right)$. For the 4-d model (10), there are two groups (A) and (B). Group (A) contains the bistable pairs: $\left(\mathrm{E}_{1}, \mathrm{E}_{2}\right),\left(\mathrm{E}_{1}, \mathrm{E}_{7}\right),\left(\mathrm{E}_{2}, \mathrm{E}_{4}\right),\left(\mathrm{E}_{2}, \mathrm{E}_{6}\right),\left(\mathrm{E}_{2}, \mathrm{E}_{9}\right),\left(\mathrm{E}_{3}, \mathrm{E}_{6}\right),\left(\mathrm{E}_{4}, \mathrm{E}_{7}\right),\left(\mathrm{E}_{5}, \mathrm{E}_{7}\right)$, and $\left(\mathrm{E}_{6}, \mathrm{E}_{7}\right)$. Group (B) contains the bistable pairs: $\left(\mathrm{E}_{1}, \mathrm{E}_{8}\right),\left(\mathrm{E}_{2}, \mathrm{E}_{8}\right),\left(\mathrm{E}_{4}, \mathrm{E}_{8}\right)$ and $\left(\mathrm{E}_{5}, \mathrm{E}_{8}\right)$. Typical examples with exact parameter values, exhibiting the bistable states, are listed in Table SM1 (for the 3-d model), Table SM2 (for the group (A) of the 4-d model) and Table SM3 (for the group (B) of the 4-d model). Characteristic polynomials, denoted by $P(\lambda)$, for these examples are also provided in the tables to show stability. In the three tables, E.P. denotes Equilibrium Pair.

Proof. First note that if there exists a transcritical bifurcation between two equilibria, then they cannot be bistable. For example, there exists a transcritical bifurcation between E_{5} and E_{9}, and so these two equilibria cannot be bistable.

Figure SM6. A diagram illustrating the equilibrium states of the 4-d model. Transcritical bifurcation conditions label the arrows between equilibria. "Host1(2)" indicates the presence of population $N_{1(2)}$, "Specialist" indicates the presence of population P, while "Generalist" indicates the population Q.

Table SM1
Bistable Equilibrium Pairs for 3-d Model (2)

E. P.	$\left(B, K_{1}, K_{2}, r_{1}, r_{2}\right)$	$P(\lambda)$
$\left(\mathrm{E}_{1}, \mathrm{E}_{2}\right)$	$\left(\frac{1}{2}, \frac{3}{2}, 2, \frac{3}{2}, 1\right)$	$\left(\mathrm{E}_{1}\right): \frac{1}{16}(2 \lambda+1)(2 \lambda+3)(4 \lambda+1)$ $\left(\mathrm{E}_{2}\right): \frac{1}{2}(2 \lambda+1)(\lambda+1)^{2}$
$\left(\mathrm{E}_{2}, \mathrm{E}_{4}\right)$	$\left(\frac{1}{2}, 3,2,1, \frac{3}{2}\right)$	$\left(\mathrm{E}_{2}\right): \frac{1}{2}(\lambda+1)(2 \lambda+3)^{2}$ $\left(\mathrm{E}_{4}\right): \frac{1}{6}(2 \lambda+1)\left(3 \lambda^{2}+2 \lambda+1\right)$

For the 3-d model (2), it is straightforward to use the stability conditions to find the bistable pairs $\left(E_{1}, E_{2}\right)$ and $\left(E_{2}, E_{4}\right)$ since the parameter values are overlapping for their existence and stability conditions. For the bistable pairs in Group (A) of the 4-d model, it is not difficulty to find them by carefully inspecting their existence and stability conditions. How-

Table SM2
Bistable Equilibrium Pairs for Group (A) of 4-d Model (10)

E. P.	$\left(B, K_{1}, K_{2}, r_{1}, r_{2}, \tilde{D}, E, \tilde{c}, A\right)$	$P(\lambda)$
$\left(\mathrm{E}_{1}, \mathrm{E}_{2}\right)$	$\left(\frac{1}{2}, \frac{3}{2}, 2, \frac{3}{2}, 1, \frac{1}{3}, \frac{2}{5}, \frac{2}{5}, \frac{1}{2}\right)$	$\begin{aligned} & \left(\mathrm{E}_{1}\right): \frac{1}{32}(2 \lambda+1)^{2}(2 \lambda+3)(4 \lambda+1) \\ & \left(\mathrm{E}_{2}\right): \frac{1}{10}(\lambda+1)^{2}(2 \lambda+1)(5 \lambda+1) \end{aligned}$
$\left(\mathrm{E}_{1}, \mathrm{E}_{7}\right)$	$\left(\frac{1}{2}, \frac{3}{2}, 2, \frac{3}{2}, 1, \frac{1}{3}, \frac{3}{5}, \frac{2}{5}, \frac{1}{2}\right)$	$\begin{aligned} & \left(\mathrm{E}_{1}\right): \frac{1}{32}(2 \lambda+1)^{2}(2 \lambda+3)(4 \lambda+1) \\ & \left(\mathrm{E}_{7}\right): \frac{1}{60}(\lambda+1)(2 \lambda+1)(3 \lambda+1)(10 \lambda+3) \end{aligned}$
$\left(\mathrm{E}_{2}, \mathrm{E}_{4}\right)$	$\left(\frac{1}{2}, 3,2,1, \frac{3}{2}, \frac{1}{3}, \frac{2}{5}, \frac{2}{5}, \frac{1}{2}\right)$	$\begin{aligned} & \left(\mathrm{E}_{2}\right): \frac{1}{10}(\lambda+1)^{2}(2 \lambda+3)(5 \lambda+1) \\ & \left(\mathrm{E}_{4}\right): \frac{1}{6}(2 \lambda+1)(3 \lambda+1)\left(3 \lambda^{2}+2 \lambda+1\right) \end{aligned}$
$\left(\mathrm{E}_{2}, \mathrm{E}_{6}\right)$	$\left(\frac{1}{2}, 3,2,1, \frac{3}{2}, \frac{3}{5}, \frac{2}{5}, \frac{2}{5}, \frac{1}{2}\right)$	$\begin{aligned} & \left(\mathrm{E}_{2}\right): \frac{1}{10}(\lambda+1)^{2}(2 \lambda+3)(5 \lambda+1) \\ & \left(\mathrm{E}_{6}\right): \frac{1}{972}(6 \lambda+1)(18 \lambda+13)\left(9 \lambda^{2}+5 \lambda+4\right) \end{aligned}$
$\left(\mathrm{E}_{2}, \mathrm{E}_{9}\right)$	$\left(\frac{1}{2}, 3, \frac{3}{2}, \frac{147}{100}, 3, \frac{2}{5}, \frac{1}{2}, \frac{2}{5}, 1\right)$	$\begin{aligned} & \left(\mathrm{E}_{2}\right): \frac{1}{400}(\lambda+1)(\lambda+3)(4 \lambda+1)(100 \lambda+3) \\ & \left(\mathrm{E}_{9}\right): \frac{1}{2500}\left(2500 \lambda^{4}+4450 \lambda^{3}+245 \lambda^{2}+6 \lambda+1\right) \end{aligned}$
$\left(\mathrm{E}_{3}, \mathrm{E}_{6}\right)$	$\left(\frac{1}{2}, 1,1,2,3, \frac{3}{2}, \frac{1}{10}, \frac{2}{5}, \frac{3}{2}\right)$	$\begin{aligned} & \left(\mathrm{E}_{3}\right): \frac{1}{2500}(10 \lambda+7)(50 \lambda+1)\left(5 \lambda^{2}+18 \lambda+12\right) \\ & \left(\mathrm{E}_{6}\right): \frac{1}{54}(3 \lambda+2)(6 \lambda+1)\left(3 \lambda^{2}+4 \lambda+2\right) \end{aligned}$
$\left(\mathrm{E}_{3}, \mathrm{E}_{7}\right)$	$\left(\frac{1}{2}, 1,1,2,3, \frac{1}{4}, \frac{33}{32}, \frac{2}{5}, \frac{1}{45}\right)$	$\begin{aligned} & \left(\mathrm{E}_{3}\right): \frac{1}{2000}(40 \lambda+1)(10 \lambda+)\left(5 \lambda^{2}+18 \lambda+12\right) \\ & \left(\mathrm{E}_{7}\right): \frac{1}{363}(\lambda+1)(33 \lambda+20)\left(11 \lambda^{2}+32 \lambda+1\right) \end{aligned}$
$\left(\mathrm{E}_{4}, \mathrm{E}_{7}\right)$	$\left(\frac{1}{2}, 3,2,1,1, \frac{2}{5}, \frac{4}{5}, \frac{2}{5}, \frac{1}{2}\right)$	$\begin{aligned} & \left(\mathrm{E}_{4}\right): \frac{1}{15}(\lambda+1)(5 \lambda+1)\left(3 \lambda^{2}+2 \lambda+1\right) \\ & \left(\mathrm{E}_{7}\right): \frac{1}{160}(\lambda+1)(20 \lambda+11)\left(8 \lambda^{2}+5 \lambda+3\right) \end{aligned}$
$\left(\mathrm{E}_{5}, \mathrm{E}_{7}\right)$	$\left(1,2,1,4,3, \frac{1}{8}, \frac{5}{4}, \frac{2}{5}, \frac{1}{20}\right)$	$\left(\mathrm{E}_{5}\right): \frac{1}{72}(24 \lambda+1)\left(3 \lambda^{3}+12 \lambda^{2}+14 \lambda+8\right)$ $\left(\mathrm{E}_{7}\right): \frac{1}{25}(\lambda+1)(5 \lambda+8)\left(5 \lambda^{2}+12 \lambda+3\right)$
$\left(\mathrm{E}_{6}, \mathrm{E}_{7}\right)$	$\left(\frac{1}{2}, \frac{3}{2}, 1,1, \frac{4}{3}, \frac{3}{4}, \frac{3}{2}, \frac{2}{5}, \frac{1}{2}\right)$	$\begin{aligned} & \left(\mathrm{E}_{6}\right): \frac{1}{972}(3 \lambda+1)(36 \lambda+5)\left(9 \lambda^{2}+8 \lambda+1\right) \\ & \left(\mathrm{E}_{7}\right): \frac{1}{405}(\lambda+1)(45 \lambda+1)\left(9 \lambda^{2}+8 \lambda+4\right) \end{aligned}$

ever, for Group (B) of the 4-d model, it is quite difficulty to prove whether they are bistable or not. The approach used in the proof of Theorem 4.1 is needed for considering the bistability. Proofs will be given for two examples, one for the pair $\left(\mathrm{E}_{2}, \mathrm{E}_{9}\right)$ in Group (A), and one for the pair $\left(\mathrm{E}_{5}, \mathrm{E}_{8}\right)$ in Group (B). Other cases can be similarly proven.

Table SM3
Bistable Equilibrium Pairs for Group (B) of 4-d Model (10)

E. P.	$\left(B, K_{1}, K_{2}, r_{1}, r_{2}, \tilde{D}, E, \tilde{c}, A\right)$	$P(\lambda)$
$\left(\mathrm{E}_{1}, \mathrm{E}_{8}\right)$	$\left(\frac{1}{2}, \frac{31}{20}, \frac{5}{2}, 2, \frac{3}{2}, \frac{2}{5}, \frac{4}{5}, \frac{1}{3}, \frac{1}{2}\right)$	$\begin{aligned} & \left(\mathrm{E}_{2}\right): \frac{1}{40000}(\lambda+2)(20 \lambda+1)(40 \lambda+9)(50 \lambda+19) \\ & \left(\mathrm{E}_{8}\right): \frac{1}{15583372}(1204 \lambda+739)\left(12943 \lambda^{2}+480 \lambda+468\right) \end{aligned}$
$\left(\mathrm{E}_{2}, \mathrm{E}_{8}\right)$	$\left(\frac{1}{2}, 1, \frac{41}{20}, 2, \frac{4}{5}, 2, \frac{2}{5}, \frac{2}{5}, \frac{2}{25}\right)$	$\begin{gathered} \left(\mathrm{E}_{2}\right): \frac{1}{5000}(\lambda+1)(5 \lambda+4)(20 \lambda+1)(50 \lambda+9) \\ \left(\mathrm{E}_{8}\right): \frac{1}{9953280}(288 \lambda+257)\left(34560 \lambda^{3}+34080 \lambda^{2}\right. \\ +419 \lambda+217) \end{gathered}$
$\left(\mathrm{E}_{4}, \mathrm{E}_{8}\right)$	$\left(\frac{1}{2}, \frac{1001}{500}, \frac{31}{30}, 1, \frac{10}{20}, \frac{2}{5}, \frac{428647}{426405}, \frac{2}{5}, 3\right)$	$\begin{aligned} & \left(\mathrm{E}_{4}\right): \frac{1}{100100}(5 \lambda+1)(20 \lambda+21)\left(1001 \lambda^{2}+1000 \lambda+1\right) \\ & \left(\mathrm{E}_{8}\right): \frac{1}{6}(2 \lambda+1)(3 \lambda+1)\left(3 \lambda^{2}+2 \lambda+1\right) \end{aligned}$
$\begin{gathered} \left(\mathrm{E}_{5}, \mathrm{E}_{8}\right) \\ \left(B, K_{1}, K_{2}, r_{1}, r_{2}, \tilde{D}, E, \tilde{c}, A\right)=\left(\frac{1}{2}, \frac{40021}{20000}, 2, \frac{970471159}{488410000}, \frac{2001}{1000}, \frac{151579}{400210}, 2, \frac{2}{5}, \frac{21}{50}\right) \\ P\left(\mathrm{E}_{5}\right)= \\ \left(\lambda+\frac{96300106}{400410105}\right)\left(\lambda^{3}+\frac{77715624426236610000}{39112859876610000000} \lambda^{2}+\frac{1176740478699000}{39112859876610000000} \lambda\right. \\ \left.\quad+\frac{1686855352339}{39112859876610000000}\right) \\ P\left(\mathrm{E}_{8}\right)= \\ \left(\lambda+\frac{2309313133421}{26000271920390}\right)\left(\lambda^{3}+\frac{64863514517103697368801043269732340500000}{33017206608527273135328710316100000000000} \lambda^{2}\right. \\ \\ +\frac{6949883511082183639866099032095990000}{330172066085272731353871031610000000000} \lambda \\ \\ \left.+\frac{139722057099361473103167709647276551}{33017206608527273135328710316100000000000}\right) \end{gathered}$		

For the bistable pair ($\mathrm{E}_{2}, \mathrm{E}_{9}$), the stability for E_{2} only needs $r_{1}<K_{2}<\frac{1}{E}$. The existence condition for E_{9} is given in (36). Once the existence condition is satisfied, the stability condition given in (38) will be most likely satisfied, which only needs verifying. Let us start from $K_{2}<\frac{1}{E}$ and $E>\frac{B-\tilde{D}}{B K_{2}}$ to get $1-\frac{\tilde{D}}{B}<E K_{2}<1$. Then from $r_{1}<K_{2}$ and the condition on r_{1} given in (36) we have

$$
\begin{equation*}
\frac{K_{1}\left\{A K_{2}(B-\tilde{D})+\tilde{c}\left[r_{2}\left(B E K_{2}-B+\tilde{D}\right)-E K_{2}\right]\right\}}{A E K_{2}\left(B K_{1}-1\right)}<r_{1}<K_{2}, \tag{SM18}
\end{equation*}
$$

which yields

$$
A K_{2}\left[K_{1}(B-\tilde{D})-E K_{2}\left(B K_{1}-1\right)\right]+K_{1} \tilde{c}\left[r_{2}\left(B E K_{2}-B+\tilde{D}\right)-E K_{2}\right]<0
$$

Since the term in the second square bracket of the above inequality is positive, the above equality requires

$$
K_{1}(B-\tilde{D})-E K_{2}\left(B K_{1}-1\right)<0 \quad \Longrightarrow \quad E K_{2}>1-\frac{\tilde{D} K_{1}-1}{B K_{1}-1}
$$

which implies $\tilde{D} K_{1}>1$ due to $B K_{1}>1$ (see (36)) and $E K_{2}<1$. It is easy to show that

$$
\begin{equation*}
1-\frac{\tilde{D}}{B}<1-\frac{\tilde{D} K_{1}-1}{B K_{1}-1}<E K_{2}<1 . \tag{SM19}
\end{equation*}
$$

Then, it follows from (SM18) that

$$
\begin{equation*}
A>\frac{K_{1} \tilde{c}\left[r_{2}\left(B E K_{2}-B+\tilde{D}\right)-E K_{2}\right]}{K_{2}\left[E K_{2}\left(B K_{1}-1\right)-K_{1}(B-\tilde{D})\right]} . \tag{SM20}
\end{equation*}
$$

Having established the above relations, we choose $B=\frac{1}{2}, \tilde{D}=\frac{2}{5}, K_{1}=3$ to satisfy $B>\tilde{D}$ and $B K_{1}>1$. Next, using (SM19) we obtain $\frac{3}{5}<E K_{2}<1$. Choosing $E=\frac{1}{2}, K_{2}=\frac{3}{2}$ and $\tilde{c}=\frac{2}{5}$ yields $r_{2}>\frac{30}{11}$ (see the condition given in (36)). We let $r_{2}=3$. Then, we use (SM20) to obtain $A>\frac{4}{5}$, and choose $A=1$. With these chosen parameter values, we obtain the characteristic polynomials listed in Table SM2 for ($\mathrm{E}_{2}, \mathrm{E}_{9}$), showing that both E_{2} and E_{9} are LAS for this set of parameter values.

Now we turn to the bistable pair ($\mathrm{E}_{4}, \mathrm{E}_{8}$). To prove this case, we first consider a parameter value at a critical boundary, which yields a zero eigenvalue. Having successfully obtained the result for the critical point, we then give a perturbation to the critical point to remove the zero eigenvalue. To achieve this, we consider the stability of $\mathrm{E}_{4}: r_{2}<\frac{1}{B}<\min \left\{K_{1}, \frac{1}{\bar{D}}\right\}$, and let $K_{1}=\frac{1}{B}$, which implies $B>\tilde{D}$, and $\tilde{D} r_{2}<B r_{2}<1$. Then, we require that

$$
\begin{aligned}
N_{18 \mathrm{n}} & =\frac{1}{B}\left[E K_{2}\left(A r_{1}-\tilde{c} r_{2}\right)-\left(A K_{2}-\tilde{c} r_{2}\right)\right]>0, \\
N_{28 \mathrm{n}} & =\frac{K_{2}}{B}\left[A r_{1}(B-\tilde{D})-\left(1-\tilde{D} r_{2}\right) \tilde{c}\right]>0, \\
Q_{8 \mathrm{n}} & =\frac{1}{B}\left[E K_{2}\left(1-\tilde{D} r_{2}\right)-(B-\tilde{D}) r_{1} r_{2}-E K_{2} r_{1}\left(1-B r_{2}\right)\right]>0, \\
1-B N_{18} & =\frac{(B-\tilde{D})\left(A K_{2}-\tilde{c} r_{2}\right)-E K_{2} \tilde{c}\left(1-B r_{2}\right)}{E K_{2}\left(A B r_{2}-\tilde{c}\right)-\tilde{D}\left(A K_{2}-\tilde{c} r_{2}\right)}>0 .
\end{aligned}
$$

It is easy to see that $N_{28 \mathrm{n}}>0$ gives

$$
\begin{equation*}
A>\frac{\tilde{c}\left(1-\tilde{D} r_{2}\right)}{r_{1}(B-\tilde{D})} \tag{SM21}
\end{equation*}
$$

which leads to

$$
\begin{equation*}
A r_{1}-\tilde{c} r_{2}>\frac{\tilde{c}\left(1-\tilde{D} r_{2}\right)}{B-\tilde{D}}=\frac{\tilde{c}\left(1-B r_{2}\right)}{B-\tilde{D}}>0 . \tag{SM22}
\end{equation*}
$$

Next, it follows from $N_{18 \mathrm{n}}>0$ that

$$
\begin{equation*}
E>\frac{A K_{2}-\tilde{c} r_{2}}{K_{2}\left(A r_{1}-\tilde{c} r_{2}\right)} . \tag{SM23}
\end{equation*}
$$

Further, we compute

$$
\begin{aligned}
& E K_{2}\left(A B r_{2}-\tilde{c}\right)-\tilde{D}\left(A K_{2}-\tilde{c} r_{2}\right)-B \tilde{D} N_{18 \mathrm{n}} \\
& \left.\quad=E K_{2}(B-\tilde{D})\left(A r_{1}-\frac{\tilde{c}\left(1-\tilde{D} r_{2}\right)}{B-\tilde{D}}\right)>0, \quad \text { (due to }(\text { SM21 })\right),
\end{aligned}
$$

which implies that the denominator of $1-B N_{18}$ is greater than zero provided $N_{18 \mathrm{n}}>0$. Thus, letting the numerator of $1-B N_{18}$ be greater than zero leads to

$$
E<\frac{(B-\tilde{D})\left(A K_{2}-\tilde{c} r_{2}\right)}{K_{2} \tilde{c}\left(1-B r_{2}\right)}
$$

which is then combined with (SM23) to yield

$$
\begin{equation*}
\frac{A K_{2}-\tilde{c} r_{2}}{K_{2}\left(A r_{1}-\tilde{c} r_{2}\right)}<E<\frac{(B-\tilde{D})\left(A K_{2}-\tilde{c} r_{2}\right)}{K_{2} \tilde{c}\left(1-B r_{2}\right)} . \tag{SM24}
\end{equation*}
$$

This provides a feasible interval for E due to $A r_{1}-\tilde{c} r_{2}>0$, with the assumption $A K_{2}-$ $\tilde{c} r_{2}>0$, which will be proven in the next step, see (SM27). Now, from $Q_{8 \mathrm{n}}>0$ we have

$$
\begin{equation*}
E<\frac{K_{2}\left(1-\tilde{D} r_{2}\right)-(B-\tilde{D}) r_{1} r_{2}}{K_{2} r_{1}\left(1-B r_{1}\right)} \tag{SM25}
\end{equation*}
$$

which needs

$$
\begin{equation*}
K_{2}>\frac{(B-\tilde{D}) r_{1} r_{2}}{1-\tilde{D} r_{2}} \tag{SM26}
\end{equation*}
$$

and then a simple calculation shows that

$$
\begin{equation*}
A K_{2}-\tilde{c} r_{2}>0 \tag{SM27}
\end{equation*}
$$

In addition, it can be shown that

$$
\frac{K_{2}\left(1-\tilde{D} r_{2}\right)-(B-\tilde{D}) r_{1} r_{2}}{K_{2} r_{1}\left(1-B r_{1}\right)}<\frac{(B-\tilde{D})\left(A K_{2}-\tilde{c} r_{2}\right)}{K_{2} \tilde{c}\left(1-B r_{2}\right)}
$$

Thus, combining (SM24) and the above inequality we have

$$
\begin{equation*}
\frac{A K_{2}-\tilde{c} r_{2}}{K_{2}\left(A r_{1}-\tilde{c} r_{2}\right)}<E<\frac{K_{2}\left(1-\tilde{D} r_{2}\right)-(B-\tilde{D}) r_{1} r_{2}}{K_{2} r_{1}\left(1-B r_{1}\right)} \tag{SM28}
\end{equation*}
$$

which requires that $K_{2}>r_{1}$. Comparing this condition $K_{2}>r_{1}$ with that given in (SM26) shows that

$$
r_{1}-\frac{(B-\tilde{D}) r_{1} r_{2}}{1-\tilde{D} r_{2}}=\frac{r_{1}\left(1-B r_{2}\right)}{1-\tilde{D} r_{2}}>0
$$

indicating that $K_{2}>r_{1}$.

Finally, based on the above derived formulas, we first choose $B=\frac{1}{2}$, and then $K_{1}=$ $\frac{1}{B}+\varepsilon=2+\varepsilon$, where $0<\varepsilon \ll 1$. We choose $\varepsilon=\frac{1}{500}$, but set $\varepsilon=0$ in the following procedure of determining parameter values. We choose $\tilde{D}=\frac{2}{5}$ and $r_{2}=\frac{19}{20}$. Further, let $r_{1}=1$ and $\tilde{c}=\frac{2}{5}$. Using (SM21) we have $A>\frac{62}{25}$, and take $A=3$. Next, we select $K_{2}=\frac{31}{30}$ in order to have $K_{2} \gtrsim r_{1}$. Then, it follows from (SM27) that $\frac{4080}{4061}<E<\frac{3274}{3255}$. We take the middle point of this interval to obtain $E=\frac{428647}{426405}$. Substituting the above chosen parameter values, together with $\varepsilon=\frac{1}{500}$ into system (10) yields the two characteristic polynomials, given in Table SM3, for E_{4} and E_{8} respectively.

Remark SM1. (i) It has been shown that the 2-d model (SM1) does not need a boundedness condition since the solutions of the model are bounded for any positive parameter values, and the two LAS equilibrium solutions are also GAS under their LAS stability conditions. However, the 3 -d model (2) and the 4 -d model (10) do need the boundedness conditions, in addition to the LAS conditions, to reach GAS. Except the equilibrium E_{5} for the 3-d model whose LAS conditions involve the boundedness conditions, all the equilibrium solutions of the 3 -d and 4-d models need the boundedness condition to achieve GAS.
(ii) All equilibria of the 3-d and 4-d models are located on the boundary of attracting region $\Omega_{3 \mathrm{~d}}$ (for the 3-d model) or $\Omega_{4 \mathrm{~d}}$ (for the 4 -d model). Without the boundedness condition $\left(\mathrm{C}_{\mathrm{bd}}^{3 \mathrm{~d}}\right.$ or $\left.\mathrm{C}_{\mathrm{bd}}^{4 \mathrm{~d}}\right)$, when multi-stable equilibria exist, equilibria are LAS and to which equilibria they will converge depends up the initial condition. While when the boundedness condition is satisfied, only one stable equilibrium exists and all trajectories converge to this equilibrium regardless the initial condition.
(iii) In this paper, we only discussed one type of bistable state, that is, when both states are equilibrium solutions. There is another class of bistable states - a stable equilibrium and a stable limit cycle - which can only exist from the bistable equilibrium pairs when one of the equilibria loses its stability and generates a supercritical Hopf bifurcation. Thus, such a bistable phenomenon may only appear in the 4 -d model from the equilibrium pairs in Group (B) and the pair $\left(\mathrm{E}_{2}, \mathrm{E}_{9}\right)$ in Group (A). Finding the conditions on parameters which produce this type of bistable phenomenon is beyond the scope of this paper, and will be studied in future.

REFERENCES

[SM1] K. Sigmund, Kolmogorov and Population Dynamics, Springer Berlin Heidelberg, Berlin, Heidelberg, 2007, pp. 177-186.
[SM2] P. Yu, Computation of normal forms via a perturbation technique, J. of Sound and Vib., 211 (1998), pp. 19-38.

[^0]: *Supplementary material for SIADS MS\#M160558.
 https://doi.org/10.1137/23M1605582
 ${ }^{\dagger}$ Corresponding author. Department of Mathematics, Western University, London, ON, N6A 5B7, Canada (pyu@ uwo.ca).
 ${ }^{\ddagger}$ School of Biotechnology \& Biomolecular Sciences, University of New South Wales, Sydney NSW 2052, Australia (p.pooladvand@unsw.edu.au, m.tanaka@unsw.edu.au).
 ${ }^{\text {§ }}$ Corresponding author. Department of Mathematics, Western University, London, ON, N6A 5B7, Canada (Iwahl@ uwo.ca).

