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Abstract

In this paper, a new hyperchaotic system is obtained by introducing an additional state, and adding two nonlinear
terms of the original states and one linear term of the new state to the Chen chaotic system. Particular attention is given
to globally exponential hyperchaos (time-delayed) synchronization and control for this hyperchaotic system. As a con-
sequence, several families of control laws are designed to achieve globally exponential hyperchaos (time-delayed) syn-
chronization, and globally exponential hyperchaos (without time delay) synchronization. The principle of
synchronization is used to globally and exponentially stabilize the equilibrium points of the hyperchaotic system.
Numerical simulation results are presented to illustrate the theoretical predictions.
© 2006 Elsevier Ltd. All rights reserved.

1. Introduction

Study of chaos systems has received great attention in the past several decades [1-11]. A “regular” chaotic system
has one positive Lyapunov exponent. Hyperchaotic systems with more than one positive Lyapunov exponent, on the
other hand, are more complex and also play a significant role in nonlinear science. Since the discovery of the hypercha-
otic Rossler system [12], many hyperchaotic systems have been developed such as the hyperchaotic MCK circuit [13],
the hyperchaotic Chen system [14,15], etc. In fact, it is not difficult to construct a hyperchaotic system, based on a
“regular” chaotic system. For example, the hyeprchaotic Rdssler system [11], given by

X=-y—z,

y=x+ay+w, (0
z=>b+xz,

W= —cz+ dw,
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was obtained from the Rossler system [16]:
X=—-y—z,
y=x+ay, (1.2)
z=b+xz—cz,

by introducing a linear feedback w to the second equation and a linear feedback cz to the third equation and then add-

ing one additional new state equation of w.
Another example is hyperchaotic Chen system [14,15], which was derived from the Chen system [17]:

)'c:a(y—x),
y=(c—a)x—xz+cy, (1.3)
z=xy— bz.

by adding a new equation and then introducing a linear feedback w to the first equation, resulting in
x=aly—x)+w,
vy =dx —xz + ¢y,
Y g (14)
z=xy— bz,
W =)z +rw.

The simulated Chen attractor is shown in Fig. 1.

The common characteristics of the hyperchaotic systems (1.1) and (1.4) are that only linear feedbacks of a new state
and an old state are introduced to a known chaotic system.

In this paper, based on the Chen system (1.3), we add nonlinear terms of the known states {x, y,z} and a linear term
of the new state w to the second equation of (1.3) to obtain a new type of hyperchaotic system.

The rest of this paper is organized as follows. In Section 2, we describe the new hyperchaotic system based on the
Chen chaotic system, and give brief study on the local dynamics of the hyperchaotic system. In Section 3, we present a
family of control laws to achieve globally exponential hyperchaos (time-delayed, or simply “lag”) synchronization, as
well as globally exponential hyperchaos (without time delay) synchronization. In Section 4, a family of controllers is

(c) X (d) y

Fig. 1. Simulated phase portraits of the Chen system (1.3) with parameter values a = 35, b = 3, ¢ = 28, projected (a) in the x—y—z space;
(b) on the x—y plane; (c) on the x—z plane; and (d) on the y—z plane.
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designed to globally and exponentially stabilize the equilibrium points of the hyperchaotic system. Numerical simula-
tion results are given in Section 5 to illustrate the theoretical predictions. Finally conclusion is drawn in Section 6.

2. A new hyperchaotic system

To obtain a new hyperchaotic system from the Chen system (1.3), we introduce the fourth state w and then add the
term —yz + xz — w to the third equation of (1.3). As a consequence, a 4-dimensional nonlinear dynamical system is
obtained in the form of

x:a(y_x)v
):/: (¢ —a)x —xz+cy, (2.1)
z=—bz+xy—yz+xz—w,

W= —dw+yz —xz,

where d is a new constant.

When a =37, b =3, ¢ =26, d= 38, computation shows that system (2.1) has the following Lyapunov exponents:
A1 =1.319, 1, =0.146, 13 = — 20.148 and 14, = — 56.337. The two positive Lyapunov exponents indicate that system
(2.1) is hyperchaotic. Simulated results are depicted in Figs. 2 and 3. Fig. 2(a)—(d) displays the projections of the hyper-
chaotic attractor of system (2.1) in the x—y—z space, the x—y-w space, the x—z—w space, and the y—z—w space, respec-
tively. To get a better view of this hyperchaotic attractor, Fig. 3(a)—(f) shows the projections of the hyperchaotic
attractor (2.1) on six coordinate planes.

The hyperchaotic system (2.1) can also exhibit limit cycles. For example, when a = 37,b = 3,d = 38,c = 33.6, a single
limit cycle is obtained, as shown in Fig. 4(a) and (b). When c is reduced to ¢ = 32.6, a double limit cycle is found, which
is displayed in Fig. 4(c) and (d).

Consider the special case when w = 0. Then the subsystem of the hyperchaotic system (2.1) projected in the x—y—z
space is given by

x=a(y—x),
y=(c—a)x —xz+cy, (2.2)
z=—bz+xy—yz+xz.

Fig. 2. Simulated phase portraits of the hyperchaotic system (2.1) with parameter values a = 37, b =3, ¢ = 26, d = 38, projected in
(a) the x—y—z space; (b) the x—y-w space; (c) the x—z—w space; and (d) the y—z—w space.
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Fig. 3. Simulated phase portraits of the hyperchaotic system (2.1) with parameter values a = 37, b =3, ¢ = 26, d = 38, projected on
(a) the x—y plane; (b) the x—z plane; (c) the x—w plane; (d) the y—z plane; (e) the y—w plane; and (f) the z—w plane.

System (2.2) has two more nonlinear terms, yz and xz, than that of the Chen system (1.3). When a = 37,b = 3,¢c = 26,
a chaotic attractor is obtained, as shown in Fig. 5(a)-(d).
It can be seen from the phase portraits of the hyperchaotic system (2.1) that system (2.1) does not admit simple
symmetries.
Since
VV:%JFS—; %+2—$:c—(a+b+d), (2.3)

system (2.1) is dissipative when a + b + d > ¢. Moreover, an exponential contraction rate is given by

dri(z)
dt

which means that V(1) = Ve
It is easy to find the three equilibrium points of system (2.1), given by

Ey=(0,0,0,0,), Ei = (++/b2c—a),++/b(2c—a),2c—a,0), (2.5)
where E, exist if b(2¢ — a) > 0.

=—(a+b+d—c)V(1), (24)

—(at+b+d—c)t
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Fig. 4. Simulated limit cycles for the hyperchaotic system (2.1) with parameter values « = 37, b = 3, d = 38: (a) and (b) a single limit
cycle when ¢ = 33.6; (c) and (d) a double limit cycle when ¢ = 32.6.
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Fig. 5. Simulated phase portraits of the chaotic system (2.2) with parameter values a = 37, b =3, ¢ = 26, projected on (a) the y—z
space; (b) the x—y plane; (c) the x—z plane; and (d) the y—z plane.

To determine the stability of the equilibrium point E,, evaluating the Jacobian matrix of system (2.1) at Ey yields
—a a 0 0
c—a ¢ 0 0
Iz = . 2.6
=, 0 0 —b -1 26)
0o 0 0 -—d
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The four eigenvalues of the characteristic polynomial of the Jacobian matrix (2.6) are

A2 :% {c —at \/(a — ¢ +4a(2c—a)|, J3=—b, Jy=—d. (2.7)
When a>0,b5>0,d>0and 2¢ > a, we have 4; > 0, 1, <0, 13 <0, 14 <0. Thus, the equilibrium Ej is a saddle point of
the hyperchaotic system (2.1).

At the equilibrium points £, the Jacobian matrix is

—a a 0 0
—c ¢ —/b(2c—a) 0
Je, = ; (2.8)
Vb(2c—a)+2c—a +/b2c—a)—2c+a —b -1
a—2c 2c—a 0 —d
which results in the characteristic polynomial:
Pila—ctbrd)i+ [fcd+ bd + ad + be + (a — 2¢)\/b(2c — a)}ﬁ
+ [(a —2¢ —2¢d + d)\/b(2c — a) — 2ba* + dach + cbd] ). — 2bda* 4 4abed = 0. (2.9)

Using Routh-Hurwitz criterion, it is easy to show that when a = 37, b = 3, ¢ = 26, d = 38, some eigenvalues of the char-
acteristic polynomial of the Jacobian matrix (2.8) have positive real parts. Thus the equilibrium points £ are unstable.

3. Globally exponential hyperchaos (lag) synchronization
In this section, we first present a definition and a lemma for the globally exponential (lag) synchronization of nth-

dimensional nonlinear dynamical systems.
Consider the drive system:

x; = F(t,x,), (3.1)
and the corresponding response system:

§, = F(ty,) +u, (3.2)
where the subscripts “d”” and “r” stand for the drive system and response system, respectively, X; = (X4 X24, - - .,x,,d)T,
Yr=1rV2rs- - - ,y,,,)T, F:R, xR"— R", and u= (uy,us, .. .,u,,)T is a vector function of time ¢ and the state variables
(Xids Vi Xirs Vir)-

Let the error state be

e(t) =lei1(t), ex(?), . .. ,en(t)}T = [xa(t — 1) — 1, (6), %00 (t = T) = p5,.(8), . . X0a(t — 7) —y,,,(t)]T (r = 0).
Then the error dynamics of e(¢) is defined by
é(1) = Flt — 7, x,(t = 7)) — F(1,,(0)) — u, (3.3)

Definition 1. For arbitrary given initial values, (x141), X2i(?), - - ., Xn(?)) and (y1,2), y2(2), - . ., yul(?)) € R, t € [—1,0], of
the drive-response systems (3.1) and (3.2), respectively, if the solution of the error dynamical system (3.3) has the
estimation Y7 e?(¢) < K(e(ty))e *~"), where K(e(to)) > 0 is a constant depending on the initial value e(#,), while & > 0
is a constant independent of e(7), then the zero solution of the error system (3.3) is said to be globally and exponentially
stable, and thus the drive-response systems (3.1) and (3.2) are (i) globally and exponentially (lag) synchronized for t > 0;
and (ii) globally and exponentially synchronized for t =0.

Lemma 1 [8,18]. The zero solution of the error dynamical system (3.3) is globally and exponentially stable, i.e., (i) the
drive-response systems (3.1) and (3.2) are globally and exponentially (lag) synchronized for t > 0; and (ii) globally and
exponentially synchronized for © = 0, if there exists a positive definite quadratic polynomial V = (e1es- - -e,)P(eres---e,)"
such that % = —(eje2---€,)0(erez - e,,)T. Moreover, the following negative Lyapunov exponent estimation for the error
dynamical system (3.3) holds:
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?ﬁ(rmﬁ: 2 (t exp[ ’:‘:fg (r—m]

where P= PT € R™" and Q = QT € R™" are both positive definite matrices, Jmax(P) and Jmin(P) stand for the maximal and
minimal eigenvalues of the matrix P, respectively, and Anin(Q) denotes the minimal eigenvalue of the matrix Q.

In the following, we consider the hyperchaotic system (2.1) as a drive system:

).Cd = a(yd 7xd)7

Vo= (¢ —a)xg — xqzq + ¢y,

] (3.4)
zq = —bzqg +Xqyq — 24(Vq — Xa) — Wa,
Wy = —dwg +z4(y; — x4);
and the system related to (3.4) with feedback controllers u; (i = 1,2,3,4), given by
X =aly, —x,) +u,
V= (c—a)x, — x,z, + ¢y, + uy, (3.5)

=—bz, +xy, —z(y, — x,) — w, + u3,
= —dw, +z,(y, — x,) +u,

as a response system, where u;’s are unknown functions of (X, Vi, Zas Was Xrs Vs Zrs Wr)-
Let the error state be

e(t) = (ex(1), €,(1), e-(1), en(1)" = [xalt = 7) = x:(6), 34 (1 = 7) = 3, (1), 24t = 7) = 2(0), Wt = 7) = W ()],
where © > 0. Then from (3.4) and (3.5), we obtain the error dynamical system:
é.(t) = ale,(t) — ex(1)] — w,
e,(t) = (c — a)ec(t) + cey(t) — xq(t — 1)zy(t — ) + x,(£)z,(¢) — w2,
e:(t) = —be:(t) + xa(t = )y, (t = 1) = x,(),(1) + z (O, (1) — x,(1)] (3.6)
—z4(t = 1)y, (t = 1) = xa(t — 7)) — e, (t) — U3,
ew(t) = —de, (1) + z4(t = 1) [y, (t = 1) — x4(t — ©)] — 2.(O) [y, (¢) — x,.(¢)] — ua,
For the synchronization between systems (3.4) and (3.5), we have the following theorem.

Theorem 1. For the given hyperchaotic system (3.4), when a>c, d> 0, if one of the following families of feedback
controllers u; (i = 1,2,3,4) is chosen for the response system (3.5):

uy = 2 24t = D)y (1) + vt — Dexlt) + 2 (0)e(r) — en(t))],
) J =)+ 20l ) - e (]
uy = kye,(t) + [y, (t — 1) —xq4(¢t — 7) — e, (¢),
uy = 0;
up = ﬁzr(l‘)en( ))s
) |kl == e +20fen) - o).
s = ksea(t) + [20) + 1t = Dlet) + [alt — 1) — xalt — ) — e (1),
uy = 0;
u =0,
©) Uy = kaey(t) — z4(t — 1)ex(t) + z,.(¢)[en(t) — e:(2)],
s = ksea (1) + [2(0) + vt — Dlet) + [ralt — 1) = xat — D),
uy = —z,(t)ey (1) — e.(1);
u =0,
o) ) =k ) ~ 21— e + 5 0e0),
s = Ksea (1) + [20) + vt — Dlet) + [ralt — 1) = xa(t — ) — e (1)
s = 2,(0) e (1) — ex(0)):

where k> ¢, ks > M, + M, — b, and M,,, and M, are upper bounds of the state variables |y (1)| and |x1)|, respectively,
then the zero solution of the error dynamical system (3.6) is globally and exponentially stable, and thus (i) globally
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exponential (lag) synchronization for t > 0; and (i) globally exponential synchronization for © = 0 occur between the drive-
response systems (3.4) and (3.5).

Proof. Consider the controller (A) and choose the following positive definite, quadratic form of Lyapunov function:

lra—c
V() =5 [0 + el + ) + € 1), (3.7)
which implies that P = diag(%*,1,1,3) and thus Amin(P) = min {},5¢}, Ana(P) = max {1,4¢}. Differentiating V(1)
with respect to time ¢ along the trajectory of system (3.6) yields
dr(t a—-c .
O] 420 0e(n) + (06,0 + e0l0) + en(an0)
dr (3:6) a

= (¢ —a)e;(1) + (a = c)ex(t)ey (1) + za(t = Der(t)ey (1) = ya(t — De(t)ex(t) — z(t)ex(t) (ex(1)
—ew(t) + (¢ — a)ex(t)e, (1) + cey (1) + ex(t)ey(t)ex(t) — xa(t — T)ey (t)e:(t) — za(t — T)exe, (1)
— kaey (1) + z:(1)ey (1)[ex(r) — e (1)] = bel (1) — ex()ey(t)e(t) +xa(t = T)ey(D)ex(1)
+yy(t = Deer(t) + (xa(t = 1) = yy(t = )€ (1) — 2, (1) ey (1) — ex(D)]ex(r) — ew(t)ex(r) — ksl (1)
= dey (1) = gt = 7) = xa(t = 7) = Nex(Dew(r) + (1t = 1) = xa(t = 7))z (1) + 2(1) e, (1) = ex()]en ()
= (c—a)e;(t) + (¢ = k2)e)(1) + (b — ks = yy(t — 1) +x4(t = 1))e2(1) — dey (1)
< (c—a)e(t) + (c — ka)ex(t) + (=b — ks + M, + M,,)eX (1) — del, (1)
= —(e(n)e,(De:(1)en (1)) Olen(D)ey(1)e-(D)en(1) (3.8)
where
O =diag(a—c,ky —c,ks +b—-M,, — M, d). (3.9)

By Lemma 1, we have the following exponential estimation:

a—c, 2 2 205 < Jamax (P)
a ex(t) + ey(t) + ez (t) + ew([) ~ ;Lmin(P)

a—c¢ /min(@
[ - (1) + €X(to) + € (to) +efv(t0)]e =)

M [%eﬁ(to) +e(to) +€X(to) + ej(to)]

min {},%¢

- M, - M
><eXp{_mm{a c,ky—c,ks+b ) x,,,d}}7 (3.10)

max {1, %<} — 1

which implies that the conclusion of Theorem 1 is true.
Similarly, for other controllers (B)—(D), we can use the same Lyapunov function (3.7) to obtain the same estimation
given by (3.10). The details are omitted here. O

4. Hyperchaos control

In this section, we use (x*,y",z", w") to denote an arbitrary equilibrium point of system (2.1). Let
Ye=x—x" y.=y—), zZ=z-2, w.=w-—w"

To control the hyperchaotic system (2.1) such that all trajections converge to the equilibrium point (x*,y", z*,w"), we
consider the controlled system:

X, =aly, —x.) —uy,

Ve=(c—a)x.+cy. —xz4+xz" —uy,

zo=—bz. +xy —xy —z(y —x) + (v —x*) — w. —u3,
We = —dw, +z(y —x) — z*(y* — x*) — ug,

where u;’s are control functions to be determined.
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Case 1. Consider the equilibrium point Ey = (0,0,0,0). In this case, the controlled system (4.1) becomes
x.=aly, —x;) —u,
Ve=(c—a)x.+cy, —xz—uy,
Zo = —bz, +xy —z(y — x) — w. — us,

We = —dw, +z(y — x) — uy.

Theorem 2. When a > ¢, d > 0, if one of the following families of controllers:

(i) 1 =0, ww=ky,, wus=kyze+ ., —x.—Dw, us=0;

(i) w1 =0, wy=kyy., us=ksze+ y, —x)We, Uy=—2;
(111) Uy = 07 Uy = kzyc +zZcWe, Uz = k3zc - (-xc + l)wca Uy = 07
(IV) uy = 07 U = kac +zcWwe, Uz = k3Zc —XWe, Uy = —Zg
c—a
(v) w= ZeWe, Wy =koy,, Uz =kaze +yWe, U= —Z
. c—a
(Vl) uy = ZWe, U = k2y4- +ZCWC7 us = k3zc7 Uy = —Z¢;

where ky > ¢, ks3> —b + M, + M., is chosen for the controlled system (4.2), then the zero solution of system (4.2) is glob-
ally and exponentially stable, i.e. the equilibrium point Ey of system (2.1) is globally and exponentially stabilized.

Proof. For Case (i), we choose the positive definite Lyapuonv function:

V) = 5 [SCR0 4320 + 200 + 920 (43)
Then we have
dr(e) a—c

Pl = 5050 30070 + 2 0)200) + w00
=(c—a)xX> + (a—c)xy, + (¢ — a)xy, + ¢y —kay? — Xy 2c — bzl + XY 2c — V.22 + X 22 — Wz,
— k;zg - (. —xe = Dwez. — dwg + (v, — x)zewe
=(c—ap; + (e —k)y + (=0 =y +x —ks)z; — dw;
<(c— a2+ (c—k)y? + (=b — ks + M, + M,)z* — aw?
=—fla—c)x2+ (ka—c)y2+ (ks +b—M,—M,)zZ2 +dw)] <0 whenx+)? +22+ w2 #0.  (4.4)
This completes the proof of Case (i). Other Cases (ii)—(vi) can be similarly proved. O

Case 2. Now we turn to the equilibrium points £, = (£+/b(2¢ — a), £1/b(2¢ — a)], 2¢ — a,0). For this case, the con-
trolled system (4.1) becomes

ko = ay, — %) —
Ve=(c—a)x.+cy., —xz£ (2c —a)\/b(2c — a) — uy,

(4.5)
z.=—bz. +xy —b(2c—a) —z(y —x) — w, — u3,

W, = —dw, + z(y — x) — uy.

Theorem 3. When a > ¢, d > 0, if one of the following families of controllers:
w =4 =2y +z + (20 — a)(ze — we)),

a—c

uy = koy, + 2c — a)(w, — z.),
(A)
uy =kyz. + (y —x — Dw,,

u4=0;
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uy = %7) (3
(B) Uy = koy, — zx. + (2¢ — a)(w, — z.),
uy =kaze + 2c —a+y. + (y —x — Dw,
uy = 0;
u =0,
© uy = kay, — zx. + (2c — a)(w, — z..),
uy = kaz. + [2c —a+ yJx. + (v — x)w,,
uy = (a — 2¢)x. — z;
u =0,
(D) uy = kyy, — zx. + (2¢ — a)z,.,
us = Kz + (20 — a+ y)xe + (v —x — D,
ug = (2¢ — a)(y, — xc);
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Fig. 6. Simulated results for the hyperchaotic system (2.1) with parameter values a =37, b =3, ¢ =26, d =38: (a)-(d) the time
histories of the error signals e,, e,, e. and e,, under the controller given in Case (i) of Theorem 1 with k, = 30, k3 = 40; (e) and (f) the
time histories of the error signals e, under the controller given in Case (i) of Theorem 1 with the control gains (e) k, = 6, k3 = 8, and (f)
k2 = 15, k3 = 0
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where ky > ¢, k3> M, + M, — b, and M, and M, are upper bounds of the state variables |y(1)| and |x(1)|, respectively, is
chosen for the controlled system (4.2), then the zero solution of system (4.2) is globally and exponentially stable, implying
that the two equilibrium points E of system (2.1) are globally and exponentially stabilized.

Proof. We only prove for Case (A). Other cases can be similarly proved. We choose the positive definite Lyapunov
function:

A0 4320 + 20+ 200 46)

Then, differentiating ¥(¢) with respect to time ¢ along the trajectory of system (4.5) yields

1 0.57
0.51 01
0 —0.51
X_C y_c
—0.51 —1
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—1 5 1 _2,
0 2 4 6 8 10 0 2 4 6 8 10
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11
[ g
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41
0 5 10 15 20 25 0 5 10 15 20 25
(e) t U] t

Fig. 7. Simulated results for the hyperchaotic system (2.1) with parameter values a =37, b =3, ¢ =26, d =38: (a)-(d) the time
histories of the error signals e,, e, e. and e,, under the controller given in Case (A) of Theorem 2 with k, = 28, k3 = 40; (e) and (f) the
time histories of the error signals e, under the controller given in Case (A) of Theorem 2 with the control gains (¢) k, = 10, k3 = 18, and
(f) k2 = 8, k3 = 20
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T e R O

— (2¢ — a)x.(ze — W) + (€ — @)Xy, + V2 + XeyZe — XV 2o — ZXY, — koY?

T (20 — @)y (2 — ) — b = xvme — Wz — iz (= E — (20— @), — %)z

—Weze — k3t —aw? — (y —x — D)zowe + (v — x)zewe + (2¢ — @) (v, — Xe)We
=(c—a)xX’+(c—k)y* + (=b— k3 —y +x)z* — dw’

c

<(e—a)xX? + (c—k)y? + (=b — ks + M, + M,)z> — aw?

= _(eX(t) e_,v(t) 62(1) eW(t))Q(eX([) ey(t) eZ(t) eW(t))Ta (4.7)
where
O=diag(a—c,kr —c,ks +b—-M,—M,,d). (4.8)

Since a> ¢, ky > ¢, k3> M, + M, — b and d > 0, it follows from (4.7) and (4.8) that the conclusion for Case (A) of The-
orem 3 is true. [

5. Numerical simulation results

In the section, we shall use numerical simulation to verify the control laws presented in the previous sections. We
take the parameter values as a = 37, b =3, ¢ =26, d = 38 in system (2.1). Here we restrict to the case t = 0.

First, consider hyperchaos synchronization using the controller given in Case (A) of Theorem 1. The initial values
for the drive-response systems (3.4) and (3.5) are chosen as

(xa,¥452aywa) = (—0.1,0.2,—-0.5,0.3),
(xr,¥,,2r,w,) = (0.7,—-0.6,—0.2,0.8).

Fig. 6(a)~(d) shows the time histories of the error variables e,, e, e. and e, under the controller (A) with the control
gains chosen as k> = 30, k3 = 40. Since the conditions given in the controllers derived from the Lyapunov function are
sufficient, not necessary, we therefore may take smaller values for parameters k, and k3. Fig. 6(e) and (f) displays the
time histories of the error state e, under the controller (A) with k, = 6, k3 = 8 and k> = 15, k3 = 0, respectively. Fig. 6
clearly show that the errors quickly converge to zero, implying that the drive-response systems (3.4) and (3.5) are glob-
ally and exponentially synchronized under the above chosen controls.

Next, consider hyperchaos control with the controller given in Case (A) of Theorem 2. The initial values are chosen as
(Xes VerZeswe) = (1,—1.8,—0.5,0.3) for the controlled system (4.2). Fig. 7(a)—(d) shows the time histories of the controlled
variables x., y., z. and w,. under the controller (A) with k, = 28 and k3 = 40. Again due to the conditions given in the con-
trollers being only sufficient, we may choose smaller values for parameters k» and k5. For example, Fig. 7(e) and (f) display
the time histories of the error state e, under the controller (A) of Theorem 2 with k, = 10, k3 = 18 and k, = 8, k3 = 20,
respectively. It is seen from Fig. 7 that the errors converge to zero exponentially. This indicates that the controlled system
(4.2) globally and exponentially converge to the equilibrium point £y, = (0,0,0,0).

6. Conclusion

In this paper, we have designed a new hyperchaotic system via the introduction of an additional state variable as well
as two nonlinear terms and a linear term to the Chen system. Moreover, we have obtained a number of families of con-
trol laws to reach globally exponential hyperchaos (lag) synchronization for = > 0, and globally exponential hyperchaos
synchronization for Tt =0. We have also derived controllers to globally and exponentially stabilize the equilibrium
points of the hyperchaotic system. Numerical simulation results are presented to verify the theoretical predictions.
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