SUPPLEMENTARY MATERIALS: Extinctions Caused by Host-Range
Expansion*

Pei Yu, Pantea Pooladvand®, Mark M. Tanaka!, and Lindi M. Wahl®

SM1. Two-dimensional host-parasite model. The host-range expansion models in the
main text are based on a well-known host-parasite model. In this model, the density of the
host population (V) has intrinsic growth rate r per unit time, and grows logistically with
carrying capacity K. The parasite population, with density P, infects the host with mass-
action kinetics at rate «, and with a conversion factor 8 between hosts and parasites. For
example, if the parasite is a lytic virus infecting a bacterium, [ represents the burst size. In the
absence of the host, the parasite population decays at per capita rate . These assumptions
yield:
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This model is equivalent to well-studied predator-prey models with a logistic growth term for
the prey species [SM1]. Equilibria and stability results for (SM1) are rederived here for clarity,
providing consistency with the models in the main paper.

SM1.1. Equilibria and stability. System (SM1) admits three equilibrium solutions:

Trivial Equilibrium  Eg: (N, P) = (0,0)
(SM2) Bounded Equilibrium E; : (N, P) = (X,0)
Positive Equilibrium  Ey: (N, P) = (N2, P»),

where
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For the existence and stability of the equilibrium, we have the following theorem.

Theorem SM1.1. The equilibria Eg and Eq ezist for positive parameter values, while the
equilibrium Eo exists for § < aBK. Egy is always unstable; E1 is GAS for 6 > afK, and

*Supplementary material for SIADS MS#M160558.
https://doi.org/10.1137 /23M1605582

TCorresponding author. Department of Mathematics, Western University, London, ON, N6A 5B7, Canada (pyu®
uwo.ca).

School of Biotechnology & Biomolecular Sciences, University of New South Wales, Sydney NSW 2052, Australia
(p-pooladvand@unsw.edu.au, m.tanaka@unsw.edu.au).

§Corresponding author. Department of Mathematics, Western University, London, ON, N6A 5B7, Canada (lwahl@
uwo.ca).

SM1


https://doi.org/10.1137/23M1605582
mailto:pyu@uwo.ca
mailto:pyu@uwo.ca
mailto:p.pooladvand@unsw.edu.au
mailto:m.tanaka@unsw.edu.au
mailto:lwahl@uwo.ca
mailto:lwahl@uwo.ca

SM2 P. YU, P. POOLADVAND, M. M. TANAKA, AND L. M. WAHL

unstable for 6 < afK; Eo exists and is GAS for 6 > afK. A transcritical bifurcation occurs
between the equilibria Eq and Eo, at the critical point 6 = aSK.

Proof. The stability of the equilibria is determined by the Jacobian matrix,

2N
NP r(1-=2)—aP  —aN
BaP BaN —§
Then,
J(Fo) r 0
R
shows that Eg is always unstable (a saddle).
o
J(E) = K
0 aBK -6
indicates that Eq is LAS for § > a8K.
LR
K
J(E2) = " 5 ’
s (1 B aﬁK) 0
gives
rd 0
TH(J(F2)) = = e <0, det(J () = 7'5(1 - m).

Thus, Es is LAS for det(J(E2)) > 0, i.e., 6 < afK. This implies that a transcritical bifurca-
tion occurs between E; and Es at the critical point § = aSK.

Next, we consider the global asymptotic stability (GAS) for E; and Es. First, consider
E;. To achieve this, we construct the Lyapunov function,

%zN—K—K]n(ﬁ)%—;R

Then, differentiating V7 with respect to time ¢ and evaluating it along the trajectory of system
(SM1), we obtain
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Hence, when ¢ > afK, % o < 0 as long as (N, P) # (K,0), and % o = 0 only if

(N, P) = (K,0). This indicates that E; is attractive, and thus, together with its LAS, E; is
GAS for 0 > afK.
Similarly, we can show that Eg is GAS for 6 < aSK. Let

N 1 P
Vo= N — No— Ny ln(E)+B<P—P2—PQIn<F2)).
Then,
dVa NondN 1 PN\ dP
=2 — (1 -2V (22
dt |y (- %) B( )
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(SM5) (N Ng)[r(l K) aP} (P Pg)(aN B)
T
— (N = Ny
7 2)%
which implies that ddlf (M) < 0 as long as N # Ns, and % (M1 =0 when N = Ny. If
N = N5, we have
N-
0 — rN2<1 _ f?) — aN,P,
dP
& P(BaN, —8) =0
dt (ﬁa 2 ) )

which shows that P is a constant and equals P = 3(1 — %), leading to the equilibrium Eo
for No < K. Therefore, by the LaSalle’s Invariance Principle, we know that Es is GAS for
0 < aBK,ie., Ny < K. [ |

SM1.2. Boundedness of solutions. To study the boundedness of solutions to the 2-d
model, system (SM1), we construct the Lyapunov function:

(SM6) Vog = BN + P.

Differentiating Vo4 with respect to time ¢ and computing it along the trajectory of the 2-d
model (SM1) we obtain

dVaa :—@N(N—K)—5P<o, for N > K.
dt {gnm)
. . . e dV

Thus, we can construct the trapping region in the N-P plane, using the condition =3¢ ) =
bounded by the N-axis and the parabola:

. pr _ pr pBr ( K)2
Define the trapping region for the 2-d model as

Br  Pr K\2

SM7 Qoq = 4 (N, P 0<P<———<N——> .

Hence, for any positive parameter values, the solutions of the 2-d model are attracted to 294.
Note that the three equilibria Ey, E; and Es are located on 4.
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SM2. 3-d system.

SM2.1. Nondimensionalisation. We nondimensionalise the system in the following way:

: 71 7 Vo1 Y123
t:t7 r = =, ro = —=, KZTK) K:TK’
A A T
Ny = @Nh Ny = @NQ, P = gﬁ, B = IB—lal'
5 5 ) Y21

The bars signify the parameters and variables that appear in the original system. The nondi-
mensionalised system is:

dN1 Nl

NN (122 ) NN, — NP
g - 1( K1) 1N2 — N1 P,
dN: N

—2 = )Ny <1 - 2) — N1Ny,

dt 2

dP

— =BN{P-P

dt !

SM2.2. Local stability of 3-d system. Here, we provide the proof of Theorem 2.1 con-
cerning the existence and LAS conditions of equilibria Ey to E4.

Proof. The existence condition for E3 can be easily deduced from N3 > 0 and Nog > 0
as g(Ko —r1) > 0 and g(Kj — r9) > 0, leading to (K3 — r1)(Kj — r2) > 0. The existence
condition for E4 requires 1 — %Kl >0, ie., K1 > %.

The stability conditions of the equilibria can be derived from the Jacobian matrix:

Tl(l—%)—NQ—P —N1 _Nl
(SM8) '](N17N27P): _N2 7’2(1—%) —Nl 0
BP 0 BN; —1

Thus, it is straightforward to obtain the stability conditions for Eg, Eq and Eo by evaluating
the Jacobian (SMS8) at these equilibria as follows: Eg is always a saddle; E; is LAS for
ro < K < %; and Es is LAS for r; < K. Next, evaluating the Jacobian matrix at Eg yields
J(E3) whose characteristic polynomial can be written as

1
P(J(Es)) = [)\ — ~ BKyra(Kas —11) + 1} (A2 — Try A + Dets),
g
where
1 1
Trg = — §T1T2(K1 — 19+ K9 — Tl), Det3 = — §T1T2(K1 — TQ)(KQ — ?”1).
Noticing that g = K1 K5 — r1re and that the condition (K7 — r2)(K2 — r1) > 0 must hold for
the existence of Eg, we find that Trs < 0. Thus, we only need to consider Dets and the linear

factor in P(J(E3)). The equilibrium Ej is LAS if

1
Det3 >0 and - BKjre(Ky—r11)—1<0.
g
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Clearly, Detg > 0 leads to 71 > Ko and 79 > K7, which is then combined into the above
second condition to yield

1 1
K1<§<T2,K2<7“1, or §<K1<’l‘2, K2<T‘1<T‘I,

where 7] is given in (5).
Evaluating the Jacobian matrix at E4 yields the characteristic polynomial

P(J(Es) = A+ 5 —r2) [N+ g A+ (1 — 55)]-

Since the existence condition for E4 requires K; > %, we can conclude that E4 is LAS if
ro < % (< Ky).

It is easy to see that E; and Es exchange their stability at ro = K;; Eo and E3 exchange
their stability at r; = Ko; and E; and E4 exchange their stability at K; = %. Therefore,
transcritical bifurcations occur between E; and Eg, between Es and Eg, as well as between Eq
and E4. No Hopf bifurcation can occur from these 5 equilibria since none of the 5 corresponding
characteristic polynomials can have a pair of purely imaginary eigenvalues; Nor can B-T
bifurcation happen since B-T bifurcation appears at the coexistence of Hopf and saddle-node
bifurcations. |

We next provide the proof of the existence and LAS conditions for Es.
Proof. The existence conditions for E5 require Nos > 0 and P5 > 0. Nos > 0 gives ro > %,
and P5 > 0 yields

1
K1 > and rl—K2+%>0 = ry>ri.

Hence, E5 exists under the conditions: ry > %, K > % and 1 > 7.
To find the stability of Es, we evaluate the Jacobian matrix (SM8) at E5 to obtain the
characteristic polynomial:

(SM9) Ps(E5) = A® + a1 A\ + ag A + as,
where

al = %(Brg—l-i-%),

(SM10) 2 B2Ky (ri=ri7),  inwhich rf ra| B(BK1~1)+Bry—1|’

as = —(B”_é)z(;?f(l_l)(rl — 7).
Es is LAS if
(SM11) ap >0, k=1,2,3 and Ay =ajay —az > 0.

With the existence conditions for Es, it is clear that a; > 0 and ag > 0. as > 0 requires
r1 > ri*. a3 = 0 gives two solutions 7, = % and 71 = r]. Therefore, a transcritical bifurcation
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occurs between E4 and Es at ro = %. Another transcritical bifurcation happens between Es
and Es at v = r7.
Now under the conditions: 79 > %, K > % and 1 > max{ri*,r;*}, we consider the
1

stability condition Ay, which is obtained as Ay(r1) = B K Aoga(r1), where
1

Aga(’l“l) =T [B(BKl — 1) + BTQ — 1]7“%
— Ki(Brg — 1)[(B + 1)K3 — r2(Bra — 1)|r1 — K?K5(Bry — 1)%.

Since As and As, have the same sign, in the following we will consider Asy,. A simple calcu-
lation shows that

2 o —1)2 —1)r
Aga(Tik) = BE 27“21()3?([1(?55 el (7‘2 - K1)7

K2K>(Bra—1)2B?
k%)
Aga(r*) = B(BR,—1)TBra—1 (re — K1),

* _pkk K1K2(3T2—1)B _
"= = LBBR - Bro1BR T ("2 ~ K1),

which indicate that
AQa(T ) Z 07 A2a(rT*) 2 07 TT Z TT* if T2 2 K17

*
1
Noa(17) <0, Aga(ri*) <0, ri <ri* if ry < Kj.

Since Ag,(r1) is a quadratic polynomial in 71, its graph in the r1-Ag, plane is open upwards.
Also, note that Ag,(r1) always has a unique positive root, denoted as riyg. Therefore, when
% < K1 <rgand r > 1], Aga(r1) > Aga(rf) > 0 (ie., A2 > 0), implying that Es is LAS.
Note that ] > r* > rig when 7o > Kj. [ ]

SM2.3. Example: Hopf bifurcation in the 3-d system. We give an example of Hopf
bifurcation from Ej yielding a stable limit cycle in the 3-d model as follows. Let

3
K1:2, K2:1, 7”2:5, B=1.

Then, we have

2 8
* Kk
7’1 = 3 Tl :§7 TlH:17

3
which gives the frequency at the Hopf critical point 11 = rp = 1, as w, = %. Using
the method of normal forms (e.g. [SM2]), we obtain the first focus value, v; = — % < 0,

implying that the Hopf bifurcation is supercritical, and the bifurcating limit cycle is stable.
The simulation for this example with r; = 0.95, yielding perturbation p = ry — rig = —0.05,
is shown in Figure SM1.

SM3. Example: LAS does not necessarily imply GAS. Here we demonstrate that LAS
of an equilibrium does not necessarily imply GAS. As described in the main text, in the 3-d
model (2) the equilibrium Eg = (0, K3, 0) exists for any positive parameter values, and is LAS
for r9 < Kj; while the equilibrium E4 = (%, 0,7’2(1 — BLIQ» exists for K7 > %, and is LAS
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Figure SM1. Simulated stable limit cycle from the Hopf bifurcation of the 3-d model (10) around Es, with
B=1,Ki=2 Ky=1,11 = 1—8 and r2 = 2, and the initial condition (N1, N2, P) = (1.4,0.6,0.1).

2 27
for ro < %. Thus, these two equilibria can co-exist for certain parameter values. For example,

taking
1 3
B =— =1 Ko =2 — —
27 1 3 2 , T2 2>
we have bistable Eo and E4. The simulation, as shown in Figure SM2(a), indicates the
existence of a separatrix between the two tracking areas for Eo and Ey.
Now, it is easy to show that the GAS of these two equilibria needs the boundedness

condition C34 (see (14)). For E4 (a similar proof for E;), we use the Laypunov function

11 1 1 P
VES =Ny — = — 1 ( ) N. —(P—P—Pl (7))
3d 1= 3 Bn BEK, + 2+B 3 31n P

and then use the formulas in (29) and (30) to obtain

dVsq!
dt

r 1 Ky 12 1 gy (1
SRR A —N] - N—(—— )N,
Kl[ TR 5y CbaNz = (5 —r2 ) N2

which clearly shows why the LAS condition is not enough for E4 to be GAS, and the bound-
edness condition C%‘é > ( is needed. By adding this condition, it can be seen that there exists
a wide range of parameter values such that Eg or E4 is GAS, but not both simultaneously
(clearly, since a system cannot have more than one GAS equilibrium). We choose the following
two parameter sets (satisfying r17re > K1 K>3) for simulation to demonstrate that either one of
them may be GAS:

fOI'EQ: B = 5 7”1:1, KQZ 5 7“2:2, Klz

forE4: B=

N = N

3 T1:47 K2: , T2 =
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Figure SM2. Simulated trajectories of the 3-d model (2) converging to Eo or E4: (a) LAS for B = %,
rm=1 Kys=2,1r3 = %, K1 = 3, from the nitial point (2,3,0.5) to E2 = (0,2,0) (the blue curve), and from
the initial point (3,1,0.5) to E4 = (2,0, %) (the red curve); and (b) GAS for B = %, r1=1 Ky =2,10 =2,
Ky = 2, from (100, 100,100) to E; = (0,2,0) (the blue curve), and for B = %, r1 =4, Ky = 2, rp = 3,
Ky =2, from (100,100,100) to E4 = (2,0, 2) (the red curve).

The simulation of the 3-d model for the above parameter values is shown in Figure SM2(b),
with the initial point (Ny, Na, P) = (100,100,100). It is shown that the blue curve, corre-

sponding to the first set of parameter values, converges to Eo = (0,2,0), while the red curve
converges to Ey.

SM4. 4-d System.

SM4.1. Nondimensionalisation. We nondimensionalise the system in the following way:

t=10, 1= Lom=2 K= 721?1, Ky = %Fz,

- 3’ FA
Ny = 22N, Ny = 12N, p= %F, Y]
A= @, B— 3161 D— 33151’ E— BQQQQ

aq Y21 Y21 Y12

The bars signify parameters and variables that appear in the original equations. The
nondimensional system is:

dNy
dt

dN: N-
2 — ryNy <1 — 2) — AN2Q — N1 N,

N
Kl) — N1P — (1 = ¢)N1Q — N1 Ny,

= T’1N1 (1 —
1

dt
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dP

Y _BNP-P

dt !

d

M DO OMQ+ ENQ - Q.

Note, parameter ¢ has not been replaced from the nondimensionalised system. For simplicity
of notation in the following sections, we introduce D = D(1 —c¢) and ¢ =1 — c.

SM4.2. Local stability in 4-d system. The stability conditions for the equilibrium solu-
tions of system (10) are obtained from the Jacobian matrix of the 4-d model, given by

(SM12)

J(N1, No, P, Q)
r(1-38) =Ny —P—2Q -N, -N, — &Ny
B —N, ro(1-222) =N, — AQ 0 — AN,
BP 0 BN, -1 0
DQ EQ 0 DN;+EN,—1

The proof of Theorem 5.1 for LAS of equilibria Eg — E7 is as follows.

Proof. The proof is similar to that for Theorem 2.1 and Theorem 2.2 in the 3-d model.
The only difference is that one additional stability condition may come from the equation %—Cf.
For Es, this additional condition is FKs — 1 > 0. For Eg, this condition is derived from the
4th eigenvalue,

A = K1DT2(7“1 — Kg) + EKQTl(TQ — Kl) +g< 0,
which yields the required conditions given in (24). For E4, this condition is B > D. For Es,
this condition comes from A4 = % +EKs (1 — Bim) —1 < 0. For Eg and E~, a direct calculation
yields the characteristic polynomials:

_ r ri(K1D—-1 B Ary(K1D—=1)+& Ky (1—r2D
P(J(Ee)) = [N+ Z5A+ 2EEU] (N 41 — By [y 4 AntalHelonl))
1

P(J(En) = A+ DN+ gig A+ (1= =] A+ 3+ 82(1— 5k) — 1,

which directly yield the stability conditions for Eg and E7, as given in the theorem.
Transcritical bifurcations and Hopf bifurcation can be similarly obtained as those described
in Theorem 2.1 and Theorem 2.2. The fact that no B-T bifurcation can occur from Eq-E5 has
been discussed in the proof for Theorem 2.2. For Eg, it can be seen from the characteristic
polynomial P(.J(Eg)) that three combinations come from K;D —1= D — B = Ary(K;D —
1)+ ¢Kqi(1— 7’213) = 0; while for E7, there is only one possibility: vy = Ky = % However,
similarly, we can verify that the two zero eigenvalues obtained for these four cases are not a
double-zero eigenvalue. Therefore, B-T bifurcation is not possible from either Eg or E;. W

The proof of existence and LAS conditions in Theorem 5.3 for Eg is as follows.

Proof. The existence conditions for Eg directly follow from the conditions Nig > 0, Nog > 0
and Qs > 0, which are equivalent to that Nigy, > 0, Nog, > 0 and Qg, > 0 since Egq =
DNigy + ENogy.
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Using a direct computation we obtain the characteristic polynomial for Eg as follows:
P(Eg) = (A+1— BNis) (A + ai1sA? + ags) + ass),

where a3, ass and agg are given in (33). Thus, according to the Routh-Hurwitz criterion, we
know that Eg is LAS if the conditions given in (32) are satisfied. It is easy to see that a1g > 0
and agg > 0 under the existence condition (Cp). Thus, Eg satisfying the existence condition
(Cq) is unstable. The transcritical bifurcation is determined by asg = 0, which yields following
three transcritical bifurcations:

)

between (Eg,E3) at Qgs=0 =— D = % 1+ TI(K;(:(T;()ZQ;?&)}

(SM13) between (Eg,Eg) at Nog=0 = ry= = Ari (DK —1) n

1
D ¢DK;

between (Eg,E7) at Nig=0 — 1= % + 757"21(4%1[((2;1)

Finally, we provide the proof of Theorem 5.4 for existence and LAS of Eg.

Proof. The existence conditions are directly derived from Nig > 0, Nog > 0, Py > 0 and
Q9 > 0. The stability of Eg is determined from its characteristic polynomial

P(J(Eg)) = )\4 + a19>\3 + a29>\2 + agg)\ + ay,

where the agg are given in (38). Then by the Routh-Hurwitz criterion, we know that Eg is
LAS under the conditions given in (37).

Transcritical bifurcations occur at the critical point determined by a49 = 0, which gives
two possibilities: one from Q9 = 0, resulting in the critical point,

7” pr 7EK2 =
2~ BEKs—B+D’

and the other from Py = 0, yielding the critical point,

_ K1{AKy(B-D)+¢ [r2(BEK>—B+D)-EK>) }
L= ABK>(BK1—1) :

Note that Nag = 0 does not yield critical point. B-T bifurcation might occur at a critical
point determined by Py = Qg = 0, leading to the critical point,

_ (Ki(B-D) EK
(ri,m2) = (E(lBKl—l)’ BEKQ—QB-&-D)’

under which the Jacobian matrix of (10) becomes

D-B

1 1 é
BE(BK2—1) - B - B - B
D-B D-B __ A(D-B)
J(Eg) BE B(BEK>—B+D) BE
0 0 0 0
0 0 0 0

which does show two zero eigenvalues, but this is a semi-simple case. Hence, no B-T bifurcation

can occur from Eg.
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Figure SM3. Simulated stable limit cycle from the Hopf bifurcation of the 4-d model (10) around Es,
projected in the N1-Na-P space, withé =3, A=B=1, K1 =2, Ko =1,1r1 = % and ro = %, E=2 D= %,
and the initial condition (N1, N2, P,Q) = (1.4,0.6,0.1,0.5).

~ale

SM4.3. Example: Hopf bifurcation from Ej5 in the 4-d system. We give a numerical
example of the Hopf bifurcation from Es in the 4-d model by choosing the following parameter
values:

6:%,Kpﬂ,B:L m:g,KpﬂﬂE:Z b:l
Note that the parameter A is not fixed; though it appears in the equations, it does not render
into the normal form, and thus does not affect the solution of periodic solutions bifurcating
from the Hopf bifurcation and their stability. For the above chosen parameter values, we obtain
the first focus value, v;1 = — % < 0, implying that the Hopf bifurcation is supercritical, and
the bifurcating limit cycle is stable. The simulation for this example with A = 1 and r; = 0.95,

yielding perturbation y = ry — ryg = —0.05, as shown in Figure SM3.

1

SM4.4. Hopf bifurcation from Eg in the 4-d system. Here we present a numerical
example of limit cycles bifurcating from Eg in the 4-d system.

As an example, we choose ry = % Then, Asg, = 0 gives a solution iy = 1.50864904 - - - .
With these parameter values, we need B < N%g = 2.32066172---. Taking B = % yields the
following eigenvalues:

Mo = tiwe, 3= —0.78454421---, M\; = — 1.19884994 - - -,

)

where
we = 0.66328460 - - -.

Further, we apply normal form theory and the Maple program [SM2] to find the first focus
value, v;1 = —0.22557240--- < 0, implying that the Hopf bifurcation is supercritical and
bifurcating limit cycle is stable. Taking r; = 1.4 which gives the perturbation y = ry —rig =
—0.10864904 - - -, we simulate system (10) to obtain the result, shown in Figure SM4.
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I (11
3 \@W \M J

Figure SM4. Simulated periodic solution bifurcating from the Hopf bifurcation of the 4-d model (10) around

Es with ¢ = %, E = %, Ko=1,D=2 K =4, A= %, B = %, 1 :% and ro = % The red, blue, black and
green curves denote the solutions for N1, N2, P and Q, respectively.

SM4.5. Hopf bifurcation from Eg in the 4-d system. Here we provide a numerical
example and demonstrate the use of normal form theory to analyse the existence and stability
of limit cycles bifurcating from Eg in the 4-d system.

As an illustrative example, we choose K1 = 2, Ko = 3 with the parameter values given

in fig. 1b, and ry = K9 = 3, 7o = K; = 2 to obtain the follow solutions at the Hopf critical
point:

1 235 90 99 9
N19—§—H3, N29_H3’ P9—%, Q9—§7
825 13581 22975 40095
19 = — g = ———, A39 = ———, @49 = ———
197 596° 297 57k 9T qoara YT q0a7a0
1225125
= —— A pr— .
27 7682276 3 =0

With the above parameter values, the Jacobian matrix of system of (10), evaluated at Eg

has a pair of purely imaginary eigenvalues, A2 = i% i, and a complex conjugate, A3 4 =

_ 825 + 3\/4695352~
1652 1652 '

We then use normal form theory [SM2] to further analyse the existence and stability of
limit cycles. We first we introduce the affine transformation,

235 [0 2350v/3 887125 3995469535 ]
N, 13 13629 3813288 3813288 21
N 90 0 _1175v/3 25715 73/469535
2 | _ a3y 1543 317774 317774 L2
P 2 1 0 150337 _ 3./469535 3 |’
107720 21544
Q 9 235 T
7 L —m O 1 0 i
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into system (10) to obtain the following new system,

dz1
dt

dxg
dt

dg
dt

dzg
dt

33

+
+

36313501075
91993030808

36313501075
91993030808

r1x3 +
$1$3‘+

1349968462

To — 66409517185
7 2 1698769590623616

2

1421396611/469535
91993030808

158904802639v/469535
849384795311808

255273 .2

T2 41416598193685
3 566256530207872

Tr124 +

22 _ 4304515V/3
4 16718163

329512049453
01993030808

Z122

L223

T3T4,

265906698812887+/3

6926835

3v3
7 1t 509630877

148588966953
91993030808 L17%3

1870848 *3

_ 46145193+/1408605
91993030808

5096308771870848

T1x4

2
Ty + 5579721 T172

_ 55225037195 ...
68994773106 *'2*'3

86729495v/469535
68994773106

825

T2

T4

3051914871181+/1408605

12740771929677120

9239078245811425 .2

L34,

884809143228725 .2

1652 L3 T

3v/169535 .
1652 4

23782774268730624 3

T 7927591422910208 4

1973676875v3

410130054625

5149194204  +L1%2 ~ 1250078023329

8605231175/469535

G xr1x3 +

42500780233296

T1T4

1465670223953
3863707293936

3v469535
1652

x3

223

825

1652

_1083056015+/1408605
42500780233296

ToZ4 +

20190528960079/469535
11891387134365312

T34,

T4+

3 23782774268730624

_ 17187499325+/1408605

3571562359735v/469535

43958670919548

122 +

362829160851647952

1T

_ 374687485285 . ..
3 7 3863707293936 “L1-V4

_ 65386925083295+/1408605

362829160851647952

Z2

_3072800769425v/3

1987385800275749

T3

42500780233296

L2X4 — 3963795711455104 L3L4>

whose Jacobian matrix evaluated at the origin is in the Jordan canonical form,

0 3 0 0
_3V3 0 0 0
7
0 0 825 3/469535
1652 1652
0 0 _ 3469535  _ 825
L 1652 1652

88182934432388039v469535 .2 _ 39476290370207+/469535 .2
203033543932153337088

4

SM13

In general, one needs to apply center manifold theory first and then apply normal form theory
to find the normal form. The method with the Maple program developed in [SM2] combines
the two steps in one unified step to obtain the following normal form in polar coordinates up

to 3rd-order terms,

dar 66992230264625
EE'::7’<a1‘L_'7176659997858127’)’

0 33 126325590652475/3
a7 P T T1174362545104056

)

where p is the perturbation, defined as u© = B — By, and the coefficients o1 and as are
obtained from the linear analysis, given by

103823

_ 41860550v/3
59780098’

o= 2= 7560010441
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Figure SM5. Simulated periodic solution bifurcating from the Hopf bifurcation of the 4-d model (10) around
Eg with ¢ = %, D= %, A=1,FE = g, B=1,r1 =Ky =3 andre = K1 = 2. The red, blue, black and green
curves denote the solutions for N1, N2, P and Q, respectively.

where «; is called transversal condition. r and 6 represent the amplitude and phase of
motion, respectively. Then, the approximations of the amplitude and frequency of the motion
are obtained from the normal form as

__\/_ 1564636568814 w_3\/§ 311746597115153+/3
B 84096620481125 /" T 1977952725396060 "

It is seen that since the coefficient of r? in the amplitude equation is negative, the Hopf
bifurcation is supercritical and bifurcating limit cycle is stable. We choose the perturbation

p=1- 33 =18 ~ 0.75744681 for simulation, which yields

25644
—:\/ 5925644877636 ~ 0.11871170,

420483147405625

B 1528906400302039+/3

~ 0. 222.
4944881813490150 053553

The simulation result is shown in Figure SM5. Comparing it with the simulation for Eg (see
Figure SM4), we note that there the absolute value of the perturbation, u ~ —0.10864904,
is much smaller than that for Eg, while the amplitude of oscillation for Eg is larger than
that for Eg; this implies that the impact of the parameter r; (or ry) is stronger than that of
parameter B.

SM4.6. Host-range expansion from E5. Here we present the proof that it is not possible
to find parameter values for which the host, parasite and competitor stably co-exist in the 3-d
model, but if the parasite expands its host range, E5 loses stability and both Eg and E; are
stable in the 4-d model.
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Theorem SM4.1. There are no feasible parameter values such that the equilibrium Es of
the 3-d model is stable, while it is unstable for the 4-d model, simultaneously with both Eg and
E7 being LAS.

Proof. Consider the conditions:
! < K; < > 7]
— re, T1>T7,
B 1 >72 1 1

under which Es is GAS for the 3-d model, while for the 4-d model, its stability needs two
more conditions:

BT’2 ~ 1
E<—>22 D B—EK(B——).
< KQ(BTQ—l) < 2 9

Note that Eg exists for K1 D > 1, and is LAS for

. 1 A 1
B<D, and ro< —=+ zﬂl<1—~ )
D DK,

It is easy to see that Ej5 (for the 4-d model) is unstable for B < D. E; exists for FKy > 1,

and is LAS for
SETA EKy)

Summarizing the above discussions, we have the following conditions required for E5 being
GAS for the 3-d model; unstable for the 4-d model; and Eg and E7 both LAS:

KlKQ(BT’Q - 1)

1
§<K1§T2, ry>ry =

?”Q(BKl — 1) ’
~ - 1 A 1
(SM14) DKi>1, B<D, r< =+t (1 _ ) 2 roe,
D c DK1
1 CTo 1 A
EKy > 1, - —(1 _ ) 2.
2 > ry < 5 + ) K, Tlc
It follows from K7 < r9 < 79 that
1 A 1 1 A A
(SM15) K, < = + 21 (1 - ) — (K1 - T) <K1 ”) s
D c DK1 D c c

We use r1 < 1. and r9 < 79, to obtain that

n<p+ 70 ) <5+ H0-55)
(SM16) ;*DA( EK2>+“< EK2>< [;(1)
Ki[DK>+¢(EKs —1)] a
A(DK, + EKy,—1)

> 1 < 7"%.
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Then, using K1 < % < At yields

c

_ K [ADK, + ¢ (EK> — 1)]

(SM17) K -
5(DK1 + EFKy — 1)

AKy > ¢ K.

Further, it is easy to prove that

(EK3 —1)(AK; — ¢ K))
A(DK, + (EK5 — 1)

Ky —r{ = >0 = r<r{<Ks

However, noticing that

Ki
KlKQ(BT'Q — 1) BKI  ro
"N T T BR - 1) 2 BE, —1 - ¥ quete =R

we know that no feasible parameter values exist for the case that E5 is GAS for the 3-d model
but unstable for the 4-d model, simultaneously with LAS Eg and E~.

For the second stability condition for Es: % < ry < Ky, r1 > r1u, we should have the
same conclusion, since the stability conditions for E; (4-d model), Eg and E7 are same. |

SMb5. Bistable states. Finally, we consider possible bistable states or co-existence of
equilibria, since this is not only an interesting theoretical question, but also an important
phenomenon in determining the possible outcomes of host-range expansions. To aid the reader,
we provide a visualization of the equilibria of the 3-d and 4-d models in Figure SMG6.

It is obvious that the 2-d model (SM1) cannot have coexistence of equilibria. The 3-d
model (2) can have bistability only between E; and Eg, as well as between Eo and E4. The
situation becomes much more complex for the 4-d model (10). There are two groups, one
of them is an “easier group”, which can be identified by directly comparing the stability
conditions; while the other is a “harder group”, all of which involve the equilibrium Eg, and
which require tedious computation such as that demonstrated in the proof of Theorem 4.1. In
order to show the existence of bistability, for each case we present a concrete example, without
identifying all possible parameter values. More precisely, we have the following result.

Theorem SM5.1. The 2-d model (SM1) does not have bistable states. For the 3-d model
(2), bistable stable states can only exist in the equilibrium pairs (Eq1,E9) and (Eq,E4). For
the 4-d model (10), there are two groups (A) and (B). Group (A) contains the bistable pairs:
(E1, E2), (E1, E7), (E2, E4), (E2, Eg), (E2, Eg), (Es, Eg), (E4, E7), (Es, E7), and (Eg, E7).
Group (B) contains the bistable pairs: (E1, Eg), (Eo, Es), (E4, Eg) and (Es, Eg). Typical
examples with exact parameter values, exhibiting the bistable states, are listed in Table SM1
(for the 3-d model), Table SM2 (for the group (A) of the 4-d model) and Table SM3 (for the
group (B) of the 4-d model). Characteristic polynomials, denoted by P(X), for these examples
are also provided in the tables to show stability. In the three tables, E.P. denotes Equilibrium
Pair.

Proof. First note that if there exists a transcritical bifurcation between two equilibria,
then they cannot be bistable. For example, there exists a transcritical bifurcation between Es
and Eg, and so these two equilibria cannot be bistable.
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E4 Bry, =1 E5
Hostl —> Hostl Host2
Specialist Specialist
BKl = 1 r=r
El ro = K E3
Hostl Hostl Host2
DKl =1 QSn —0
E6 Nog, =0 E8
Hostl — Hostl Host2
Generalist Generalist

P9=0

E9

Hostl Host2
Specialist Generalist

EK, =1

E7
Host2
Generalist

Figure SM6. A diagram illustrating the equilibrium states of the 4-d model. Transcritical bifurcation
conditions label the arrows between equilibria. “Hostl(2)” indicates the presence of population Ny(ay, “Specialist”
indicates the presence of population P, while “Generalist” indicates the population Q.

Table SM1
Bistable Equilibrium Pairs for 3-d Model (2)

E.P. | (B Ky Ky r,r) P()
(E1): f5(2A+D@A+3)(AA+1D)
1393
ELB) | G222l | @ 1oy o)
(B2): 2(A+1)(2\ + 3)?
1 3
(B2, E4) (2:3,2 1, 3) (Eq): $A+1)(BA2+21+1)

For the 3-d model (2), it is straightforward to use the stability conditions to find the
bistable pairs (E1,E2) and (Eg, E4) since the parameter values are overlapping for their exis-
tence and stability conditions. For the bistable pairs in Group (A) of the 4-d model, it is not
difficulty to find them by carefully inspecting their existence and stability conditions. How-
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Table SM2
Bistable Equilibrium Pairs for Group (A) of 4-d Model (10)

E. P. (B, K1, K»,71,72,D, E, & A) PO
E1): 25 (20 + 1220 + 3)(4A + 1
Eobn | (32 d1nzzy | B e@EURAEIEmEY
(E2): (A +1)°(2A+ 1A+ 1)

(E1): 5520+ 1)2(2A +3)(4A+ 1)
1

(E13E7) la §a 27 37 1> l? §7 2’ 3
(2 2 2 3) 55 2) (E7): & A+ 1)(2A + 1)(3A + 1)(10X + 3)

(B2): f5(A+ 122X +3)(BA+1)

(EQ,E4) 13’2’1§l22l
( 2) (Ea): 2A+1)BA+1)(3A2 +2)+1)

(B2): f5(A+ 122X +3)(BA+1)

(E2,E6) | (3.3.2,1,3. 2.3, 5,3
( 2) (Eg): gog(6A + 1)(18X + 13)(9A2 + B + 4)

Eo): (A + 1)(A+ 3)(4X + 1)(100A + 3
(BaB) | (33,3, 458,23, 2,0y | 02 (T DT SEAT DIOA 3
(Eg): g (250001 445073 +24502 +-6A+1)

(E3): 565 (10A+7)(50A+1) (5A2+18A+12)

(Es,B6) | (5:1,1,2,3,3, 5, 3, 5
(2 > 10 50 2) (Eo): 25 (3X +2)(6A + 1)(3)% 4 4\ + 2)

(Es,E7) | (3,1,1,2,3, %, 28,2 1) (E3): 005 (40A+1)(10M) (537 + 18X +12)
, L7 2y 4y 4y 9y 4y 329 Fy 45
3 2 4r 320 5> 45 (Er): %()\—k1)(33)\+20)(11)\2+32)\+1)

(Eq): 2A+1)(BA+1)(BA? +2X+1)

(E47E7) : 35 27 ]-a 1 2 47 g’ 3
( 5 50 2) (Er): —i(A+ 1)(20A + 11)(8X2 + 5A + 3)

(Es): 25(24X + 1)(3M\3 + 1202 + 14X + 8)

1 2 1
(Es,E7) | (1,2,1,4,3 20) (Er): (A +1)(5A +8)(5A% + 12A + 3)

’87 4’ 57

[\

L(BA+1)(36A + 5)(9A2 + 8A + 1)

E67E7 17 éa 17 ]-a é7 §7 §7 27 :
( IBCH 3020502 ()\+1)(45>\+1)(9>\2+8)\+4)

—~
=
(=2
SN—
g~ g~

ever, for Group (B) of the 4-d model, it is quite difficulty to prove whether they are bistable or
not. The approach used in the proof of Theorem 4.1 is needed for considering the bistability.
Proofs will be given for two examples, one for the pair (Eg, Eg) in Group (A), and one for the
pair (Es, Eg) in Group (B). Other cases can be similarly proven.
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Table SM3
Bistable Equilibrium Pairs for Group (B) of 4-d Model (10)

E. P. (B, K1, Ky,71,79,D, E, & A) P()\)

(B2): go005 (A + 2)(20A + 1)(40X + 9) (50A + 19)

(B, Es) | (5,818,238 24 11
’ 27202 27 1 (Es): Tesmagrs (1204A+739)(12943)2 + 480 +468)

(E2): =955(A + 1)(5A 4 4)(20X + 1) (50 + 9)
(E2,Es) | (3,1,35,2 2,2 2,2, %) | (Es): gosigss (288X + 257)(34560A3 + 340802
+419X + 217)

(E4): 50705 (BA+1)(20A+21)(1001A% +1000A+1)
(Es): A+ 1)(BA+1)(3A2 +2A + 1)

1 1001 31 10 2 428647 2
(E4, Es) (57 500’%’1>%75’426405’5’3)

(Es, Eg)

- ~ _ (1 40021 970471159 2001 151579 2 21
(B, K1, Ky, r1, 72, D, E, ¢, A) = (57 50000 2> 1884100007 1000 400210° 2> 5 %)

— 96300106 3 77715624426236610000 y2 1176740478699000
P(E5) - ()\+ 400410105) (A + 39112859876610000000 A" 39112859876610000000 A

+ 1686855352339 )
39112859876610000000

— 2309313133421 3 64863514517103697368801043269732340500000 y 2
P(ES) - ()\ + 26000271920390) ()\ + 33017206608527273135328710316100000000000)\

+ 694988351108821863639866099032095990000 A
33017206608527273135328710316100000000000

+ 13972205709936147310316677096472776551 )
33017206608527273135328710316100000000000

For the bistable pair (Eq, Eg), the stability for E only needs r; < K < % The existence
condition for Eg is given in (36). Once the existence condition is satisfied, the stability
condition given in (38) will be most likely satisfied, which only needs verifying. Let us start

from Ko < % and FE > % to get 1 — % < FK5 < 1. Then from r; < K5 and the condition
on r given in (36) we have

K1{AK3(B — D) + ¢ [ro(BEKy — B+ D) — EK;]}
AEK,(BK; — 1)

(SM18) <rip < Ko,

which yields
AK»[K1(B — D) — EKy(BK — 1)] + K1é[ro(BEK, — B+ D) — EK>] < 0.
Since the term in the second square bracket of the above inequality is positive, the above
equality requires
DKy -1

Ki{(B—D)—EKy(BK;—-1)<0 — FEKy>1—-—-" =
1( ) 2(BK1 —1) < 2 > BK,—1'
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which implies DK > 1 due to BK] > 1 (see (36)) and EK» < 1. It is easy to show that

D DK, -1
SM19 l-—<1—-—— < FK 1.
(SM19) B~ T BR -1 77T
Then, it follows from (SM18) that

K\é[ro(BEK> — B + D) — EK>]
K>|EK»(BK, — 1) — K1(B — D)]

(SM20)

Having established the above relations, we choose B = %, D = %, K1 = 3 to satisfy B > D
and BK; > 1. Next, using (SM19) we obtain % < EFK5 < 1. Choosing E = %, Ky = % and
¢ = % yields ro > 29 (see the condition given in (36)). We let 75 = 3. Then, we use (SM20)
to obtain A > %, and choose A = 1. With these chosen parameter values, we obtain the
characteristic polynomials listed in Table SM2 for (Eg, Eg), showing that both Eo and Eg are
LAS for this set of parameter values.

Now we turn to the bistable pair (Ey4, Eg). To prove this case, we first consider a parameter
value at a critical boundary, which yields a zero eigenvalue. Having successfully obtained the
result for the critical point, we then give a perturbation to the critical point to remove the

zero eigenvalue. To achieve this, we consider the stability of E4: ro < % < min{ K7, %}, and
let K1 = %, which implies B > D, and Dry < Bry < 1. Then, we require that

1

Nign = 5

[EKQ(A’I“l - 57“2) — (AK2 — 67‘2)] > 0,
Ks X S
Nogn = E [AT1 (B — D) — (1 — DT'Q)C] > 0,

1 - ~
Qsu = 5 [EK>(1 = Dra) = (B = D)riry = EKori(1 = Bra)] >0,

(B — D)(AKy — éry) — EKy & (1 — Bry)

1— BNig = — = — > 0.
EKQ(AB’I“Q - C) - D(AKQ - CTQ)
It is easy to see that Nag, > 0 gives
é(1—D
(SM21) A C=Dra)
T‘l(B — D)
which leads to
é(1—D é(1-B
(SM22) Ary — oy > CL=Dr2) €= Bra) o
B-D B-D
Next, it follows from Nig, > 0 that
AK2 — 51"2

M2 E> ————.
(S 3) = KQ(AT‘l — 57"2)
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Further, we compute
EKQ(ABT‘Q - 5) - D(AKQ - 5’/“2) - BDngn

50—Q@U

— EK»(B — D)(Arl - >0,  (due to (SM21)),

which implies that the denominator of 1 — BNjg is greater than zero provided Nig, > O.
Thus, letting the numerator of 1 — BNjg be greater than zero leads to
(B — D)(AKy — ér9)

K 2 c (1 — BT’Q) ’

E<

which is then combined with (SM23) to yield

AKy —érg (B — D)(AKy — &ry)
(SN2 Kol —er) =0T Rl (1= Bra)

This provides a feasible interval for E due to Ary — éro > 0, with the assumption AKs —
¢rg > 0, which will be proven in the next step, see (SM27). Now, from Qg, > 0 we have

Ko(1 — brg) — (B - D) 179
Kyri(1 — Bry) ’

(SM25) E <

which needs

B-D
(SM26) Ky > B=D)nr
1-— D7’2
and then a simple calculation shows that
(SM27) AKy —¢ry > 0.

In addition, it can be shown that

Kﬂl—Dm)—Gl—bMﬁ2<(B—DKAKQ—EQ)
K2r1(1 —B’I“l) Kgé(l —BT'Q)

Thus, combining (SM24) and the above inequality we have

AK2 — 57’2 K2<1 — Drg) — (B — D) r1re
SM28 — < F
( ) KQ(ATl — 57‘2) < < Kgrl(l — Brl) ’

which requires that Ko > ;. Comparing this condition K3 > r; with that given in (SM26)

shows that ~
B—-D 1-B
Py — ( ~)’l“l’l“g _ 7"1( E 7“2) > 0’
1-— DTQ 1— DT’Q

indicating that Ko > ry.
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Finally, based on the above derived formulas, we first choose B = %, and then Ky =
% +e=2+4¢, where 0 < e < 1. We choose ¢ = 5(1)—0, but set € = 0 in the following procedure
of determining parameter values. We choose D = % and ry = ;—8. Further, let r1 = 1 and
¢ = 2. Using (SM21) we have A > 82, and take A = 3. Next, we select K = 3% in order to
have Ky Z ri. Then, it follows from (SM27) that % <E< gggé We take the middle point of
this interval to obtain E = gg%g. Substituting the above chosen parameter values, together
with e = ﬁ into system (10) yields the two characteristic polynomials, given in Table SM3,

for E4 and Eg respectively. |

Remark SM1. (i) It has been shown that the 2-d model (SM1) does not need a bounded-
ness condition since the solutions of the model are bounded for any positive parameter values,
and the two LAS equilibrium solutions are also GAS under their LAS stability conditions.
However, the 3-d model (2) and the 4-d model (10) do need the boundedness conditions, in
addition to the LAS conditions, to reach GAS. Except the equilibrium Ejs for the 3-d model
whose LAS conditions involve the boundedness conditions, all the equilibrium solutions of the
3-d and 4-d models need the boundedness condition to achieve GAS.

(ii) All equilibria of the 3-d and 4-d models are located on the boundary of attracting
region Q3q (for the 3-d model) or Q44 (for the 4-d model). Without the boundedness condition
(C%‘é or Cé‘é), when multi-stable equilibria exist, equilibria are LAS and to which equilibria
they will converge depends up the initial condition. While when the boundedness condition
is satisfied, only one stable equilibrium exists and all trajectories converge to this equilibrium
regardless the initial condition.

(iii) In this paper, we only discussed one type of bistable state, that is, when both states
are equilibrium solutions. There is another class of bistable states — a stable equilibrium and
a stable limit cycle — which can only exist from the bistable equilibrium pairs when one of
the equilibria loses its stability and generates a supercritical Hopf bifurcation. Thus, such a
bistable phenomenon may only appear in the 4-d model from the equilibrium pairs in Group
(B) and the pair (Eg, Eg) in Group (A). Finding the conditions on parameters which produce
this type of bistable phenomenon is beyond the scope of this paper, and will be studied in
future.
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