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This letter reports a study on some topological properties of chaos using a generalized competi-
tive mode (GCM). The Lorenz system and the Chen system are used as examples for comparison.
It is shown that for typical parameter values used in the two systems, the Lorenz attractor has
one pair of GCMs in competition, while the Chen attractor has two pairs of GCMs in competi-
tion. This explains why the two attractors are topologically different, and furthermore indicates
that the Chen attractor is more complex than the Lorenz attractor from the dynamics point
of view.
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1. Introduction

A new concept called Generalized Competitive Mode
(GCM) was recently proposed to study dynamical
systems [Yao et al., 2002, 2004, 2006]. In particular,
it has been shown [Yao et al., 2006] that a chaotic
system has at least two GCMs. One application of
GCM is to estimate a parameter regime in which
a nonlinear system may exhibit chaotic motions. It
has been demonstrated that chaos may be found by
analyzing the GCMs of a system without numerical

integrations. Another application of GCM is to
create new chaotic systems by predesigning some
GCMs. More examples showing various applications
of GCM can be found in [Yao et al., 2006].

In this note, we consider a new application of
GCM, i.e. using GCM to study the topological prop-
erties of strange attractors obtained from different
systems. In particular, we study the Lorenz and
the Chen systems and compare their topological
characteristics. The Lorenz system is described by
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[Lorenz, 1963, 1993]

ẋ = σ(y − x),
ẏ = αx − y − xz, (1)
ż = −βz + xy,

where σ, α and β are parameters, taking positive
real values. The Chen system [Chen & Ueta, 1999;
Ueta & Chen, 2000] is given by

ẋ = a(y − x),
ẏ = (c − a)x + cy − xz, (2)
ż = −bz + xy,

where a, b and c are positive real parameters. The
Chen system (2) can be obtained from the Lorenz
system (1) by letting σ = a, α = c and β = b, and
moreover adding a linear feedback control given by

u = −ax + (c + 1)y (3)

to the second equation of system (1).
Both the Lorenz and the Chen systems can

exhibit chaotic motions for certain parameter val-
ues. However, it has been shown that the Chen
attractor is quite different from the Lorenz attrac-
tor. Two typical attractors are shown in Figs. 1(a)
and 1(b), with the corresponding parameter values:

σ = 10, α = 25, β =
8
3
, (4)

for the Lorenz system, and

a = 35, c = 28, b = 3, (5)

for the Chen system.
A fundamental question arises: Are the

Lorenz attractor and the Chen attractor topolog-
ically equivalent? In this note, we use GCM to
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Fig. 1. (a) The Lorenz attractor for σ = 10, α = 25, β = 8/3; and (b) the Chen attractor for a = 35, c = 28, b = 3.

investigate the topological difference between the
two attractors.

2. Generalized Competitive Mode

First, we briefly introduce the concept of GCM. In
physics, mode often means a single frequency. A
linear oscillator is completely described by a mode,
including the frequency, phase and amplitude. How-
ever, mode may not be necessary defined physically,
it can be something else considered in competition.
To generalize the idea of linear mode to nonlinear
systems, consider the general nonlinear autonomous
system

ẋi = fi(x1, x2, . . . , xn), i = 1, 2, . . . , n, (6)

where fi ∈ C1(R) and, for any integer 1 ≤ j ≤ n,
|∂fi/∂xj | is bounded. Differentiating Eq. (6) with
respect to time yields

ẍi =
n∑

j=1

fj
∂fi

∂xj
= −xigi(x1, x2, . . . , xi, . . . , xn)

+ hi(x1, x2, . . . , xi−1, xi+1, . . . , xn), (7)

where gi and hi are some nonlinear functions, and gi

is bounded. Comparing Eq. (7) to system (6) shows
that hi should not contain variable xi.

It can be seen from Eq. (7) that the dynamical
behavior of the component xi is determined by the
functions gi and hi, as well as the system’s initial
conditions. In this sense, and comparing to system
(6), we may call gi the generalized competitive mode
(GCM) associated with the component xi. Compar-
ing the term −xigi with ω2x in the linear oscillator
ẍ + ω2x = 0 suggests by analogy that the GCM
should only exist when gi > 0.
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When more than one GCM exists in a dynam-
ical system, these GCMs may be viewed as being
in competition with each other. If there exist at
least two GCMs, then the competition between the
GCMs may lead to complex motions such as chaos.
However, if the system has at most one GCM,
then complex phenomena like chaos cannot occur
because of lacking competition. Based on the con-
cept of mode competition and the definition of the
GCM, necessary conditions for a system to have
chaos have been proposed [Yao et al., 2002, 2004,
2006]:

(1) There exist at least two GCMs.
(2) At least two such GCMs are competitive.
(3) At least one GCM is a function of evolutionary

variables such as t.

The first condition is obvious since onemode can only
generate one type of simple motion. The second one
requires GCMs to compete with each other. The last
condition excludes a system from being chaotic if all
the GCMs are constants, such as in the linear case.

3. Main Results

Applying formula (7) to the Lorenz system (1)
yields the following GCMs:

gx = −σ2 − σ(α − z),
gy = −1 − σ(α − z) + x2, (8)
gz = x2 − β2.

Obviously, gy > gx if σ > 1. Thus, there is no
GCM competition between the modes gx and gy for

σ > 1. This indicates that in the commonly refer-
eed parameter regime, there are at most two pairs
of GCMs, (gx, gz) and (gy, gz), in competition. How-
ever, for the pair (gx, gz) to be in competition, the
equation gz − gx = 0 must have at least one solu-
tion. But gz − gx = x2 + σ2 + σα − β2 − σz = 0
results in

z =
x2

σ
+ σ + α − β2

σ
, (9)

which, together with α = 10, α = 25 and β = 8/3
(which are used for Fig. 1(a)), gives

z =
x2

10
+ 35 − 32

45
>

x2

10
+ 34. (10)

It is easy to see from the trajectories shown in
Fig. 1(a) that z cannot reach the values specified by
Eq. (10). Therefore, the Lorenz system has at most
one pair of GCMs (i.e. the pair (gy, gz)) in compe-
tition for the parameter values α = 10, α = 25 and
β = 8/3.

When this pair of GCMs is in competition, the
Lorenz system may be chaotic; otherwise, no chaos
exists. The GCMs of the Lorenz system for two sets
of parameter values are shown in Fig. 2. Although
only a very small change is given to parameter α
(while σ and β are kept the same values for the
two cases), qualitatively different behaviors have
been noted. Figure 2(a) indicates one pair of GCMs
in competition, implying the existence of chaotic
motions (see the computer simulated phase portrait
given in Fig. 1(a)). Figure 2(b), on the other hand,
shows no GCM completion and hence this case can-
not exhibit chaotic motions. Indeed, computer sim-
ulation yields periodic solutions (limit cycles), as
shown in Fig. 3.
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Fig. 2. The GCMs of the Lorenz system for σ = 10, β = 8/3, when (a) α = 25; and (b) α = 24.5.

In
t. 

J.
 B

if
ur

ca
tio

n 
C

ha
os

 2
00

7.
17

:2
79

1-
27

96
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 U

N
IV

E
R

SI
T

Y
 O

F 
W

E
ST

E
R

N
 O

N
T

A
R

IO
 W

E
ST

E
R

N
 L

IB
R

A
R

IE
S 

on
 0

7/
24

/1
2.

 F
or

 p
er

so
na

l u
se

 o
nl

y.



2794 P. Yu et al.

−8 −7.9 −7.8 −7.7
23.2

23.3

23.4

23.5

23.6

23.7

x

z

Fig. 3. The limit cycle for Fig. 2(b).

Next, we consider the Chen system (2) and
obtain the corresponding GCMs:

gx = a(z − c),

gy = a(z − c) + x2 + a2 − c2, (11)

gz = x2 − b2.

It is clear that gy > gx when a2 > c2. Therefore,
at most two pairs of GCMs, (gx, gz) and (gy, gz),
are competitive. By choosing the parameter values
given in Eq. (5), we use a numerical method to find
the GCMs for the Chen system, as shown in Fig. 4.
The following findings are observed from Fig. 4.

(i) There are two pairs of GCMs, (gx, gz) and
(gy, gz), in competition for most time periods.

(ii) There exists a relatively long time between the
competition periods, in which no GCM compe-
tition is found. Assume that the GCMs are in
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Fig. 4. The GCMs of the Chen system when a = 35,
c = 28, b = 3.

competition for, say, t ∈ [t0, t1], then there is no
GCMs in competition for t ∈ [t1, t2], and then
there is a period with competition, and then no
competition, and so on. This process repeats,
with a period ratio (t1 − t0)/(t2 − t1) ≈ 4. The
ratio is slightly varied with time. The time his-
tory for z(t) is shown in Fig. 5. It is seen from
Fig. 4 that when t ∈ [0, 3] ∪ [6.5, 10], there are
two pairs of GCMs in competition; while when
t ∈ [3, 6.5], there is no GCM in competition.

Therefore, in period t ∈ (t0, t1), the system’s behav-
ior is more complicated, as shown in Fig. 1(b).

We have used GCM to confirm the topological
difference between the Lorenz and the Chen attrac-
tors: The Lorenz attractor has one pair of GCMs
in competition, while the Chen attractor has two
pairs of GCMs in competition. This explains why
the Chen attractor looks more complex than the
Lorenz attractor, and indicate that they are topo-
logically different.

Next, we consider a system different from the
Lorenz and the Chen systems, but showing similar
behaviors. The system is given by

ẋ = a(y − x),

ẏ = cy − xz, (12)

ż = −bz + xy,

where a, b and c are positive real parameters. This
system has been shown to exhibit attractors sim-
ilar to the Lorenz and the Chen attractors [Lü &
Chen, 2002]. In particular, under the fixed values
a = 36, b = 3, this system is similar to the Lorenz
attractor when 12.7 < c < 17.0, has a transition
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Fig. 5. The time history y(t) of the Chen system when
a = 35, c = 28, b = 3.
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Fig. 6. Computer simulation results for system (12) when a = 36, b = 3, c = 13: (a) the chaotic attractor; and (b) the GCMs.
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Fig. 7. Computer simulation results for system (12) when a = 36, b = 3, c = 20: (a) the chaotic attractor; and (b) the GCMs.
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Fig. 8. Computer simulation results for system (12) when a = 36, b = 3, c = 13: (a) the chaotic attractor; and (b) the GCMs.
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shape when 18.0 < c < 22.0, and then becomes sim-
ilar to the Chen attractor when 23.0 < c < 28.5. In
the following, we choose c = 13, 20 and 28 for the
three cases and apply GCM analysis to investigate
the difference between the three cases.

Case 1. a = 36, b = 3, c = 13. The strange
attractor is shown in Fig. 6(a), which is similar to
the Lorenz attractor. The corresponding GCMs are
depicted in Fig. 6(b), showing that there is only one
pair of GCMs, (gy, gz), in competition, which agrees
with what we have found in the Lorenz system.

Case 2. a = 36, b = 3, c = 20. For this case, the
system exhibits a chaotic attractor that is slightly
more complex than that of Case 1 [see Fig. 7(a)]. It
is observed from the GCMs, shown in Fig. 7(b), that
the pair of GCMs (gy, gz) keeps in competition as
in Case 1, while the pair of GCMs (gx, gz) is about
to become competitive.

Case 3. a = 36, b = 3, c = 28. The attractor
for this case, as shown in Fig. 8(a), is similar to
the Chen attractor [see Fig. 1(b)]. In fact, for this
case, the two pairs of GCMs, (gx, gz) and (gy, gz),
are both in stronger competition, as depicted in
Fig. 8(b).

4. Conclusion

The GCM technique is employed to study chaotic
attractors, showing that the Lorenz attractor and
the Chen attractor are topologically (qualitatively)
different because they have different numbers of
GCMs. A related quadratic system has also been

investigated, which further verifies and demon-
strates the usefulness of GCMs in studying different
types of chaotic systems.
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