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Abstract

In this paper, we study the explicit expansion of the first order Melnikov function near a double homo-
clinic loop passing through a nilpotent saddle of order m in a near-Hamiltonian system. For any positive 
integer m(m ≥ 1), we derive the formulas of the coefficients in the expansion, which can be used to study 
the limit cycle bifurcations for near-Hamiltonian systems. In particular, for m = 2, we use the coefficients 
to consider the limit cycle bifurcations of general near-Hamiltonian systems and give the existence condi-
tions for 10, 11, 13, 15 and 16 (11, 13 and 16, respectively) limit cycles in the case that the homoclinic 
loop is of cuspidal type (smooth type, respectively) and their distributions. As an application, we consider 
a near-Hamiltonian system with a nilpotent saddle of order 2 and obtain the lower bounds of the maximal 
number of limit cycles.
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1. Introduction

As we know, the study of the number of limit cycles for a near Hamiltonian system is closely 
related to the known Hilbert’s 16th problem presented by D. Hilbert more than one hundred years 
ago [1]. There have been many studies on the number of limit cycles for the following general 
near-Hamiltonian system

ẋ = Hy + εp(x, y, ε, δ), ẏ = −Hx + εq(x, y, ε, δ), (1.1)

where p, q and H are C∞ functions, ε ≥ 0 is a small perturbation parameter and δ is a parameter 
vector, δ ∈ D ⊂ R� with � ∈ Z+ and D compact. When ε = 0, system (1.1) becomes the 
following Hamiltonian system,

ẋ = Hy, ẏ = −Hx. (1.2)

Suppose that system (1.2) has a nilpotent singular point, which, without loss of generality, is 
assumed at the origin. That is to say, the function H(x, y) satisfies Hx(0, 0) = 0, Hy(0, 0) = 0, 
and

∂(Hy,−Hx)

∂(x, y)
�= 0, det

∂(Hy,−Hx)

∂(x, y)
= 0.

Without loss of generality, we further suppose that

Hyy(0,0) = 1, Hxy(0,0) = Hxx(0,0) = 0,

which means that the expansion of H at the origin can be written as

H(x,y) = 1

2
y2 +

∑
i+j≥3

hi,j x
iyj . (1.3)

By the implicit function theorem we can show that there exists a unique C∞ function ϕ(x) =∑
j≥2

ejx
j such that

Hy(x,ϕ(x)) = 0 (1.4)

for |x| small. Then, H(x, ϕ(x)) can be expanded in the form of

H(x,ϕ(x)) =
∑
j≥3

h̄j x
j .

Let k ≥ 3 be an integer such that

h̄k �= 0, h̄j = 0, for j < k. (1.5)

For cubic Hamiltonian systems, Han et al. [2] gave the following definition by using a well known 
result introduced in [3].
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Definition 1. ([2]) Consider system (1.1) with (1.5) being satisfied. Then the origin of system 
(1.2) is called a cusp of order m if k = 2m + 1. It is called a nilpotent center of order m (a nilpo-
tent saddle of order m, respectively) if k = 2m + 2 and hk > 0 (if k = 2m + 2 and hk < 0, 
respectively).

Suppose the level curves H(x, y) = h, h ∈ J of the Hamiltonian system (1.2) contain at least 
a family of closed orbits with clockwise orientation denoted by �h, where J denotes an open 
interval having an endpoint h = 0. Introduce ([4])

M(h, δ) =
∮
�h

qdx − pdy|ε=0,

which is called the Abelian integral or the first order Melnikov function of system (1.1). The 
so-called weak Hilbert’s 16th problem is to find the maximal number of isolated zeros of M(h, δ), 
which is closely related to the maximal number of limit cycles of system (1.1) (see [5], [6]). Many 
studies have been done on the expansion of M(h, δ) and limit cycle bifurcations of system (1.1). 
In the following, we briefly summarize some of these works.

Let (1.3) and (1.5) hold. If the origin of system (1.2) is a nilpotent center of order m, i.e. 
h̄k > 0(k = 2m + 2), Han et al. [7] derived the asymptotic expansions of M(h, δ) at h = 0 for 
system (1.1), given by

M(h, δ) = h
2+m

2(m+1)

∑
l≥0

bl(δ)h
l

m+1 , for 0 < h � 1. (1.6)

The method of computing bl given in [7] is hard to be extended to derive explicit formulas of bl

for larger l. Then in [8], the authors developed a new approach to obtain (1.6) and established an 
efficient algorithm for computing the coefficients bl for any m ≥ 1.

If the origin of (1.2) is a nilpotent cusp of order m, i.e. h̄k �= 0 (k = 2m + 1), there have also 
been many studies. For the special cubic Hamiltonian system,

ẋ = y, ẏ = −x2(x − 1),

which has a homoclinic loop passing through a nilpotent cusp of order 1 at the origin, Dumortier 
and Li [9], and Zhao and Zhang [10] studied the property of M(h, δ) near a cuspidal loop under 
different perturbations. Later, for general near-Hamiltonian system (1.1), Han et al. [11] de-
rived the expansion of M(h, δ) and developed symbolic programs to calculate the coefficients of 
M(h, δ). Later, by using the method given in [11], Atabaigi et al. [12] and Xiong [13] obtained 
the first seven and eleven coefficients in the expansion of M(h, δ) for the cases m = 2 and m = 3, 
respectively.

If the origin of (1.2) is a nilpotent saddle, then it is a cuspidal type or a smooth type as shown 
in [14]. Yang and Zhao [15] obtained the upper bound of the number of zeros of Abelian integral 
for a quartic Hamiltonian with figure-of-eight loop through a nilpotent saddle. Zhao [16] studied 
the upper bound of the number of zeros of Abelian integral for a class of hyper-elliptic Hamilton 
systems with a double homoclinic loop through a nilpotent saddle. Suppose

H(x,y) = −1

4
x4 +

∑
hi,0x

i + y2
∑

hi,j x
iyj , (1.7)
i≥5 i+j≥0
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Fig. 1. A double homoclinic loop with a nilpotent saddle of order 2.

Zang et al. [17] gave the expansion of M(h, δ) at h = 0, and obtained the formulas of the first 
seven coefficients of the expansion in the case of cuspidal type. The following system

ẋ = y, ẏ = −g(x) − εf (x)y,

is called a Liénard system of type (m, n), where f (x), g(x) are polynomials in x with degf =
n, degg = m. Using Chebyshev property and the asymptotic expansions of M(h, δ) given by 
Zang et al. [17], Wang and Xiao [18] studied small perturbations on Hamiltonian vector field with 
a hyper-elliptic Hamiltonian of degree five, which is a Liénard system of type (4, 3). They proved 
that this system can have at most three limit cycles in the plane for sufficiently small positive ε. 
Then, using the expansion of M(h, δ) given by Zang et al. [17], Kazemi and Zangemeh [19]
gave the expansion of M(h, δ) for a planar near-Hamiltonian system near a heteroclinic loop 
connecting two nilpotent saddles of order 1 and studied the bifurcation of limit cycles in such 
systems. Asheghi and Bakhshalizadeh [20] studied the sharp upper bound of the maximal number 
of isolated zeros of M(h, δ) for a Liénard system of type (6, 5) by using Chebyshev property and 
the expansion of M(h, δ) given in Zang et al. [17].

However, it has been noted in [11] that, if H(x, y) does not satisfy (1.7), the result given in 
[17] is not applicable.

For general system (1.1), suppose it has a double homoclinic loop L∗
0 passing through a nilpo-

tent saddle of order m (see Fig. 1). It can be seen that there are three families of periodic orbits 
denoted by Lh, ̃Lh and L∗

h, respectively. Correspondingly, there are three Melnikov functions as 
follows

M(h, δ) =
∮
Lh

qdx − pdy|ε=0, M̃(h, δ) =
∮
L̃h

qdx − pdy|ε=0, M∗(h, δ) =
∮
L∗

h

qdx − pdy|ε=0.

(1.8)
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Han et al. [14] gave the expansions of M(h, δ), M̃(h, δ) and M∗(h, δ) for the cases of cuspidal 
type and smooth type. As we know, to study the limit cycle bifurcations we need to know the first 
several coefficients in the expansions. But, only for m = 1, Han et al. [14] gave the formulas of 
the first seven coefficients in the expansions of M(h, δ) and M̃(h, δ) and the first five coefficients 
in the expansion of M∗(h, δ). Then, based on the results given in [14], Sun [21] studied the 
expansion of the first order Melnikov function near a heteroclinic loop connecting two nilpotent 
saddles of order 1, and Tian and Han [22] studied the expansion of the first order Melnikov 
function near a compound loop passing through a nilpotent saddle of order 1 and a nilpotent 
cusp of order 1.

The coefficients for m ≥ 2 in the expansions of M(h, δ), M̃(h, δ) and M∗(h, δ) were not given 
in [14] and no any relative results exist so far. For general m ∈ Z+, not a concrete value of m, in 
this paper, we derive the explicit expansions of the above three Melnikov functions in both cases 
of cuspidal type and smooth type, and thus, the limit cycle bifurcations for near Hamiltonian 
systems with one or more nilpotent saddles of any order can be studied further. The main results 
of this paper are stated in Theorems 3.1 and 3.2.

Especially, for m = 2, we present some sufficient conditions to determine the number and 
distribution of limit cycles. For example, in the case of cuspidal type, we give the existence 
conditions for 16, 15, 13, 11 and 10 limit cycles and their distributions. In the case of smooth 
type, we obtain the existence conditions for 16, 13 and 11 limit cycles and their distributions.

This paper is organized as follows. We first present some preliminary lemmas in Section 2. 
Then, we give the explicit expansions of M(h, δ), M̃(h, δ), and M∗(h, δ), and their first several 
coefficients in Section 3. In Section 4, we further study the limit cycle bifurcations near a double 
homoclinic loop with a nilpotent saddle of order 2, give the conditions that limit cycles exist and 
obtain the distribution of these limit cycles. As an application, in Section 5, we consider limit 
cycle bifurcations of a type of system with a nilpotent saddle of cuspidal type.

2. Preliminary lemmas

If the origin of system (1.2) is a nilpotent saddle of order m, the expansions of M(h, δ), 
M̃(h, δ) and M∗(h, δ) in both cases of cuspidal type and smooth type are obtained by Han et al.
in [14] as shown in the following two lemmas.

Lemma 2.1. ([14]) Let (1.5) hold with hk < 0 and k ≥ 4 even, and L∗
0 be a double homoclinic 

loop defined by H(x, y) = 0 of cuspidal type. Then the functions M(h, δ), M̃(h, δ) and M∗(h, δ)
in (1.8) have the following expansions:

(i) for 0 < −h � 1,

M(h, δ) = ϕ(h, δ) − h ln |h|
2k

I ∗
1, k

2 −1
(h) + |h| 1

k
+ 1

2

k−2∑
r=0

r �= k
2 −1

ÃrI
∗
1r (h)|h| r

k ,

M̃(h, δ) = ϕ̃(h, δ) + (−1)k/2 h ln |h|
2k

I ∗
1, k

2 −1
(h) + |h| 1

k
+ 1

2

k−2∑
r=0

r �= k
2 −1

(−1)r Ãr I
∗
1r (h)|h| r

k ,

(2.1)

where ϕ(h, δ) ∈ Cω for 0 ≤ −h � 1, Ãr (0 ≤ r ≤ k − 2, r �= k − 1) are constants satisfying
2
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Ãr =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

− k
k+2(1+r)

∫ 1
0

v
k
2 −r−2√
1−vk

dv, for r < k
2 − 1,

− k
k+2(1+r)

[
2

k−2(r+1)
+ ∫ 1

0
v

3
2 k−r−2√

1−vk(1+
√

1−vk)
dv

]
, for k

2 − 1 < r < k − 1,

0, for r = k − 1,

(2.2)

and I ∗
1r (0 ≤ r ≤ k − 2) satisfy

I ∗
1r (h) =

∑
m̄,j≥0

r̃m̄k+r,j α
∗̄
mk+r,j β

∗̄
mk+rh

j+m̄,
(2.3)

with ̃rm̄k+r,j given by (18) in [14] and

α∗
ij =

⎧⎪⎪⎨
⎪⎪⎩

3
2k · 5

2k · · · 2j+1
2 k

( 3
2k + i + 1) · · · ( 2j+1

2 k + i + 1)
, i ≥ 0, j ≥ 1,

1, i ≥ 0, j = 0,

β ∗̄
mk+r =

⎧⎪⎨
⎪⎩

(−1)m̄(r + 1)(k + r + 1) · · · ((m̄ − 1)k + r + 1)

( 3
2k + r + 1)( 5

2k + r + 1) · · · ( 2m̄+1
2 k + r + 1)

, m̄ ≥ 1, 0 ≤ r ≤ k − 1,

1, m̄ = 0, 0 ≤ r ≤ k − 1;

(2.4)

(ii) for 0 ≤ h � 1,

M∗(h, δ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

ϕ∗(h, δ) + 2h
1
k
+ 1

2

k
2 −1∑
r=0

Ārh
2r
k J ∗

1r (h), if r1 is not an integer,

ϕ∗(h, δ) − h lnh

k
J ∗

1r1
(h) + 2h

1
k
+ 1

2

k
2 −1∑
r=0
r �=r1

Ārh
2r
k J ∗

1r (h), if r1 is an integer,

(2.5)

where 2r1 = k
2 − 1, ϕ∗(h, δ) ∈ Cω for 0 ≤ h � 1, Ār (0 ≤ r ≤ k

2 − 1, r �= r1) are constants 
satisfying

Ār =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

k

k + 2(1 + 2r)

∞∫
0

v2rdv√
1 + vk

, for 2r < k
2 − 1,

− k

k + 2(1 + 2r)

∞∫
0

v2rdv√
vk(1 + vk)[√vk + √

1 + vk] , for k
2 − 1 < 2r,

(2.6)

and J ∗ (0 ≤ r ≤ k − 1) satisfy
1r 2
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J ∗
1r (h) =

∑
i= m̄k

2 +r

m̄≥0,j≥1 odd

r
(1)
ij ᾱij β̄ih

m̄+[ j
2 ],

(2.7)

with r(1)
ij given by (20) in [14] and

ᾱij =

⎧⎪⎪⎨
⎪⎪⎩

1, i ≥ 0, j = 1,

3
2k · 5

2k · · · j
2 k

( 3
2k + 2i + 1)( 5

2k + 2i + 1) · · · ( j
2 k + 2i + 1)

, i ≥ 0, j ≥ 3 odd,

β̄i =

⎧⎪⎨
⎪⎩

1, 0 ≤ i ≤ k
2 − 1,

(−1)m̄(2i + 1 − k)(2i + 1 − 2k) · · · (2i + 1 − m̄k)

(2i + 1 + 1
2k)(2i + 1 − 1

2k) · · · (2i + 1 − 2m̄−3
2 k)

,
i = m̄k

2 + r, m̄ ≥ 1,

0 ≤ r ≤ k
2 − 1.

Lemma 2.2. ([14]) Let (1.5) hold with hk < 0 and k ≥ 4 even, and L∗
0 be a double homoclinic 

loop of smooth type. The functions M(h, δ), M̃(h, δ) and M∗(h, δ) in (1.8) have the following 
expansions:

(i) for 0 < h � 1,

M(h, δ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

ϕ(h, δ) + h
1
k
+ 1

2

k
2 −1∑
r=0

Ārh
2r
k J ∗

1r (h), if r1 is not an integer,

ϕ(h, δ) − h lnh

2k
J ∗

1r1
(h) + h

1
k
+ 1

2

k
2 −1∑
r=0
r �=r1

Ārh
2r
k J ∗

1r (h), if r1 is an integer,

(2.8)

M̃(h, δ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

ϕ̃(h, δ) + h
1
k
+ 1

2

k
2 −1∑
r=0

Ārh
2r
k J ∗

1r (h), if r1 is not an integer,

ϕ̃(h, δ) − h lnh

2k
J ∗

1r1
(h) + h

1
k
+ 1

2

k
2 −1∑
r=0
r �=r1

Ārh
2r
k J ∗

1r (h), if r1 is an integer,

(2.9)

where ϕ, ̃ϕ ∈ C∞ for 0 ≤ h � 1, J ∗
1r (0 ≤ r ≤ k

2 − 1) satisfy (2.7), Ār (0 ≤ r ≤ k
2 − 1, r �= r1)

are constants satisfying (2.6), and 2r1 = k − 1;
2
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(ii) for 0 < −h � 1,

M∗(h, δ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ϕ∗(h, δ) + 2|h| 1
k
+ 1

2

[
k−1

2

]∑
r=0

Ã2r |h| 2r
k I ∗

1,2r (h), if r1 is not an integer,

ϕ∗(h, δ) − h ln |h|
k

I ∗
1,2r1

(h) + 2|h| 1
k
+ 1

2

[
k−1

2

]∑
r=0
r �=r1

Ã2r |h| 2r
k I ∗

1,2r (h), if r1 is an integer,

(2.10)

where ϕ∗ ∈ Cω for 0 < −h � 1, I ∗
1,2r satisfy (2.3) and Ã2r are constants satisfying (2.2).

By (2.1), (2.3), (2.7), (2.8)–(2.10), it is easy to see that in order to obtain the coefficients in the 
expansions of M, M̃ and M∗ in Lemma 2.1 and Lemma 2.2, we need to compute ̃rij in (2.3) and 
r
(1)
ij in (2.7). For general k ≥ 3, we first present the algorithm for computing ̃rij and r(1)

ij given in 

[14] to give the relationship between ̃rij and r(1)
ij .

Consider system (1.1), where H(x, y) satisfies (1.3) and

p(x, y, ε, δ) =
n∑

i+j=0

ai,j x
iyj , q(x, y, ε, δ) =

n∑
i+j=0

bi,j x
iyj .

Suppose system (1.1) has a nilpotent singular point of order m at the origin.
Introduce a new variable

v = y − ϕ(x). (2.11)

Then system (1.1) becomes

ẋ = H ∗
v (x, v) + εp∗(x, v, ε, δ), v̇ = −H ∗

x (x, v) + εq∗(x, v, ε, δ),

where

H ∗(x, v) = H(x, v + ϕ(x)), p∗(x, v, ε, δ) = p(x, v + ϕ(x), ε, δ),

q∗(x, v, ε, δ) = q(x, v + ϕ(x), ε, δ) − ϕ′(x)p∗(x, v, ε, δ).

By (1.3) and (1.4) we know that H ∗(x, v) can be written as

H ∗(x, v) = H ∗
0 (x) +

∑
j≥1

H ∗
j (x)vj+1,

where

H ∗
0 (x) = H(x,ϕ(x)), H ∗

j (x) = 1 ∂j+1H

j+1 (x,ϕ(x)), j ≥ 1.

j + 1 ∂y
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Let q̄(x, v, δ) = q∗(x, v, 0, δ) −q∗(x, 0, 0, δ) +∫ v

0 p∗
x(x, u, 0, δ)du. Then it can be shown that

q̄v = (p∗
x + q∗

v )|ε=0 (2.12)

and q̄(x, 0, δ) = 0. So we can write

q̄(x, v, δ) = v
∑

i+j≥0

b̄ij x
ivj =

∑
j≥1

qj (x)vj , (2.13)

where

qj+1(x) = 1

(j + 1)!
∂j

∂yj
(px + qy)(x,ϕ(x),0, δ) =

∑
i≥0

b̄ij x
i, j ≥ 0. (2.14)

Note that the periodic orbits of system (1.1) is in clockwise orientation. So, if the origin is a 
nilpotent center of order m, the equation H(x, y) = h, h > 0 (or H ∗(x, v) = h, h > 0) defines 
a family of periodic orbits surrounding the origin. If the origin is a nilpotent cusp of order m, 
the equation H(x, y) = h, h < 0 or H(x, y) = h, h > 0 defines a family of periodic orbits inside 
or outside the cuspidal loop. And if the origin is a nilpotent saddle of order m as shown in 
Fig. 1, the equation H(x, y) = h, h > 0 (or h < 0) defines a family of periodic orbits L∗

h (or 
two families of periodic orbits Lh and L̃h). By [8], [11] and [14] we find that for any k ≥ 3, 
the equation H ∗(x, v) = h has exactly two C∞ solutions v1(x, w) and v2(x, w) in v satisfying 
v2(x, w) = v1(x, −w), where w =√h − H ∗

0 (x). We then write

q̄(x, v1, δ) − q̄(x, v2, δ) =
∑
j≥0

q̄j (x)w2j+1. (2.15)

Let ψ(x) = sgn(x) 
[
H ∗

0 (x)
] 1

k if the origin is a nilpotent center, ψ(x) = [H ∗
0 (x)

] 1
k if the origin 

is a nilpotent cusp or ψ(x) = sgn(x) 
[−H ∗

0 (x)
] 1

k if the origin is a nilpotent saddle, and

q̃j (u) = q̄j (x)

ψ ′(x)

∣∣∣∣
x=ψ−1(u)

=
∑
i≥0

r̃i,j u
i . (2.16)

We further let

q̃j (u) + q̃j (−u) =
∑
i≥0

ri,j u
2i (2.17)

and

q̄(x, vl(x,w), δ) = ∑
j≥1

q̄lj (x)wj ,

q̃lj (u) = q̄lj (x)

ψ ′(x)

∣∣∣
x=ψ−1(u)

, q̃lj (u) + q̃lj (−u) = ∑
i≥0

r
(l)
i,j u

2i , l = 1,2,
(2.18)

where q̄2j (x) = (−1)j q̄1j (x), ̃q2j (u) = (−1)j q̃1j (u) which gives r(2) = (−1)j r
(1) by [14].
i,j i,j
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From the process of computing ̃rij and ̃r(1)
ij , it can be seen that the computation is very compli-

cated. Now, at first, we give a relationship between ̃rij and r(1)
ij . Further, note that the programs 

in [11] with appropriate modifying can be used to compute r̃ij in this paper. Then, based on 
the programs in [11] and the following Lemma, for k = 2m + 2(m ≥ 1, m ∈ Z+), h̄k < 0 we 
can compute some coefficients of the expansions of M, M̃ and M∗ in (2.1), (2.5), (2.8)–(2.10), 
respectively.

Lemma 2.3. Let k ≥ 3 be an integer and (1.5) hold. Then for rij , ̃ri,j and r(1)
i,j in (2.16), (2.17)

and (2.18), we have

rij = 2 r̃2i,j , r
(1)
i,2j+1 = r̃2i,j , i ≥ 0, j ≥ 0.

Proof. By (2.16) and (2.17), we have

q̃j (u) + q̃j (−u) =
∑
i≥0

r̃i,j u
i +
∑
i≥0

r̃i,j (−u)i =
∑
i≥0

2 r̃2i,j u
2i , j ≥ 0. (2.19)

Note that

q̃j (u) + q̃j (−u) =
∑
i≥0

rij u
2i , j ≥ 0.

We easily get rij = 2 ̃r2i,j .
By (2.18), we have

q̄(x, v1, δ) − q̄(x, v2, δ) = ∑
j≥0

q̄1j (x)wj − ∑
j≥0

q̄2j (x)wj

= ∑
j≥0

q̄1j (x)wj − ∑
j≥0

(−1)j q̄1j (x)wj

= ∑
j≥0

2 q̄1,2j+1(x)w2j+1,

which, together with (2.15), gives

q̄j (x) = 2 q̄1,2j+1(x), j ≥ 0.

By (2.15), (2.16) and (2.18), we further obtain

q̃j (u) + q̃j (−u) = q̄j (x)

ψ ′(x)

∣∣∣∣
x=ψ−1(u)

+ q̄j (x)

ψ ′(x)

∣∣∣∣
x=ψ−1(−u)

= 2 q̄1,2j+1(x)

ψ ′(x)

∣∣∣∣
x=ψ−1(u)

+ 2 q̄1,2j+1(x)

ψ ′(x)

∣∣∣∣
x=ψ−1(−u)

= 2 q̃1,2j+1(u) + 2 q̃1,2j+1(−u)

= 2
∑
i≥0

r
(1)
i,2j+1u

2i .

It follows from (2.19) that r(1) = r̃2i,j . This ends the proof. �
i,2j+1
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3. The coefficients in the expansions of M , ˜M and M∗

Suppose the origin of (1.2) is a nilpotent saddle of order m (m ≥ 1). In the following, we will 
give the formulas of some coefficients in the expansions of M(h, δ), M̃(h, δ) and M∗(h, δ). At 
first, in the cuspidal case we have the following theorem.

Theorem 3.1. Let (1.5) hold with h̄k < 0 (k = 2m + 2, m ≥ 1) and L∗
0 = L0 ∪ L̃0 be a double 

homoclinic loop of cuspidal type. Then for the expansions of M(h, δ) and M̃(h, δ) in (2.1) we 
have

M(h, δ) = c0 +
k
2 −2∑
r=0

cr+1|h| r+1
k

+ 1
2 + c k

2
h ln |h| + c k

2 +1h +
k−2∑
r= k

2

cr+2|h| r+1
k

+ 1
2

+
k
2 −2∑
r=0

ck+1+r |h| r+1
k

+ 3
2 + c 3

2 k
h2 ln |h| + O(h2), 0 < −h � 1,

M̃(h, δ) = c̃0 +
k
2 −2∑
r=0

(−1)rcr+1|h| r+1
k

+ 1
2 + (−1)

k
2 +1c k

2
h ln |h| + c̃ k

2 +1h +
k−2∑
r= k

2

(−1)rcr+2|h| r+1
k

+ 1
2

+
k
2 −2∑
r=0

(−1)rck+1+r |h| r+1
k

+ 3
2 + (−1)

k
2 +1c 3

2 k
h2 ln |h| + O(h2), 0 < −h � 1,

(3.1)

where

c0 = M(0, δ) =
∮
L0

qdx − pdy, cr+1 = Ãr r̃r,0, r = 0,1, · · · ,
k

2
− 2, c k

2
= − 1

2k
r̃ k

2 −1,0,

c k
2 +1 =

∮
L0

(
px + qy − b̄0,0 − b̄1,0x − b̄2,0x

2 − · · · − b̄ k
2 −1,0x

k
2 −1
)

dt +
k
2∑

i=1

O1(ci),

cr+2 = Ãr r̃r,0, r = k
2 , k

2 + 1, · · · , k − 2,

ck+1+r = Ãr
3
2 k+r+1

(
(r + 1)̃rk+r,0 − 3

2k r̃r,1
)
, r = 0,1, · · · , k

2 − 2,

c 3
2 k

= 1
8k

(̃
r 3k

2 −1,0 − 3̃r k
2 −1,1

)
,

c̃ k
2 +1 =

∮
L̃0

(
px + qy − b̄0,0 − b̄1,0x − b̄2,0x

2 − · · · − b̄ k
2 −1,0x

k
2 −1
)

dt +
k
2∑

i=1

O1(ci),

(3.2)

where ̃ri,0, ̃ri,1 and b̄i,0 can be obtained by [14], based on the programs in [11]. For example, 
some b̄i,0 are shown as follows:

b̄0,0 = a10 + b01, b̄1,0 = 2a20 + b11, b̄2,0 = 3a30 + b21 − h21(a11 + 2b02),

b̄3,0 = 4a40 + b31 − 2h21(a21 + b12) + (3h12h21 − h31)(a11 + 2b02), · · ·

O1(c) denotes c multiplied by a constant and Ãr satisfies (2.2).
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For the expansion of M∗(h, δ) in (2.5) we have

M∗(h, δ) = c∗
0 +

k
4 − 3

2∑
r=0

Ârc2r+1h
2r+1

k
+ 1

2 + 2 c k
2
h lnh + c∗

k
4 + 3

2
h +

k
2 −1∑

r= k
4 + 1

2

Ârc2r+2h
2r+1

k
+ 1

2

−
k
4 − 3

2∑
r=0

Ârck+1+2rh
2r+1

k
+ 3

2 + 2 c 3
2 k

h2 lnh + O(h2), 0 < h � 1,

if m is even, or

M∗(h, δ) = c∗
0 +

k
4 −1∑
r=0

Ârc2r+1h
2r+1

k
+ 1

2 + c̄∗
k
4 +1

h +
k
2 −1∑
r= k

4

Ârc2r+2h
2r+1

k
+ 1

2

−
k
4 −1∑
r=0

Ârck+1+2rh
2r+1

k
+ 3

2 + O(h2),

if m is odd, where

c∗
0 = c0 + c̃0, Âr = 2Ār

Ã2r
,

c∗
k
4 + 3

2
=
∮
L∗

0

(
px + qy − b̄0,0 − b̄1,0x − b̄2,0x

2 − · · · − b̄ k
2 −1,0x

k
2 −1
)

dt +
k
2∑

i=1

O1(ci),

c̄∗
k
4 +1

=
∮
L∗

0

(
px + qy − b̄0,0 − b̄1,0x − b̄2,0x

2 − · · · − b̄ k
2 −2,0x

k
2 −2
)

dt +
k
2 −1∑
i=1

O1(ci),

(3.3)

and each Ār satisfies (2.6).

Proof. By (2.3), I ∗
1r (h) can be written as

I ∗
1r (h) = r̃r,0α

∗
r,0β

∗
r + (̃rk+r,0α

∗
k+r,0β

∗
k+r + r̃r,1α

∗
r,1β

∗
r )h + O(h2),

= r̃r,0 + (̃rk+r,0β
∗
k+r + r̃r,1α

∗
r,1)h + O(h2), 0 ≤ r ≤ k − 2,

(3.4)

by (2.4), where

α∗
r,0 = 1, β∗

r = 1, α∗
k+r,0 = 1, β∗

k+r = − r + 1
3
2k + r + 1

, α∗
r,1 =

3
2k

3
2k + r + 1

.

Substituting (3.4) into the formula of M(h, δ) in (2.1) we get
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M(h, δ) = ϕ(0, δ) + ϕh(0, δ)h − h ln |h|
2k

[̃
r k

2 −1,0 + (̃r 3k
2 −1,0β

∗
3k
2 −1

+ r̃ k
2 −1,1α

∗
k
2 −1,1

)h

]

+
k
2 −2∑
r=0

[
Ãr r̃r,0|h| r+1

k
+ 1

2 − Ãr

(̃
rk+r,0β

∗
k+r + r̃r,1α

∗
r,1

)
|h| r+1

k
+ 3

2

]

+
k−2∑
r= k

2

Ãr r̃r,0|h| r+1
k

+ 1
2 + O(h2)

= ϕ(0, δ) +
k
2 −2∑
r=0

Ãr r̃r,0|h| r+1
k

+ 1
2 − 1

2k
r̃ k

2 −1,0h ln |h| + ϕh(0, δ)h

+
k−2∑
r= k

2

Ãr r̃r,0|h| r+1
k

+ 1
2 −

k
2 −2∑
r=0

Ãr

(̃
rk+r,0β

∗
k+r + r̃r,1α

∗
r,1

)
|h| r+1

k
+ 3

2

− 1
2k

(̃
r 3k

2 −1,0β
∗
3k
2 −1

+ r̃ k
2 −1,1α

∗
k
2 −1,1

)
h2 ln |h| + O(h2).

(3.5)

Comparing (3.5) with the expansion of M(h, δ) in (3.1) yields the formulas of ci, 0 ≤ i ≤ 3
2k, i �=

k
2 + 1 as shown in (3.2).

Similarly, substituting (3.4) into the formula of M̃(h, δ) in (2.1) we have

M̃(h, δ) = ϕ̃(0, δ) +
k
2 −2∑
r=0

(−1)r Ãr r̃r,0|h| r+1
k

+ 1
2 + (−1)

k
2 1

2k
r̃ k

2 −1,0h ln |h| + ϕ̃h(0, δ)h

+
k−2∑
r= k

2

(−1)r Ãr r̃r,0|h| r+1
k

+ 1
2 −

k
2 −2∑
r=0

(−1)r Ãr

(̃
rk+r,0β

∗
k+r + r̃r,1α

∗
r,1

)
|h| r+1

k
+ 3

2

+(−1)
k
2 1

2k
(̃r 3k

2 −1,0β
∗
3k
2 −1

+ r̃ k
2 −1,1α

∗
k
2 −1,1

)h2 ln |h| + O(h2)

= c̃0 +
k
2 −2∑
r=0

c̃r+1|h| r+1
k

+ 1
2 + c̃ k

2
h ln |h| + c̃ k

2 +1h +
k−2∑
r= k

2

c̃r+2|h| r+1
k

+ 1
2

+
k
2 −2∑
r=0

c̃k+1+r |h| r+1
k

+ 3
2 + c̃ 3

2 k
h2 ln |h| + O(h2),

where

c̃0 = M̃(0, δ) =
∮
L̃0

qdx − pdy,

c̃r+1 = (−1)rcr+1, r = 0,1, · · · , k
2 − 2, c̃ k

2
= (−1)

k
2 +1c k

2
,

c̃r+2 = (−1)rcr+2, r = k
2 , k

2 + 1, · · · , k − 2,

c̃k+1+r = (−1)rck+1+r , r = 0,1, · · · , k − 2, c̃ 3 = (−1)
k
2 +1c 3 .
2 2 k 2 k
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Next, we derive the formulas of c k
2 +1 and ̃c k

2 +1. It follows from (2.12), (2.13) and (2.14) that

p∗
x + q∗

v = q̄v = ∑
j≥1

jqj (x)vj−1

= b̄0,0 + b̄1,0x + b̄2,0x
2 + · · · + b̄ k

2 −1,0x
k
2 −1 + x

k
2 φ1(x) + vφ2(x, v),

where φ1(x) is a polynomial in x and φ2(x, v) is a polynomial in (x, v).
Note that px + qy = p∗

x + q∗
v and by [23],

M ′
h(h, δ) =

∮
Lh

(px + qy)dt. (3.6)

Then, M(h, δ) can be rewritten as

M(h, δ) = M(0, δ) +
h∫

0

M ′
h(h, δ)dh

= M(0, δ) +
h∫

0

⎡
⎢⎣∮

Lh

(px + qy)dt

⎤
⎥⎦dh

= M(0, δ) +
h∫

0

⎡
⎢⎣∮

L∗
h

(p∗
x + q∗

v )dt

⎤
⎥⎦dh

= M(0, δ) +
k
2 −1∑
i=0

b̄i,0mi(h) + mk
2
(h) + mk

2 +1(h),

(3.7)

where

m0(h) =
h∫

0

T (h)dh, mi(h) =
h∫

0

⎛
⎜⎝∮

L∗
h

xidt

⎞
⎟⎠dh, i = 1,2, · · · ,

k

2
− 1,

mk
2
(h) =

h∫
0

⎛
⎜⎝∮

L∗
h

x
k
2 φ1(x)dt

⎞
⎟⎠dh, mk

2 +1(h) =
h∫

0

⎛
⎜⎝∮

L∗
h

vφ2(x, v)dt

⎞
⎟⎠dh,

and T (h) denotes the period of L∗
h. Note that

M(h, δ) =
∮

qdx − pdy =
∮

∗
q∗dx − p∗dv.
H(x,y)=h H (x,v)=h
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Taking p∗ = 0 and q∗ = v, xiv (i = 1, 2, · · · , k2 − 1), x
k
2 φ1(x)v, 

∫ v

0 sφ2(x, s)ds respectively in 
(3.7), we obtain

m0(h) =
∮
L∗

h

vdx −
∮
L∗

0

vdx,

mi(h) =
∮
L∗

h

xivdx −
∮
L∗

0

xivdx, i = 1,2, · · · ,
k

2
− 1,

mk
2
(h) =

∮
L∗

h

x
k
2 φ1(x)dx −

∮
L∗

0

x
k
2 φ1(x)dx,

mk
2 +1(h) =

∮
L∗

h

φ̃2(x, v)dx −
∮
L∗

0

φ̃2(x, v)dx,

where φ̃2(x, v) = ∫ v

0 sφ2(x, s)ds. By the expansion of M(h, δ) in (3.1), we may assume

mj(h) =
k
2 −2∑
r=0

λj,r+1|h| r+1
k

+ 1
2 +λ

j, k
2
h ln |h|+λ

j, k
2 +1h+O(|h|1+ 1

k ), j = 0,1, · · · ,
k

2
+1, (3.8)

where λj,r+1(r = 0, 1, · · · , k2 ) are some constants if j = 0, 1, · · · , k2 − 1, are polynomials in b̄i,0

(i ≥ k
2 ) if j = k

2 , and are polynomials in b̄is (i ≥ 0, s ≥ 1) if j = k
2 + 1.

Substituting (3.8) into (3.7), we get

M(h, δ)

=M(0, δ) +
⎛
⎝ k

2 −1∑
i=0

b̄i,0λi,1 + λk
2 ,1 + λk

2 +1,1

⎞
⎠ |h| 1

k
+ 1

2 +
⎛
⎝ k

2 −1∑
i=0

b̄i,0λi,2 + λk
2 ,2 + λk

2 +1,2

⎞
⎠ |h| 2

k
+ 1

2

+· · ·

+
⎛
⎝ k

2 −1∑
i=0

b̄i,0λi, k
2 −1 + λk

2 , k
2 −1 + λk

2 +1, k
2 −1

⎞
⎠ |h|1− 1

k +
⎛
⎝ k

2 −1∑
i=0

b̄i,0λi, k
2
+ λk

2 , k
2
+ λk

2 +1, k
2

⎞
⎠h ln |h|

+
⎛
⎝ k

2 −1∑
i=0

b̄i,0λi, k
2 +1 + λk

2 , k
2 +1 + λk

2 +1, k
2 +1

⎞
⎠h + O(|h|1+ 1

k ).

(3.9)

By (2.18), (2.19) and (2.20) in [11], we know that

q̄0(x) = 2q1(x)a1(x) =
∑

αi,0x
i,
i≥0
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where a1(x) = ∑
i≥0

āi,1x
i, q1(x) = ∑

i≥0
b̄i0x

i , where āi,1 is a constant for each i. It follows that 

αi,0 =
i∑

s=0
�sb̄s0, where �s, s = 0, 1, · · · , i are some constants. Further, by (2.16), we know that 

r̃r,0 can be written as

r̃r,0 =
r∑

l=0

�̄lαl,0 =
r∑

l=0

�̃l b̄l,0,

where �̄l , �̃l, l = 0, 1, 2, · · · , r are some constants.
By the formulas of cr+1, r = 0, 1, · · · , k2 − 1 in (3.2), it is seen that cr+1 has the form of

cr+1 =
r∑

l=0

�̂l b̄l,0, r = 0,1, · · · ,
k

2
− 1, (3.10)

where �̂l, l = 0, 1, 2, · · · , r are some constants. Then comparing the expansion of M(h, δ) in 
(3.1) and (3.9), we obtain

λij = 0, j = 1,2,3, · · · ,
k

2
, and i = j, j + 1, · · · ,

k

2
+ 1. (3.11)

Noticing 
∮
Lh

xidt = ∮
L∗

h
xidt by (2.11), we further have

∮
Lh

(
px + qy − b̄0,0 − b̄1,0x − b̄2,0x

2 − · · · − b̄ k
2 −1,0x

k
2 −1
)

dt

=
∮
L∗

h

(
p∗

x + q∗
v − b̄0,0 − b̄1,0x − b̄2,0x

2 − · · · − b̄ k
2 −1,0x

k
2 −1
)

dt

=
∮
L∗

h

(
x

k
2 φ1(x) + vφ2(x, v)

)
dt

=
(
mk

2
(h) + mk

2 +1(h)
)′

.

Thus, by (3.6), (3.8) and (3.11) we have
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∮
L0

(
px + qy − b̄0,0 − b̄1,0x − b̄2,0x

2 − · · · − b̄ k
2 −1,0x

k
2 −1
)

dt

= lim
h→0

(
mk

2
(h) + mk

2 +1(h)
)′

= lim
h→0

(
λk

2 , k
2 +1h + λk

2 +1, k
2 +1h + O(|h|1+ 1

k )
)′

= lim
h→0

(
λk

2 , k
2 +1 + λk

2 +1, k
2 +1 + O(|h| 1

k )
)

= λk
2 , k

2 +1 + λk
2 +1, k

2 +1.

(3.12)

On the other hand, by (3.1), (3.9) and (3.10) we obtain

c k
2 +1 = b̄0,0λ0, k

2 +1 + b̄1,0λ1, k
2 +1 + · · · + b̄ k

2 −1,0λk
2 −1, k

2 +1 + λk
2 , k

2 +1 + λk
2 +1, k

2 +1

= λk
2 , k

2 +1 + λk
2 +1, k

2 +1 +
k
2∑

i=1
μ̄ici ,

where μ̄i are some constants. This, together with (3.12), implies that

c k
2 +1 =

∮
L0

(
px + qy − b̄0,0 − b̄1,0x − b̄2,0x

2 − · · · − b̄ k
2 −1,0x

k
2 −1
)

dt +
k
2∑

i=1

O1(ci).

The formula of ̃c k
2 +1 can be obtained in the same way.

In the following, we derive the formulas of the coefficients in the expansion of M∗(h, δ). By 
Lemma 2.1 (ii) we know that r1 = 1

2

(
k
2 − 1

)= m
2 .

If m is even, then r1 is an integer. For 0 ≤ r ≤ k
2 − 1, by (2.5) we have

M∗(h, δ) = ϕ∗(h, δ) − h lnh

k
J ∗

1, k
4 − 1

2
(h) + 2h

1
k
+ 1

2

k
2 −1∑
r=0

r �= k
4 − 1

2

Ārh
2r
k J ∗

1r (h), 0 ≤ h � 1, (3.13)

where J ∗
1r can be written as

J ∗
1r = r

(1)
r,1 ᾱr,1β̄r +

(
r
(1)
k
2 +r,1

ᾱ k
2 +r,1β̄ k

2 +r
+ r

(1)
r,3 ᾱr,3β̄r

)
h + O(h2),

= r
(1)
r,1 +

(
r
(1)
k
2 +r,1

β̄ k
2 +r

+ r
(1)
r,3 ᾱr,3

)
h + O(h2),

(3.14)
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with

ᾱr,1 = 1, β̄r = 1, ᾱ k
2 +r,1 = 1, ᾱr,3 =

3
2k

3
2k + 2r + 1

, β̄ k
2 +r

= − 2r + 1

2r + 1 + 3
2k

.

Substituting (3.14) into (3.13) yields

M∗(h, δ) = ϕ∗(0, δ) + ϕ∗
h(0, δ)h − h ln h

k

(
r
(1)
k
4 − 1

2 ,1
+
(

r
(1)
3
4 k− 1

2 ,1
β̄ 3

4 k− 1
2
+ r

(1)
k
4 − 1

2 ,3
ᾱ k

4 − 1
2 ,3

)
h

)

+
k
4 − 3

2∑
r=0

[
2Ār r

(1)
r,1 h

2r+1
k

+ 1
2 + 2Ār

(
r
(1)
k
2 +r,1

β̄ k
2 +r

+ r
(1)
r,3 ᾱr,3

)
h

2r+1
k

+ 3
2

]

+
k
2 −1∑

r= k
4 + 1

2

(
2Ār r

(1)
r,1 h

2r+1
k

+ 1
2

)
+ O(h2)

= c∗
0 +

k
4 − 3

2∑
r=0

c∗
r+1h

2r+1
k

+ 1
2 + c∗

k
4 + 1

2
h lnh + c∗

k
4 + 3

2
h +

k
2 −1∑

r= k
4 + 1

2

c∗
r+2h

2r+1
k

+ 1
2

+
k
4 − 3

2∑
r=0

c∗
k
2 +2+r

h
2r+1

k
+ 3

2 + c∗
3
4 k+ 3

2
h2 lnh + O(h2),

where

c∗
0 = ϕ∗(0, δ) = M∗(0, δ) = c0 + c̃0,

c∗
r+1 = 2Ār r

(1)
r,1 , r = 0,1, · · · , k

4 − 3
2 ,

c∗
k
4 + 1

2
= − 1

k
r
(1)
k
4 − 1

2 ,1
, c∗

r+2 = 2Ār r
(1)
r,1 , r = k

4 + 1
2 , k

4 + 3
2 , · · · , k

2 − 1,

c∗
k
2 +2+r

= 2Ār

(
r
(1)
k
2 +r,1

β̄ k
2 +r

+ r
(1)
r,3 ᾱr,3

)

= 2Ār
3
2 k+2r+1

(
3
2k r

(1)
r,3 − (2r + 1)r

(1)
k
2 +r,1

)
, r = 0,1, · · · , k

4 − 3
2 ,

c∗
3
4 k+ 3

2
= − 1

k

(
r
(1)
3
4 k− 1

2 ,1
β̄ 3

4 k− 1
2
+ r

(1)
k
4 − 1

2 ,3
ᾱ k

4 − 1
2 ,3

)
= 1

4k

(
r
(1)
3
4 k− 1

2 ,1
− 3r

(1)
k
4 − 1

2 ,3

)
.

(3.15)

By Lemma 2.3, we know that

r
(1)
i,1 = r̃2i,0, r

(1)
i,3 = r̃2i,1, i ≥ 0.

Further, we have
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c∗
r+1 = 2Ār r

(1)
r,1 = 2Ār r̃2r,0 = 2Ār

Ã2r
c2r+1, r = 0,1, · · · , k

4 − 3
2 ,

c∗
k
4 + 1

2
= − 1

k
r̃ k

2 −1,0 = 2 c k
2
,

c∗
r+2 = 2Ār r

(1)
r,1 = 2Ār r̃2r,0 = 2Ār

Ã2r
c2r+2, r = k

4 + 1
2 , k

4 + 3
2 , · · · , k

2 − 1,

c∗
k
2 +2+r

= 2Ār
3
2 k+2r+1

( 3
2k r̃2r,1 − (2r + 1)̃rk+2r,0

)= − 2Ār

Ã2r
ck+1+2r , r = 0,1, · · · , k

4 − 3
2 ,

c∗
3
4 k+ 3

2
= 1

4k

(̃
r 3

2 k−1,0 − 3̃r k
2 −1,1

)
= 2c 3

2 k
.

(3.16)

By using the similar procedure in obtaining c k
2 +1, we obtain the formula of c∗

k
4 + 3

2
as shown in 

(3.3).
If m is odd, then r1 is not an integer. In this case, by (2.5) and (3.14) we have

M∗(h, δ)

= ϕ∗(0, δ) + ϕ∗
h(0, δ)h +

k
4 −1∑
r=0

[
2Ār r

(1)
r,1 h

2r+1
k

+ 1
2 + 2Ār

(
r
(1)
k
2 +r,1

β̄ k
2 +r

+ r
(1)
r,3 ᾱr,3

)
h

2r+1
k

+ 3
2

]

+
k
2 −1∑
r= k

4

2Ār r
(1)
r,1 h

2r+1
k

+ 1
2 + O(h2)

= c̄∗
0 +

k
4 −1∑
r=0

c̄∗
r+1h

2r+1
k

+ 1
2 + c̄∗

k
4 +1

h +
k
2 −1∑
r= k

4

c̄∗
r+2h

2r+1
k

+ 1
2 +

k
4 −1∑
r=0

c̄∗
k
2 +2+r

h
2r+1

k
+ 3

2 + O(h2),

where

c̄∗
0 = ϕ∗(0, δ) = M∗(0, δ) = c0 + c̃0,

c̄∗
r+1 = 2Ār r

(1)
r,1 , r = 0,1, · · · , k

4 − 1,

c̄∗
r+2 = 2Ār r

(1)
r,1 , r = k

4 , k
4 + 1, · · · , k

2 − 1,

c̄∗
k
2 +2+r

= 2Ār

(
r
(1)
k
2 +r,1

β̄ k
2 +r

+ r
(1)
r,3 ᾱr,3

)

= 2Ār
3
2 k+2r+1

( 3
2k r̃2r,1 − (2r + 1)̃rk+2r,0

)
, r = 0,1, · · · , k

4 − 1.

(3.17)

Similar to (3.16), we further have

c̄∗
r+1 = 2Ār

Ã2r
c2r+1, r = 0,1, · · · , k

4 − 1,

c̄∗
r+2 = 2Ār

Ã2r
c2r+2, r = k

4 , k
4 + 1, · · · , k

2 − 1,

c̄∗
k
2 +2+r

= − 2Ār

Ã2r
ck+1+2r , r = 0,1, · · · , k

4 − 1.

(3.18)

The formula of c̄∗
k
4 +1

can be obtained by using a similar procedure as used in obtaining c k
2 +1. 

The proof is complete. �
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When L∗
0 is a double homoclinic loop of smooth type, we have the following result.

Theorem 3.2. Let (1.5) hold with h̄k < 0 (k = 2m + 2, m ≥ 1) and L∗
0 = L0 ∪ L̃0 be a double 

homoclinic loop of smooth type which is defined by H(x, y) = 0. Then for the functions M(h, δ), 
M̃(h, δ) and M∗(h, δ) in (1.8) we have

M(h, δ) = c0 +
k
4 −1∑
r=0

1
2 Ârc2r+1h

2r+1
k

+ 1
2 + ĉ k

4 +1h +
k
2 −1∑
r= k

4

1
2 Ârc2r+2h

2r+1
k

+ 1
2

−
k
4 −1∑
r=0

1
2 Ârck+1+2rh

2r+1
k

+ 3
2 + O(h2), 0 < h � 1,

(3.19)

M̃(h, δ) = c̃0 +
k
4 −1∑
r=0

1
2 Ârc2r+1h

2r+1
k

+ 1
2 +˜̂c k

4 +1h +
k
2 −1∑
r= k

4

1
2 Ârc2r+2h

2r+1
k

+ 1
2

−
k
4 −1∑
r=0

1
2 Ârck+1+2rh

2r+1
k

+ 3
2 + O(h2), 0 < h � 1,

(3.20)

M∗(h, δ) = c∗
0 +

k
4 −1∑
r=0

2 c2r+1|h| 2r+1
k

+ 1
2 + ĉ∗

k
4 +1

h +
k
2 −1∑
r= k

4

2 c2r+2|h| 2r+1
k

+ 1
2

+
k
4 −1∑
r=0

2 ck+1+2r |h| 2r+1
k

+ 3
2 + O(h2), 0 < −h � 1,

(3.21)

if m is odd, where Âr = 2Ār

Ã2r
and

ĉ k
4 +1 = ∮

L0

(
px + qy −

k
2 −2∑
i=0

b̄i,0x
i
)
dt +

k
2 −1∑
i=1

O1(ci),

˜̂c k
4 +1 = ∮

L̃0

(
px + qy −

k
2 −2∑
i=0

b̄i,0x
i
)
dt +

k
2 −1∑
i=1

O1(ci),

ĉ∗
k
4 +1

= ∮
L∗

0

(
px + qy −

k
2 −2∑
i=0

b̄i,0x
i
)
dt +

k
2 −1∑
i=1

O1(ci),

and

M(h, δ) = c0 +
k
4 − 3

2∑
r=0

1
2 Ârc2r+1h

2r+1
k

+ 1
2 + c k

2
h lnh + ¯̄c k

4 + 3
2
h +

k
2 −1∑

r= k
4 + 1

2

1
2 Ârc2r+2h

2r+1
k

+ 1
2

−
k
4 − 3

2∑
r=0

1
2 Ârck+1+2rh

2r+1
k

+ 3
2 + c 3

2 k
h2 lnh + O(h2), 0 < h � 1,

(3.22)
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M̃(h, δ) = c̃0 +
k
4 − 3

2∑
r=0

1
2 Ârc2r+1h

2r+1
k

+ 1
2 + c k

2
h lnh +˜̄c k

4 + 3
2
h +

k
2 −1∑

r= k
4 + 1

2

1
2 Ârc2r+2h

2r+1
k

+ 1
2

−
k
4 − 3

2∑
r=0

1
2 Ârck+1+2rh

2r+1
k

+ 3
2 + c 3

2 k
h2 lnh + O(h2), 0 < h � 1,

(3.23)

M∗(h, δ) = c∗
0 +

k
4 − 3

2∑
r=0

2c2r+1|h| 2r+1
k

+ 1
2 + 2c k

2
h ln |h| +˜̄c∗

k
4 + 3

2
h +

k
2 −1∑

r= k
4 + 1

2

2c2r+2|h| 2r+1
k

+ 1
2

+
k
4 − 3

2∑
r=0

2ck+1+2r |h| 2r+1
k

+ 3
2 + 2c 3

2 k
h2 ln |h| + O(h2), 0 < −h � 1,

(3.24)

if m is even, where

¯̄c k
4 + 3

2
= ∮

L0

(
px + qy −

k
2 −1∑
i=0

b̄i,0x
i
)
dt +

k
2∑

i=1
O1(ci),

˜̄c k
4 + 3

2
= ∮

L̃0

(
px + qy −

k
2 −1∑
i=0

b̄i,0x
i
)
dt +

k
2∑

i=1
O1(ci),

˜̄c∗
k
4 + 3

2
= ∮

L∗
0

(
px + qy −

k
2 −1∑
i=0

b̄i,0x
i
)
dt +

k
2∑

i=1
O1(ci).

Proof. Note that r1 = m
2 by Lemma 2.2. If m is odd, then by (2.8) and (3.14) we have

M(h, δ) = c0 +
k
4 −1∑
r=0

Ār r
(1)
r,1 h

2r+1
k

+ 1
2 + ĉ k

4 +1h +
k
2 −1∑
r= k

4

Ār r
(1)
r,1 h

2r+1
k

+ 1
2

+
k
4 −1∑
r=0

Ār

(
r
(1)
k
2 +r,1

β̄ k
2 +r

+ r
(1)
r,3 ᾱr,3

)
h

2r+1
k

+ 3
2 + O(h2), 0 < h � 1,

where

c0 = M(0, δ) =
∮
L0

qdx − pdy.

Then by (3.17), we obtain



476 J. Yang et al. / J. Differential Equations 266 (2019) 455–492
M(h, δ) = c0 +
k
4 −1∑
r=0

1
2 c̄∗

r+1h
2r+1

k
+ 1

2 + ĉ k
4 +1h +

k
2 −1∑
r= k

4

1
2 c̄∗

r+2h
2r+1

k
+ 1

2

+
k
4 −1∑
r=0

1
2 c̄∗

k
2 +2+r

h
2r+1

k
+ 3

2 + O(h2).

This, together with (3.18), gives (3.19). Similarly, we can get (3.20).
By (2.10) and (3.4) we have

M∗(h, δ) = c∗
0 +

k
4 −1∑
r=0

2Ã2r r̃2r,0|h| 2r+1
k

+ 1
2 + ϕ∗

h(0, δ)h +
k
2 −1∑
r= k

4

2Ã2r r̃2r,0|h| 2r+1
k

+ 1
2

−
k
4 −1∑
r=0

2Ã2r

(̃
rk+2r,0β

∗
k+2r + r̃2r,1α

∗
2r,1

)
|h| 2r+1

k
+ 3

2 + O(h2), 0 < −h � 1,

where

c∗
0 = M∗(0, δ) =

∮
L∗

0

qdx − pdy.

Then, (3.21) holds by the formulas of cr+1, cr+2, ck+1+r in (3.2).
If m is even, by (2.8) and (3.14) we have

M(h, δ) = c0 +
k
4 − 3

2∑
r=0

Ār r
(1)
r,1 h

2r+1
k

+ 1
2 − h ln h

2k
r
(1)
k
4 − 1

2 ,1
+ ¯̄c k

4 + 3
2
h +

k
2 −1∑

r= k
4 + 1

2

Ār r
(1)
r,1 h

2r+1
k

+ 1
2

+
k
4 − 3

2∑
r=0

Ār

(
r
(1)
k
2 +r,1

β̄ k
2 +r

+ r
(1)
r,3 ᾱr,3

)
h

2r+1
k

+ 3
2

− 1

2k
h2 lnh

(
r
(1)
3
4 k− 1

2 ,1
β̄ 3

4 k− 1
2
+ r

(1)
k
4 − 1

2 ,3
ᾱ k

4 − 1
2 ,3

)
+ O(h2), 0 < h � 1.

Then, by (3.15) we get

M(h, δ) = c0 +
k
4 − 3

2∑
r=0

1
2c∗

r+1h
2r+1

k
+ 1

2 + 1
2c∗

k
4 + 1

2
h lnh + ¯̄c k

4 + 3
2
h +

k
2 −1∑

r= k
4 + 1

2

1
2c∗

r+2h
2r+1

k
+ 1

2

+
k
4 − 3

2∑
r=0

1
2c∗

k
2 +2+r

h
2r+1

k
+ 3

2 + 1
2c∗

3
4 k+ 3

2
h2 lnh + O(h2).

Further by (3.16) we can get (3.22). Similarly, we can prove (3.23).
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By (2.10) and (3.4), we have

M∗(h, δ) = c∗
0 +

k
4 − 3

2∑
r=0

2Ã2r r̃2r,0|h| 2r+1
k

+ 1
2 − 1

k
r̃ k

2 −1,0h ln |h| +˜̄c∗
k
4 + 3

2
h

+
k
2 −1∑

r= k
4 + 1

2

2Ã2r r̃2r,0|h| 2r+1
k

+ 1
2 −

k
4 − 3

2∑
r=0

2Ã2r

(̃
rk+2r,0β

∗
k+2r + r̃2r,1α

∗
2r,1

)
|h| 2r+1

k
+ 3

2

− 1
k
h2 ln |h|

(̃
r 3k

2 −1,0β
∗
3k
2 −1

+ r̃ k
2 −1,1α

∗
k
2 −1,1

)
+ O(h2), 0 < −h � 1.

Then (3.24) holds with the formulas of cr+1, c k
2
, cr+2, ck+1+r and c 3k

2
in (3.2).

Using a similar way in obtaining c k
2 +1 we can obtain the formulas of ĉ k

4 +1, ̃ĉ k
4 +1, ĉ∗

k
4 +1

, ¯̄c k
4 + 3

2
, 

˜̄c k
4 + 3

2
, ̃c̄∗

k
4 + 3

2
. This completes the proof. �

Let L0 be a homoclinic loop defined by H(x, y) = 0. Then, for the expansion of M(h, δ), we 
have the following corollary.

Corollary 3.1. Let (1.5) hold with h̄k < 0 (k = 2m + 2, m ≥ 1) and L0 be a homoclinic loop 
defined by H(x, y) = 0. Then,

(i) if L0 is of cuspidal type, the expansion of M(h, δ) in (3.1) holds;
(ii) if L0 is of smooth type, the expansion of M(h, δ) in (3.19) holds.

4. Limit cycle bifurcation

In previous section, we have derived the coefficients in the expansions of M(h, δ), M̃(h, δ)
and M∗(h, δ). In this section, we study limit cycle bifurcations near a double homoclinic loop 
with a nilpotent saddle of order 2 based on Theorems 3.1 and 3.2.

For m = 2, k = 2m + 2, we first execute the symbolic programs in [14] with appropriate 
modifying and obtain

r̃0,0 = 2
√

2|h̄6|− 1
6 (a1,0 + b0,1) = 2

√
2|h̄6|− 1

6 b̄0,0,

r̃1,0 = − 2
3

√
2| h̄6|− 4

3
[−3|h̄6|(2a2,0 + b1,1) + (a1,0 + b0,1)(h̄7 + 3h̄6h1,2)

]
= 2

√
2| h̄6|− 1

3 b̄1,0 + O1(b̄0,0),

r̃2,0 = 1
4

√
2| h̄6|− 5

2
{
8 h̄2

6

[
(3a3,0 + b2,1) − h2,1

(
a1,1 + 2b0,2

)
)
]}

− (2a2,0 + b1,1)
(
4 h̄6h̄7 + 8 h̄2

6h1,2
)

+ (a1,0 + b0,1)
(

3 h̄2
7 + 4 h̄6h̄7h1,2 + 24 h̄2

6h0,3h2,1 + 12h̄2
6h

2
1,2 − 8 h̄2

6h2,2 − 4 h̄6h̄8

)
= 2

√
2| h̄6|− 1

2 b̄2,0 + O1(b̄0,0) + O1(b̄1,0).

Then by Theorem 3.1, we have the following result.
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Theorem 4.1. Let (1.5) hold with h̄k < 0 and k = 6, and L∗
0 = L0 ∪ L̃0 be a double homoclinic 

loop of cuspidal type. Then for the expansions of M(h, δ), M̃(h, δ) and M∗(h, δ) in (2.1) we have

M(h, δ) = c0 + c1|h| 2
3 + c2|h| 5

6 + c3h ln |h| + c4h

+ c5|h| 7
6 + c6|h| 4

3 + c7|h| 5
3 + c8|h| 11

6 + c9h
2 ln |h| + O(h2), 0 < −h � 1,

M̃(h, δ) = c̃0 + c1|h| 2
3 − c2|h| 5

6 + c3h ln |h| + c̃4h

− c5|h| 7
6 + c6|h| 4

3 + c7|h| 5
3 − c8|h| 11

6 + c9h
2 ln |h| + O(h2), 0 < −h � 1,

M∗(h, δ) = c∗
0 + c∗

1h
2
3 + c∗

2h lnh + c∗
3h + c∗

4h
4
3 + c∗

5h
5
3 + c∗

6h2 lnh + O(h2), 0 < h � 1,

(4.1)

where

c0 = M(0, δ) =
∮
L0

qdx − pdy|ε=0, c1 = Ã0̃r0,0 = 2
√

2|h̄6|− 1
6 Ã0b̄0,0,

c2 = Ã1̃r1,0 = 2
√

2|h̄6|− 1
3 Ã1b̄1,0 + O1(c1),

c3 = − 1

12
r̃2,0 = −

√
2

6
|h̄6|− 1

2 b̄2,0 + O1(c1) + O1(c2),

c4 =
∮
L0

[(px + qy)|ε=0 − b̄0,0 − b̄1,0x − b̄2,0x
2]dt + O1(c1) + O1(c2) + O1(c3),

c5 = Ã3̃r3,0, c6 = Ã4̃r4,0, c7 = − 1

10
Ã0
(
9̃r0,1 − r̃6,0

)
,

c8 = 1

11
Ã1
(
2 r̃7,0 − 9 r̃1,1

)
, c9 = 1

48

(̃
r8,0 − 3 r̃2,1

)
,

c̃0 = M̃(0, δ) =
∮
L̃0

qdx − pdy|ε=0,

c̃4 =
∮
L̃0

[(px + qy)|ε=0 − b̄0,0 − b̄1,0x − b̄2,0x
2]dt + O1(c1) + O1(c2) + O1(c3),

c∗
0 = c0 + c̃0, c∗

1 = 2 Ā0
Ã0

c1, c∗
2 = 2c3,

c∗
3 =

∮
L∗

0

[(px + qy)|ε=0 − b̄0,0 − b̄1,0x − b̄2,0x
2]dt + O1(c1) + O1(c2) + O1(c3),

c∗
4 = 2 Ā2

Ã4
c6, c∗

5 = −2 Ā0
Ã0

c7, c∗
6 = 2c9,

(4.2)

with

Ã0 = −0.5258182899 · · · , Ã1 = −0.7285951946 · · · , Ã3 = 0.3200718001 · · · ,

Ã = 0.0808471737 · · · , Ā = 1.051636580 · · · , Ā = −0.1616943474 · · · .
(4.3)
4 0 2
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Introduce the following notations

c̄01 = c0, c̄02 = c̃0, c̄1 = b̄0,0, c̄2 = b̄1,0, c̄3 = b̄2,0,

c̄41 = ∮
L0

[(px + qy)|ε=0 − b̄0,0 − b̄1,0x − b̄2,0x
2]dt,

c̄42 = ∮
L̃0

[(px + qy)|ε=0 − b̄0,0 − b̄1,0x − b̄2,0x
2]dt,

c̄∗
3 = ∮

L∗
0
[(px + qy)|ε=0 − b̄0,0 − b̄1,0x − b̄2,0x

2]dt,

c̄5 = r̃3,0, c̄6 = r̃4,0, c̄7 = 9 r̃0,1 − r̃6,0, c̄8 = 9 r̃1,1 − 2 r̃7,0, c̄9 = r̃8,0 − 3̃r2,1.

(4.4)

Next, for system (1.1) we discuss the bifurcation of limit cycles near L∗
0. If system (1.1) has 

i + j + k limit cycles near L∗
0, of which i limit cycles are near L̃0 inside, j limit cycles near 

L0 inside and k limit cycles near L∗
0 outside, then we say that system (1.1) has a distribution 

(i, j) + k of limit cycles. We can prove the following theorem.

Theorem 4.2. Let (1.5) hold with k = 6, h̄k < 0 and L∗
0 be a double homoclinic loop of cuspidal 

type defined by H(x, y) = 0. Suppose there exists a parameter δ0 ∈ R� (� > 7) such that

c̄01(δ0) = c̄02(δ0) = c̄1(δ0) = c̄2(δ0) = c̄3(δ0) = c̄41(δ0) = c̄42(δ0) = 0,

c̄5(δ0) �= 0, c̄6(δ0) �= 0,

det
∂(c̄01, c̄02, c̄1, c̄2, c̄3, c̄41, c̄42)

∂(δ1, δ2, · · · , δ7)
�= 0.

(4.5)

Then for some (ε, δ) near (0, δ0), system (1.1) has 10 limit cycles near L∗
0 with five different 

distributions: (3, 4) + 3, (2, 4) + 4, (3, 3) + 4, (4, 3) + 3 and (4, 2) + 4.

Proof. By (4.1), (4.2) and (4.4), M̃(h, δ), M(h, δ), M∗(h, δ) can be expressed as

M̃(h, δ) = c̄02 − k1c̄1|h| 2
3 + (k2c̄2 + O1(c̄1))|h| 5

6 + [−k3c̄3 + O1(c̄1) + O1(c̄2)]h ln |h|
+ (c̄42 + O1(c̄1) + O1(c̄2) + O1(c̄3))h − c̄5|Ã3||h| 7

6 + c̄6|Ã4||h| 4
3

+ 1
10 c̄7|Ã0||h| 5

3 − 1
11 c̄8|Ã1||h| 11

6 + 1
48 c̄9h

2 ln |h| + O(h2), h < 0,

M(h, δ) = c̄01 − k1c̄1|h| 2
3 + [−k2c̄2 + O1(c̄1)]|h| 5

6 + [−k3c̄3 + O1(c̄1) + O1(c̄2)]h ln |h|
+ [c̄41 + O1(c̄1) + O1(c̄2) + O1(c̄3)]h + c̄5|Ã3||h| 7

6 + c̄6|Ã4||h| 4
3

+ 1
10 c̄7|Ã0||h| 5

3 + 1
11 c̄8|Ã1|h| 11

6 + 1
48 c̄9h

2 ln |h| + O(h2), h < 0,

M∗(h, δ) = (c̄01 + c̄02) + k∗
1 c̄1h

2
3 + [−k∗

2 c̄3 + O1(c̄1) + O1(c̄2)]h lnh

+ [c̄41 + c̄42 + O1(c̄1) + O1(c̄2) + O1(c̄3)]h − 2c̄6|Ā2|h 4
3

+ 1
5 c̄7|Ā0|h 5

3 + 1
24 c̄9h

2 lnh + O(h2), h > 0,

(4.6)

where
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k1 = 2
√

2|h6|− 1
6 |Ã0| > 0, k2 = 2

√
2|h6|− 1

3 |Ã1| > 0, k3 =
√

2
6 |h6|− 1

2 > 0,

k∗
1 = 4

√
2|h6|− 1

6 |Ā0| > 0, k∗
2 =

√
2

3 |h6|− 1
2 > 0.

We first introduce the following five cases which will be used later to obtain the number of 
limit cycles that system (1.1) has.

Case 1. Suppose c̄1 �= 0 and vary (c̄01, c̄02) near (0, 0).
Let (c̄01, c̄02) = (0, 0). By (4.6) we easily get

c̄1M̃ < 0, c̄1M < 0, for 0 < −h � 1,

c̄1M
∗ > 0, for 0 < h � 1.

Then take c̄01, c̄02 as free parameters such that 0 < |c̄0j | � |c̄1|, j = 1, 2. Then, one of the fol-
lowing four conclusions hold.

(1.i) If c̄01c̄1 > 0, c̄02c̄1 > 0, then

c̄1M̃ > 0, c̄1M > 0, for 0 < −h � 1,

c̄1M
∗ > 0, for 0 < h � 1,

which indicates a distribution (1, 1) + 0 of 2 limit cycles.
(1.ii) If c̄01c̄1 > 0, c̄02c̄1 < 0 and (c̄01 + c̄02)c̄1 < 0, then

c̄1M̃ < 0, c̄1M > 0, for 0 < −h � 1,

c̄1M
∗ < 0, for 0 < h � 1,

which means a distribution (0, 1) + 1 of 2 limit cycles.
(1.iii) Similarly, if c̄01c̄1 < 0, c̄02c̄1 > 0 and (c̄01 + c̄02)c̄1 < 0, then system (1.1) has a distri-

bution (1, 0) + 1 of two limit cycles.
(1.iv) If c̄01c̄1 < 0, c̄02c̄1 < 0, then system (1.1) has a distribution (0, 0) +1 of one limit cycle.
Case 2. Suppose c̄01 = c̄02 = 0, c̄2 �= 0, c̄3 �= 0 and vary c̄1 near zero.
First, let c̄1 = 0. By (4.6) we have

c̄2M̃ > 0, c̄2M < 0, for 0 < −h � 1,

c̄3M
∗ > 0, for 0 < h � 1.

Then take c̄1 as a free parameter such that 0 < |c̄1| � min{|c̄2|, |c̄3|}. Varying c̄1 near zero gives 
the following results.

(2.i) If c̄1c̄2 > 0, c̄1c̄3 < 0, then

c̄2M̃ < 0, c̄2M < 0, for 0 < −h � 1,

c̄3M
∗ < 0, for 0 < h � 1,

which implies a distribution (1, 0) + 1 of 2 limit cycles;
(2.ii) If c̄1c̄2 < 0, c̄1c̄3 < 0, then system (1.1) has a distribution (0, 1) + 1 of 2 limit cycles;
(2.iii) If c̄1c̄2 > 0, c̄1c̄3 > 0, then system (1.1) has a distribution (1, 0) + 0 of one limit cycle;
(2.iv) If c̄1c̄2 < 0, c̄1c̄3 > 0, then system (1.1) has a distribution (0, 1) + 0 of one limit cycle.
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Case 3. Suppose c̄01 = c̄02 = c̄1 = 0, c̄3 �= 0 and vary c̄2 near zero.
For c̄2 = 0, by (4.6) we have

c̄3M̃ < 0, c̄3M < 0, for 0 < −h � 1,

c̄3M
∗ > 0, for 0 < h � 1.

Then take c2 as a free parameter such that 0 < |c̄2| � |c̄3|. By varying c̄2 near zero we find that
(3.i) if c̄2c̄3 > 0, then system (1.1) has a distribution (1, 0) + 0 of one limit cycle;
(3.ii) if c̄2c̄3 < 0, then system (1.1) has a distribution (0, 1) + 0 of one limit cycle.
Case 4. Let c̄01 = c̄02 = c̄1 = c̄2 = 0, c̄41c̄42 �= 0 and c̄∗

3 = c̄41 + c̄42 �= 0, and vary c̄3 near 
zero.

For c̄3 = 0, we have

c̄42M̃ < 0, c̄41M < 0, for 0 < −h � 1,

(c̄41 + c̄42)M
∗ > 0, for 0 < h � 1.

Now take c̄3 as a free parameter such that 0 < |c̄3| � |c̄4j | for j = 1, 2 and vary c̄3 near zero. We 
find that

(4.i) if c̄41c̄42 > 0, c̄41c̄3 < 0, then system (1.1) has a distribution (1, 1) + 1 of 3 limit cycles;
(4.ii) if c̄41c̄42 < 0, c̄41c̄3 > 0 and (c̄41 + c̄42)c̄3 < 0, then system (1.1) has a distribution 

(1, 0) + 1 of 2 limit cycles;
(4.iii) if c̄41c̄42 < 0, c̄41c̄3 < 0 and (c̄41 + c̄42)c̄3 < 0, then system (1.1) has a distribution 

(0, 1) + 1 of 2 limit cycles;
(4.iv) if c̄41c̄42 < 0, c̄41c̄3 > 0 and (c̄41 + c̄42)c̄3 > 0, then system (1.1) has a distribution 

(1, 0) + 0 of one limit cycle;
(4.v) if c̄41c̄42 < 0, c̄41c̄3 < 0 and (c̄41 + c̄42)c̄3 > 0, then system (1.1) has a distribution 

(0, 1) + 0 of one limit cycle;
Case 5. Suppose c̄01 = c̄02 = c̄1 = c̄2 = c̄3 = 0, c̄5 �= 0, c̄6 �= 0 and vary (c̄41, c̄42) near (0, 0).
First, for c̄41 = c̄42 = 0, by (4.6) we have

c̄5M̃ < 0, c̄5M > 0, for 0 < −h � 1,

c̄6M
∗ < 0, for 0 < h � 1.

Then take c̄41 and c̄42 as free parameters such that 0 < |c̄4j | � min{|c̄5|, |c̄6|} for j = 1, 2 and 
vary c̄41, c̄42 near zero. We obtain that

(5.i) if c̄41c̄42 > 0, c̄5c̄41 > 0, c̄41c̄6 > 0, then system (1.1) has a distribution (0, 1) + 1 of 2
limit cycles;

(5.ii) if c̄41c̄42 > 0, c̄5c̄41 < 0, c̄41c̄6 > 0, then system (1.1) has a distribution (1, 0) + 1 of 2
limit cycles;

(5.iii) if c̄41c̄42 < 0, c̄5c̄41 > 0, (c̄41 + c̄42)c̄6 > 0, then system (1.1) has a distribution (1, 1) +1
of 3 limit cycles;

(5.iv) if c̄41c̄42 < 0, c̄5c̄41 < 0, (c̄41 + c̄42)c̄6 > 0, then system (1.1) has a distribution (0, 0) +1
of one limit cycle.

(5.v) if c̄41c̄42 > 0, c̄5c̄41 > 0, c̄41c̄6 < 0, then system (1.1) has a distribution (0, 1) + 0 of one 
limit cycle;
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(5.vi) if c̄41c̄42 > 0, c̄5c̄41 < 0, c̄41c̄6 < 0, then system (1.1) has a distribution (1, 0) + 0 of one 
limit cycle;

(5.vii) if c̄41c̄42 < 0, c̄5c̄41 > 0, (c̄41 + c̄42)c̄6 < 0, then system (1.1) has a distribution (1, 1) +
0 of 2 limit cycles;

Next, we describe the detailed steps to obtain 10 limit cycles and their distributions.
By (4.5) we can take c̄01, c̄02, c̄1, c̄2, c̄3, c̄41, c̄42 as free parameters such that

0 < |c̄0j | � |c̄1| � |c̄2| � |c̄3| � |c̄4j | � min{|c̄5|, |c̄6|}. (4.7)

Firstly, as in case 5, let c̄01 = c̄02 = c̄1 = c̄2 = c̄3 = 0. We vary c̄41, c̄42 near zero. As one of 
seven cases, we first suppose the condition (5.i) holds, which implies a (0, 1) + 1-distribution of 
2 limit cycles. Note that any of the conditions (4.ii), (4.iii), (4.iv) and (4.v) is not satisfied if 
(5.i) holds since c̄41c̄42 > 0. Secondly, we vary c̄3 near zero as in case 4 such that (4.i) holds. 
Together with (5.i), this gives a (1, 2) + 2-distribution of 5 limit cycles.

Thirdly, as in case 3, we vary c̄2 near zero based on the conditions (5.i) and (4.i). If (3.i)

holds, then system (1.1) has 6 limit cycles with a (2, 2) + 2-distribution. If (3.ii) holds, then 
system (1.1) has 6 limit cycles with a (1, 3) + 2-distribution.

Fourthly, as in case 2, we vary c̄1 near zero. At first, if (3.i) holds, we know that c̄2c̄3 > 0
which means that the conditions (2.i) and (2.iv) are not satisfied. So, we vary c̄2 near zero such 
that (2.ii) or (2.iii) holds. Then the conditions (5.i), (4.i), (3.i) and (2.ii) lead to a (2, 3) +
3-distribution of 8 limit cycles. However, the conditions (5.i), (4.i), (3.i) and (2.iii) only lead 
to a (3, 2) + 2-distribution of 7 limit cycles. Similarly, we vary c̄1 near zero such that (2.i) or 
(2.iv) holds. Then the conditions (5.i), (4.i), (3.ii), (2.i) lead to a (2, 3) + 3-distribution of 8
limit cycles, and the conditions (5.i), (4.i), (3.ii), (2.iv) lead to a (1, 4) + 2-distribution of 7
limit cycles, respectively.

Finally, we vary c̄01, c̄02 near zero as in case 1. If (5.i), (4.i), (3.ii), (2.iv) or (5.i), (4.i), (3.i), 
(2.iii) hold, we only get at most 9 limit cycles by varying c̄01 and c̄02. Based on the conditions 
(5.i), (4.i), (3.ii) and (2.i) we vary c̄01, c̄02 near zero such that (1.i), (1.ii) or (1.iii) holds 
which implies a (3, 4) + 3, (2, 4) + 4 or (3, 3) + 4-distribution of 10 limit cycles, respectively. 
Similarly, if (5.i), (4.i), (3.i) and (2.ii) are satisfied, we vary c̄01, c̄02 near zero such that (1.i), 
(1.ii) or (1.iii) holds. Then we can get a (3, 4) + 3, (2, 4) + 4 or (3, 3) + 4-distribution of 10
limit cycles, respectively.

The above steps are shown more clearly in the following flow chart.

(5.i)(4.i)−−−−−→(1,2) + 2

⎧⎪⎪⎨
⎪⎪⎩

(3.i)−−−−→
(1,0)+0

(2,2) + 2
(2.ii)−−−−→

(0,1)+1
↘

(3.ii)−−−−→
(0,1)+0

(1,3) + 2
(2.i)−−−−→

(1,0)+1
↗

(2,3) + 3

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

(1.i)−−−−→
(1,1)+0

(3,4) + 3

(1.ii)−−−−→
(0,1)+1

(2,4) + 4

(1.iii)−−−−→
(1,0)+1

(3,3) + 4

(4.8)

If (5.ii) or (5.iii) holds, the steps to obtain 10 limit cycles are shown in the following flow 
chart.
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(5.iii)(4.ii)−−−−−−−→ (2,1) + 2

⎧⎪⎪⎨
⎪⎪⎩

(3.i)−−−−→
(1,0)+0

(3,1) + 2
(2.ii)−−−−→

(0,1)+1
↘

(3.ii)−−−−→
(0,1)+0

(2,2) + 2
(2.i)−−−−→

(1,0)+1
↗

(3,2) + 3

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

(1.i)−−−−→
(1,1)+0

(4,3) + 3

(1.ii)−−−−→
(0,1)+1

(3,3) + 4

(1.iii)−−−−→
(1,0)+1

(4,2) + 4

(4.9)

(5.iii)(4.iii)−−−−−−−→ (1,2)+ 2

⎧⎪⎪⎨
⎪⎪⎩

(3.i)−−−−→
(1,0)+0

(2,2) + 2
(2.ii)−−−−→

(0,1)+1
↘

(3.ii)−−−−→
(0,1)+0

(1,3) + 2
(2.i)−−−−→

(1,0)+1
↗

(2,3)+ 3

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

(1.i)−−−−→
(1,1)+0

(3,4) + 3

(1.ii)−−−−→
(0,1)+1

(2,4) + 4

(1.iii)−−−−→
(1,0)+1

(3,3) + 4

(4.10)

(5.ii)(4.i)−−−−−−→ (2,1) + 2

⎧⎪⎪⎨
⎪⎪⎩

(3.i)−−−−→
(1,0)+0

(3,1) + 2
(2.ii)−−−−→

(0,1)+1
↘

(3.ii)−−−−→
(0,1)+0

(2,2) + 2
(2.i)−−−−→

(1,0)+1
↗

(3,2) + 3

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

(1.i)−−−−→
(1,1)+0

(4,3) + 3

(1.ii)−−−−→
(0,1)+1

(3,3) + 4

(1.iii)−−−−→
(1,0)+1

(4,2) + 4,

(4.11)

If (5.iv) holds, we can get at most 8 limit cycles using the similar steps as before. If (5.v), 
(5.vi) or (5.vii) holds, we can get at most 9 limit cycles.

If c̄5c̄6 > 0, then we can take c̄41, c̄42 such that one of (5.i) and (5.iii) holds. Then, for system 
(1.1), by (4.8), (4.9) and (4.10) we get 10 limit cycles near L∗

0 with five different distributions: 
(3, 4) + 3, (2, 4) + 4, (3, 3) + 4, (4, 3) + 3 and (4, 2) + 4.

If c̄5c̄6 < 0, then we can take c̄41, c̄42 such that one of (5.ii) and (5.iii) holds. Similarly, we 
also can get 10 limit cycles near L∗

0 with the same distributions as discussed above.
The proof is complete. �
Similarly, we have the following theorem.

Theorem 4.3. Let (1.5) hold with k = 6, h̄k < 0 and L∗
0 be a double homoclinic loop of cuspidal 

type defined by H(x, y) = 0. Suppose there exists a parameter δ0 ∈ Rm(m ≥ 8) such that

c̄01(δ0) = c̄02(δ0) = c̄1(δ0) = c̄2(δ0) = c̄3(δ0) = c̄41(δ0) = c̄42(δ0) = 0.

Then the following conclusions hold.
(1) If

c̄5(δ0) = · · · = c̄k1−1(δ0) = 0, c̄k1(δ0) �= 0, k1 = 6 or 7,

rank
∂(c̄01, c̄02, c̄1, c̄2, c̄3, c̄41, c̄42, c̄5, · · · , c̄k1−1) = k1 + 2,

(4.12)
∂δ
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then for some (ε, δ) near (0, δ0), system (1.1) has 11 (or 13) limit cycles near L∗
0 if k1 = 6

(or k1 = 7) with distributions: (4, 4) + 3, (3, 4) + 4 and (4, 3) + 4 (or (5, 5) + 3, (4, 5) +
4 and (5, 4) + 4).

Especially, if

c̄5(δ0) = 0, c̄6(δ0) �= 0,

rank
∂(c̄01, c̄02, c̄1, c̄2, c̄3, c̄41, c̄42, c̄5)

∂δ
= rank

∂(c̄01, c̄02, c̄1, c̄2, c̄3, c̄41, c̄42)

∂δ
= 7,

then for some (ε, δ) near (0, δ0), system (1.1) has 11 limit cycles near L∗
0 with three distributions: 

(4, 4) + 3, (3, 4) + 4 and (4, 3) + 4.
(2) If

c̄5(δ0) = c̄6(δ0) = c̄7(δ0) = 0, c̄8(δ0) �= 0, c̄9(δ0) �= 0,

det
∂(c̄01, c̄02, c̄1, c̄2, c̄3, c̄41, c̄42, c̄5, c̄6, c̄7)

∂(δ1, δ2, · · · , δ10)
�= 0,

then for some (ε, δ) near (0, δ0), system (1.1) has 15 limit cycles near L∗
0 with three distributions. 

Further,
(i) if c̄8c̄9 < 0, then the three distributions of 15 limit cycles are (5, 6) +4, (4, 6) +5, (5, 5) +5;
(ii) if c̄8c̄9 > 0, then the seven distributions of 15 limit cycles are (6, 5) + 4, (5, 5) +

5, (6, 4) + 5.
(3) If one of the following conditions holds
(i)

c̄5(δ0) = c̄6(δ0) = c̄7(δ0) = 0, c̄8(δ0) = 0, c̄9(δ0) �= 0,

rank
∂(c̄01, c̄02, c̄1, c̄2, c̄3, c̄41, c̄42, c̄5, · · · , c̄8)

∂δ
= 10,

rank
∂(c̄01, c̄02, c̄1, c̄2, c̄3, c̄41, c̄42, c̄5, c̄6, c̄7)

∂δ
= 10,

(ii)

c̄5(δ0) = c̄6(δ0) = c̄7(δ0) = c̄8(δ0) = 0, c̄9(δ0) �= 0,

rank
∂(c̄01, c̄02, c̄1, c̄2, c̄3, c̄41, c̄42, c̄5, · · · , c̄8)

∂δ
= 11,

then for some (ε, δ) near (0, δ0), system (1.1) has 16 limit cycles near L∗
0 with three distributions: 

(6, 6) + 4, (5, 6) + 5 and (6, 5) + 5.

Proof. (1) Suppose k1 = 6 and c̄01 = c̄02 = c̄1 = c̄2 = c̄3 = c̄41 = c̄42 = c̄5 = 0. Then

c̄6M̃ > 0, c̄6M > 0, c̄6M
∗ < 0.

By (4.12) we can take c̄01, c̄02, c̄1, c̄2, c̄3, c̄41, c̄42, c̄5 as free parameters such that
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0 < |c̄01|, |c̄02| � c̄1| �c̄2| � |c̄3| � |c̄41|, |c̄42| � |c̄5| � |c̄6|.

As the first step, one of the following cases can occur.
(6.i) If c̄5c̄6 > 0, then we have

c̄6M̃ < 0, c̄6M > 0, c̄6M
∗ < 0,

which implies that system (1.1) has 1 limit cycle with the distribution (1, 0) + 0.
(6.ii) If c̄5c̄6 < 0, then we have

c̄6M̃ > 0, c̄6M < 0, c̄6M
∗ < 0,

which implies that system (1.1) has 1 limit cycle with the distribution (0, 1) + 0.
Note that (6.i) and (5.ii) can not hold simultaneously, and (6.i), (5.iii), (4.ii) also can not 

hold simultaneously. So, by (6.i) and (4.8), or (6.i) and (4.10) we can get 11 limit cycles with 3 
distributions (4, 4) + 3, (3, 4) + 4 and (4, 3) + 4.

Similarly, by (6.ii) and (4.9), or (6.ii) and (4.11) we also can obtain 11 limit cycles with 3 
distributions (4, 4) + 3, (3, 4) + 4 and (4, 3) + 4.

Suppose k1 = 7. Then system (1.1) has 13 limit cycles near L∗
0 with 3 distributions. The steps 

to obtain 13 limit cycles are shown in the following flow chart:

(7.ii), (6.i), (4.8)−−−−−−−−−−−→ ↘
(7.ii), (6.i), (4.10)−−−−−−−−−−−−→ ↘
(7.ii), (6.ii), (4.9)−−−−−−−−−−−−→ ↗
(7.ii), (6.ii), (4.11)−−−−−−−−−−−−−→ ↗

⎧⎨
⎩

(5,5) + 3
(4,5) + 5
(5,4) + 4

(4.13)

Other cases can be proved similarly, and the proof is completed. �
Next, if the origin is a nilpotent saddle of smooth type, we can similarly prove the following 

theorems.
At first, it directly follows from Theorem 3.2 and (4.4) that the expansions of the functions 

M(h, δ), M̃(h, δ), M∗(h, δ) in (1.8) are given below.

Theorem 4.4. Let (1.5) hold with k = 6, h̄k < 0 and L∗
0 be a double homoclinic loop of smooth 

type defined by H(x, y) = 0. We have

M(h, δ) = c̄01 + 1
2 Â0c1h

2
3 + c3h lnh + (c̄41 + O1(c1) + O1(c2) + O1(c3))h + 1

2 Â2c6h
4
3

− 1
2 Â0c7h

5
3 + c9h

2 lnh + O(h2),

M̃(h, δ) = c̄02 + 1
2 Â0c1h

2
3 + c3h lnh + (c̄42 + O1(c1) + O1(c2) + O1(c3))h + 1

2 Â2c6h
4
3

− 1
2 Â0c7h

5
3 + c9h

2 lnh + O(h2),

(4.14)

for 0 < h � 1, where Â0 < 0, Â2 < 0, and
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M∗(h, δ) = (c̄01 + c̄02)+2c1|h| 2
3 +2c3h ln |h|+c∗

3h+2c6|h| 4
3 +2c7|h| 5

3 +2c9h
2 ln |h|+O(h2),

for 0 < −h � 1.

Theorem 4.5. Let (1.5) hold with k = 6, h̄k < 0 and L∗
0 be a double homoclinic loop of smooth 

type defined by H(x, y) = 0. Suppose there exists a parameter δ0 ∈ Rm(m ≥ 7) such that

c̄01(δ0) = c̄02(δ0) = c̄1(δ0) = c̄3(δ0) = c̄41(δ0) = c̄42(δ0) = 0. (4.15)

Then we have
(1) If

c̄6(δ0) �= 0, det
∂(c̄01, c̄02, c̄1, c̄3, c̄41, c̄42)

∂(δ1, δ2, · · · , δ6)
�= 0,

then for some (ε, δ) near (0, δ0), system (1.1) has 11 limit cycles near L∗
0 with three different 

distributions: (4, 4) + 3, (4, 3) + 4 and (3, 4) + 4;
(2) If

c̄6(δ0) = 0, c̄7(δ0) �= 0, det
∂(c̄01, c̄02, c̄1, c̄3, c̄41, c̄42, c̄6)

∂(δ1, δ2, · · · , δ7)
�= 0,

then for some (ε, δ) near (0, δ0), system (1.1) has 13 limit cycles near L∗
0 with three different 

distributions: (5, 5) + 3, (5, 4) + 4 and (4, 5) + 4;
(3) If

c̄6(δ0) = c̄7(δ0) = 0, c̄9(δ0) �= 0, det
∂(c̄01, c̄02, c̄1, c̄3, c̄41, c̄42, c̄6, c̄7)

∂(δ1, δ2, · · · , δ8)
�= 0,

then for some (ε, δ) near (0, δ0), system (1.1) has 16 limit cycles near L∗
0 with three different 

distributions: (6, 6) + 4, (6, 5) + 5 and (5, 6) + 5.

5. Applications

Consider system

ẋ = y, ẏ = x5(1 − x2) − εf (x, δ)y, n = 8,9,10,11,12, (5.1)

where f (x, δ) =
n∑

i=0
aix

i with δ = (a0, a1, · · · , an). We have the following Theorem.

Theorem 5.1. Let C∗
1 (n, 7) denote the maximal number of limit cycles of system (5.1). We have

C∗
1 (8,7) ≥ 11, C∗

1 (9,7) ≥ 11, C∗
1 (10,7) ≥ 14, C∗

1 (11,7) ≥ 15, C∗
1 (12,7) ≥ 17.

We can prove the following theorem by Theorems 4.2 and 4.3.
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Proof. For system (5.1)|ε=0, it has a nilpotent saddle of order 2 at the origin and two elementary 
centers (1, 0) and (−1, 0). The Hamiltonian function of system (5.1)|ε=0 is

H(x,y) = 1

2
y2 − 1

6
x6 + 1

8
x8,

and it is obvious that

H(0,0) = 0, H(1,0) = H(−1,0) = − 1

24
.

Note that b̄0,0 = −a0, b̄1,0 = −a1, b̄2,0 = −a2. By (4.4) and (4.2), we get

c̄02 = c̄01 = −
∮
L0

f (x)ydx =
n∑

i=0

aiIi,

c̄42 = c̄41 =
∮
L0

(
−f (x) + a0 + a1x + a2x

2
)

dt = −
∮
L0

n∑
i=3

aix
idt =

n∑
i=3

ai Īi ,

c̄1 = −a0, c̄2 = −a1, c̄3 = −a2, c̄5 = −√
2 6

2
3 (2a3 + a1) ,

c̄6 = − 1
32

3
√

2 3
5
6 (80a2 + 55a0 + 128a4) ,

c̄7 = 1
256 2

2
3

6
√

3 (2184a2 + 1729a0 + 3072a6 + 2688a4) ,

c̄8 = 1
2

√
2 3
√

6 (48a7 + 48a5 + 42a3 + 35a1) ,

c̄9 = − 3
4096

√
3 (30240a2 + 25515a0 + 36864a6 + 32768a8 + 34560a4) ,

(5.2)

where

Ii = −
∮
L0

xiydx = −1

3

x2∫
0

xi+3
√

12 − 9x2dx,

Īi = −
∮
L0

xidt = −
∮
L0

xi

y
dx = −12

x2∫
0

xi−3

√
12 − 9x2

dx.

For n = 12, there exists a parameter δ12,0 = (a0, a1, a2, a3, a4, a5, a6, a8, a9, a10, a11, a12) sat-
isfying

a0 = a1 = a2 = a3 = a4 = a6 = a9 = a11 = 0, a5 = −a7, a8 = 640
459 a12, a10 = − 368

153 a12,

such that

(c̄01, c̄02, c̄1, c̄2, c̄3, c̄41, c̄42, c̄5, c̄6, c̄7, c̄8)(δ12,0) = (0,0,0,0,0,0,0,0,0,0,0) (5.3)

and
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c̄9(δ12,0) = − 5120
153

√
3a12, det ∂(c̄01,c̄02,c̄1,c̄2,c̄3,c̄41,c̄42,c̄5,c̄6,c̄7,c̄8)

∂(a0,a1,a2,a3,a4,a5,a6,a8,a9,a10,a11)
= 1125899906842624

3701802772395 π2. (5.4)

Then by Theorem 4.3 (3.ii), system (1.1) has 16 limit cycles near L∗
0 for some (ε, δ) near 

(0, δ12,0) if a12 �= 0, which have 3 distributions.
In the following we consider the sign of M∗(h, δ) for h > 0 to find more limit cycles.
Let G(x) = − 1

6x6 + 1
8x8 and G(xi(h)) = h, i = 1, 2 with x2(h) < − 2

3

√
3 < 2

3

√
3 < x1(h). 

Then using the similar way in Proposition 3.1 in [14], we have

M∗(h, δ12,0) = −
∮
Lh

f (x, δ)|δ=δ12,0ydx

= −2

x1(h)∫
x2(h)

f (x, δ12,0)
√

2(h − G(x))dx

= −2

x1(h)∫
x2(h)

F (x)√
2(h − G(x))

dG(x)

= −2

x1(h)∫
0

F(x) − F(−x)√
2(h − G(x))

dG(x),

(5.5)

where

f (x, δ12,0) = a7(−x5 + x7) + a12

(
640

459
x8 − 368

153
x10 + x12

)
,

F (x) =
x∫

0

f (x, δ12,0)dx, F (x) − F(−x) =
(

1280

4131
x9 − 736

1683
x11 + 2

13
x13
)

a12.

There exists x0 > 0 such that 1280
4131 x9 − 736

1683 x11 + 2
13 x13 > 1 for x0 > 0 since

lim
x→+∞

(
1280

4131
x9 − 736

1683
x11 + 2

13
x13
)

= +∞.

Note that

x0∫
0

1280
4131 x9 − 736

1683 x11 + 2
13 x13

√
2(h − G(x))

dG(x) → 0, as h → +∞, (5.6)

and
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x1(h)∫
x0

1280
4131 x9 − 736

1683 x11 + 2
13 x13

√
2(h − G(x))

dG(x)

>

x1(h)∫
x0

1√
2(h − G(x))

dG(x)

= √
2(h − G(x0)) → +∞, as h → +∞.

(5.7)

Then by (5.5), (5.6) and (5.7), we have

a12M
∗(h, δ12,0) → −∞, as h → +∞.

By (4.1), (4.3), (4.4) and (5.3) we further have

a12M
∗(h, δ12,0) = −640

459

√
3a2

12 h2 lnh + O(h2) > 0, for 0 < h � 1.

Thus, there is a zero of M∗(h, δ12,0) for h > 0 large denoted by h∗
0 which leads to a limit cycle 

near Lh∗
0
.

For 0 < h + 1
24 � 1, by [24] and [25], we have

M̃(h, δ) =
∑
i≥0

b̃l,i (h + 1

24
)i+1, M(h, δ) =

∑
i≥0

br,i(h + 1

24
)i+1,

where

br,0 = −√
2π

12∑
i=0

ai, b̃l,0 = √
2π

12∑
i=0

(−1)i+1ai.

We further have

br,0(δ12,0) = b̃l,0(δ12,0) = 5

459

√
2π a12.

Then

a12M(h, δ12,0) = 5
459

√
2π a2

12(h + 1
24 ) + O((h + 1

24 )2) > 0, for 0 < h + 1
24 � 1,

a12M(h, δ12,0) = − 320
459

√
3a2

12h
2 ln |h| + O(h2) > 0, for 0 < −h � 1.

Here we can not find a zero of M(h, δ) for 0 < h + 1
24 � 1. Similarly, we can not find a zero of 

M̃(h, δ) for 0 < h + 1
24 � 1.

From the above, system (1.1) has 17 limit cycles for some (ε, δ) near (0, δ12,0) if a12 �= 0, of 
which 16 limit cycles near L∗ and a large limit cycle near Lh∗ which means that C∗(12, 7) ≥ 17.
0 0
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For n = 11, we can find δ11,0 = (a0, a1, a2, a3, a4, a5, a6, a8, a9, a10) with

a0 = a1 = a2 = a3 = a4 = 0, a5 = 55
36a11 − a7,

a6 = − 16
9 a11, a8 = 8

3 a11, a9 = − 61
24 a11, a10 = − 7

8 a11,

such that

(c̄01, c̄02, c̄1, c̄2, c̄3, c̄4, c̄5, c̄6, br,0)(δ11,0) = (0,0,0,0,0,0,0,0,0),

c̄7(δ11,0) = − 64
3

√
2 6
√

6a11, br,1(δ11,0) = − 23
576π

√
2a11,

det
∂(c̄01, c̄02, c̄1, c̄2, c̄3, c̄41, c̄42, c̄5, c̄6, br0)

∂(a0, a1, a2, a3, a4, a5, a6, a8, a9)

= − 4194304
71744535 π4 + 549755813888

122159491489035 π3
√

3 + 1152921504606846976
2116413190047531375 π2

= −0.07651730197 · · · .

(5.8)

So, system (1.1) has 14 limit cycles with 3 distributions for some (ε, δ) near (0, δ11,0) if a11 �= 0, 
of which 13 limit cycles near L∗

0 by Theorem 4.3 (1), and 1 limit cycle near the right center.
Note that

[F(x) − F(−x)]δ=δ11,0
= − 7

44
a11x

11 + 16

27
a11x

9 − 32

63
a11x

7.

Similarly as the case n = 12, we have

a11M
∗(h, δ11,0) = − 64

15 |A0|
√

2 6
√

6h
5
3 a2

11 + O(h2 lnh) < 0, for 0 < h � 1,

a11M
∗(h, δ11,0) → +∞, as h → +∞.

Thus, there is a zero of M∗(h, δ11,0) for h > 0 large denoted by h∗
1 which leads to a limit cycle 

near Lh∗
1

surrounding L∗
0.

We can not find a zero of M(h, δ) and M̃(h, δ) for − 1
24 < h < 0.

Thus, we have proved C∗(11, 7) ≥ 15.
For n = 10, we can find δ10,0 = (a0, a1, a2, a3, a4, a5, a6, a8, a9) with

a0 = a1 = a2 = a3 = a4 = a9 = 0,

a5 = −a7, a6 = 128
63 a10, a8 = − 64

21 a10,

such that

(c̄01, c̄02, c̄1, c̄2, c̄3, c̄41, c̄42, c̄5, c̄6)(δ10,0) = (0,0,0,0,0,0,0,0), c̄7(δ10,0) = 512
21

√
2 6
√

6a10,

det
∂(c̄01, c̄02, c̄1, c̄2, c̄3, c̄41, c̄42, c̄5, c̄6)

∂(a0, a1, a2, a3, a4, a5, a6, a8, a9)
= −2097152

√
6π2

745784441325

(
24255

√
3π − 131072

)
�= 0.

(5.9)

So, by Theorem 4.3 (1) system (1.1) has 13 limit cycles near L∗
0 with 3 distributions for some 

(ε, δ) near (0, δ10,0) if a10 �= 0.



J. Yang et al. / J. Differential Equations 266 (2019) 455–492 491
Note that

[F(x) − F(−x)]δ=δ10,0 = 256

441
a10x

7 − 128

189
a10x

9 + 2

11
a10x

11.

Then, similarly as before we have

a10M
∗(h, δ10,0) = 512

105

∣∣Ā0
∣∣2 2

3 3
1
6 a2

10h
5
3 > 0,

a10M
∗(h, δ12,0) → −∞, as h → +∞.

Thus, there exist 14 limit cycles for system (1.1) with 3 distributions which gives C∗(10, 7) ≥ 14.
For n = 9, we can find δ9,0 with

(a0, a1, a2, a3, a4, a5, a6, a7, a8, a9) = (0,0,0,0,−256

585
a8,−a7,−112

195
a8, a7, a8,0)

such that

(c̄01, c̄02, c̄1, c̄2, c̄3, c̄41, c̄42, c̄5)(δ9,0) = (0,0,0,0,0,0,0,0), c̄6(δ9,0) = 1024
585 2

1
3 3

5
6 a8,

(5.10)

and

det
∂(c̄01, c̄02, c̄1, c̄2, c̄3, c̄41, c̄42, c̄5)

∂(a0, a1, a2, a3, a4, a5, a6, a8)
= − 134217728

49718962755
6

2
3
√

2π2.

So, by Theorem 4.3 (1) system (1.1) has 11 limit cycles near L∗
0 with 3 distributions for some 

(ε, δ) near (0, δ9,0) if a8 �= 0. We can not find a zero of M∗(h, δ) for h > 0. Thus we get 
C∗(9, 7) ≥ 11.

In the proof of n = 9, take a9 = 0. We easily prove that for n = 8 system (1.1) has 11 limit 
cycles near L∗

0 with 3 distributions for some (ε, δ) near (0, δ8,0) if a8 �= 0.
This ends the proof. �
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