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1. Introduction 

It is well known that dynamical systems can exhibit self-sustained oscillations, called limit cycles, which may appear in

almost all fields of science and engineering such as physics, mechanics, electronics, ecology, economy, biology, finance etc.

Developing theory and methodology for solving limit cycle problems is not only theoretically significant, but also practically

important. The phenomenon of limit cycles was first discovered and introduced by Poincaré who developed the break-

through qualitative method, the Poincaré Map [1] , to determine the existence of limit cycles, which is still the most basic

tool for studying stability and bifurcation of periodic orbits. Later, many quantitative methodologies were developed to ap-

proximate the solution of limit cycles, in particular bifurcating from Hopf critical points, for example, see [2] and reference

therein. Recently, with the aid of computer algebra systems such as Mathematica, Maple, symbolic algorithms and programs

have been developed to overcome the computational complexity in the analysis of bifurcation of limit cycles, for example,

see [3] in which many practical problems are presented and solved by using limit cycles theory and normal form theory.

Very recently, bifurcation of multiple limit cycles in disease models has attracted attention of researchers in this field, since

such bifurcation can cause complex biological behavior like bistable states which may involve equilibria and periodic mo-

tions. For example, in a simple 2-dimensional in-host model of HIV, developed in [4–6] , besides studying the interesting

phenomenon–viral blips, bifurcation of two limit cycles from a Hopf critical point has been found in [6] . These two limit cy-

cles enclosing a stable equilibrium with the outer cycle stable indeed show that depending upon different initial conditions,

the system trajectories can either converge to the disease-free equilibrium or to a stable periodic motion of disease. 

The development of limit cycles theory is closely related to the well-known Hilbert’s 16th problem, one of the 23 math-

ematical problems proposed by Hilbert at the Second International Congress of Mathematics in 1900 [7] . A modern version

of this problem was later formulated by Smale, chosen as one of his 18 most challenging mathematical problems for the

21st century [8] . To be more specific, consider the following planar differential system: 

˙ x = P n (x, y ) , ˙ y = Q n (x, y ) , (1.1)
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where P n ( x , y ) and Q n ( x , y ) represent n th -degree polynomials in x and y . The second part of Hilbert’s 16th problem is to

find an upper bound on the number of limit cycles that system (1.1) can have. This upper bound, called Hilbert number, is

the function of n only denoted as H ( n ). In early 1990’s, Ilyashenko and Yakovenko [9] , and Écalle [10] independently proved

that H ( n ) is finite for given planar polynomial vector fields. For general quadratic polynomial systems, four limit cycles were

obtained more than 30 years ago [11,12] . This result was also proved recently for near-integrable quadratic systems [13] .

However, whether H(2) = 4 is still open. For cubic polynomial systems, many results have been obtained on the low bound

of the Hilbert number, and the best result so far is H (3) ≥ 13 [14,15] . A comprehensive review on the study of Hilbert’s

16th problem can be found in a survey article [16] . It should be pointed out that in real applications, many systems have

dimension higher than two [3–5] and Hopf bifurcation leading to limit cycles is a common phenomenon. In such case, the

system can be reduced to a 2-dimensional dynamical system by using center manifold theory (e.g., see [3,17] ) to study the

limit cycles bifurcation. 

Later, Arnold [18] posed the weak Hilbert’s 16th problem, which is closely related to the so-called near-Hamiltonian

system [19] : 

˙ x = H y (x, y ) + ε p n (x, y ) , ˙ y = − H x (x, y ) + ε q n (x, y ) , (1.2)

where H ( x , y ), p n ( x , y ) and q n ( x , y ) are all polynomial functions in x and y , and 0 < ε � 1 represents a small perturbation.

Then, the problem on bifurcation of limit cycles for such a system can be transferred to studying the zeros of the Abelian

function or the (first-order) Melnikov function, given in the form of 

M(h, δ) = 

∮ 
H(x,y )= h 

q n (x, y ) dx − p n (x, y ) dy, (1.3)

where H(x, y ) = h for h ∈ ( h 1 , h 2 ) defines a closed orbit, and δ represents the parameters (or coefficients) involved in the

polynomial functions p n ( x , y ) and q n ( x , y ). 

If the problem is restricted to the vicinity of an isolated fixed point, which is either an elementary center or an ele-

mentary focus, then it is equivalent to study generalized Hopf bifurcations. This problem is usually called local bifurcation

of limit cycles, and the number of bifurcating small-amplitude limit cycles is denoted by M ( n ). The best-known result is

M(2) = 3 , which was obtained by Bautin in 1952 [20] . For n = 3 , a number of results have been obtained. Around an ele-

mental focus, James and Lloyd [21] considered a particular class of cubic systems to obtain 8 limit cycles in 1991, and the

systems were reinvestigated couple of years later by Ning et al. [22] to find another solution of 8 limit cycles. Yu and Cor-

less [23] constructed a cubic system and combined symbolic and numerical computations to show 9 limit cycles in 2009,

which was confirmed by purely symbolic computation with all real solutions obtained in 2013 [24] . Another cubic system

was also recently constructed by Lloyd and Pearson [25] to show 9 limit cycles with purely symbolic computation. 

On the other hand, around a center, there are also a few results obtained in the past two decades. In 1995,

Żoła ̧ dek [26] first proposed a rational Darboux integral, and claimed the existence of 11 small-amplitude limit cycles around

a center. After more than ten years, another two cubic systems are constructed to show 11 limit cycles [27,28] . Recently,

based on the system given in [27] , 12 small-amplitude limit cycles around a singular point has been proved [29] , which

is perdhaps the maximal numver which can be obtained for cubic integrable polynomial systems. The system considered

in [26] was reinvestigated by Yu and Han [30] using the method of focus value computation, and only 9 limit cycles were

obtained. More recently, Tian and Yu proved the Żoła ̧ dek’s example can indeed have only 9 limit cycles [31] . 

For the local bifurcation problem associated with a singularity of focus, Lyapunov constants are needed to solve the

center-focus problem and determine the number and stability of bifurcating limit cycles. There are mainly three approaches

which are widely used to compute the Lyapunov constants: the method of normal forms [3,32,33] , the method of Poincaré

return map or focus value method [34,35] , and the method of Lyapunov function [36,37] . Other approaches can be found,

for example, in [3] . Since in this paper we apply the method of normal forms to study bifurcation of limit cycles, in the

following we briefly describe how this method is used to determine the number of bifurcating limit cycles. Without loss

of generality, suppose that system (1.1) has a singularity of focus at the origin, that is, (x, y ) = (0 , 0) is an equilibrium of

system (1.1) and that the Jacobian of the system evaluated at this equilibrium is in the real Jordan canonical form, 

J = 

[
0 ω c 

−ω c 0 

]
. 

Then, by using the method of normal forms with the aid of computer algebra systems (e.g., see [3,33,38,39] ) we can obtain

the normal form of the system, given in polar coordinates, as 

˙ r = r 
(
v 0 + v 1 r 2 + v 2 r 4 + · · · + v k r 2 k + · · ·

)
, 

˙ θ = ω c + τ0 + τ1 r 
2 + τ2 r 

4 + · · · + τk r 
2 k + · · · , (1.4) 

where r and θ represent the amplitude and phase of motion, respectively. v k (k = 0 , 1 , 2 , . . . ) is called the k th-order focus

value. v 0 and τ 0 are obtained from linear analysis. The first equation of (1.4) can be used for studying bifurcation of limit

cycles and stability of bifurcating limit cycles, while the second equation can be used to determine the frequency of bifur-

cating periodic motion. Moreover, the coefficients τ j ’s can be used to determine the order (or critical periods) of a center

(i.e., when v j = 0 , j ≥ 0 ). These focus values are equivalent to Lyapunov constants, L j , in the sense that 

v j = 0 , j = 0 , 1 , · · · , k − 1 , v k � = 0 ⇐⇒ L j = 0 , j = 0 , 1 , . . . , k − 1 , L k � = 0 , 
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where v k and L k are either equal or different by a positive constant multiplier. 

Having obtained the focus values or the Lyapunov constants for a given dynamical system, we use these quantities to

determine the number of bifurcating limit cycles. The basic idea of finding k small-amplitude limit cycles due to Hopf bifur-

cation is as follows: First, find the conditions such that v 0 = v 1 = · · · = v k −1 = 0 (note that v 0 = 0 is automatically satisfied at

the critical point), but v k � = 0 , and then perform appropriate small perturbations to prove the existence of k limit cycles. The

procedure contains two main steps in finding multiple limit cycles: Computing the focus values (i.e., computing the normal

form) or the Lyapunov constants, and solving multivariate coupled nonlinear polynomial equations: v 0 = v 1 = · · · = v k −1 = 0 .

The following Lemma gives sufficient conditions for proving the existence of k small-amplitude limit cycles. (The proofs can

be found in [40] .) 

Lemma 1.1. Suppose that the focus values depend on k parameters, a j , j = 1 , 2 , . . . , k, expressed as 

v j = v j (a 1 , a 2 , . . . , a k ) , j = 0 , 1 , . . . , k − 1 , (1.5)

satisfying 

v j (a 1 c , . . . , a kc ) = 0 , j = 0 , 1 , . . . , k − 1 , v k (a 1 c , . . . , a kc ) � = 0 , 

and rank 

[
∂(v 0 , v 1 , . . . , v k −1 ) 

∂(a 1 , a 2 , . . . , a k ) 

]
(a 1 , ... ,a k )=(a 1 c , ... ,a kc ) 

= k. (1.6)

Then, for any given a ∗ > 0, there exist a 1 , a 2 , . . . , a k and δ > 0 with | a j − a jc | < a ∗, j = 1 , 2 , . . . , k such that the equation ˙ r = 0

has exactly k real positive roots r (i.e., system (1.1) has exactly k limit cycles) in a δ-ball with the center at the origin. 

To study bifurcation of limit cycles for the near-Hamiltonian system (1.2) , the Melnikov function method is usually ap-

plied [3,19] . Suppose the origin of system (1.3) is a center and M(0 , δ) = 0 . Then, the problem becomes a study of Hopf

bifurcation, and the first-order Melnikov function (1.4) can be expanded as 

M(h, δ) = h (μ0 + μ1 h + μ2 h 

2 + · · · ) for 0 < h � 1 , (1.7)

where the coefficients μj ’s can be used to determine the small-amplitude limit cycles due to the perturbing terms. When

M ( H , δ) ≡ 0, one has to find higher-order Melnikov functions to study bifurcation of limit cycles. The computation of higher-

order Melnikov functions is much more complex than that of first-order Melnikov function. 

The method of normal forms can be also applied to consider Hopf bifurcation in system (1.2) . In this case, the first

equation of the normal form (1.4) can be written as 

˙ r = r 
[
V 0 (ε) + V 1 (ε) r 2 + V 2 (ε) r 4 + · · · + V k (ε) r 2 k + · · ·

]
, (1.8)

where 

V j (ε) = V 0 j + ε V 1 j + ε 2 V 2 j + · · · , j = 0 , 1 , 2 , . . . , (1.9)

where V 0 j = 0 , j = 0 , 1 , 2 , . . . since system (1.2) is a Hamiltonian system when ε = 0 . 

Remark 1.1. 

(1) V 1 j , j = 0 , 1 , 2 , . . . are equivalent to the coefficients of the first-order Melnikov function, μ j , j = 0 , 1 , 2 , . . . , and V kj , k

≥ 2 are equivalent to the k th-order Melnikov functions. 

(2) The computation of the coefficients V 1 j has more or less complexity of computing the coefficients μj in the first-order

Melnikov function. However, the computation of the coefficients in higher-order Melnikov functions is much more

involved than the computation of the higher-order coefficients V kj , k ≥ 2. 

(3) In particular, when the original system is not a Hamiltonian system but an integrable system, then even computing

the coefficients of the first-order Melnikov function is much more involved than the computation of using the method

of normal forms, since the former needs to find an integrating factor while the latter does not. 

(4) However, the method of normal forms is restricted to Hopf bifurcation, while the Melnikov function method can also

be applied to study bifurcation of limit cycles from homoclinic/heteroclinic orbits or any closed orbits. 

The above mentioned three methods: the normal form method, the focus value method and Lyapunov function method,

have also been used to study the center-focus problem for nilpotent critical points, see for example [41–46] . Regarding

the use of the methods for generating limit cycles from the nilpotent critical point, the method of normal forms was only

recently applied to compute the so-called generalized Lyapunov constants which can be used to find the lower bound of

cyclicity [47] . As we know, it is more difficult to distinguish focus from center when the singular point is degenerate. An-

dreev [48] studied analytic systems having a nilpotent singular point at the origin and obtained the local phase portraits,

which however does not distinguish focus from center. Takens [49] developed a normal form theory for nilpotent center of

foci, and later, Moussu [43] found the C ∞ normal form for analytic nilpotent centers. Further, Berthier and Moussu [50] in-

vestigated the reversibility of nilpotent centers. Teixeria and Yang [51] used a convenient normal form to consider the re-

lationship between reversibility and the center-focus problem, and studied the reversibility of certain types of polynomial

vector fields. Recently, Han et al. [52] studied polynomial Hamiltonian systems with a nilpotent singular point, and used
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Melnikov function method to obtain necessary and sufficient conditions for determining the number of limit cycles bifurcat-

ing in quadratic and cubic Hamiltonian systems with a nilpotent singular point which may be a center, a cusp or a saddle.

In a later article [53] , Han and Romanovski developed a Melnikov function method to invetigate limit cycle bifurcations in

analytic planar systems. 

In [47] , many examples are given to demonstrate the application of normal forms to determine the number of bifurcating

limit cycles in planar dynamical system with a nilpotent critical point. The main goal of this paper is to generalize the

normal form method to consider bifurcation of limit cycles in near-Hamiltonian systems. In fact, according to the third point

of Remark 1.1 , our method can be applied to consider near-integrable systems (i.e., integrable systems with perturbations)

without computing the integrating factor. In the next section, we present some basic formulations and preliminary results

which are needed in proving our main result in Section 3 . Finally, conclusion is drawn in Section 4 . 

2. Mathematical formulation and preliminary results 

In this section, we present some basic formulas and preliminary results which will be used in the next section. Consider

the following differential system: 

˙ x = − y + F 1 (x, y ) , 

˙ y = F 2 (x, y ) , (2.1) 

where F 1 and F 2 are analytic functions with power series beginning from second order. As long as the limit cycles bifurca-

tion is considered near the origin, the system (2.1) with a nilpotent center at the origin is more difficult to analyze than

the general system (1.1) with an element center or focus at the origin, since the conventional normal form of Hopf bifurca-

tion [3,17] can be directly applied to the latter but not the former. In fact, there exist conventional normal forms for system

(2.1) associated with Bogdanov–Takens bifurcation (i.e., the linearized system contains a double-zero eigenvalue at the ori-

gin) [3,17] , which is however not able to be directly applied to study bifurcation of limit cycles near the origin. Therefore,

a modified normal form of system (2.1) needs to be developed to study bifurcation of limit cycles near the origin. In real

applications, many physical systems involve a number of parameters and can thus have higher co-dimensional singularity

such as Bogdanov–Takens bifurcation (which is characterized by a double-zero eigenvalue at a critical point, leading to a

nilpotent center), and thus it is interesting and important to explore the periodic solutions near such a critical point. For

example, in the 2-dimensional HIV model [6] , a critical point with B–T bifurcation is identified for certain parameter values

and thus the system can be put in the form of system (2.1) in the vicinity of the critical point. Limit cycles due to Hopf

bifurcation have been obtained near this critical point and even multiple limit cycles can be found if more parameters are

treated as bifurcation parameters. Moreover, homoclinic orbits are identified near this degenerate singular point [6] . 

To mathematically analyze bifurcation of limit cycles for system (2.1) near the origin, we first present the following

result [41,47,48] , which can be used to determine the monodromy of the origin of system (2.1) . 

Lemma 2.1 (Theorem 2.1 in [47] ) . Assume that the origin of system (2.1) is an isolated singularity. Define two functions f ( x ) and

φ( x ) as 

f (x ) = F 2 (x, Y (x )) = a x α + O (x α+1 ) , a � = 0 , α ≥ 2 , 

φ(x ) = 

∂F 1 (x, Y (x )) 

∂x 
+ 

∂F 2 (x, Y (x )) 

∂y 
, 

where y = Y (x ) is the solution of the equation, −y + F 1 (x, y ) = 0 , passing through the origin (0, 0) . Write φ(x ) = bx β +
O (x β+1 ) , b � = 0 and β ≥ 1, or φ( x ) ≡ 0 . Then, the origin of system (2.1) is monodromic if and only if a > 0, α = 2 n − 1 (n

≥ 1) being an odd number, and one of the following three conditions holds: 

(i) β > n − 1 ; 

(ii) β = n − 1 , and b 2 − 4 an < 0 ; 

(iii) φ ≡ 0 . 

Under the above conditions, we apply the near-identity state transformation and time scaling: 

x = u + 

k ∑ 

i + j=2 

h 1 i j u 

i v j , 

y = v + 

k ∑ 

i + j=2 

h 2 i j u 

i v j , 

τ = 

(
1 + 

k ∑ 

i + j=2 

h 3 i j u 

i v j 
)

t, (2.2) 
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into system (2.1) to yield the following normal form by choosing appropriate coefficients h 1 ij , h 2 ij and h 3 ij : 

du 

dτ
= − v + O (‖ (u, v ) ‖ 

k +1 ) , 

dv 
dτ

= u 

2 n −1 + v 
k −1 ∑ 

j≥β

B j u 

j + O (‖ (u, v ) ‖ 

k +1 ) , (2.3)

where B j is called the j th-order generalized Lyapunov constant. Based on the simplest normal form theory associated with

B–T bifurcation (e.g., see [57–59] ), we have developed an algorithm with explicit recursive formulas for computing B j , with

a computationally efficient Maple program which can be easily implemented in a computer using Maple. This method can

also be applied to consider the near-Hamiltonian system discussed blow. 

It has been noted that Liu and Li [54] have developed a different method to compute the so-called quasi Lyapunov con-

stants , which are equivalent to the generalized Lyapunov constants. However, this method is only applicable for cubic sys-

tems. 

Next, we consider the near-Hamiltonian systems, described by 

˙ x = 

∂H(x, y, a ) 

∂y 
+ ε P (x, y, δ) , 

˙ y = − ∂H(x, y, a ) 

∂x 
+ ε Q(x, y, δ) , (2.4)

where H ( x , y , a ) is an n th-degree real polynomial in x and y and P , Q are m th-degree of polynomials in x and y , and a =
(a 1 , . . . , a k 1 ) ∈ R 

k 1 and δ = (δ1 , . . . , δk 2 
) ∈ R 

k 2 are vector parameters, and 0 < ε � 1 is a small perturbation parameter. Thus,

the perturbed system (2.4) contains a total of k 1 + k 2 parameters. The function H ( x , y , a ) is called the Hamiltonian of system

(2.4) . The origin of the system is an equilibrium and assumed to be a nilpotent center. When ε = 0 , system (2.4) becomes a

Hamiltonian system: 

˙ x = 

∂H(x, y, a ) 

∂y 
, ˙ y = − ∂H(x, y, a ) 

∂x 
. (2.5)

It should be noted that system (2.4) is a subset of system (2.1) . When system (2.1) satisfies the property (2.5) for certain

values of the system coefficients, perturbing these coefficients can lead to system (2.1) . This often happens in real applica-

tions. 

The monodromy of the origin of system (2.5) has been studied in [55] . Suppose H ( x , y , a ) is given by 

H(x, y ) = 

1 

2 

y 2 + 

∑ 

3 ≤i + j≤4 

a i j x 
i y j . (2.6)

Then, a simple approach based on the Hamiltonian function, given in [55] , is used to prove the following lemma. 

Lemma 2.2 (Theorem 2.1 in [55] ) . The cubic Hamiltonian system (2.5) with (2.6) has a nilpotent center at the origin if and only

if one of the following three conditions holds: 

(1) a 30 = 0 , a 40 > 

1 
2 a 

2 
21 ; 

(2) a 30 = 0 , a 40 = 

1 
2 a 

2 
21 � = 0 , a 31 = a 12 a 21 , a 22 > 

1 
2 a 

2 
12 + a 03 a 21 ; 

(3) a 30 = 0 , a 40 = 

1 
2 a 

2 
21 

� = 0 , a 31 = a 12 a 21 , a 22 = 

1 
2 a 

2 
12 

+ a 03 a 21 , a 13 = a 03 a 12 , a 04 > 

1 
2 a 

2 
03 

. 

Since a Hamiltonian system is a special type of general dynamical systems, the above conditions can be obtained directly

by using Lemma 2.1 , but the proof for Lemma 2.1 is more involved than that of Hamiltonian system [56] . 

Now system (2.4) contains parameters (or constants) not only in the perturbation terms, but also in the Hamiltonian

functions, we need to generalize Lemma 1.1 . To achieve this, suppose now the Melnikov function for system (2.4) is given

as 

M(h, a , δ) = h 

∑ 

j≥0 

μ j ( a , δ) h 

j . (2.7)

Then we have the following result (e.g., see [56,60] ). 

Lemma 2.3. Consider the near-Hamiltonian system (2.4) . Suppose there exist a 0 and δ0 such that 

μ j ( a 0 , δ0 ) = 0 , j = 0 , 1 , . . . , k − 1 , but μk ( a 0 , δ0 ) � = 0 , 

and det 

[
∂(μ0 , μ1 , . . . , μk −1 ) 

∂(a 1 , a 2 , . . . , a l 1 , δ1 , δ2 , . . . , δl 2 ) 

]
a = a 0 

� = 0 , (l 1 + l 2 = k ) , (2.8)

where k ≤ k 1 + k 2 . Then, system (2.4) ) can have k small-amplitude limit cycles around the origin for some ( ε, a , δ) near (0, a 0 ,

δ ) . 
0 
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Lemma 2.3 implies that if system (2.4) contains a total of k = k 1 + k 2 independent parameters, the system can have max-

imal k small-amplitude limit cycles around the origin. 

In this paper, we consider a special case of system (2.4) when n = 4 and m = 3 , and suppose the 4th-degree polynomial

Hamiltonian function be given by 

H(x, y, a ) = 

1 

2 

y 2 + a 0 x 
3 + a 1 x 

2 y + a 2 xy 2 + a 3 y 
3 

+ a 8 x 
4 + a 4 x 

3 y + a 5 x 
2 y 2 + a 6 xy 3 + a 7 y 

4 , (2.9) 

where a i ∈ a are constant coefficients, and P and Q can be assumed in the general forms: 

P (x, y, δ) = a 10 x − a 01 y + a 20 x 
2 − a 11 xy + a 02 y 

2 

+ a 30 x 
3 − a 21 x 

2 y + a 12 x 
2 y − a 03 y 

3 , 

Q(x, y, δ) = − b 10 x + b 01 y − b 20 x 
2 + b 11 xy − b 02 y 

2 

− b 30 x 
3 + b 21 x 

2 y − b 12 xy 2 + b 03 y 
3 , (2.10) 

where a ij , b ij ∈ δ are constant coefficients. Since system (2.4) is a near-Hamiltonian system, i.e., system (2.4) | ε=0 is a Hamil-

tonian system, we may further assume P = 0 and b 30 = 0 . Thus, the cubic system considered in this paper becomes 

˙ x = y + a 1 x 
2 + 2 a 2 xy + 3 a 3 y 

2 + a 4 x 
3 + 2 a 5 x 

2 y + 3 a 6 xy 2 + 4 a 7 y 
3 , 

˙ y = −3 a 0 x 
2 − 2 a 1 xy − a 2 y 

2 − 4 a 8 x 
3 − 3 a 4 x 

2 y − 2 a 5 xy 2 − a 6 y 
3 + ε Q(x, y, δ) . (2.11) 

Moreover, in order to be consistent with our formulas, we assume that the Jacobian matrix of system (2.4) evaluated at the

origin is in the form of 

J = 

[
0 −1 

0 0 

]
. (2.12) 

Hence, introducing the transformation x → x, y → −y into (2.11) we obtain 

˙ x = − y + a 1 x 
2 − 2 a 2 xy + 3 a 3 y 

2 + a 4 x 
3 − 2 a 5 x 

2 y + 3 a 6 xy 2 − 4 a 7 y 
3 , 

˙ y = 3 a 0 x 
2 − 2 a 1 xy + a 2 y 

2 + 4 a 8 x 
3 − 3 a 4 x 

2 y + 2 a 5 xy 2 − a 6 y 
3 

+ ε(b 10 x + b 01 y + b 20 x 
2 + b 11 xy + b 02 y 

2 + b 21 x 
2 y + b 12 xy 2 + b 03 y 

3 ) . (2.13) 

In order for the origin of the perturbed system (2.13) to become a nilpotent center, it requires that 

a 0 = 0 , b 10 = b 01 = b 20 = 0 , a 8 > 0 . (2.14)

Further, without loss of generality, we may assume a 2 � = 0, and then introducing the scaling: 

x → 

1 

a 2 
x y → 

√ 

a 8 

a 2 
2 

y t → 

a 2 √ 

a 8 
t, (2.15) 

into (2.13) together with (2.14) yields the final system to be considered in this paper: 

˙ x = − y + a 1 x 
2 − 2 xy + 3 a 3 y 

2 + a 4 x 
3 − 2 a 5 x 

2 y + 3 a 6 xy 2 − 4 a 7 y 
3 , 

˙ y = 4 x 3 − 2 a 1 xy + y 2 − 3 a 4 x 
2 y + 2 a 5 xy 2 − a 6 y 

3 

+ ε (b 11 xy + b 02 y 
2 + b 21 x 

2 y + b 12 xy 2 + b 03 y 
3 ) , (2.16) 

where the rescaled parameters still use the same notations a j , a ij and b ij for simplicity. 

3. Main result 

In this section, we present our main result of this paper. To demonstrate the efficiency of our method, we first reinves-

tigate an example, which was studied in [55] to obtain 5 limit cycles. The equations for this example are given by 

˙ x = y + 2 xy + 3 y 2 + 2 x 2 y + ε P, 

˙ y = − 4 x 3 − y 2 − 2 xy 2 + ε Q, (3.1) 

where P and Q are given in (2.10) . The Melnikov function method was used in [55] to show the existence of 5 limit cycles.

In the following, we will apply our method to this example to show that our computation is simpler. 

Lemma 3.1. [55] For the near-Hamiltonian system (3.1) with a nilpotent center at the origin, there exist at least 5 small-

amplitude limit cycles around the origin. 

Proof. In order to put system (3.1) in our format, we use the transformation x → x, y → −y to obtain 

˙ x = − y − 2 xy + 3 y 2 − 2 x 2 y + ε (a 10 x + a 01 y + a 20 x 
2 + a 11 xy + a 02 y 

2 

+ a 30 x 
3 + a 21 x 

2 y + a 12 x 
2 y + a 03 y 

3 ) , 
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˙ y = 4 x 3 + y 2 + 2 xy 2 + ε (b 10 x + b 01 y + b 20 x 
2 + b 11 xy + b 02 y 

2 

+ b 30 x 
3 + b 21 x 

2 y + b 12 xy 2 + b 03 y 
3 ) , (3.2)

We could set P = 0 in (3.2) , but we leave it there to show the general case consistent with that used in [55] , and will find

that there are only 5 independent perturbation parameters which can be used to obtain 5 limit cycles. The linear analysis

of (3.2) shows that the zero order generalized Lyapunov constant is given by 

B 0 = 

1 

2 

ε (a 10 + b 01 ) . 

The system satisfies n = 2 , a = 4 + ε b 30 > 0 for 0 < ε � 1, b = ε (2 a 20 + b 11 ) > 0 requiring 2 a 20 + b 11 > 0 , and β = 1 =
n − 1 , yielding b 2 − 4 an = −32 − 8 ε b 30 + ε 2 (2 a 20 + b 11 ) 

2 < 0 for 0 < ε � 1. Thus, all the required conditions are satisfied. 

To compute higher-order generalized Lyapunov constants, we need the perturbed system (3.2) to have a nilpotent cen-

ter at the origin, which requires a 10 = b 01 = b 10 = 0 , and b 20 = 0 . Then, executing our Maple program yields the ε-order

generalized Lyapunov constants as follows: 

B 2 = c 20 − c 10 , 

B 4 = 

1 

2 

(
c 20 + 8 c 02 + 24 c 01 + c 10 

)
, 

B 6 = − 1 

8 

(
673 c 20 − 48 c 02 + 160 c 11 − 400 c 01 − 197 c 10 

)
, 

B 8 = 

1 

80 

(
10021 c 20 − 72 c 02 − 3360 c 11 + 1704 c 01 − 26959 c 10 

)
, 

B 10 = − 1 

896 

(
15544003 c 20 − 1362976 c 02 + 864576 c 11 

− 5689440 c 01 − 13079611 c 10 

)
, 

B 12 = 

1 

3840 

(
30518153 c 20 − 98702616 c 02 − 46061760 c 11 

− 229917768 c 01 − 226882847 c 10 

)
, 

where 

c 00 = a 10 + b 01 , c 10 = 2 a 20 + b 11 , c 01 = a 11 + 2 b 02 , 

c 20 = 3 a 30 + b 21 , c 11 = 2(a 21 + b 12 ) , c 02 = a 12 + 3 b 03 . 

Now solving B 2 = B 4 = B 6 = B 8 = 0 for c 20 , c 02 , c 11 and c 01 we obtain 

c 20 = c 10 , c 02 = 

133 

24 

c 10 , c 11 = − 221 

36 

c 10 , c 01 = − 139 

72 

c 10 , 

and then B 10 and B 12 become 

B 10 = − 1967 

3 

c 10 < 0 , B 12 = − 26101 

6 

c 10 < 0 . 

Moreover, for the above solution we have 

det 

[
∂(B 2 , B 4 , B 6 , B 8 ) 

∂(c 20 , c 02 , c 11 , c 01 ) 

]
= 3456 , 

showing that we can perturb c 20 , c 02 , c 11 and c 01 to obtain 4 small-amplitude limit cycles. Moreover, performing a linear

perturbation on c 10 such that B 0 B 2 < 0 and | B 0 | � | B 2 |, yields the 5th small-amplitude limit cycle. �

It is easy to see that we could set P = 0 (i.e., setting all a i j = 0 ) at the beginning of the proof, which would make the

computations even be further simplified. 

Now we return to system (2.16) , which has 6 parameters: a 1 , a 3 , a 4 , a 5 , a 6 , a 7 in the Hamiltonian function H , and still

have 5 parameters b 11 , b 02 , b 21 , b 12 , b 03 in the perturbation function Q . So we may apply Lemma 2.3 to get more limit cycles

by using the additional parameters in the H function, but computation will become much more involved. There are a total of

11 parameters in the system, which means we may obtain 11 small-amplitude limit cycles near the origin. Further a linear

perturbation on the parameter b 10 or b 01 results in one more limit cycle, and so it seems that we may obtain 12 limit cycles.

However, it has been found from solving the generalized Lyapunov constants equations that the 5 perturbation parameters

are not independent, one of which can be set to equal 1. In other words, one of the perturbation parameters, for example,

b 11 can be treated as a free parameter. Therefore, system (2.16) may have 11 small-amplitude limit cycles around the origin.

However, due to the difficulty in computing the generalized Lyapunov constants, we assume a 1 = 0 in the computation

of the generalized Lyapunov constants. But even we can obtain the generalized Lyapunov constants B 2 , B 4 , . . . , B 18 , we still

have difficulty to solve the 9 equations, B k = 0 , k = 2 , 4 , . . . , 18 , for the 9 parameters: a 3 , a 4 , a 5 , a 6 , a 7 and b 02 , b 21 , b 12 , b 03 .
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Hence, we further set a 4 = 0 and then solve the 8 polynomial equations to get 8 limit cycles, and finally use a linear

perturbation to get one more limit cycle. 

Our main result is summarized in the following theorem. 

Theorem 3.1. For the near-Hamiltonian system (2.13) with a 1 = a 4 = 0 , whose unperturbed system (2.13) ε=0 has a nilpotent

center at the origin, there exist perturbation parameter values of b ij such that at least 9 small-amplitude limit cycles can bifurcate

from the origin. 

Proof. It is easy to obtain from the linear part of system (2.13) that the ( ε-order) zero order generalized Lyapunov constant

is given by 

B 0 = 

1 

2 

b 01 . (3.3) 

Letting B 0 = 0 yields b 01 = 0 . Also, set b 01 = b 20 = 0 so that the origin of the perturbed system is a nilpotent center. Hence,

we can apply the method of normal forms and the Maple program we developed to system (2.16) to obtain higher-order

Lyapunov constants, as given below. 

B 2 = b 21 − b 11 , 

B 4 = 

1 

4 

[
48 b 03 + 8 a 4 b 12 + 24(4 a 3 − a 4 ) b 02 + (12 a 3 a 4 − 5 a 2 4 + 8 a 5 − 4) b 11 

]
, 

B 6 = 

1 

16 

[
8(a 3 4 − 4 a 4 a 5 − 40 a 3 + 10 a 4 + 8 a 6 ) b 12 + 8(12 a 3 a 

2 
4 − 13 a 3 4 

− 32 a 3 a 5 + 48 a 4 a 5 + 160 a 3 − 40 a 4 − 80 a 6 ) b 02 − (31 a 4 4 − 52 a 3 a 
3 
4 

− 136 a 2 4 a 5 + 192 a 3 a 4 a 5 + 960 a 2 3 + 84 a 2 4 + 64 a 2 5 − 480 a 3 a 4 

− 320 a 3 a 6 + 192 a 4 a 6 − 64 a 5 − 256 a 7 + 16) b 11 

]
, 

B 8 = 

3 

64(a 3 
4 

− 4 a 4 a 5 − 40 a 3 + 10 a 4 + 8 a 6 ) 

[
(96 a 3 a 

7 
4 − 72 a 8 4 − 896 a 3 a 

5 
4 a 5 + 736 a 6 4 a 5 

− 1536 a 2 3 a 
4 
4 + 1536 a 3 a 

5 
4 + 2816 a 3 a 

4 
4 a 6 + 2048 a 3 a 

3 
4 a 

2 
5 + 160 a 6 4 

− 1472 a 5 4 a 6 − 2304 a 4 4 a 
2 
5 + 8192 a 2 3 a 

2 
4 a 5 − 9216 a 3 a 

3 
4 a 5 − 8192 a 3 a 

3 
4 a 7 

− 12288 a 3 a 
2 
4 a 5 a 6 − 1792 a 4 4 a 5 + 2048 a 4 4 a 7 + 8192 a 3 4 a 5 a 6 + 2048 a 2 4 a 

3 
5 

− 21504 a 2 3 a 
2 
4 − 81920 a 2 3 a 4 a 6 + 16384 a 2 3 a 

2 
5 + 3584 a 3 a 

3 
4 + 47104 a 3 a 

2 
4 a 6 

+ 32768 a 3 a 4 a 5 a 7 + 16384 a 3 a 4 a 
2 
6 + 448 a 4 4 + 512 a 3 4 a 6 + 6144 a 2 4 a 

2 
5 

− 8192 a 2 4 a 5 a 7 − 7168 a 2 4 a 
2 
6 − 8192 a 4 a 

2 
5 a 6 + 57344 a 2 3 a 5 + 327680 a 2 3 a 7 

− 163840 a 3 a 4 a 7 − 16384 a 3 a 5 a 6 − 65536 a 3 a 6 a 7 − 3584 a 2 4 a 5 

+ 20480 a 2 4 a 7 − 24576 a 4 a 5 a 6 + 16384 a 4 a 6 a 7 + 8192 a 5 a 
2 
6 − 57344 a 3 a 6 

+ 14336 a 4 a 6 + 28672 a 2 6 ) b 02 + (36 a 3 a 
8 
4 − 27 a 9 4 − 368 a 3 a 

6 
4 a 5 + 300 a 7 4 a 5 

− 768 a 2 3 a 
5 
4 + 896 a 3 a 

6 
4 + 736 a 3 a 

5 
4 a 6 + 1152 a 3 a 

4 
4 a 

2 
5 − 24 a 7 4 − 568 a 6 4 a 6 

− 1088 a 5 4 a 
2 
5 + 4864 a 2 3 a 

3 
4 a 5 − 6400 a 3 a 

4 
4 a 5 − 1024 a 3 a 

4 
4 a 7 − 4096 a 3 a 

3 
4 a 5 a 6 

− 1024 a 3 a 
2 
4 a 

3 
5 − 48 a 5 4 a 5 + 256 a 5 4 a 7 + 3968 a 4 4 a 5 a 6 + 1280 a 3 4 a 

3 
5 

− 17024 a 2 3 a 
3 
4 − 14 84 8 a 2 3 a 

2 
4 a 6 − 4096 a 2 3 a 4 a 

2 
5 + 5888 a 3 a 

4 
4 + 17920 a 3 a 

3 
4 a 6 

+ 8704 a 3 a 
2 
4 a 

2 
5 + 4096 a 3 a 

2 
4 a 5 a 7 + 3584 a 3 a 

2 
4 a 

2 
6 + 4096 a 3 a 4 a 

2 
5 a 6 − 216 a 5 4 

− 1376 a 4 4 a 6 + 1536 a 3 4 a 
2 
5 − 1024 a 3 4 a 5 a 7 − 3584 a 3 4 a 

2 
6 − 6656 a 2 4 a 

2 
5 a 6 

+ 64512 a 2 3 a 4 a 5 + 40960 a 2 3 a 4 a 7 + 12288 a 2 3 a 5 a 6 − 19456 a 3 a 
2 
4 a 5 

− 14336 a 3 a 
2 
4 a 7 − 49152 a 3 a 4 a 5 a 6 − 8192 a 3 a 4 a 6 a 7 + 4096 a 3 a 

3 
5 

− 4096 a 3 a 5 a 
2 
6 − 448 a 3 4 a 5 − 1024 a 3 4 a 7 + 1792 a 2 4 a 5 a 6 + 2048 a 2 4 a 6 a 7 

− 3072 a 4 a 
3 
5 + 11264 a 4 a 5 a 

2 
6 + 71680 a 3 3 − 53760 a 2 3 a 4 − 114688 a 2 3 a 6 

+ 10752 a 3 a 
2 
4 + 44032 a 3 a 4 a 6 − 10240 a 3 a 

2 
5 − 16384 a 3 a 5 a 7 + 45056 a 3 a 

2 
6 

− 320 a 3 4 − 2304 a 2 4 a 6 + 4608 a 4 a 
2 
5 + 12288 a 4 a 5 a 7 − 3584 a 4 a 

2 
6 

+ 4096 a 2 5 a 6 − 6144 a 3 6 + 7168 a 3 a 5 + 24576 a 3 a 7 − 2304 a 4 a 5 − 6144 a 4 a 7 

− 4096 a 5 a 6 − 16384 a 6 a 7 − 1536 a 3 + 384 a 4 + 1024 a 6 ) b 11 

]
, 

B 10 = · · · , 

. . . 
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where B 2 j = 0 , j = 1 , 2 , . . . , k − 1 have been used in computing B 2( j+1) . Note that all these generalized Lyapunov constants

are linear functions of the perturbation parameters: b 11 , b 21 , b 03 , b 12 and b 02 . 

Now solving B 2 = 0 for b 21 we have b 21 = b 11 , solving B 4 = 0 for b 03 we obtain 

b 03 = − 1 

96 

[
16 a 4 b 12 + 48(4 a 3 − a 4 ) b 02 + 2(12 a 3 a 4 − 5 a 2 4 + 8 a 5 − 4) b 11 

]
, (3.4)

and solving B 6 = 0 for b 12 yields 

b 12 = 

−1 

128(a 3 
4 

− 4 a 4 a 5 − 40 a 3 + 10 a 4 + 8 a 6 ) 

[
64(12 a 3 a 

2 
4 − 13 a 3 4 − 32 a 3 a 5 

+ 48 a 4 a 5 + 160 a 3 − 40 a 4 − 80 a 6 ) b 02 − 8(31 a 4 4 − 52 a 3 a 
3 
4 

− 136 a 2 4 a 5 + 192 a 3 a 4 a 5 + 960 a 2 3 + 84 a 2 4 + 64 a 2 5 − 480 a 3 a 4 

− 320 a 3 a 6 + 192 a 4 a 6 − 64 a 5 − 256 a 7 + 16) b 11 

]
. (3.5)

Then, solving b 02 from the equation B 8 = 0 we obtain b 02 = 

b 02 n 
b 02 d 

b 11 , where b 02 n and b 02 d are functions of the 5 parameters,

a 3 , a 4 , a 5 , a 6 and a 7 , and so all the solutions b 21 , b 03 , b 12 are given in the form of 
b i jn 

b i jd 
b 11 , where b ijn and b ijd are functions

of the 5 parameters, a 3 , a 4 , a 5 , a 6 and a 7 . Thus, we can use these solutions to simplify the expression of B 10 , B 12 , . . . , B 18 ,

which are however nonlinear functions of the parameters, a 3 , a 4 , a 5 , a 6 and a 7 . In principle, we may solve these nonlinear

polynomial equations to obtain the critical values of the 5 parameters. However, it is too difficult to obtain the solutions.

Thus, we set a 4 = 0 in these equations to obtain the simplified expressions for B 10 , B 12 , B 14 and B 16 , which are not listed here

for brevity. 

To solve the equations B 10 = B 12 = B 14 = B 16 = 0 for the parameters, a 3 , a 5 , a 6 and a 7 , we take the numerators of these

rational questions to get B 10 n , B 12 n , B 14 n , B 16 n which are polynomial equations in a 3 , a 5 , a 6 and a 7 . However, it is still even

not easy to solve these coupled multivariate polynomial equations. We first use the Maple built-in command eliminate to

eliminate a 7 from the three pairs of equations: { B 10 n = B 12 n = 0 } , { B 10 n = B 14 n = 0 } and { B 10 n = B 16 n = 0 } , yielding three

solutions for a 7 : a 7 a = a 7 a (a 3 , a 5 , a 6 ) , a 7 b = a 7 b (a 3 , a 5 , a 6 ) , and a 7 c = a 7 c (a 3 , a 5 , a 6 ) , as well as three resultants: 

R 12 = R 0 R 12a , R 13 = R 0 R 13a , R 14 = R 0 R 14a , 

where the common factor is given by 

R 0 = (a 3 − a 6 )(2 a 2 3 a 5 − 2 a 3 a 6 + a 2 6 )(120 a 4 3 a 5 a 6 + 48 a 3 3 a 
3 
5 − 64 a 3 3 a 5 a 

2 
6 

− 8 a 2 3 a 
3 
5 a 6 + 8 a 2 3 a 5 a 

3 
6 + 700 a 5 3 − 1260 a 4 3 a 6 − 84 a 3 3 a 

2 
5 + 664 a 3 3 a 

2 
6 

+ 60 a 2 3 a 
2 
5 a 6 − 148 a 2 3 a 

3 
6 − 4 a 3 a 

2 
5 a 

2 
6 + 12 a 3 a 

4 
6 + 28 a 3 3 a 5 − 42 a 2 3 a 5 a 6 

+ 8 a 3 a 5 a 
2 
6 + 4 a 5 a 

3 
6 − 15 a 3 3 + 55 a 2 3 a 6 − 51 a 3 a 

2 
6 + 14 a 3 6 ) , 

and R 12a , R 13a and R 12a are lengthy polynomials in a 3 , a 5 and a 6 . 

Next, we used the Maple built-in command resultant to eliminate a 5 from the two pairs of equations: { R 12a = R 13a = 0 }
and { R 12a = R 14a = 0 } to obtain two resultants: 

R 123 = −913438523331814323877303020447676 887284 9578393600 

× a 35 
3 R 123a R 123b , 

R 124 = 126854524609344241821270421154365059064474913106274634082711 

3180694313585209920475627520 0 0 0 a 41 
3 R 124a R 124b , 

where R 123a , R 123b , R 124a and R 124b are lengthy polynomial equations in a 3 and a 6 , having respectively 916, 8937, 1510 and

13182 terms. 

For the next step elimination, we have four possible combinations of groups: (R 123a , R 124a ), (R 123a , R 124b ), (R 123b , R 124a ),

and (R 123b , R 124b ). For example, eliminating a 6 from the equations R 123a = R 124a = 0 yields the resultant: 

R 1234aa = C 1234 aa a 
1097 
3 R 1234aaI R 1234aaII , 

where C 1234 aa is a big integer, and R 1234aaI and R 1234aaII are respectively 353th- and 97904th-degree polynomials in a 2 3 . Since

what we want is to prove the existence of 9 limit cycles, we will not pursue finding all solutions. Therefore, we will focus

on the real positive solutions of R 1234aaI = 0 , which in turn results in 19 positive solutions for a 2 
3 
: 

a 2 3 = 0 . 0 0 0 0 047737 . . . , 0 . 0 043833120 . . . , 0 . 0050516787 . . . , 

0 . 00573914 98 . . . , 0 . 015584 9899 . . . , 0 . 0161597724 . . . , 

0 . 0274462424 . . . , 0 . 0371693574 . . . , 0 . 0436129450 . . . , 

0 . 1178983870 . . . , 0 . 1555918035 . . . , 0 . 1649910472 . . . , 
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0 . 1956514110 . . . , 0 . 4483101251 . . . , 0 . 4612276143 . . . , 

3 . 9699788837 . . . , 13 . 0139833181 . . . , 14 . 3192212987 . . . . 

Then, using the above solutions and the equations R 123a = R 124a = 0 to find the solutions for a 6 , given below: 

a 6 = 0 . 0032904222 . . . , − 0 . 0101420304 . . . , 0 . 1267047595 . . . , 

− 0 . 0083406402 . . . , 0 . 1922454390 . . . , 0 . 2018786400 . . . , 

− 0 . 0298534229 . . . , 0 . 4235319232 . . . , 0 . 5411579525 . . . , 

2 . 2707745188 . . . , − 2 . 8071053800 . . . , 1 . 2451525547 . . . , 

0 . 2086442785 . . . , 1 . 8777771810 . . . , 2 . 3732374571 . . . , 

11 . 7595031566 . . . , 17 . 2346275398 . . . , 11 . 1715933095 . . . . 

Next, with the above solutions ( a 3 , a 6 ), we use the equations R 12a = R 13a = R 14a = 0 to obtain the corresponding solutions

for a 5 : 

a 5 = 0 . 2277587348 . . . , 0 . 1647267417 . . . , 0 . 0951642602 . . . , 

− 0 . 0886453485 . . . , 0 . 0599036391 . . . , 0 . 0610011693 . . . , 

− 0 . 1575993309 . . . , − 0 . 2887545838 . . . , 0 . 5271077816 . . . , 

3 . 4396716042 . . . , − 3 . 7364594137 . . . , − 0 . 8685506261 . . . , 

− 0 . 3167963445 . . . , − 0 . 9749256575 . . . , − 2 . 220744 86 88 . . . , 

− 7 . 2450730 0 09 . . . , − 9 . 2187025739 . . . , 2 . 9913889631 . . . . 

Finally, we need to verify the above solutions if they satisfy a 7 a (a 3 , a 5 , a 6 ) = a 7 b (a 3 , a 5 , a 6 ) = a 7 c (a 3 , a 5 , a 6 ) . It is indeed true

to give the following solutions: 

a 7 = 0 . 0189364482 . . . , 0 . 0517693763 . . . , 0 . 0189656802 . . . , 

− 0 . 0051527715 . . . , 0 . 0344175159 . . . , 0 . 0366298619 . . . , 

− 0 . 0063769221 . . . , 0 . 0234700554 . . . , 0 . 2279041909 . . . , 

3 . 1588396190 . . . , 0 . 1527460842 . . . , − 0 . 4539447259 . . . , 

0 . 1183456948 . . . , − 0 . 0733264349 . . . , − 0 . 6036030526 . . . , 

− 5 . 1642784609 . . . , − 8 . 6230707758 . . . , 3 . 8240906488 . . . . 

Thus, since the solutions of a 2 
3 

give ± a 3 , we have obtained at least 36 solutions which satisfy B 2 = B 4 = · · · = B 16 = 0 . For

example, taking the third solution, we have 

a 3 = 0 . 0710751623 . . . , a 5 = 0 . 0951642602 . . . , 

a 6 = 0 . 1267047595 . . . , a 7 = 0 . 0189656807 . . . , a 4 = 0 , 

b 03 = 0 . 0483231993 . . . b 11 , b 12 = −0 . 2221842342 . . . b 11 , 

b 02 = 0 . 1347124879 . . . b 11 , b 21 = b 11 , 

for which 

B 2 = B 4 = B 6 = B 8 = B 10 = B 12 = B 16 = 0 , 

B 18 = 0 . 0065604251 . . . b 11 , 

where the free parameter b 11 can be set as b 11 = 1 , as expected. Moreover, at the above critical parameter values, we obtain 

det 

[
∂(B 2 , B 4 , B 6 , B 8 , B 10 , B 12 , B 14 , B 16 ) 

∂(b 21 , b 03 , b 12 , b 02 , a 3 , a 5 , a 6 , a 7 ) 

]
= − 0 . 36046 6 6515 . . . × 10 

4 b 4 11 � = 0 . 

Therefore, proper perturbations on b 21 , b 03 , b 12 , b 02 , a 3 , a 5 , a 6 and a 7 can be taken to find 8 small-amplitude limit cycles.

Finally, we perturb b 01 such that B 0 B 2 < 0 and | B 0 | � | B 2 | to have one more small-amplitude limit cycle, leading to a total

of 9 limit cycles around the nilpotent center – the origin. 

The proof of Theorem 3.1 is complete. �

Remark 3.1. It should be noted that all the computations in the above proof are symbolic, except in the last step when

solving the polynomial equation R 1234 aa 1 = 0 with integer coefficients the Maple built-in command “fsolve” is used to find

the solutions of a 2 
3 

with accuracy of 10 0 0 digits. In fact, we have tried to apply the Regular Chain method (e.g., see [24] ),

which was recently developed on the basis of triangular decomposition to solve multi-variate polynomial equations and

has been implemented in Maple, to solve the four polynomial equations B 10 n = B 12 n = B 14 n = B 16 n = 0 for a 3 , a 5 , a 6 and a 7 .

However, it failed to get any results form a fast computer with higher Ram memory. That is why we turned to use the

procedure described above to solve these polynomial equations. In fact, at the last step, with 10 0 0 digits accuracy, at the

critical values, the exact values of B i ’s and the determinant are given as follows (in which b 11 = 1 for simplicity): 

B 2 = 0 , B 4 = 0 . 4 × 10 

−999 , B 6 = −0 . 104 × 10 

−998 , B 8 = −0 . 266 × 10 

−997 , 
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B 10 = −0 . 458062 × 10 

−994 , B 12 = −0 . 4001502 × 10 

−993 , 

B 14 = −0 . 4028116935380759371 × 10 

−981 , B 16 = −0 . 3807411080171892 × 10 

−980 , 

B 18 = 0 . 0065604251 . . . � = 0 , det = − 0 . 36046 6 6515 . . . × 10 

4 � = 0 . 

This clearly indicates that we can appropriately perturb the (almost zero) generalized Lyapunov constants B 2 k , k = 1 , 2 , . . . , 8

such that B 2 k B 2(k +1) < 0 to prove the existence of 9 limit cycles by Sturm’s theorem. An alternative to symbolically prove the

existence of real solutions of the polynomial equation R 1234 aa 1 = 0 is to use the “interval computation”. One may apply the

Maple built-in command “realroot” to solve the polynomial equation R 1234 aa 1 = 0 to obtain (with the accuracy, say, 10 −10

for the interval length, which can be changed to any small numbers as one wishes) [ [
20503 

4294967296 
, 82013 

17179869184 

]
, 

[
9413091 

2147483648 
, 75304729 

17179869184 

]
, 

[
86787179 

17179869184 
, 21696795 

4294967296 

]
, [

49298921 
8589934592 

, 98597843 
17179869184 

]
, 

[
33468511 

2147483648 
, 267748089 

17179869184 

]
, 

[
34702847 

2147483648 
, 277622777 

17179869184 

]
, [

235761427 
8589934592 

, 471522855 
17179869184 

]
, 

[
319282349 

8589934592 
, 638564699 

17179869184 

]
, 

[
374632345 

8589934592 
, 749264691 

17179869184 

]
, [

2025478865 
17179869184 

, 1012739433 
8589934592 

]
, 

[
1336523415 
8589934592 

, 2673046831 
17179869184 

]
, 

[
4 42894 47 

268435456 
, 2834524609 

17179869184 

]
, [

3361265647 
17179869184 

, 210079103 
1073741824 

]
, 

[
962738663 
2147483648 

, 7701909305 
17179869184 

]
, 

[
3961915039 
8589934592 

, 7923830079 
17179869184 

]
, 

[
34101858943 
8589934592 

, 68203717887 
17179869184 

]
, 

[
27947316371 
2147483648 

, 223578530969 
17179869184 

]
, 

[
246002348729 
17179869184 

, 123001174365 
8589934592 

]] 
, 

which indeed clearly shows the existence of the 18 real solutions. However, using the numerical expressions is straightfor-

ward and more clear. 

4. Conclusion 

In this paper, we have shown that planar cubic near-Hamiltonian systems can have at least 9 limit cycles around a nilpo-

tent center. Normal form theory has been used to compute the generalized Lyapunov constants, and then to determine the

number of bifurcating limit cycles from Hopf bifurcation. It has demonstrated the computational efficiency of this method,

which can be applied to consider bifurcation of limit cycles in other dynamical systems. Future work includes finding 10 or

11 small-amplitude limit cycles for planar cubic near-Hamiltonian systems with a nilpotent center. 
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