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Abstract

In this paper, we study chaos (lag) synchronization of a new LC chaotic system, which can exhibit not only a two-
scroll attractor but also two double-scroll attractors for different parameter values, via three types of state feedback
controls: (i) linear feedback control; (ii) adaptive feedback control; and (iii) a combination of linear feedback and adap-
tive feedback controls. As a consequence, ten families of new feedback control laws are designed to obtain global chaos
lag synchronization for 7 <0 and global chaos synchronization for t = 0 of the LC system. Numerical simulations are
used to illustrate these theoretical results. Each family of these obtained feedback control laws, including two linear
(adaptive) functions or one linear function and one adaptive function, is added to two equations of the LC system. This
is simpler than the known synchronization controllers, which apply controllers to all equations of the LC system. More-
over, based on the obtained results of the LC system, we also derive the control laws for chaos (lag) synchronization of
another new type of chaotic system.
© 2006 Elsevier Ltd. All rights reserved.

1. Introduction

In 1963, Lorenz simplified the Navior—Stokes equations of modelling weather forecasting and discovered sensitivity
dependence on initial conditions in a set of three ordinary nonlinear differential equations [1]. Li and Yorke [2] first
presented the name “chaos” in the sense of “period three implies chaos”. Chaos embodies three important principles:
extreme sensitivity to initial conditions, cause and effect being not proportional, as well as nonlinearity. Chaos exists in
many disciplines of sciences and engineering such as atmosphere, mechanics, electronics, biology, chemistry, stock mar-
ket, etc. Since the discovery of the Lorenz system, more chaotic (hyperchaotic) systems have been constructed such as
Rossler system, hyperchaotic Rossler system, Chua’s circuit, Hénon attractor, Logistic map, Chen system, generalized
Lorenz system, hyperchaotic MCK circuit, hyperchaotic Chen system, etc. [3-11]. Nowadays, it is perhaps not difficult
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to construct a new chaotic (hyperchaotic) system. Recently, Liu and Chen [12] presented the following chaotic LC sys-
tem, which contains three ordinary differential equations with three cross-product nonlinear terms, described by

X =ax+yz,
yszyfxza (11)
zZ=—cz—Xxy,

where dot denotes differentiation with respect to time ¢, a >0, >0, ¢ >0 and b + ¢ > a. System (1.1) is symmetrical
and dispersive. It admits five equilibria, but does not have Hopf and pitch fork bifurcations. It can exhibit not only
a two-scroll attractor but also two double-scroll attractors for different parameter values.

Chaos control and chaos synchronization have received a significant attention in the last few years, since Pecora and
Carroll [14] presented the principal of chaos synchronization to synchronize two identical chaotic systems with different
initial values and realized that synchronized chaos may be used for secure communication. In 1990, Ott, Grebogi and
Yorke [15], on the other hand, developed the so-called OGY method for controlling chaos. Many methods have been
developed to investigate chaos control and synchronization of chaotic (hyperchaotic) attractors such as linear feedback
control, adaptive control, backstepping design control, fuzzy control, implosive control, nonlinear feedback control,
time-delayed feedback control, etc. [10,11,16-30].

Recently, Liu and Chen [13] further analyzed the dynamical behaviors of system (1.1). Based on more general qua-
dratic Lyapunov function, Sun[28] studied the stabilization and synchronization of system (1.1) via an impulsive control
with varying impulsive intervals. More recently, Luo et al. [29] studied chaos synchronization of two identical LC sys-
tems in the form of (1.1) using nonlinear feedback control, adaptive control and adaptive sliding mode type of control.
Yassen [30] considered chaos control and synchronization of another equivalent form of system (1.1) under the simple
transformation (x — x,y — y,z — —z) using three linear feedback control functions. It should be pointed out that Luo
et al. [29] used the following adaptive control:

uy = —k1€1 — 0.52162 — 0.5_)/16‘37 Uy = —k2€2 + x1e3, Uz = —k3€3 —‘—Xlez,

where f; = 7€, ky = 7,3, ky = 7;€3, and y;’s are non-zero constants, and that Yassen [30] applied the linear feedback
control, given by

up = kiey, uy =khkes, u3=kzes, (k1k2k3 7é 0)~

In fact, system (1.1) has ‘good’ symmetric property. In this paper, we will present simpler control laws for globally
exponential (lag) synchronization of the LC system (1.1) via three different methods: (i) linear feedback control with
only two linear functions; (ii) adaptive feedback control with only two adaptive functions; and (iii) combination of
(1) and (ii) with one linear function and one adaptive function.

The rest of this paper is arranged as follows. In Section 2, we give Lyapunov stability criteria for globally exponen-
tial (lag) synchronization of n-dimensional chaotic systems. Then we use the theory and linear feedback controls to
obtain a number of different linear feedback controllers, each of which contains only two linear control functions,
to investigate globally exponential (lag) synchronization of the LC system (1.1). In Section 3, we present two types
of adaptive control laws, which also includes only two functions to demonstrate global chaos (lag) synchronization
of (1.1). In Section 4, we obtain four families of combined control laws with one linear feedback control function
and one adaptive feedback control function to study global chaos (lag) synchronization of (1.1). Numerical simulation
results are presented to illustrate the analytical predictions in Section 5. In Section 6, based on the obtained results of
the LC system, we derive the control laws for chaos (lag) synchronization of another new type of chaotic system, stud-
ied recently by Lii et al. [31]. Finally, conclusions are given in Section 7.

2. Linear feedback control laws

We first recall the definition and lemma for the globally exponential (lag) synchronization of chaotic systems.
Consider the drive system:

x; = F(t,x,), (2.1)
and response system:

v.=F(ty,) +u, (22)
where the subscripts “d”’ and “r” stand for the drive system and response system, respectively, X; = (X4 X24, - - .,x,,d)T,
Y= 19 V2 s Vme) S F: Ry X R" — R, and w = (uy, s, . . .,u,)" is a vector function of time ¢ and the state variables

(Xids Vier XirsYir)-
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Let the error state be e(t) = (¢1(1), ea(t), .-, eu1) = (X1d1) = Y1t = 1), X21) = Y2l = Ty e X ) — Yot — )T
(1 £ 0). Then the error dynamical system on e(z) is given by

é(r) = Flt, xq(0) — F(t — 7.y, — 7)) — U, (23)
where U =u|,—,_..

Definition 1. For arbitrary given initial points, (x14?), X2i1), - - ., Xnd?)) and (y1,(2), y2,(2), . . ., yult)) € R", t € [0, —7], of
the drive system (2.1) and the response system (2.2), respectively, if the solution of the error system (2.3) has the
estimation Y°7_,e?(t) < K(e(to)) exp(—a(t — to)), where K(e(ty)) > 0 is a constant depending on the initial value e(%),
while o > 0 is a constant independent of e(#j), then the zero solution of the error system (2.3) is said to be globally,
exponentially stable, and thus the drive-response systems (2.1) and (2.2) are (i) globally exponentially lag synchronized
for 7 <0; and (ii) globally exponentially synchronized for = = 0.

Lemma 1. The zero solution of the error dynamical system (2.3) is globally, exponentially stable, i.e., (1) the drive-response
systems (2.1) and (2.2) are globally exponentially lag synchronized for © <0; and (ii) globally exponentially synchronized
for 1=0, if there exists a positive definite quadratic polynomial V= (e, e, --- e,)P(e; ey --- e’ such that
L= —(ey ey -+ €,)0(e; e --- e,)". Moreover, the following negative Lyapunov exponent estimation for the error
dynamical system (2.3) holds:

>0 <320 e g 0-w)],

i—1 /me

where P= PT € R™ and Q= QT € R™" are both positive definite matrices, Juax(P) and Jmin(P) stand for the minimum
and maximum eigenvalues of the matrix P, respectively, and Ay;in(Q) denotes the minimum eigenvalue of the matrix Q.

Now, consider the LC chaotic system (1.1) as a drive system:
Xg = axqg + Y 24,
Ya = —by, — xaz4, (2.4)
Zqg = —CZqg — XaVys
and the system related to (2.4) with feedback controllers u; (i = 1,2,3), given by
').CV = ax, +yrzr + uy,
V= =by, — Xz, + u, (2.5)
21‘ = —CZ, — XY, + us,
as a response system, where u;’s are unknown functions of (X Vs, Za, Xrs Vs Z1)-
Let the error state be e(¢) = (ex(t),ey(t),ez(t))T =[x A1) — Xt — 1), yl1) — yt — 1), zA1) — 2t — 7)]", where 1 < 0.
Then from (2.4) and (2.5), we obtain the error dynamical system:
e.(t) = ae(t) + y,(t)zq(t) = y,(t = D)z, (1 = 7) = Uy,
e,(t) = —be,(t) — x4(t)za(t) +x,(t — 1)z, (t — 1) — Us, (2.6)
d(0)ya(t) + x,(t = 1)y, (t — 1) = Us,
where U; = u|,—,_. (i=1,2,3).

Before presenting theorems, in the following we first list different types of decompositions of the nonlinear terms in
(2.6):

P
=
Na
Il
|
o
o
¢
P
=
=
|
=

$a024(8) = 3,1 = D2t = ) = va(0)ea(0) + 211 — )ey 1), (2.6a)
Ya()za(t) = y,(t = 1)z (1 = 7) = y,(t = 1)e=(1) + za(1)e, (1), (2.6b)
xXa(8)zq(t) — x.(t — 1)z,(t — 1) = x4()e.(t) + z,.(t — 7)ec(t), (2.6¢)
xa(0)za(t) — x,.(t = 1)z, (t — 7) = x.(t — T)ex(t) + za(t)er(2), (2.6d)
xa(0)yy(t) = x,(t = 1)y, (1 = 7) = xa(1)ey (1) + y,(t — T)ex(1), (2.6¢)
xXa(0)yy(t) = x,(t = 1)y, (1 = 7) = x.(t = T)ey (1) + yy(1)ex(t). (2.6f)

By using these different types of decompositions (2.6a)—(2.6f), we can obtain a number of linear feedback control
laws with two linear functions. Therefore, we have the following theorem.
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Theorem 1. For the given drive system (2.4), the response system (2.5) with unknown controllers and the corresponding

M

error dynamical system (2.6), suppose that My,,M. ,M,,,

[xd(O)|, |x:Lt = O, D, [yt = O, [20)] and |z,(t —

control laws (U; = uj|=,—. (i=1,2,3)) is chosen for the response

M, M, and M. are the upper bounds of the state variables
1), respectively. If one of the following families of linear feedback

system (2.5):

() uy = kiex(t), u = koe (1), uz = 0, where k; > a,k, > min [(M“"Ifl“')z , (A{:E’,:]_M;)’)z min(Mi"M‘%")} —b;
(1) uy = ke (1), u, = 0, uz = kze(t), where ky > a,k; > min [(dezwx,)z , (M:(dkTZ;)Z mm(Mi’ ’Mz‘f)] —c;
(i) uy = kyex(t), up = kaey(1), uz = 0, where k, > % — b,k > W + a;

(V) u; = kie (1), u, = 0, uz = kze-(t), where kz > % —c, k> <M:d4+:42’)2 + a,

then the zero solution of the error system (2.6) is globally, exponentially stable, and thus the drive-response systems (2.4)

and (2.5) are (i) globally exponentially lag synchronized for t <
Proof

(i) For this case, we choose the positive definite Lyapunov
220+ en+em),
from which we know that P = diag[0.5,0.5,0.5] and Apnin = Amax

V(t)

0; and (1) globally exponentially synchronized for t = 0.

function:
(2.7)

=0.5. Differentiating both sides of (2.7) with respect to

time ¢ along the trajectory of system (2.6) and using (2.6a)—(2.6f) yields
PO ) + 02,0) + e-0)e:0)
= ael (1) + y4(0)za(t)ex(t) = y,(t = 1)z, (t = D)e(t) — ki€ (1) — be} (1)
— xq(0)24(t)e, (1) +x,(t — 1)z, (1 — T)e, (1) — kae} (1) — ceZ (1) — xa()yy(1)ex(1) +x,(t — 1)y, (¢ — De.(1)
ael(t) + y4(t)e-(t)en() +2,(t — )e,(t)ex(t) — kiel(r) — bey (1)
—xa(t)e:(t)e,(t) — z:(t — D)ex(t)ey (1) — kaej (1) — ce2(t)
—va(t)ex(t)e-(1) — x.(t — T)e, (t)e:(1),
ael(t) +y,(e-(t)eu(t) +z,(t = e, (t)ex(t) — kil (1) — be} (1)
=9 —zae(t)ey(t) —x.(t — 1)e:(t)ey (1) — kaej (1) — ceZ(1)
—va(t)ex(t)e:(t) = x,(t — 1)ey(1)e:(1),
ae(t) + za(t)e,(t)ec(t) + ,(t — D)ex(t)ex(t) — kiel(r) — bey(1)
—xu(t)e-(0e, (1) — = (t — Dest)e, (1) — kael(t) — ceX(1)
—xa(De,(B)e.() -y, (t = Deu(De. (1),
(a— k)€ (t) — (kx + B)eX(1) — ce2(1) — [ralt) + (¢ — D)ley (e (1),
(a— ke (t) — (ko + )2 (1) — ce2(t) — [zat) — 2, (1 — Dles(1)e, (1)
=1 20— 1e(t)e:(r),
(a —ki)el(t) — (k2 + b)e(t) — cez (1) + [za(t) — z(t — 7)]ex(t)ey (1)
—2x4(1)ey(1)e:(1),
—(k1 — a)e}(t) — (ka + b)e (1) — cel (1) + (M, + My, )ley(1)|le:(1)],
—(k1 — a)e}(t) — (ka + b)ey (1) — ceZ (1) + (M, + M, )]ex(1)]le (1))
g F2M ey (0)lle-(1)],
—(k1 —a)ez(t) — (ka + b)ey (1) — ce2(t) + (M=, + M-, )lex(r) ey ()]
+2M,, ey (1)le:(1)],
(le(®)lles (0)le- () 01 (lex() ey (1) [e- (1)),
= ¢ —(e0)le,0)]le-()) Qx(lex(D)llex() - (D) (2.8)
(le<(®)lles (1)l (D)) s (lex() ey (1) [e-(1)),
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where O, = O] (i = 1,2,3) are given by

(k) —a 0 0

o =| 0 ky+b —5(My, +M,) |, (2.9a)
| 0 M, +M,) ¢
[ k-a —iwm,+M,) 0 ]

0, = | 1M, +M.) ky+b -M,, |, (2.9b)
L 0 —-M,, c |
[ k—a M, +M,) 0]

0y = | —i(m., + M) ka+b -M,, |. (2.9¢)
L 0 -M,, c |

It is easy to see that the zero solution of the error system (8) is globally, exponentially stable if the symmetric matrices
Q;’s are positive definite, which implies that the following conditions hold:

ky—a>0,

for 0, : { (ki —a)(ky +b) >0, (2.10a)
(ky — a)lclks + b) =1 (M, + M,,)*] > 0;

ki —a>0,

for Q,: { (ki —a)(ka+b) — L (M., +M.)* >0, (2.10b)
cl(k — a) (ks + b) — L (M., + M) — (ky — a)M? > 0;

ki —a>0,

for 0y : { (ki —a)(ka +b) = § (M., + M)’ > 0, (2.10c)

cl(ky — a)(ka + b) — L (M., + M.,))*] — (ki — a)M?2, > 0;
which leads to that

1
for Q,: ky >a, k >Z(MX” —I—M]C,)2 —b;

2 2
M., +M.,) M,

for Oy : ky >a, k> 46— a) - — b; (2.11)
(M,, + M, )2 Mi

f . d r 4 _p

or Q3 ky >a, k2>74(k1 _a) + - b

Then using Lemma 1, we have the exponential estimation for the subcase Q;:

dmax(P) ¢ 5 2 2 ~minlDy )
— 7 to) + to) + 1, Imax(P)\ 0
/lmin(P) [ex( 0) ey( 0) ez( 0)}6

_ [ef(to) +ei(t0) +ef(to)]e—min[Z(k]—a).k2+b+cf (k3+b—c)2+(MXd+MX,)2](t—to).

e (t) +e(t) + (1) <

Similarly, we can obtain the exponential estimations for the subcases Q, and Q;, which are similar to that of Q;, and
thus their expressions are omitted here. This completes the proof of Case (i).
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(ii) In this case, we may choose the same Lyapunov function (2.7) to obtain

ave . .
= e0a) e +e(r)e(r)

= —z(Det)e,(t) — x,.(t — D)es(t)e, (1) — ceX(t) — kseX(t)
—y()en(Den() — x(t = T)e (e (o),
ae2(1) + za(t)e, (1)e (1) + 3,(t — Dex(Dex(t) — kie2(1) - b (1)
—xut)e(t)e, (1) — 2t — Denlt)e, (1) — ce(t) — ke ()
—xa0)e,(1)e(t) — (1 — Des(Den(o),
(a = k)eX(r) — beX (1) — (ks + )e2(t) — [va(t) +x,(t — Dle, (e (1)
)eX(1) Je2(1) + [3a(0) +3,(t = Dex(D)e.(1)

N
+
N
<
2
S

—(lex(0)lley(1)l]e=())Q: (lex(®)lley (1) [e- (D))"
=9 —(le®lles()l[e=()) s (lex(D)l[e (1) [e-(1))"
—(lex(1)l e (1)]le=(1)) Q5 (lex(D)lley (1) [e- (D))"
where O, = Q] (i = 1,2,3) are given by
(ki —a 0 0
o=| 0 b —iM, +M,) |,
0 —1(M,, +M,,) ks +c¢
ki—a 0 —iM,, +M,)
0, = 0 b —M,,
1My, +M,) —M, ks +c
ky —a 0 —-iM,,+M,)
05 = 0 b —-M,,
1M, +M,) —M,, ks +c

(2.12)

(2.13a)

(2.13b)

(2.13¢)
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It is clear that the zero solution of the error system (8) is globally, exponentially stable if the symmetric matrices Q,’s are
positive definite, implying that the following conditions are satisfied, i.e.,

ky—a>0,

for Q,: { (ky —a)b >0, (2.14a)
(ki — a)lblks + ¢) — (M, + M, )] > 0
ki —a >0,

for Q,: { (ki —a)b >0, (2.14b)
(ki — a)[(ks + c)b — M2 ] = Lb(M,, + M, )’ > 0;
ki —a>0,

for Qy: { (ki —a)b >0, (2.14c)

(k1 —a)[(ks + )b — Mid] — %b(Myd +Myr)2 > 0;
which lead to that

1
for O, : ki >a, ks (M, +M,)" —

o
' (M,, +M,) Mfr .
for O, : ky >a, k3> a0k —a) b ; (2.15)
(M,, +M,) :
f Ck k d . < _ ¢
or Q3 1> a, 3 > (kl—a) b C;

from which we have

2 2 2 2
(MVd + M)’r) Mxr (M}'d + Myr) 4 MX,] —c

1
(Mg + M) — e s S e et

4b

k1 >a, k3 > min

This completes the proof for Case (ii).
(iii) For this case we again choose the same Lyapunov function (2.7). Thus, differentiating ¥ with respect to time ¢
along the solution of (1.1) yields

PO — e 020 + e, 06,0) + 0200
aeX(t) +zq(t)e, (e (t) + 3, (t — )e.(t)er(t) — kie2 (1) — bei(t)
—zq(t)ex(t)ey (1) — x,(t — T)ex(t)ey(r) — kaeg (1) — ceZ(1)
_ _yd( Jex(t)e:(t) — x,(t — T)ey (t)e(),

2(0) + v (ex()ed(r) +2.(t = ey (1)en(t) — kel (t) — bey (1)
—xd(f)ez(f)ev(f) —z(t = t)es(t)e, (1) — kaej(t) — ceZ(t)
—xq(t)ey(t)e:(t) =y, (1 = D)ex(t)e: (1),

(a—ki)ez(r) = (ka + b)eg(t) — ceZ (1) + [=yy(t) + . (t = D)]ex(t)e:(1)
] —ami-vee),
| @=k)e) (ko + B)E(R) — (1) + alt) = 3, (2 = Declt)e-(1)
— 2xa(1)ey(t)e: (1),
—(ki —a)ez(r) — (ka + D)eg (1) — ce2 (1) + (M, + M, )[ex(1)|le=(7)]
< +2M., |ey (1) []e=(1)],
—(ki = a)ez(r) = (ka + D)eg (1) — ce2 (1) + (M, + M, )[ex(t)|le-(7)]
+2M,,ley(1)]le=(1)],
_ { ~(le(t)lley (1) e-())Q; (lex(D)lles (Dle-()) (2.16)
~(le(D)lley (1) e-()) Qs (Jex(®) ey (Dle-())
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where the symmetric matrices Q, and Q, are defined as

[ ki —a 0 —1 (M, +M,)]

0, = 0 ko + b M, , (2.17a)
| —3(M,, +M,,) M, ¢
C h—a 0 LM, +M,)]

0, = 0 ky+b -M,, . (2.17b)
L % (Myd + Myr) 7MX[] ¢ .

In order for the zero solution of the error system (2.6) being globally, exponentially stable, the symmetric matrices Q,
and Q, should be positive definite, which implies that the following conditions hold:

ki —a> 07

for Q, : (ki — a)(ky + b) > 0, (2.18a)
(ki — @)le(ka +b) — M2) — L (ks + B)(M., + M., )? > 0;
ki —a> 07

for O, : (ki — a)(ky + b) > 0, (2.18b)

(ki — a)le(ky + b) = M2 ] — L (ko + b)(M., + M)’ > 0;
which yield that

for Oy: k> (M, + M,V +a, k> M = M, —b;
4o T ’ de(ky —a) — (M, +M, )" 2.19)
for O, : k1>i(M, +M,) +a, k> 4l — a)M,, —b;
4ot ’ de(ky —a) — (M), +M, )"
from which we know that the conclusion for Case (iii) is true.
(iv) In this case, we use the same Lyapunov function (2.7), and obtain
P — e + e, (06,(0) + (0200
(a—ki)ex(r) = bey(t) — (ks + €)e2(0) + [=za() +2(1 — 7)]en()ey (1)
- —2x,(t — 1)ey(t)e.(2),
)@= k) = be(0) — (ks + )e(t) + alt) — 2 (t = Dles (e, (1)
— 2xa(t)ey(1)e:(1),
—(ki — )& (1) = bey(1) — (ks + c)e2 (1) + (M, + M., )le(1) e, (1)]
] vl
T (k= @)eX (1) — bel (1) — (ks + ©)e2(0) + (M, + M., lex(0)]ley (0)]
+2M,, |e, (1)][e: (1)1,
_ { (el e O, sl 0l (220)
—(lex(0)ley (1) le- (1)) Qs (lex(D)ley () ]e=(1)]) "
where the symmetric matrices Q; and Q, are defined as
[ ki —a M., +M.,) 0
0= -3, +M.) b -M,, |, (2.21a)
L 0 —M,, ks +c |
[ ki —a %(M +M.,) 0 ]
0= | =3 (M, + M) b My, |- (2.21b)
i 0 —-M,, ks +c |

Then the zero solution of the error system (2.6) is globally, exponentially stable if the symmetric matrices Q; and Q, are
positive definite, i.e., the following conditions hold:
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ki —a >0,

for 0, : { (ki —a)b—{ (M, +M.)" >0, (2.22a)
(ks + o)[(ky — a)b — L (M., + M.,)’] = (ks — a)M? > 0;
ki —a>0,

for 0, : { (ki —a)b—{ (M., +M.)" >0, (2.22b)

(ks + (ks — a)b — L (M, + M,)*) = (ki — a)M2, > O

which lead to that

1 4(ky — a)M)zc.
for O;: by >———5+a, k> . 5 — G
4b(M., + M.,) 4(ky —a)b — (M., + M) (2.23)
1 4(k, — a)Mﬁ '
forQ,: by >———5+a, k> ‘ 5 —C.
4b(M., + M.,) 4ky —a)b— (M., + M)
Therefore, we have
1
k1 > e +a,
4b(M., + M.,)
4(ky — a)M? 4(k, — a)M?
k3 > min th — )M, —c (ki —a)M,, —c

4(ky —a)b — (M., + M.)"  4(k; —a)b — (M., + M)

The proof for Theorem 1 is complete. [
Remarks

(a) Four families of linear feedback control laws are derived to demonstrate that (i) globally exponential lag synchro-
nization for 7 <0; and (ii) globally exponential synchronization for T =0 occur between the drive system (2.4)
and response system (2.5). It is seen that these linear feedback controllers with only two linear functions are sim-
pler than those known linear feedback controllers with three linear functions [30]. Certainly, they are simpler than
nonlinear feedback controllers given in [29].

(b) In the four cases, we may even further simplify the controllers by using only one linear function. For example, let
ky =0 and k3 = 0. Then, the four linear feedback control laws in Theorem 1 are reduced to the following three
types of forms:

1
uy = kie(t), ki >a, bc> Z(MX" +M,),

2

et 0 b, ) :

u; = kie,(t), k; > min [ (bc 7M2,) + a, (bc 7M2’) +al, be>M;, (2.24)
M., +M.) b(M,, +M, )2

u; = kie,(t), ki > min [ i I—Mz ) a, o —M2 ) +al, bc> Mer,r

However, it should be noted that it might be difficult to obtain the parameter values which satisfy the conditions:
be > (M., + M,,)*, or be > Mi,, or bc > Mﬁd, since M,, and M, are functions of » and c¢. Even when these constraints
are satisfied, the values chosen for » and ¢ may not yield chaos of system (1.1).

3. Adaptive feedback control laws

Theorem 2. For the given drive system (2.4), the response system (2.5), and the corresponding error system (2.6), if one of
the following two families of adaptive controllers is chosen for the response system (2.5):

(1) ur = Ki(Det), ur=K(e(t), uz=0, and Kl( 1) = c1€X(t), Kz( ) = czeﬁ(t), where ¢;>0, ¢>0 and
K\(0) = Kx(0)= 0 . _

(i) uy = Ki(De (D), ua=0, us3=K3(De, (), and Ki(t) = c1eX(t),Ks(t) = c3¢*(t), where ¢, >0, ¢3>0 and
Ki(0)= K;3(0)=0
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then the zero solution of the error system (2.6) is globally stable, and thus the two systems (2.4) and (2.5) are (1) globally lag
synchronized for © <0; and (i1) globally synchronized for t = 0.

Proof

(1) In this case, we choose the following positive definite Lyapunov function:

Vi) = 3 e (1) +e (1) + e 1) +(:1_1(K1(t) - K3 +ciz(Kz(f) - K3, (3.1)

where K} and K are constants to be determined. Thus, we have

dzgt) = e, (t)ec(t) + e, (t)e,(t) + e.(t)e.(f) + C—ll (K1 — K)DK (1) + Clz (K> — K3)K»(2)

= ae;(1) + v, (1)e:(1)e() +z(t = ey (N)en(1) — Kred(r) — bey (1) — Kae(t) — xa(t)e=(1)ey (1)
—z(t = D)ex()ey (1) — ce2(t) — ya(t)ex(Dex(t) —x,(t — Ve (Dex(r) + (Ky — K)ep (1) + (Ka — K3 )ey (1)
= (a = K})ex(t) — (K3 + b)ey (1) — ce2(t) — [xa(t) +x,(t — 7)]ey (D)e=(1)

< (K] = a)e;(0) — (K3 + b)ey(t) — ceZ() + (M, + My, ey (1) ex(1)]

~(lex(®)lle (1) le:())Qlex(1)l e, (1) le- (1))

where Q = Q" is given by

K —a 0 0
0= 0 K,+b M, +M,)|. (3.2)
0 —%(MX‘, +M,) c

It is easy to see that when K| > a and K5 > 4% (M,, + Mx,)2 — b, the symmetric matrix Q is positive definite, and thus the
zero solution of the error system (2.6) is globally stable.
(i1) For this case, similar to Case (i), we choose the following positive definite Lyapunov function:

V(0 =3[0+ €0+ €0+ (i)~ K + - (60 - K3 (3)

where K] and K73 are constants to be determined. Then we obtain

dl(/iﬁt) = e,(t)e. (1) + e,(1)é, (1) + e:(1)e.(¢) +cll(K‘ KDk + 01—3(1(3 ki)

= ae(1) + yy(De:(D)ex(r) + 2t — 1)ey (Nex(t) — Kieg (1) — bey (1) — xa(t)ex(1)ey (1) — z,(t = Den(t)e, (1)
— KseZ (1) — ce2(t) — yy(t)ex(t)e=(t) — x,(t — D)e,(e=(r) + (K1 — K})ep(t) + (K3 — K3)e (1)

= (a = K})ex(t) = bey(r) — (K3 + )e2 (1) = [xa(t) +x,:(r = D)ley (1)e (1)

< (K7 —a)ep(t) — bey(t) — (K3 + e)ex (1) + (M, + M) ey (1) Je=(0)]

= ~(lex(®)lle,(Dlle-(N lex (1) ey (Dle= (D)),

where O = Q" is given by

Ki—a 0 0
0= 0 b M, +M,)
0 -1 (M, +M,,) K;+c

Therefore, when K} > a and K} > - (M,, +M,)* — ¢, the symmetric matrix Q is positive definite, and thus the zero
solution of the error system (2.6) is globally stable. This completes the proof of Theorem 2. [
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4. The combination of linear and adaptive feedback control laws

Theorem 3. For the drive system (2.4), the response system (2.5), and the corresponding error system (2.6), suppose that
M., M M, M, M. and M. are the upper bounds of |xA1)|, |x,(t — )|, [yAD|, [yt =D, |z40)| and |z,(t — 7)|,

d
respectively, and if one of the following controllers is chosen for the response system (2.5):

(i) uy = kiey(1), u» = Kx(t)ey (1), uz = 0, where ky > a, 1:<2(t) = 0pé(t), with ¢; > 0 and K»(0) = 0;
(i) u; = kiex(t), uy = 0, uz = Kz(t)e(t), where ky > a, K3(t) = c3€2(t), with ¢3 > 0 and K3(0) = 0;

(i) uy = K (t)e (1), Uy = ke (1), u; =0, where K, (?) satisfies Kl(t) = c1€3(t), ks >
(MM (Mo M) min(ME ME ) Ak —a) min(ME ME ) | . .
min { e T (o ; ? delhr—a) (M, + 0,7 b, with ¢; > 0 and K,(0) = 0;

(1v) u; = Ki(He (1), u, =0, us = kze(1), where K0 satisfies Ki(t) = creX(t), ks >
(M M) (MM, ) min(ME M2 Ak —a) min(M3 M)

M) . _0-
min T ; ’4b(k1—a)—(M,d+Mz,)2:| ¢, with ¢; > 0 and K,(0) = 0;

then the zero solution of the error system (2.6) is globally stable, and thus the two systems (2.4) and (2.5) are (1) globally lag
synchronized for © <0; and (ii) globally synchronized for © = 0.

Proof. (i) In this case, we choose the following positive definite Lyapunov function:

) = 5 €00+ 60+ 20+ - (kalo) - K37 @)

where K3 is a constant to be determined. Thus, we have

dzgl) = e (t)ex(t) + e, (t)e,(t) + e(t)e(t) + é (K> — KK, (1)

= ae(t) +y,()e.(t)ec(t) +z,(t — T)ey (e (t) — ke (t) — bef,(z) — Ky(1)e} (1) — xq(t)e-(t)e, (1)
—z,(t = t)ec(r)e, (1) — ceZ (1) — yy(ex(t)e-(t) — x.(t — t)e,(t)ex(1) + (Kz — K3)e; (1)
= (a—ki)e;(r) = (K3 + b)ey(r) — ce2(t) — [xa(t) +x,(t = 1)]ey(r)ex(r)
< =k = a)ex(t) = (K3 + b)ey(r) — ceZ (1) + (M, + M., ey (1)]lex(7)]
= —(le«(ley(D)lle-() (e (Dlley(D)le- (D)
where 0 = Q7 is given by

ki —a 0 0
0= 0 K, +b M, +M,)|. 4.2)
0 _%(de+Mxr‘) c

It is easy to see that when k; > a and K > i (M,, + Mxr)2 — b, the symmetric matrix Q is positive definite, and thus the
zero solution of the error system (2.6) is globally stable.
Similarly, we can prove for Cases (ii)—(iv), and omit the details here. This finishes the proof. O

5. Numerical simulation results

In the section, we will verify the control laws presented in the previous sections via numerical simulations. We take
the parameter values as ¢ = 0.4, b =12, ¢ =5 in system (1.1). Here we restrict to the case t = 0.

For the controller given in Case (i) of Theorem 2, the initial values are chosen as (x4, V4 z4) = (0.2,0.1,0.3) for the
drive system (2.4) and (x,,y,,z,) = (—0.1,0.4,—0.8) for the response system (2.5). Fig. 1(a)—(c) show the time histories of
the error variables ey, e, and e. under the linear feedback controller with k; = 0.9 and k, = 248. Since the conditions
given in the controllers derived from the Lyapunov function are sufficient, not necessary, we therefore may take smaller
values for parameters k; and k. Fig. 1(d) displays the time history of the error state e, under the linear feedback con-
troller with k; = 0.9, k, = 20. For a fixed value of k|, the smaller value of &, results in slower convergence of e, to zero,
as expected (see Fig. 1(a) and (d)).
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Fig. 1. Simulated results for the LC chaotic system (1.1) with parameter values a = 0.4, b = 12, ¢ = 5: (a)—(c) the time histories of the
error signals e,, e, and e. under the linear feedback controller given in Case (i) of Theorem 1 with k; = 0.9, k, = 248; (d) the time
history of the error signals e, under the linear feedback controller given in Case (i) of Theorem 1 with k; = 0.9, k, = 20.

0 7 0 1

-0.05 1 —0.05 1
-0.1 7 —0.1 1

€_X —0.15 1 €_X —0.15 ]
—0.2 4 -0.2 7
—-0.25 —-0.25
—-0.3 1 —-0.3 1

o
(4]

(b)

Fig. 2. Simulated time history of the error signal e, for the LC system (1.1) under the linear feedback controller in Case (ii) of
Theorem 1 with (a) k; = 0.9, k3 =103; (b) k; =0.9, k3 =09.

For the controller given in Case (ii) of Theorem 1, we choose the initial values (x4, 4, z4) = (0.2,0.1,0.3) for the drive
system (2.4), and (x,,,,z,) = (0.5,—0.6,0.9) for the response system (2.5). Fig. 2(a) shows the time history of the error
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state e, under the controller for Case (ii) with k; = 0.9, k3 = 103. Similar to Case (i), we may also take smaller values for
parameter k3. For example, the result for k3 =9 is shown in Fig. 2(b), again indicating a slower convergence.

For the adaptive controller given in Case (i) of Theorem 2, we choose the initial values (x4 y4, z4) = (0.2,0.1,0.3) for
the drive system (2.4), and (x,, y,, z,) = (2.5,—9,1) for the response system (2.5). We fix the parameter value ¢, = 0.9 and

0.51
b " 1.51
-0.57
e_x k] 17
X _q ] [1]
-1.51 0.5
-2
D_
0 5 10 15 20 25 30 0 5 10 15 20 25 30
t t
(al) (a2)
6_
0 |
5_ (
i 0.5
K2 3 ex —11
27 -1.5
1_
-2
0_
0 5 10 15 20 0 5 10 15 20 25 30
t t
(a3) (b1)
6_
44
5,
4 37
K[l 34 K2l 5]
2_
1-
1_
01 01
0 5 10 15 20 25 30 0 5 10 15 20
t t
(b2) (b3)

Fig. 3. Simulated results for the LC chaotic system (1.1) under the adaptive feedback control laws given in Case (i) of Theorem 2:
(al)—(d) the time histories of the error signal e, and the control functions K(¢), K»(¢) with ¢; = 0.8, ¢; = 0.9 for (al)—(a3); ¢; = 10.8,
¢, = 0.9 for (bl)—(b3); ¢; =20.8, ¢, = 0.9 for (cl1)—(c3); and ¢; = 0.8, ¢, = 2.8 for (d).
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Fig. 3 (continued)

let ¢; vary from 0.8 to 20.8. The results are depicted in Fig. 3(al)—(c3). It is again shown that a larger value of ¢, pro-
vides a faster convergence. Further, it is noted that there exist faster changes for the error signal e, around ¢ = 13, as
shown in Fig. 3(al)—(cl). These dramatic changes are resulted from the sudden change of the function K5(¢) near t = 13,
as seen in Fig. 3(a3), (b3) and (c3). However, when we increase ¢, to, say, ¢, = 2.8, these sudden jumpings become
smooth, see Fig. 3(d).

For the combination of linear and adaptive feedback control laws given in Case (i) of Theorem 3, we choose the
initial values (x4, v, z4) = (0.2,0.1,0.3) for the drive system (2.4), and (x,, y,,z,) = (—0.1,6,—0.8) for the response system
(2.5). We fix the parameter k; = 0.9 and let ¢, change from 2.6 to 12.6. The simulation results are shown in Fig. 4(al),
(bl) and (cl). Although these results show a similar trend as that of Fig. 3, they look smoother due to the combination
of feedback control laws.

6. Application

As an application, in this section, we shall apply the control laws obtained in the preceding section to consider
another new chaotic system. Recently, Lii et al. [31] presented a chaotic system, described by

op

X=Xty
y=—oy—xz, (6.1)
z=—fz—xy,

where o> 0, >0, |y| <19.2. When y =0, system (6.1) is reduced to a special case of system (1.1).
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Fig. 4. Simulated results for the LC chaotic system (1.1) under the combination of linear and adaptive feedback control laws given
in Case (i) of Theorem 3: (al)—(c2) the time histories of the error signal e, and the control function K(¢) with k; = 0.9, ¢, = 2.6 for
(al)—(a2); k1 =0.9, ¢; = 6.6 for (bl)—(b2); and k; = 0.9, ¢, = 12.6 for (cl)—(c2).

Consider the chaotic system (6.1) as a drive system:
Xy = ﬁﬁﬂxd +Yaza + 7,

Vi = =g — XaZa, (6.2)

Zq = —Pza — XaV 4
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and the controller system, given by

xr :#ﬁ/;xr+yyzr+’y+ula

V= —ay, — Xz, + u, (6.3)
ZV = 7ﬁzr — XY, + usz,
as a response system, where u;’s are functions of (X, Vu, Za, Xy, Vi Z1)-

Let the error state be e(z) = (ex(z),ey(t),ez(z))T = [xA1) — Xt — 1), ylt) — yt — 1), 2A1) — 2t — 7)]", where 7 > 0.
Then from (6.2) and (6.3), we obtain the error dynamical system:

6.(1) = Ze.(0) + 3y(D24(0) = 3, = D)z, (0 — 1) = U,
(1) = —ae, (1) = xa(0)z4(t) +x,(t = Dzt = 7) = U, (6.3)
e.(t) = —Be.(t) — xa(D)y, (1) +x,(t — )yt — 1) — Us,

where U; = ug;—,_. (i=1,2,3).
Let % =a, o =b, f = c. Then the error dynamical system (6.3) becomes (2.6). Therefore, we can directly apply the
control laws in Theorems 1-3 to study the synchronization of systems (6.1) and (6.2). The details are omitted here.

7. Conclusions

In this paper, based on Lyapunov stability theorem, we have studied chaos (lag) synchronization of the LC chaotic
system via three types of state feedback controls: (i) linear feedback control; (ii) adaptive feedback control; and (iii) a
combination of linear feedback and adaptive feedback controls. As a result, a number of new feedback control laws
have been designed to obtain global chaos lag synchronization for 7 <0 and global chaos synchronization for t =0
for the LC system. Each family of these obtained feedback control laws, including two linear (adaptive) functions or
one linear function and one adaptive function, has been added to only two equations of the LC system. This is simpler
than the known synchronization controllers, which apply controllers to all equations of the LC system. We have used
numerical simulations to demonstrate the obtained theoretical results. It should be pointed out that the controllers
derived from Lyapunov stability theorem are only sufficient conditions, not necessary ones. It has been shown that
smaller control parameter values in the controllers may be also effective in synchronizing two same type of systems
(1.1). Moreover, as the special cases of those obtained controllers, we have also derived the corresponding control laws
for chaos (lag) synchronization of another new chaotic system.
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