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SM1. Two-dimensional host-parasite model. The host-range expansion models in the
main text are based on a well-known host-parasite model. In this model, the density of the
host population (N) has intrinsic growth rate r per unit time, and grows logistically with
carrying capacity K. The parasite population, with density P , infects the host with mass-
action kinetics at rate α, and with a conversion factor β between hosts and parasites. For
example, if the parasite is a lytic virus infecting a bacterium, β represents the burst size. In the
absence of the host, the parasite population decays at per capita rate δ. These assumptions
yield:

(SM1)

dN

dt
= rN

(
1− N

K

)
− αNP,

dP

dt
= βαNP − δP.

This model is equivalent to well-studied predator-prey models with a logistic growth term for
the prey species [SM1]. Equilibria and stability results for (SM1) are rederived here for clarity,
providing consistency with the models in the main paper.

SM1.1. Equilibria and stability. System (SM1) admits three equilibrium solutions:

(SM2)

Trivial Equilibrium E0 : (N,P ) = (0, 0)

Bounded Equilibrium E1 : (N,P ) = (K, 0)

Positive Equilibrium E2 : (N,P ) = (N2, P2),

where

(SM3) N2 =
δ

αβ
, P2 =

r

α

(
1− δ

αβK

)
=
r

α

(
1− N2

K

)
.

For the existence and stability of the equilibrium, we have the following theorem.

Theorem SM1.1. The equilibria E0 and E1 exist for positive parameter values, while the
equilibrium E2 exists for δ < αβK. E0 is always unstable; E1 is GAS for δ > αβK, and
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unstable for δ < αβK; E2 exists and is GAS for δ > αβK. A transcritical bifurcation occurs
between the equilibria E1 and E2, at the critical point δ = αβK.

Proof. The stability of the equilibria is determined by the Jacobian matrix,

J(N,P ) =

 r
(

1− 2N

K

)
− αP −αN

βαP βαN − δ

 .
Then,

J(E0) =

[
r 0

0 −δ

]
shows that E0 is always unstable (a saddle).

J(E1) =

 −r − α
K

0 αβK − δ


indicates that E1 is LAS for δ > αβK.

J(E2) =

 − rδ

αβK
− δ
β

rβ
(

1− δ

αβK

)
0


gives

Tr(J(E2)) = − rδ

αβK
< 0, det(J(E2)) = rδ

(
1− δ

αβK

)
.

Thus, E2 is LAS for det(J(E2)) > 0, i.e., δ < αβK. This implies that a transcritical bifurca-
tion occurs between E1 and E2 at the critical point δ = αβK.

Next, we consider the global asymptotic stability (GAS) for E1 and E2. First, consider
E1. To achieve this, we construct the Lyapunov function,

V1 = N −K −K ln
(N
K

)
+

1

β
P.

Then, differentiating V1 with respect to time t and evaluating it along the trajectory of system
(SM1), we obtain

(SM4)

dV1
dt

∣∣∣∣
(SM1)

=
(

1− K

N

)dN

dt
+

1

β

dP

dt

= (N −K)
[
r
(

1− N

K

)
− αP

]
+ αNP − δ

β
P

= − r

K
(N −K)2 − 1

β
(δ − αβK)P.
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Hence, when δ > αβK, dV1
dt

∣∣∣
(SM1)

< 0 as long as (N,P ) 6= (K, 0), and dV1
dt

∣∣∣
(SM1)

= 0 only if

(N,P ) = (K, 0). This indicates that E1 is attractive, and thus, together with its LAS, E1 is
GAS for δ > αβK.

Similarly, we can show that E2 is GAS for δ < αβK. Let

V2 = N −N2 −N2 ln
( N
N2

)
+

1

β

(
P − P2 − P2 ln

( P
P2

))
.

Then,

(SM5)

dV2
dt

∣∣∣∣
(SM1)

=
(

1− N2

N

)dN

dt
+

1

β

(
1− P2

P

)dP

dt

= (N −N2)
[
r
(

1− N

K

)
− αP

]
+ (P − P2)

(
αN − δ

β

)
= − r

K
(N −N2)

2,

which implies that dV2
dt

∣∣∣
(SM1)

< 0 as long as N 6= N2, and dV2
dt

∣∣∣
(SM1)

= 0 when N = N2. If

N = N2, we have

0 = rN2

(
1− N2

K

)
− αN2P,

dP

dt
= P (βαN2 − δ) = 0,

which shows that P is a constant and equals P = r
α

(
1 − N2

K

)
, leading to the equilibrium E2

for N2 < K. Therefore, by the LaSalle’s Invariance Principle, we know that E2 is GAS for
δ < αβK, i.e., N2 < K.

SM1.2. Boundedness of solutions. To study the boundedness of solutions to the 2-d
model, system (SM1), we construct the Lyapunov function:

(SM6) V2d = β N + P.

Differentiating V2d with respect to time t and computing it along the trajectory of the 2-d
model (SM1) we obtain

dV2d
dt

∣∣∣∣
(SM1)

= − βr
K
N (N −K)− δ P < 0, for N > K.

Thus, we can construct the trapping region in theN -P plane, using the condition dV2d
dt

∣∣∣
(SM1)

= 0,

bounded by the N -axis and the parabola:

P = − βr

Kδ
N(N −K) =

βr

4δ
− βr

Kδ

(
N − K

2

)2
.

Define the trapping region for the 2-d model as

(SM7) Ω2d =

{
(N,P )

∣∣∣∣ 0 ≤ P ≤ βr

4δ
− βr

Kδ

(
N − K

2

)2}
.

Hence, for any positive parameter values, the solutions of the 2-d model are attracted to Ω2d.
Note that the three equilibria E0, E1 and E2 are located on Ω2d.
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SM2. 3-d system.

SM2.1. Nondimensionalisation. We nondimensionalise the system in the following way:

t = tδ, r1 =
r1

δ
, r2 =

r2

δ
, K1 =

γ21
δ
K1, K2 =

γ12
δ
K2,

N1 =
γ21
δ
N1, N2 =

γ12
δ
N2, P =

α1

δ
P , B =

β1α1

γ21
.

The bars signify the parameters and variables that appear in the original system. The nondi-
mensionalised system is:

dN1

dt
= r1N1

(
1− N1

K1

)
−N1N2 −N1P,

dN2

dt
= r2N2

(
1− N2

K2

)
−N1N2,

dP

dt
= BN1P − P.

SM2.2. Local stability of 3-d system. Here, we provide the proof of Theorem 2.1 con-
cerning the existence and LAS conditions of equilibria E0 to E4.

Proof. The existence condition for E3 can be easily deduced from N13 > 0 and N23 > 0
as g(K2 − r1) > 0 and g(K1 − r2) > 0, leading to (K2 − r1)(K1 − r2) > 0. The existence
condition for E4 requires 1− 1

BK1
> 0, i.e., K1 >

1
B .

The stability conditions of the equilibria can be derived from the Jacobian matrix:

(SM8) J(N1, N2, P ) =


r1
(
1− 2N1

K1

)
−N2 − P −N1 −N1

−N2 r2
(
1− 2N2

K2

)
−N1 0

B P 0 BN1 − 1

 .
Thus, it is straightforward to obtain the stability conditions for E0, E1 and E2 by evaluating
the Jacobian (SM8) at these equilibria as follows: E0 is always a saddle; E1 is LAS for
r2 < K1 <

1
B ; and E2 is LAS for r1 < K2. Next, evaluating the Jacobian matrix at E3 yields

J(E3) whose characteristic polynomial can be written as

P(J(E3)) =
[
λ− 1

g
BK1r2(K2 − r1) + 1

]
(λ2 − Tr3 λ+ Det3),

where

Tr3 = − 1

g
r1r2(K1 − r2 +K2 − r1), Det3 = − 1

g
r1r2(K1 − r2)(K2 − r1).

Noticing that g = K1K2 − r1r2 and that the condition (K1 − r2)(K2 − r1) > 0 must hold for
the existence of E3, we find that Tr3 < 0. Thus, we only need to consider Det3 and the linear
factor in P(J(E3)). The equilibrium E3 is LAS if

Det3 > 0 and
1

g
BK1r2(K2 − r1)− 1 < 0.
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Clearly, Det3 > 0 leads to r1 > K2 and r2 > K1, which is then combined into the above
second condition to yield

K1 <
1

B
< r2, K2 < r1, or

1

B
< K1 < r2, K2 < r1 < r∗1,

where r∗1 is given in (5).
Evaluating the Jacobian matrix at E4 yields the characteristic polynomial

P(J(E4)) =
(
λ+ 1

B − r2
)[
λ2 + r1

BK1
λ+ r1

(
1− 1

BK1

)]
.

Since the existence condition for E4 requires K1 >
1
B , we can conclude that E4 is LAS if

r2 <
1
B (< K1).

It is easy to see that E1 and E3 exchange their stability at r2 = K1; E2 and E3 exchange
their stability at r1 = K2; and E1 and E4 exchange their stability at K1 = 1

B . Therefore,
transcritical bifurcations occur between E1 and E3, between E2 and E3, as well as between E1

and E4. No Hopf bifurcation can occur from these 5 equilibria since none of the 5 corresponding
characteristic polynomials can have a pair of purely imaginary eigenvalues; Nor can B-T
bifurcation happen since B-T bifurcation appears at the coexistence of Hopf and saddle-node
bifurcations.

We next provide the proof of the existence and LAS conditions for E5.

Proof. The existence conditions for E5 require N25 > 0 and P5 > 0. N25 > 0 gives r2 >
1
B ,

and P5 > 0 yields

K1 >
1
B and r1 −K2 + g

K1r2B
> 0 =⇒ r1 > r∗1.

Hence, E5 exists under the conditions: r2 >
1
B , K1 >

1
B and r1 > r∗1.

To find the stability of E5, we evaluate the Jacobian matrix (SM8) at E5 to obtain the
characteristic polynomial:

(SM9) P5(E5) = λ3 + a1 λ
2 + a2 λ+ a3,

where

(SM10)

a1 = 1
B

(
Br2 − 1 + r1

K1

)
,

a2 = B(BK1−1)+Br2−1
B2K1

(r1 − r∗∗1 ), in which r∗∗1 = K1K2(B+1)(Br2−1)
r2
[
B(BK1−1)+Br2−1

] ,
a3 = (Br2−1)(BK1−1)

B2K1
(r1 − r∗1).

E5 is LAS if

(SM11) ak > 0, k = 1, 2, 3 and ∆2 = a1a2 − a3 > 0.

With the existence conditions for E5, it is clear that a1 > 0 and a3 > 0. a2 > 0 requires
r1 > r∗∗1 . a3 = 0 gives two solutions r2 = 1

B and r1 = r∗1. Therefore, a transcritical bifurcation
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occurs between E4 and E5 at r2 = 1
B . Another transcritical bifurcation happens between E3

and E5 at r1 = r∗1.
Now under the conditions: r2 >

1
B , K1 >

1
B and r1 > max{r1∗, r∗∗1 }, we consider the

stability condition ∆2, which is obtained as ∆2(r1) = 1
B3K2

1r2
∆2a(r1), where

∆2a(r1) = r2
[
B(BK1 − 1) +Br2 − 1

]
r21

−K1(Br2 − 1)
[
(B + 1)K2 − r2(Br2 − 1)

]
r1 −K2

1K2(Br2 − 1)2.

Since ∆2 and ∆2a have the same sign, in the following we will consider ∆2a. A simple calcu-
lation shows that

∆2a(r
∗
1) =

K2
1K2(Br2−1)2B[(BK1−1)r2+K2]

r2(BK1−1)2 (r2 −K1),

∆2a(r
∗∗
1 ) =

K2
1K2(Br2−1)2B2

B(BK1−1)+Br2−1 (r2 −K1),

r∗1 − r∗∗1 = K1K2(Br2−1)B
r2[B(BK1−1)+Br2−1](BK1−1) (r2 −K1),

which indicate that

∆2a(r
∗
1) ≥ 0, ∆2a(r

∗∗
1 ) ≥ 0, r∗1 ≥ r∗∗1 if r2 ≥ K1,

∆2a(r
∗
1) < 0, ∆2a(r

∗∗
1 ) < 0, r∗1 < r∗∗1 if r2 < K1.

Since ∆2a(r1) is a quadratic polynomial in r1, its graph in the r1-∆2a plane is open upwards.
Also, note that ∆2a(r1) always has a unique positive root, denoted as r1H. Therefore, when
1
B < K1 ≤ r2 and r1 > r∗1, ∆2a(r1) > ∆2a(r

∗
1) ≥ 0 (i.e., ∆2 > 0), implying that E5 is LAS.

Note that r∗1 ≥ r∗∗1 > r1H when r2 ≥ K1.

SM2.3. Example: Hopf bifurcation in the 3-d system. We give an example of Hopf
bifurcation from E5 yielding a stable limit cycle in the 3-d model as follows. Let

K1 = 2, K2 = 1, r2 =
3

2
, B = 1.

Then, we have

r∗1 =
2

3
, r∗∗1 =

8

9
, r1H = 1,

which gives the frequency at the Hopf critical point r1 = r1H = 1, as ωc =
√
3
6 . Using

the method of normal forms (e.g. [SM2]), we obtain the first focus value, v1 = − 45
208 < 0,

implying that the Hopf bifurcation is supercritical, and the bifurcating limit cycle is stable.
The simulation for this example with r1 = 0.95, yielding perturbation µ = r1 − r1H = −0.05,
is shown in Figure SM1.

SM3. Example: LAS does not necessarily imply GAS. Here we demonstrate that LAS
of an equilibrium does not necessarily imply GAS. As described in the main text, in the 3-d
model (2) the equilibrium E2 = (0,K2, 0) exists for any positive parameter values, and is LAS
for r2 < K1; while the equilibrium E4 =

(
1
B , 0, r2

(
1 − 1

BK1

))
exists for K1 >

1
B , and is LAS
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N1

N2

P

Figure SM1. Simulated stable limit cycle from the Hopf bifurcation of the 3-d model (10) around E5, with
B = 1, K1 = 2, K2 = 1, r1 = 19

20
and r2 = 3

2
, and the initial condition (N1, N2, P ) = (1.4, 0.6, 0.1).

for r2 <
1
B . Thus, these two equilibria can co-exist for certain parameter values. For example,

taking

B =
1

2
, r1 = 1, K2 = 2, r2 =

3

2
, K1 = 3,

we have bistable E2 and E4. The simulation, as shown in Figure SM2(a), indicates the
existence of a separatrix between the two tracking areas for E2 and E4.

Now, it is easy to show that the GAS of these two equilibria needs the boundedness
condition C3d

bd (see (14)). For E4 (a similar proof for E2), we use the Laypunov function

V E4
3d = N1 −

1

B
− 1

B
ln
( 1

BK1

)
+N2 +

1

B

(
P − P3 − P3 ln

( P
P3

))
,

and then use the formulas in (29) and (30) to obtain

dV E4
3d

dt

∣∣∣∣∣
(2)

= − r1
K1

[
N1 −

1

B
+
K1

r1
N2

]2
− 1

K2r1
C3d
bdN

2
2 −

( 1

B
− r2

)
N2,

which clearly shows why the LAS condition is not enough for E4 to be GAS, and the bound-
edness condition C3d

bd > 0 is needed. By adding this condition, it can be seen that there exists
a wide range of parameter values such that E2 or E4 is GAS, but not both simultaneously
(clearly, since a system cannot have more than one GAS equilibrium). We choose the following
two parameter sets (satisfying r1r2 > K1K2) for simulation to demonstrate that either one of
them may be GAS:

for E2 : B =
1

2
, r1 = 1, K2 = 2, r2 = 2, K1 =

3

2
,

for E4 : B =
1

2
, r1 = 4, K2 = 2, r2 =

3

2
, K1 =

5

2
.
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N1

N2

P

•
•

•
•

?

N

N1

N2

P

•

•

R

y

��

(a) (b)

Figure SM2. Simulated trajectories of the 3-d model (2) converging to E2 or E4: (a) LAS for B = 1
2
,

r1 = 1, K2 = 2, r2 = 3
2
, K1 = 3, from the initial point (2, 3, 0.5) to E2 = (0, 2, 0) (the blue curve), and from

the initial point (3, 1, 0.5) to E4 = (2, 0, 1
3
) (the red curve); and (b) GAS for B = 1

2
, r1 = 1, K2 = 2, r2 = 2,

K1 = 3
2
, from (100, 100, 100) to E2 = (0, 2, 0) (the blue curve), and for B = 1

2
, r1 = 4, K2 = 2, r2 = 3

2
,

K1 = 5
2
, from (100, 100, 100) to E4 = (2, 0, 4

5
) (the red curve).

The simulation of the 3-d model for the above parameter values is shown in Figure SM2(b),
with the initial point (N1, N2, P ) = (100, 100, 100). It is shown that the blue curve, corre-
sponding to the first set of parameter values, converges to E2 = (0, 2, 0), while the red curve
converges to E4.

SM4. 4-d System.

SM4.1. Nondimensionalisation. We nondimensionalise the system in the following way:

t = tδ, r1 =
r1

δ
, r2 =

r2

δ
, K1 =

γ21
δ
K1, K2 =

γ12
δ
K2,

N1 =
γ21
δ
N1, N2 =

γ12
δ
N2, P =

α1

δ
P , Q =

α1

δ
Q,

A =
α2

α1
, B =

β1α1

γ21
, D =

β21α1

γ21
, E =

β22α2

γ12
.

The bars signify parameters and variables that appear in the original equations. The
nondimensional system is:

dN1

dt
= r1N1

(
1− N1

K1

)
−N1P − (1− c)N1Q−N1N2,

dN2

dt
= r2N2

(
1− N2

K2

)
−AN2Q−N1N2,
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dP

dt
= BN1P − P

dQ

dt
= D(1− c)N1Q+ EN2Q−Q.

Note, parameter c has not been replaced from the nondimensionalised system. For simplicity
of notation in the following sections, we introduce D̃ = D(1− c) and c̃ = 1− c.

SM4.2. Local stability in 4-d system. The stability conditions for the equilibrium solu-
tions of system (10) are obtained from the Jacobian matrix of the 4-d model, given by

(SM12)

J(N1, N2, P,Q)

=


r1
(
1− 2N1

K1

)
−N2−P−c̃ Q −N1 −N1 − c̃N1

−N2 r2
(
1− 2N2

K2

)
−N1−AQ 0 −AN2

B P 0 BN1−1 0

D̃Q EQ 0 D̃N1+EN2−1

.
The proof of Theorem 5.1 for LAS of equilibria E0 − E7 is as follows.

Proof. The proof is similar to that for Theorem 2.1 and Theorem 2.2 in the 3-d model.
The only difference is that one additional stability condition may come from the equation dQ

dt .
For E2, this additional condition is EK2 − 1 > 0. For E3, this condition is derived from the
4th eigenvalue,

λ4 = K1D̃r2(r1 −K2) + EK2r1(r2 −K1) + g < 0,

which yields the required conditions given in (24). For E4, this condition is B > D̃. For E5,

this condition comes from λ4 = D̃
B +EK2

(
1− 1

Br2

)
−1 < 0. For E6 and E7, a direct calculation

yields the characteristic polynomials:

P (J(E6)) =
[
λ2 + r1

K1D̃
λ+ r1(K1D̃−1)

K1D̃

](
λ+ 1− B

D̃

)[
λ+ Ar1(K1D̃−1)+c̃ K1(1−r2D̃)

K1c̃ D̃

]
,

P (J(E7)) = (λ+ 1)
[
λ2 + r2

EK2
λ+

(
1− 1

EK2

)
r2
][
λ+ 1

E + c̃ r2
A

(
1− 1

EK2

)
− r1

]
,

which directly yield the stability conditions for E6 and E7, as given in the theorem.
Transcritical bifurcations and Hopf bifurcation can be similarly obtained as those described

in Theorem 2.1 and Theorem 2.2. The fact that no B-T bifurcation can occur from E1-E5 has
been discussed in the proof for Theorem 2.2. For E6, it can be seen from the characteristic
polynomial P (J(E6)) that three combinations come from K1D̃ − 1 = D̃ − B = Ar1(K1D̃ −
1) + c̃ K1(1 − r2D̃) = 0; while for E7, there is only one possibility: r1 = K2 = 1

E . However,
similarly, we can verify that the two zero eigenvalues obtained for these four cases are not a
double-zero eigenvalue. Therefore, B-T bifurcation is not possible from either E6 or E7.

The proof of existence and LAS conditions in Theorem 5.3 for E8 is as follows.

Proof. The existence conditions for E8 directly follow from the conditionsN18 > 0, N28 > 0
and Q8 > 0, which are equivalent to that N18n > 0, N28n > 0 and Q8n > 0 since E8d =
D̃N18n + EN28n.
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Using a direct computation we obtain the characteristic polynomial for E8 as follows:

P (E8) =
(
λ+ 1−BN18

)(
λ3 + a18λ

2 + a28λ+ a38
)
,

where a18, a28 and a38 are given in (33). Thus, according to the Routh-Hurwitz criterion, we
know that E8 is LAS if the conditions given in (32) are satisfied. It is easy to see that a18 > 0
and a38 > 0 under the existence condition (C1). Thus, E8 satisfying the existence condition
(C2) is unstable. The transcritical bifurcation is determined by a38 = 0, which yields following
three transcritical bifurcations:

(SM13)

between (E8,E3) at Q8 = 0 =⇒ D̃ = 1
r2

[
1 + r1(K1−r2)(1−EK2)

K1(K2−r1)

]
,

between (E8,E6) at N28 = 0 =⇒ r2 = 1
D̃

+ Ar1(D̃K1−1)
c̃ D̃K1

,

between (E8,E7) at N18 = 0 =⇒ r1 = 1
E + c̃ r2(EK2−1)

AEK2
.

Finally, we provide the proof of Theorem 5.4 for existence and LAS of E9.

Proof. The existence conditions are directly derived from N19 > 0, N29 > 0, P9 > 0 and
Q9 > 0. The stability of E9 is determined from its characteristic polynomial

P (J(E9)) = λ4 + a19λ
3 + a29λ

2 + a39λ+ a49,

where the ak9 are given in (38). Then by the Routh-Hurwitz criterion, we know that E9 is
LAS under the conditions given in (37).

Transcritical bifurcations occur at the critical point determined by a49 = 0, which gives
two possibilities: one from Q9 = 0, resulting in the critical point,

r2 = EK2

BEK2−B+D̃
,

and the other from P9 = 0, yielding the critical point,

r1 =
K1

{
AK2(B−D̃)+c̃

[
r2(BEK2−B+D̃)−EK2

]}
AEK2(BK1−1) .

Note that N29 = 0 does not yield critical point. B-T bifurcation might occur at a critical
point determined by P9 = Q9 = 0, leading to the critical point,

(r1, r2) =
( K1(B−D̃)
E(BK1−1) ,

EK2

BEK2−B+D̃

)
,

under which the Jacobian matrix of (10) becomes

J(E9) =



D̃−B
BE(BK2−1) − 1

B − 1
B − c̃

B

D̃−B
BE

D̃−B
B(BEK2−B+D̃)

0 A(D̃−B)
BE

0 0 0 0

0 0 0 0

 ,

which does show two zero eigenvalues, but this is a semi-simple case. Hence, no B-T bifurcation
can occur from E9.
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N1

N2

P

Figure SM3. Simulated stable limit cycle from the Hopf bifurcation of the 4-d model (10) around E5,
projected in the N1-N2-P space, with c̃ = 3

4
, A = B = 1, K1 = 2, K2 = 1, r1 = 19

20
and r2 = 3

2
, E = 2, D̃ = 1

4
,

and the initial condition (N1, N2, P,Q) = (1.4, 0.6, 0.1, 0.5).

SM4.3. Example: Hopf bifurcation from E5 in the 4-d system. We give a numerical
example of the Hopf bifurcation from E5 in the 4-d model by choosing the following parameter
values:

c̃ =
3

4
, K1 = 2, B = 1, r2 =

3

2
, K2 = 1, E = 2, D̃ =

1

4
.

Note that the parameter A is not fixed; though it appears in the equations, it does not render
into the normal form, and thus does not affect the solution of periodic solutions bifurcating
from the Hopf bifurcation and their stability. For the above chosen parameter values, we obtain
the first focus value, v1 = − 98

297 < 0, implying that the Hopf bifurcation is supercritical, and
the bifurcating limit cycle is stable. The simulation for this example with A = 1 and r1 = 0.95,
yielding perturbation µ = r1 − r1H = −0.05, as shown in Figure SM3.

SM4.4. Hopf bifurcation from E8 in the 4-d system. Here we present a numerical
example of limit cycles bifurcating from E8 in the 4-d system.

As an example, we choose r2 = 3
2 . Then, ∆28n = 0 gives a solution r1H = 1.50864904 · · · .

With these parameter values, we need B < 1
N18

= 2.32066172 · · · . Taking B = 1
2 yields the

following eigenvalues:

λ1,2 = ±i ωc, λ3 = − 0.78454421 · · ·, λ4 = − 1.19884994 · · ·,

where

ωc = 0.66328460 · · ·.

Further, we apply normal form theory and the Maple program [SM2] to find the first focus
value, v1 = − 0.22557240 · · · < 0, implying that the Hopf bifurcation is supercritical and
bifurcating limit cycle is stable. Taking r1 = 1.4 which gives the perturbation µ = r1− r1H =
− 0.10864904 · · · , we simulate system (10) to obtain the result, shown in Figure SM4.
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Figure SM4. Simulated periodic solution bifurcating from the Hopf bifurcation of the 4-d model (10) around
E8 with c̃ = 2

5
, E = 1

5
, K2 = 1, D̃ = 2, K1 = 4, A = 1

50
, B = 1

2
, r1 = 7

5
and r2 = 3

2
. The red, blue, black and

green curves denote the solutions for N1, N2, P and Q, respectively.

SM4.5. Hopf bifurcation from E9 in the 4-d system. Here we provide a numerical
example and demonstrate the use of normal form theory to analyse the existence and stability
of limit cycles bifurcating from E9 in the 4-d system.

As an illustrative example, we choose K1 = 2, K2 = 3 with the parameter values given
in fig. 1b, and r1 = K2 = 3, r2 = K1 = 2 to obtain the follow solutions at the Hopf critical
point:

N19 =
1

B
=

235

413
, N29 =

90

413
, P9 =

99

70
, Q9 =

9

7
,

a19 =
825

826
, a29 =

13581

5782
, a39 =

22275

40474
, a49 =

40095

40474
,

∆2 =
1225125

682276
, ∆3 = 0.

With the above parameter values, the Jacobian matrix of system of (10), evaluated at E9

has a pair of purely imaginary eigenvalues, λ1,2 = ±3
√
3

7 i, and a complex conjugate, λ3,4 =

− 825
1652 ±

3
√
469535
1652 i.

We then use normal form theory [SM2] to further analyse the existence and stability of
limit cycles. We first we introduce the affine transformation,


N1

N2

P
Q

 =


235
413

90
413

99
70

9
7

+


0 2350

√
3

13629 − 887125
3813288

3995
√
469535

3813288

0 −1175
√
3

4543 − 25715
317774

73
√
469535

317774

1 0 150337
107720 −3

√
469535
21544

−235
154 0 1 0




x1
x2
x3
x4

 ,
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into system (10) to obtain the following new system,

dx1
dt

= 3
√
3

7 x2 − 66409517185
1698769590623616 x

2
3 − 41416598193685

566256530207872 x
2
4 − 4304515

√
3

16718163 x1x2

− 36313501075
91993030808 x1x3 + 142139661

√
469535

91993030808 x1x4 + 32951204945
√
3

91993030808 x2x3

− 36313501075
91993030808 x1x3 + 158904802639

√
469535

849384795311808 x3x4,

dx2
dt

= − 3
√
3

7 x1 + 134996846225527
√
3

5096308771870848 x23 − 265906698812887
√
3

5096308771870848 x24 + 6926835
5572721 x1x2

+ 14858896695
√
3

91993030808 x1x3 − 46145193
√
1408605

91993030808 x1x4 − 55225937195
68994773106 x2x3

− 86729495
√
469535

68994773106 x2x4 − 3051914871181
√
1408605

12740771929677120 x3x4,

dx3
dt

= − 825
1652 x3 + 3

√
469535
1652 x4 − 9239078245811425

23782774268730624 x
2
3 − 884809143228725

7927591422910208 x
2
4

+ 1973676875
√
3

5149194204 x1x2 − 410130054625
42500780233296 x1x3 + 8605231175

√
469535

42500780233296 x1x4

+ 146567022395
√
3

3863707293936 x2x3 − 1083056015
√
1408605

42500780233296 x2x4 + 20190528960079
√
469535

11891387134365312 x3x4,

dx4
dt

= − 3
√
469535
1652 x3 − 825

1652 x4 + 88182934432388039
√
469535

203033543932153337088 x23 − 39476290370207
√
469535

23782774268730624 x24

− 17187499325
√
1408605

43958670919548 x1x2 + 3571562359735
√
469535

362829160851647952 x1x3 − 374687485285
3863707293936 x1x4

− 65386925083295
√
1408605

362829160851647952 x2x3 − 3072800769425
√
3

42500780233296 x2x4 − 1987385800275749
3963795711455104 x3x4,

whose Jacobian matrix evaluated at the origin is in the Jordan canonical form,

J =


0 3

√
3

7 0 0

− 3
√
3

7 0 0 0

0 0 − 825
1652

3
√
469535
1652

0 0 − 3
√
469535
1652 − 825

1652

 .

In general, one needs to apply center manifold theory first and then apply normal form theory
to find the normal form. The method with the Maple program developed in [SM2] combines
the two steps in one unified step to obtain the following normal form in polar coordinates up
to 3rd-order terms,

dr

dt
= r

(
α1 µ−

66992230264625

717665999785812
r2
)
,

dθ

dt
=

3
√

3

7
+ α2 µ−

126325590652475
√

3

1174362545104056
r2,

where µ is the perturbation, defined as µ = B − BH, and the coefficients α1 and α2 are
obtained from the linear analysis, given by

α1 = − 103823

59780098
, α2 =

41860550
√

3

269010441
,



SM14 P. YU, P. POOLADVAND, M. M. TANAKA, AND L. M. WAHL

 0

 0.5

 1

 1.5

 2

 0
 500  1000  1500  2000

 

 

 

 

 

 

 

     

 

 

 0

 0.5

 1

 1.5

 2

     

 

 

 0

 0.5

 1

 1.5

 2

     

 

 

N1 N2 P Q

t
Figure SM5. Simulated periodic solution bifurcating from the Hopf bifurcation of the 4-d model (10) around

E9 with c̃ = 2
5
, D̃ = 4

5
, A = 1, E = 5

2
, B = 1, r1 = K2 = 3 and r2 = K1 = 2. The red, blue, black and green

curves denote the solutions for N1, N2, P and Q, respectively.

where α1 is called transversal condition. r and θ represent the amplitude and phase of
motion, respectively. Then, the approximations of the amplitude and frequency of the motion
are obtained from the normal form as

r̄ =

√
− 1564636568814

84096629481125
µ, ω =

3
√

3

7
+

311746597115153
√

3

1977952725396060
µ.

It is seen that since the coefficient of r2 in the amplitude equation is negative, the Hopf
bifurcation is supercritical and bifurcating limit cycle is stable. We choose the perturbation
µ = 1− 413

235 = −178
235 ≈ 0.75744681 for simulation, which yields

r̄ =

√
5925644877636

420483147405625
≈ 0.11871170,

ω =
1528906400302039

√
3

4944881813490150
≈ 0.53553222.

The simulation result is shown in Figure SM5. Comparing it with the simulation for E8 (see
Figure SM4), we note that there the absolute value of the perturbation, µ ≈ − 0.10864904,
is much smaller than that for E9, while the amplitude of oscillation for E8 is larger than
that for E9; this implies that the impact of the parameter r1 (or r2) is stronger than that of
parameter B.

SM4.6. Host-range expansion from E5. Here we present the proof that it is not possible
to find parameter values for which the host, parasite and competitor stably co-exist in the 3-d
model, but if the parasite expands its host range, E5 loses stability and both E6 and E7 are
stable in the 4-d model.
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Theorem SM4.1. There are no feasible parameter values such that the equilibrium E5 of
the 3-d model is stable, while it is unstable for the 4-d model, simultaneously with both E6 and
E7 being LAS.

Proof. Consider the conditions:

1

B
< K1 ≤ r2, r1 > r∗1,

under which E5 is GAS for the 3-d model, while for the 4-d model, its stability needs two
more conditions:

E <
Br2

K2(Br2 − 1)
, D̃ < B − EK2

(
B − 1

r2

)
.

Note that E6 exists for K1D̃ > 1, and is LAS for

B < D̃, and r2 <
1

D̃
+
Ar1
c̃

(
1− 1

D̃K1

)
.

It is easy to see that E5 (for the 4-d model) is unstable for B < D̃. E7 exists for EK2 > 1,
and is LAS for

r1 <
1

E
+
c̃ r2
A

(
1− 1

EK2

)
.

Summarizing the above discussions, we have the following conditions required for E5 being
GAS for the 3-d model; unstable for the 4-d model; and E6 and E7 both LAS:

(SM14)

1

B
< K1 ≤ r2, r1 > r∗1 =

K1K2(Br2 − 1)

r2(BK1 − 1)
,

D̃K1 > 1, B < D̃, r2 <
1

D̃
+
Ar1
c̃

(
1− 1

D̃K1

) 4
= r2c,

EK2 > 1, r1 <
1

E
+
c̃ r2
A

(
1− 1

EK2

) 4
= r1c.

It follows from K1 ≤ r2 < r2c that

(SM15) K1 <
1

D̃
+
Ar1
c̃

(
1− 1

D̃K1

)
=⇒

(
K1 −

1

D̃

)(
K1 −

Ar1
c̃

)
< 0 =⇒ K1 <

Ar1
c̃
.

We use r1 < r1c and r2 < r2c to obtain that

(SM16)

r1 <
1

E
+
c̃ r2
A

(
1− 1

EK2

)
<

1

E
+
c̃ r2c
A

(
1− 1

EK2

)
=

1

E
+

c̃

D̃A

(
1− 1

EK2

)
+ r1

(
1− 1

EK2

)(
1− 1

D̃K1

)
=⇒ r1 <

K1

[
D̃K2 + c̃ (EK2 − 1)

]
A(D̃K1 + EK2 − 1)

4
= ra1 .
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Then, using K1 <
Ar1
c̃ <

Ara1
c̃ yields

(SM17) K1 <
K1

[
AD̃K2 + c̃ (EK2 − 1)

]
c̃ (D̃K1 + EK2 − 1)

=⇒ AK2 > c̃K1.

Further, it is easy to prove that

K2 − ra1 =
(EK2 − 1)(AK2 − c̃ K1)

A(D̃K2 + (EK2 − 1)
> 0 =⇒ r1 < ra1 < K2.

However, noticing that

r1 > r∗1 =
K1K2(Br2 − 1)

r2(BK1 − 1)
= K2

BK1 − K1
r2

BK1 − 1
≥ K2, due to r2 ≥ K1,

we know that no feasible parameter values exist for the case that E5 is GAS for the 3-d model
but unstable for the 4-d model, simultaneously with LAS E6 and E7.

For the second stability condition for E5:
1
B < r2 < K1, r1 > r1H, we should have the

same conclusion, since the stability conditions for E5 (4-d model), E6 and E7 are same.

SM5. Bistable states. Finally, we consider possible bistable states or co-existence of
equilibria, since this is not only an interesting theoretical question, but also an important
phenomenon in determining the possible outcomes of host-range expansions. To aid the reader,
we provide a visualization of the equilibria of the 3-d and 4-d models in Figure SM6.

It is obvious that the 2-d model (SM1) cannot have coexistence of equilibria. The 3-d
model (2) can have bistability only between E1 and E2, as well as between E2 and E4. The
situation becomes much more complex for the 4-d model (10). There are two groups, one
of them is an “easier group”, which can be identified by directly comparing the stability
conditions; while the other is a “harder group”, all of which involve the equilibrium E8, and
which require tedious computation such as that demonstrated in the proof of Theorem 4.1. In
order to show the existence of bistability, for each case we present a concrete example, without
identifying all possible parameter values. More precisely, we have the following result.

Theorem SM5.1. The 2-d model (SM1) does not have bistable states. For the 3-d model
(2), bistable stable states can only exist in the equilibrium pairs (E1,E2) and (E2,E4). For
the 4-d model (10), there are two groups (A) and (B). Group (A) contains the bistable pairs:
(E1, E2), (E1, E7), (E2, E4), (E2, E6), (E2, E9), (E3, E6), (E4, E7), (E5, E7), and (E6, E7).
Group (B) contains the bistable pairs: (E1, E8), (E2, E8), (E4, E8) and (E5, E8). Typical
examples with exact parameter values, exhibiting the bistable states, are listed in Table SM1
(for the 3-d model), Table SM2 (for the group (A) of the 4-d model) and Table SM3 (for the
group (B) of the 4-d model). Characteristic polynomials, denoted by P (λ), for these examples
are also provided in the tables to show stability. In the three tables, E.P. denotes Equilibrium
Pair.

Proof. First note that if there exists a transcritical bifurcation between two equilibria,
then they cannot be bistable. For example, there exists a transcritical bifurcation between E5

and E9, and so these two equilibria cannot be bistable.
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E9
Host1  Host2

Specialist  Generalist

E8
Host1  Host2

                 Generalist

E3
Host1  Host2

E7
           Host2

                 Generalist

E6
Host1            

                Generalist

E5
Host1  Host2

Specialist                 

E2
             Host2

E1
Host1            

         

E4
Host1          

Specialist                 

Figure SM6. A diagram illustrating the equilibrium states of the 4-d model. Transcritical bifurcation
conditions label the arrows between equilibria. “Host1(2)” indicates the presence of population N1(2), “Specialist”
indicates the presence of population P , while “Generalist” indicates the population Q.

Table SM1
Bistable Equilibrium Pairs for 3-d Model (2)

E. P. (B,K1,K2, r1, r2) P (λ)

(E1,E2)
(
1
2 ,

3
2 , 2, 3

2 , 1
) (E1) : 1

16(2λ+ 1)(2λ+ 3)(4λ+ 1)

(E2) : 1
2(2λ+ 1)(λ+ 1)2

(E2,E4)
(
1
2 , 3, 2, 1, 3

2

) (E2) : 1
2(λ+ 1)(2λ+ 3)2

(E4) : 1
6(2λ+ 1)(3λ2 + 2λ+ 1)

For the 3-d model (2), it is straightforward to use the stability conditions to find the
bistable pairs (E1,E2) and (E2,E4) since the parameter values are overlapping for their exis-
tence and stability conditions. For the bistable pairs in Group (A) of the 4-d model, it is not
difficulty to find them by carefully inspecting their existence and stability conditions. How-
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Table SM2
Bistable Equilibrium Pairs for Group (A) of 4-d Model (10)

E. P. (B,K1,K2, r1, r2, D̃, E, c̃, A) P (λ)

(E1,E2)
(
1
2 ,

3
2 , 2, 3

2 , 1, 1
3 ,

2
5 ,

2
5 ,

1
2

) (E1) : 1
32(2λ+ 1)2(2λ+ 3)(4λ+ 1)

(E2) : 1
10(λ+ 1)2(2λ+ 1)(5λ+ 1)

(E1,E7)
(
1
2 ,

3
2 , 2, 3

2 , 1, 1
3 ,

3
5 ,

2
5 ,

1
2

) (E1) : 1
32(2λ+ 1)2(2λ+ 3)(4λ+ 1)

(E7) : 1
60(λ+ 1)(2λ+ 1)(3λ+ 1)(10λ+ 3)

(E2,E4)
(
1
2 , 3, 2, 1, 3

2 ,
1
3 ,

2
5 ,

2
5 ,

1
2

) (E2) : 1
10(λ+ 1)2(2λ+ 3)(5λ+ 1)

(E4) : 1
6(2λ+ 1)(3λ+ 1)(3λ2 + 2λ+ 1)

(E2,E6)
(
1
2 , 3, 2, 1, 3

2 ,
3
5 ,

2
5 ,

2
5 ,

1
2

) (E2) : 1
10(λ+ 1)2(2λ+ 3)(5λ+ 1)

(E6) : 1
972(6λ+ 1)(18λ+ 13)(9λ2 + 5λ+ 4)

(E2,E9)
(
1
2 , 3, 3

2 ,
147
100 , 3, 2

5 ,
1
2 ,

2
5 , 1

) (E2) : 1
400(λ+ 1)(λ+ 3)(4λ+ 1)(100λ+ 3)

(E9) : 1
2500(2500λ4+4450λ3+245λ2+6λ+1)

(E3,E6)
(
1
2 , 1, 1, 2, 3, 3

2 ,
1
10 ,

2
5 ,

3
2

) (E3) : 1
2500(10λ+7)(50λ+1)(5λ2+18λ+12)

(E6) : 1
54(3λ+ 2)(6λ+ 1)(3λ2 + 4λ+ 2)

(E3,E7)
(
1
2 , 1, 1, 2, 3, 1

4 ,
33
32 ,

2
5 ,

1
45

) (E3) : 1
2000(40λ+1)(10λ+)(5λ2+18λ+12)

(E7) : 1
363(λ+ 1)(33λ+ 20)(11λ2+32λ+1)

(E4,E7)
(
1
2 , 3, 2, 1, 1, 2

5 ,
4
5 ,

2
5 ,

1
2

) (E4) : 1
15(λ+ 1)(5λ+ 1)(3λ2 + 2λ+ 1)

(E7) : 1
160(λ+ 1)(20λ+ 11)(8λ2 + 5λ+ 3)

(E5,E7)
(
1, 2, 1, 4, 3, 1

8 ,
5
4 ,

2
5 ,

1
20

) (E5) : 1
72(24λ+ 1)(3λ3 + 12λ2 + 14λ+ 8)

(E7) : 1
25(λ+ 1)(5λ+ 8)(5λ2 + 12λ+ 3)

(E6,E7)
(
1
2 ,

3
2 , 1, 1, 4

3 ,
3
4 ,

3
2 ,

2
5 ,

1
2

) (E6) : 1
972(3λ+ 1)(36λ+ 5)(9λ2 + 8λ+ 1)

(E7) : 1
405(λ+ 1)(45λ+ 1)(9λ2 + 8λ+ 4)

ever, for Group (B) of the 4-d model, it is quite difficulty to prove whether they are bistable or
not. The approach used in the proof of Theorem 4.1 is needed for considering the bistability.
Proofs will be given for two examples, one for the pair (E2,E9) in Group (A), and one for the
pair (E5,E8) in Group (B). Other cases can be similarly proven.
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Table SM3
Bistable Equilibrium Pairs for Group (B) of 4-d Model (10)

E. P. (B,K1,K2, r1, r2, D̃, E, c̃, A) P (λ)

(E1,E8)
(
1
2 ,

31
20 ,

5
2 , 2, 3

2 ,
2
5 ,

4
5 ,

1
3 ,

1
2

) (E2) : 1
40000(λ+ 2)(20λ+ 1)(40λ+ 9)(50λ+ 19)

(E8) : 1
15583372(1204λ+739)(12943λ2+480λ+468)

(E2,E8)
(
1
2 , 1, 41

20 , 2, 4
5 , 2, 2

5 ,
2
5 ,

2
25

) (E2) : 1
5000(λ+ 1)(5λ+ 4)(20λ+ 1)(50λ+ 9)

(E8) : 1
9953280(288λ+ 257)(34560λ3 + 34080λ2

+419λ+ 217)

(E4,E8)
(
1
2 ,

1001
500 ,

31
30 , 1,

10
20 ,

2
5 ,

428647
426405 ,

2
5 , 3
) (E4) : 1

100100(5λ+1)(20λ+21)(1001λ2+1000λ+1)

(E8) : 1
6(2λ+ 1)(3λ+ 1)(3λ2 + 2λ+ 1)

(E5,E8)

(B, K1, K2, r1, r2, D̃, E, c̃, A) =
(
1
2 ,

40021
20000 , 2, 970471159

488410000 ,
2001
1000 ,

151579
400210 , 2, 2

5 ,
21
50

)
P (E5) =

(
λ+ 96300106

400410105

)(
λ3+ 77715624426236610000

39112859876610000000 λ
2+ 1176740478699000

39112859876610000000 λ

+ 1686855352339
39112859876610000000

)
P (E8) =

(
λ+ 2309313133421

26000271920390

)(
λ3 + 64863514517103697368801043269732340500000

33017206608527273135328710316100000000000λ
2

+ 694988351108821863639866099032095990000
33017206608527273135328710316100000000000λ

+ 13972205709936147310316677096472776551
33017206608527273135328710316100000000000

)
For the bistable pair (E2,E9), the stability for E2 only needs r1 < K2 <

1
E . The existence

condition for E9 is given in (36). Once the existence condition is satisfied, the stability
condition given in (38) will be most likely satisfied, which only needs verifying. Let us start

from K2 <
1
E and E > B−D̃

BK2
to get 1− D̃

B < EK2 < 1. Then from r1 < K2 and the condition
on r1 given in (36) we have

(SM18)
K1

{
AK2(B − D̃) + c̃

[
r2(BEK2 −B + D̃)− EK2

]}
AEK2(BK1 − 1)

< r1 < K2,

which yields

AK2

[
K1(B − D̃)− EK2(BK1 − 1)

]
+K1c̃

[
r2(BEK2 −B + D̃)− EK2

]
< 0.

Since the term in the second square bracket of the above inequality is positive, the above
equality requires

K1(B − D̃)− EK2(BK1 − 1) < 0 =⇒ EK2 > 1− D̃K1 − 1

BK1 − 1
,
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which implies D̃K1 > 1 due to BK1 > 1 (see (36)) and EK2 < 1. It is easy to show that

(SM19) 1− D̃

B
< 1− D̃K1 − 1

BK1 − 1
< EK2 < 1.

Then, it follows from (SM18) that

(SM20) A >
K1c̃

[
r2(BEK2 −B + D̃)− EK2

]
K2

[
EK2(BK1 − 1)−K1(B − D̃)

] .
Having established the above relations, we choose B = 1

2 , D̃ = 2
5 , K1 = 3 to satisfy B > D̃

and BK1 > 1. Next, using (SM19) we obtain 3
5 < EK2 < 1. Choosing E = 1

2 , K2 = 3
2 and

c̃ = 2
5 yields r2 >

30
11 (see the condition given in (36)). We let r2 = 3. Then, we use (SM20)

to obtain A > 4
5 , and choose A = 1. With these chosen parameter values, we obtain the

characteristic polynomials listed in Table SM2 for (E2,E9), showing that both E2 and E9 are
LAS for this set of parameter values.

Now we turn to the bistable pair (E4,E8). To prove this case, we first consider a parameter
value at a critical boundary, which yields a zero eigenvalue. Having successfully obtained the
result for the critical point, we then give a perturbation to the critical point to remove the
zero eigenvalue. To achieve this, we consider the stability of E4: r2 <

1
B < min{K1,

1
D̃
}, and

let K1 = 1
B , which implies B > D̃, and D̃r2 < Br2 < 1. Then, we require that

N18n =
1

B

[
EK2(Ar1 − c̃ r2)− (AK2 − c̃ r2)

]
> 0,

N28n =
K2

B

[
Ar1(B − D̃)− (1− D̃r2)c̃

]
> 0,

Q8n =
1

B

[
EK2(1− D̃r2)− (B − D̃) r1r2 − EK2r1(1−Br2)

]
> 0,

1−BN18 =
(B − D̃)(AK2 − c̃ r2)− EK2 c̃ (1−Br2)

EK2(ABr2 − c̃)− D̃(AK2 − c̃ r2)
> 0.

It is easy to see that N28n > 0 gives

(SM21) A >
c̃ (1− D̃r2)
r1(B − D̃)

,

which leads to

(SM22) Ar1 − c̃ r2 >
c̃ (1− D̃r2)
B − D̃

=
c̃ (1−Br2)
B − D̃

> 0.

Next, it follows from N18n > 0 that

(SM23) E >
AK2 − c̃ r2

K2(Ar1 − c̃ r2)
.
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Further, we compute

EK2(ABr2 − c̃)− D̃(AK2 − c̃ r2)−BD̃N18n

= EK2(B − D̃)
(
Ar1 −

c̃ (1− D̃r2)
B − D̃

)
> 0, (due to (SM21)),

which implies that the denominator of 1 − BN18 is greater than zero provided N18n > 0.
Thus, letting the numerator of 1−BN18 be greater than zero leads to

E <
(B − D̃)(AK2 − c̃ r2)

K2 c̃ (1−Br2)
,

which is then combined with (SM23) to yield

(SM24)
AK2 − c̃ r2

K2(Ar1 − c̃ r2)
< E <

(B − D̃)(AK2 − c̃ r2)
K2 c̃ (1−Br2)

.

This provides a feasible interval for E due to Ar1 − c̃ r2 > 0, with the assumption AK2 −
c̃ r2 > 0, which will be proven in the next step, see (SM27). Now, from Q8n > 0 we have

(SM25) E <
K2(1− D̃r2)− (B − D̃) r1r2

K2r1(1−Br1)
,

which needs

(SM26) K2 >
(B − D̃) r1r2

1− D̃r2
,

and then a simple calculation shows that

(SM27) AK2 − c̃ r2 > 0.

In addition, it can be shown that

K2(1− D̃r2)− (B − D̃) r1r2
K2r1(1−Br1)

<
(B − D̃)(AK2 − c̃ r2)

K2 c̃ (1−Br2)
.

Thus, combining (SM24) and the above inequality we have

(SM28)
AK2 − c̃ r2

K2(Ar1 − c̃ r2)
< E <

K2(1− D̃r2)− (B − D̃) r1r2
K2r1(1−Br1)

,

which requires that K2 > r1. Comparing this condition K2 > r1 with that given in (SM26)
shows that

r1 −
(B − D̃) r1r2

1− D̃r2
=
r1(1−Br2)

1− D̃r2
> 0,

indicating that K2 > r1.
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Finally, based on the above derived formulas, we first choose B = 1
2 , and then K1 =

1
B + ε = 2 + ε, where 0 < ε� 1. We choose ε = 1

500 , but set ε = 0 in the following procedure

of determining parameter values. We choose D̃ = 2
5 and r2 = 19

20 . Further, let r1 = 1 and
c̃ = 2

5 . Using (SM21) we have A > 62
25 , and take A = 3. Next, we select K2 = 31

30 in order to
have K2 ' r1. Then, it follows from (SM27) that 4080

4061<E<
3274
3255 . We take the middle point of

this interval to obtain E = 428647
426405 . Substituting the above chosen parameter values, together

with ε = 1
500 into system (10) yields the two characteristic polynomials, given in Table SM3,

for E4 and E8 respectively.

Remark SM1. (i) It has been shown that the 2-d model (SM1) does not need a bounded-
ness condition since the solutions of the model are bounded for any positive parameter values,
and the two LAS equilibrium solutions are also GAS under their LAS stability conditions.
However, the 3-d model (2) and the 4-d model (10) do need the boundedness conditions, in
addition to the LAS conditions, to reach GAS. Except the equilibrium E5 for the 3-d model
whose LAS conditions involve the boundedness conditions, all the equilibrium solutions of the
3-d and 4-d models need the boundedness condition to achieve GAS.

(ii) All equilibria of the 3-d and 4-d models are located on the boundary of attracting
region Ω3d (for the 3-d model) or Ω4d (for the 4-d model). Without the boundedness condition
(C3d

bd or C4d
bd), when multi-stable equilibria exist, equilibria are LAS and to which equilibria

they will converge depends up the initial condition. While when the boundedness condition
is satisfied, only one stable equilibrium exists and all trajectories converge to this equilibrium
regardless the initial condition.

(iii) In this paper, we only discussed one type of bistable state, that is, when both states
are equilibrium solutions. There is another class of bistable states – a stable equilibrium and
a stable limit cycle – which can only exist from the bistable equilibrium pairs when one of
the equilibria loses its stability and generates a supercritical Hopf bifurcation. Thus, such a
bistable phenomenon may only appear in the 4-d model from the equilibrium pairs in Group
(B) and the pair (E2,E9) in Group (A). Finding the conditions on parameters which produce
this type of bistable phenomenon is beyond the scope of this paper, and will be studied in
future.
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