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In this paper, we study limit cycles in the Liénard equation: ẍ + f(x)ẋ + g(x) = 0 where f(x)
is an even polynomial function with degree 2m, while g(x) is a third-degree, odd polynomial
function. In phase space, the system has three fixed points, one saddle point at the origin and
two linear centers which are symmetric about the origin. It is shown that the system can have
2m small (local) limit cycles in the vicinity of two focus points and several large (global) limit
cycles enclosing all the small limit cycles. The method of normal forms is employed to prove
the existence of the small limit cycles and numerical simulation is used to show the existence of
large limit cycles.
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1. Introduction

It has been more than one hundred years since
Hilbert [1902] presented the well-known 23 math-
ematical problems to the Second International
Congress of Mathematicians in 1900. Great
advances inspired by the famous address have been
achieved in many different mathematical areas.
However, two of the 23 problems remain unsolved,
one of them is the 16th problem named as the Prob-
lem of the topology of algebraic curves and surfaces.
This problem includes two parts. Roughly speaking,
the first part is to investigate the relative positions
of separate branches of algebraic curves in vector
fields. The second part of the problem, on the other
hand, is to consider the least upper bound of the
number of limit cycles and their relative locations
in polynomial vector fields. This part is related to
differential equations and dynamical systems. Gen-
erally, the second part of the problem is the content
of the Hilbert’s 16th problem.

The second part of Hilbert’s 16th problem was
recently reformulated by Smale [1998], as one of the

18 challenging mathematical problems for the 21st
century. To be more specific, consider the following
planar system:

ẋ = Pn(x, y), ẏ = Qn(x, y), (1)

where the dot denotes differentiation with respect to
time, t, and Pn and Qn represent nth-degree polyno-
mials of x and y. Then, the second part of Hilbert’s
16th problem can be stated as follows [Smale, 1998]:
Find the upper bound K = H(n) ≤ nq on the num-
ber of limit cycles that the system can have, where
q is a universal constant. In the same article, Smale
described a simplified version of Hilbert’s 16th
problem regarding the Liénard equation [Liénard,
1928]:

ẋ = y − F (x), ẏ = −x, (2)

where F (x) is a polynomial. Then the problem is
to find an upper bound on the number of limit
cycles for the simplified Liénard system through the
degree of the polynomial function F . Until now, no
upper bound has been found even for the simplified
Liénard equation.
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184 P. Yu

Although it has not been possible to obtain
the uniform upper bound for H(n), various efforts
have been made in finding the maximal number of
limit cycles and raising the lower bound of Hilbert
number H(n) for general planar polynomial sys-
tems or for individual degree of systems. This way
people hope to get close to the estimation of the
upper bound of H(n). Nevertheless, even for esti-
mating the lower bound of H(n) it is generally a
very difficult problem, in particular, for determin-
ing large (global) limit cycles. For recent progress
on the research of Hilbert’s 16th problem, readers
are referred to a survey article [Li, 2003] and more
references therein.

When the study on Hilbert’s 16th problem is
restricted to the neighborhood of isolated fixed
points, the problem is reduced to consider degener-
ate Hopf bifurcations. In the past 50 years, many
research results have been obtained on the local
problem (e.g. see [Bautin, 1952; Kukles, 1944; Li
& Liu, 1991; Liu & Li, 1989; Malkin, 1964; Han,
1999, 2002; Zhang et al., 2004]). In the last two
decades, much progress on finite cyclicity near a fine
focus point or a homoclinic loop has been achieved.
For a quadratic system, Bautin [1952] proved that
the maximal number of small limit cycles is three.
For cubic order systems, the best results obtained
recently are twelve limit cycles [Yu, 2002; Yu & Han,
2004, 2005a, 2005b].

In this paper, particular attention is focused on
a class of Liénard equation in which f(x) is an even
polynomial function with degree 2m, while g(x) is
a third-degree, odd polynomial function. In phase
space, the system has three fixed points, one saddle
point at the origin and two linear centers which are
symmetric about the origin. It will be shown that
the system can have 2m small limit cycles in the
vicinity of two focus points and several large limit
cycles enclosing all the small limit cycles.

The key step in finding the number of limit
cycles of a system in the neighborhood of a fixed
point (which is a linear center) is to compute the
focus values of the point. This is equivalent to
calculate the normal form of the system associ-
ated with Hopf singularity. Many methods have
been developed for computing normal forms with
computer algebra systems such as Maple, Math-
ematica, Reduce, etc. Among various methods, a
perturbation technique [Yu, 1998] has been proved
computationally efficient, which combines normal
form computation with center manifold reduction
to generate a unified approach. This perturbation

technique will be used to prove the existence of
small limit cycles. Numerical simulations, on the
other hand, will be employed to show the existence
of large limit cycles.

The rest of the paper is organized as follows. In
the next section, the generalized Liénard equation
is presented. A particular case of the Liénard equa-
tion for m = 5 is considered in detail in Sec. 3 to
show the existence of 13 limit cycles, and the results
for other values of m, 1 ≤ m ≤ 10, are summarized
in Sec. 4. Finally, conclusion is drawn in Sec. 5.

2. The Liénard Equation

In this section, we consider the Liénard equation —
a simplified version of Hilbert’s 16th problem. Most
of the early history in the theory of limit cycles
was stimulated by practical problems displaying
periodic behavior. For example, in 1877 Rayleigh
derived a differential equation to describe the oscil-
lation of a violin string [Rayleigh, 1945] in the
form of

ẍ + ε

(
1
3

ẋ2 − 1
)

ẋ + x = 0, (3)

where ε is a small perturbation parameter. Follow-
ing the invention of the triode vacuum tube, which
was able to produce stable self-excited oscillations
of constant amplitude, van der Pol [1926] used the
following differential equation to describe this phe-
nomenon:

ẍ + ε(x2 − 1)ẋ + x = 0. (4)

Perhaps the most famous class of differential
equations, which is a generalization of Eq. (4), are
those first investigated by Liénard [1928], given by
Eq. (2):

ẍ + f(x)ẋ + g(x) = 0.

Letting ẋ = y in the above equation yields the sys-
tem described in phase plane:

ẋ = y,

ẏ = −g(x) − f(x)y.
(5)

Further, let y = ỹ−F (x), where F (x) =
∫ x
0 f(s)ds.

Then we have the following equivalent system:

ẋ = y = ỹ − F (x),

˙̃y = ẏ +
dF

dx
ẋ = −g(x) − f(x)y + f(x)y

= −g(x).

(6)

It is seen that Eq. (2) is a special case of system (6)
when g(x) = x.
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13 Limit Cycles in a Liénard Equation 185

Let Ĥ(m,n) be the maximum number of small-
amplitude limit cycles of system (2), where m and
n are the degrees of f and g, respectively. Then the
existing results for the Liénard system (2) are sum-
marized in Table 1 [Lynch & Christopher, 1999].
Note that the numbers given in this table are sym-
metric with respect to f and g [Lloyd & Pearson,
2002], i.e. Ĥ(m,n) = Ĥ(n,m). Thus, one only needs
to prove for the cases m ≥ n. It should be pointed
out that the notation Ĥ(m,n) denotes the maxi-
mal number of small limit cycles which may exist in
the vicinity of the origin. It does not include global
(large) limit cycles, nor contain other local (small)
limit cycles which may appear in the neighborhood
of other nonzero focus points.

For certain, let

F (x) = a1x + a2x
2 + a3x

3 + · · ·
g(x) = b1x + b2x

2 + b3x
3 + b4x

4 + · · · (7)

where b1 > 0. If the attention is focused on
the dynamic behavior of the system in the vicin-
ity of the origin, then one may introduce a local

coordinate transformation [Lynch & Christopher,
1999] to obtain


u̇ = y − (A1u + A2u

2 + A3u
3 + A4u

4

+ A5u
5 + · · ·),

ẏ = −u,

(8)

where A1 = a1, A2 = a2, and other Ai’s are given
explicitly in terms of ai’s and bi’s.

It is easy to see from Eq. (8) that the origin
(y, u) = (0, 0) is a unique fixed point — a linear
center. Further, one can apply the Maple program
developed in [Yu, 1998] to system (8) to obtain
the normal form given in polar coordinates (see
Eqs. (16) and (17) in the next section) with the
following focus values:

v0 = −A1,

v1 = −3
8
A3,

v2 = − 5
16

A5 − 5
24

A2
2A3,

Table 1. The values of Ĥ(m, n) for the generalized Liénard systems associ-
ated with the origin when f and g are of varying degrees.

13 6 9 10

12 6 8 10

11 5 7 8

10 5 7 8

9 4 6 8 9

8 4 5 6 9

deg(f) 7 3 5 6 8

6 3 4 6 7

5 2 3 4 6 6

4 2 3 4 4 6 7 8 9 9

3 1 2 2 4 4 6 6 6 8 8 8 10 10

2 1 1 2 3 3 4 5 5 6 7 7 8 9

1 0 1 1 2 2 3 3 4 4 5 5 6 6

1 2 3 4 5 6 7 8 9 10 11 12 13

deg(g)
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186 P. Yu

v3 = − 35
128

A7 − 205
1152

A2
4A5

−
(

1885
13824

A2
4 +

2
3
A2A4 +

999
8192

A2
3

)
A3,

v4 = − 63
256

A9 − 413
2304

A2
2A7

−
(

47
96

A2A4 +
2115
4096

A2
3 +

4297
41472

A4
2

)
A5

−
(

141
160

A2A6 +
149
240

A2
4 +

1093
1152

A3
2A4

+
20599
49152

A2
2A

2
3 +

109483
1244160

A6
2

)
A3,

...

(9)

It follows from Eq. (9) that

v0 = v1 = v2 = v3 = 0, v4 �= 0
⇔ A1 = A3 = A5 = A7 = 0, A9 �= 0.

In general, one can show that

v0 = v1 = v2 = · · · = vk−1 = 0, vk �= 0
⇔ A1 = A3 = A5 = · · · = A2k−1 = 0, A2k+1 �= 0.

Therefore, in order for system (8) or (2) to have k
small limit cycles around the origin, it requires that
v0 = v1 = v2 = · · · = vk−1 = 0, but vk �= 0, or
A1 = A3 = A5 = · · · = A2k−1 = 0, but A2k+1 �= 0.
For example, when A1 = 0, but A3 �= 0, then system
(8) or (2) has maximal one limit cycle around the
origin; when A1 = A3 = 0, A5 �= 0, then system (8)
or (2) has maximal two limit cycles in the neighbor-
hood of the origin; etc. Since the coefficients Ai’s are
given in terms of ai’s and bi’s, one needs to deter-
mine the values of ai’s and bi’s to satisfy the nec-
essary conditions. Further, based on the sufficient
conditions given in Theorems 1 and 2 (see the next
section), we can apply appropriate perturbations to
obtain exact k limit cycles.

In this paper, we shall pay particular attention
to a special class of the Liénard equation and inves-
tigate the small limit cycles arising form nonzero
Hopf critical points and large limit cycles as well.
This special class of the Liénard system is described
as follows:

ẋ = y,

ẏ = −1
2
b2x(x2 − 1) − y

m∑
i=0

aix
2i,

(10)

where b �= 0 and ai’s are real coefficients. Equa-
tion (9) has three fixed points: (0, 0) and (±1, 0).
It is easy to use a linear analysis to show that
the origin (0, 0) is a saddle point (with eigenvalues
(1/2)(−a0 ±

√
a2

0 + 2b2)). In order to have the two
fixed points (±1, 0) being linear centers, the follow-
ing condition:

m∑
i=0

ai = 0 or a∗0 = −
m∑

i=1

ai, (11)

must be satisfied. The notation * denotes the crit-
ical value of the coefficient. Then the eigenvalues
of the Jacobian of system (9) evaluated at (±1, 0)
are ±|b|i. What we want to do is, for a given m, to
choose appropriate values of ai’s such that system
(10) has maximal limit cycles in the neighborhood
of the two fixed points (±1, 0), and then to fur-
ther consider large limit cycles. We shall present a
detailed analysis for the case m = 5 in the next sec-
tion and then summarize the results for other cases
1 ≤ m ≤ 10 in Sec. 4.

Before considering the particular case m = 5,
we shall show that the coefficient b does not affect
the results. In other words, different values of b (as
long as they are not equal to zero) do not change the
number of limit cycles. To show this, first introduce
the following scalings:

ai ⇒ bai, i = 0, 1, . . . ,m. (12)

Then apply the transformation, given by

x = ±1 + u, y = bv, (13)

and, in addition, the time scaling

τ = bt (14)

into system (10) to obtain

du

dτ
= v,

du

dτ
= −u − 3

2
u2 − 1

2
u3 − v(2u + u2)

×
{

m∑
i=1

ai +
m∑

i=2

ai(1 + u)2 +
m∑

i=3

ai(1 + u)3

+ · · · + (am−1 + am)(1 + u)2m−4

+ am(1 + u)2m−2

}
, (15)

where condition (11) has been used. The Jacobian
of system (15) evaluated at (u, v) = (0, 0) (i.e. at
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13 Limit Cycles in a Liénard Equation 187

(x, y) = (±1, 0)) is now in the Jordan canonical
form. The above procedure shows that the coeffi-
cient b can be chosen as any nonzero real values,
which does not affect the qualitative behavior of the
system. In particular, it does not change the number
of limit cycles. Thus, without loss of generality, we
assume b = 1, and so τ = t, in the rest of the paper.

3. Thirteen Limit Cycles in System
(10) for m = 5

In this section, we will prove that the Liénard equa-
tion (10) for m = 5 (i.e. deg(f) = 10) can have thir-
teen limit cycles, among them ten are small limit
cycles and three are big limit cycles. First we shall
give two sufficient conditions for the existence of
small amplitude limit cycles. Then we shall use the
method of normal forms and appropriate perturba-
tions to obtain exact ten small limit cycles. Finally,
we will employ numerical simulations to show the
existence of three large limit cycles.

3.1. Sufficient conditions for
existence of small limit cycles

Since we do not intend to discuss normal form com-
putation in this paper, we assume that the normal
form for the general system (1) has been obtained
in the polar coordinates as follows (interested read-
ers can find the details of normal form computation
in [Yu, 1998]):

ṙ = r(v0 + v1r
2 + v2r

4 + · · · + vkr
2k), (16)

θ̇ = ω + t1r
2 + t2r

4 + · · · + tkr
2k, (17)

up to (2k + 1)th order term, where both vk and tk
are expressed in terms of the original system’s coef-
ficients. vk is called the kth-order focus value of the
Hopf-type critical point (the origin).

The basic idea of finding k small limit cycles
around the origin is as follows: First, find the con-
ditions such that v1 = v2 = · · · = vk−1 = 0 (v0

is automatically satisfied at the critical point), but
vk �= 0, and then perform appropriate small per-
turbations to prove the existence of k limit cycles.
This indicates that the procedure for finding multi-
ple small limit cycles involves two steps: computing
the focus values (i.e. computing the normal form)
and solving the coupled nonlinear polynomial equa-
tions: v1 = v2 = · · · = vk−1 = 0. In the following,
we give two theorems for sufficient conditions of the
existence of small amplitude limit cycles. (The proof
can be found in [Han et al., 2004; Yu & Han, 2004,
2005a, 2005b].)

Theorem 1. If the focus values vi in Eq. (16) sat-
isfy the following conditions:

vivi+1 < 0 and |vi| � |vi+1| � 1,
for i = 0, 1, 2, . . . , k − 1,

then the polynomial equation given by ṙ = 0 in
Eq. (16) has k positive real roots of r2, and thus
the original system has k limit cycles.

In many cases, vj depends on k parameters:

vj = vj(c1, c2, . . . , ck), j = 0, 1, . . . , k, (18)

and at the critical point (c1, c2, . . . , ck) = (c1c,
c2c, . . . , ckc), vj = 0, j = 0, 1, . . . , k. One can
then perturb these parameters as ci = cic + εi,
i = 1, 2, . . . , k to obtain k limit cycles. In this case,
the following theorem is more convenient in appli-
cations.

Theorem 2. Suppose that the condition (18) holds,
and further assume that

vk(c1c, c2c, . . . , ckc) �= 0,

vj(c1c, c2c, . . . , ckc) = 0, j = 0, 1, . . . , k − 1 and

det
[
∂(v0, v1, . . . , vk−1)
∂(c1, c2, . . . , ck)

(c1c, c2c, . . . , ckc)
]
�= 0.

(19)

Then for any given ε0 > 0, there exist ε1, ε2, . . . , εk

and δ > 0 with |εj | < ε0, j = 1, 2, . . . , k such that
equation ṙ = 0 has exactly k real positive roots of
r2, and thus the corresponding original dynamical
system has exactly k limit cycles in a δ-ball with
the center at the origin.

3.2. Existence of ten small
limit cycles

When m = 5, system (10) becomes

ẋ = y,

ẏ = −1
2
x(x2 − 1) − (a0 + a2x

2 + a4x
4

+ a6x
6 + a8x

8 + a10x
10)y, (20)

and the condition given in (11) is

a∗0 = −(a2 + a4 + a6 + a8 + a10). (21)

The transformed system (15) for m = 5 can be
rewritten as

u̇ = v,

v̇ = −u − 3
2
u2 − 2(a2 + 2a4 + 3a6 + 4a8 + 5a10)uv
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188 P. Yu

− 1
2
u3 − (a2 + 6a4 + 15a6 + 28a8 + 45a10)u2v

− 4(a4 + 5a6 + 14a8 + 30a10)u3v − (a4 + 15a6

+ 70a8 + 210a10)u4v − 2(3a6 + 28a8

+ 128a10)u5v − (a6 + 28a8 + 210a10)u6v

− 8(a8 + 15a10)u7v − (a8 + 45a10)u8v

− 10a10u
9v − a10u

10v. (22)

Note that the zero order focus value of system (20)
associated with the fixed points (±1, 0) is given by

v0 = −(a0 + a2 + a4 + a6 + a8 + a10). (23)

To obtain the focus values vi (i ≥ 1), employing the
Maple program, developed in [Yu, 1998] for com-
puting the normal forms of Hopf and generalized
Hopf bifurcations, into system (22) yields

v1 =
1
4
(a2 − 3a6 − 8a8 − 15a10). (24)

Setting v1 = 0 results in

a∗2 = 3a6 + 8a8 + 15a10. (25)

Then, v2 can be found as

v2 =
1
4
(a4 + 5a6 + 10a8 + 10a10). (26)

Hence, letting v2 = 0 leads to

a∗4 = −(5a6 + 10a8 + 10a10). (27)

Then, under the conditions (23), (25) and (27), one
similarly obtains

v3 = − 5
16

(a6 − 14a10), (28)

which, in turn, yields

a∗6 = 14a10 (29)

in order to have v3 = 0. Similarly, one may find

v4 = − 7
16

(a8 + 9a10), (30)

and thus

a∗8 = −9a10, (31)

under which v4 = 0. For convenience, we rewrite the
critical values of the coefficients in a reverse order
as follows:

a∗8 = −9a10,

a∗6 = 14a10,

a∗4 = −(5a6 + 10a8 + 10a10),
a∗2 = 3a6 + 8a8 + 15a10,

a∗0 = −(a2 + a4 + a6 + a8 + a10),

(32)

under which vi = 0, i = 0, 1, 2, 3, 4.

Finally, for the critical parameter values given
in Eq. (32), higher order focus values are obtained as

v5 =
21
32

a10,

v6 = a10

(
9
16

+
464
3

a2
10

)
,

v7 = a10

(
4449
4096

− 439a2
10 +

679616
27

a4
10

)
,

v8 = a10

(
17753
8192

+
74641

96
a2

10 −
2849296

15
a4

10

+
6911524864

2025
a6

10

)
,

...

(33)

It can be shown that vi = a10hi(a2
10) for i ≥ 5,

where hi(a2
10) represents a polynomial of a2

10. Thus,
setting a10 = 0 yields v5 = v6 = v7 = · · · = 0,
leading to a center. So assume that a10 �= 0, then
v6 �= 0, and v7 �= 0 since v7 = 0 has no real solution
for a10. When a10 is chosen such that |a10| � 1, v5

dominates the dynamical behavior of the system in
the vicinity of the origin.

Next, we want to perform appropriate pertur-
bations to the critical parameter values to obtain
exact five limit cycles around each of the two fine
focus points (±1, 0). Without loss of generality,
assume 0 < a10 � 1, then we need to find per-
turbations to a8, a6, a4, a2 and a0 such that

0 < −v0 � v1 � −v2 � v3 � −v4 � v5 � 1.

Note that all the focus values vi, i = 0, 1, 2, 3, 4, 5
are given in linear forms of the coefficients ai. Fur-
ther, consider the back order perturbations one by
one: First on a8 for v4, then on a6 for v3, and on a4

for v2, on a2 for v1, and finally on a0 for v0. There-
fore, the perturbation procedure is straightforward.
Since ∂v4/∂a8 = −(7/16) < 0, one may perturb
a8 = −9a10 to a8 = −9a10 + ε1 (0 < ε1 � 1),
and thus v4 = −(7/16)ε1 < 0. Similarly, we may
let a6 = 14a10 − ε2 (0 < ε2 � ε1), and thus
v3 = −(5/16)ε2. This procedure can be processed
until a0 for v0. The main results of this paper are
summarized in the following theorem.

Theorem 3. Given the Liénard equation (20) which
has a saddle point at the origin and a pair of sym-
metric fine focus points at (x, y) = (±1, 0), under
the condition b �= 0 and a0 = −(a2 + a4 + a6 + a8 +
a10). Further, take b = 1, and perturb a8, a6, a4, a2
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13 Limit Cycles in a Liénard Equation 189

and a0 as

a8 = a∗8 + ε1 = −9a10 + ε1,

a6 = a∗6 − ε2 = 14a10 − ε2,

a4 = a∗4 − ε3 = 10a10 − 10ε1 + 5ε2 − ε3,

a2 = a∗2 + ε4 = −15a10 + 8ε1 − 3ε2 + ε4,

a0 = a∗0 + ε5 = −a10 + ε1 − ε2 + ε3 − ε4 + ε5,

(34)

where 0 < ε5 � ε4 � ε3 � ε2 � ε1 � 1, then
system (20) has exactly ten small limit cycles.

Proof. First note that

0 < v5 =
21
32

a10 � 1

since 0 < a10 � 1. Then for the given perturbation
a8 = −9a10 + ε1, we have

v4 = − 7
16

ε1,

where 0 < ε1 � 1. Thus, one may choose 0 <
ε � a10 � 1 so that 0 < −v4 = (7/16)ε1 � (21/
32)a10 = v5.

Similarly, for a6 = 14a10 − ε2, we obtain

v3 =
5
16

ε2,

where 0 < ε2 � 1. Therefore, in order to have
0 < v3 � −v4, we should choose ε2 such that
0 < ε2 � ε1.

Next, for the perturbed parameter values given
in Eq. (34), we have

v2 =
1
4
(a4 + 5a6 + 10a8 + 10a10) = −1

4
ε3.

Hence, by choosing 0 < ε3 � ε2, one obtains 0 <
−v2 � v3.

For v1, we find

v1 =
1
4
(a2 − 3a6 − 8a8 − 15a10) =

1
4
ε4.

Then one may select 0 < ε4 � ε3 so that 0 < v1 �
−v2.

Finally, substituting the parameter values given
in Eq. (34) into v0 yields

v0 = −(a0 + a2 + a4 + a6 + a8 + a10) = −ε5.

Thus, 0 < −v0 � v1 as long as ε5 � ε4.
Summarizing the above perturbation results

gives

0 < −v0 = ε5 � v1 =
1
4
ε4 � −v2 =

1
4
ε3 � v3

=
5
16

ε2 � −v4 =
7
16

ε1 � v5 =
21
32

a10 � 1,

where 0 < ε5 � ε4 � ε3 � ε2 � ε1 � a10 � 1.
Therefore, the sufficient conditions given in Theo-
rem 1 are satisfied and so system (20) can have five
small amplitude limit cycles near each of the two
fine focus points (±1, 0). �

To end this subsection, we present a numerical
example of choosing proper perturbations to have
ten small limit cycles. Let b = 1 and

a10 = 0.002 ⇒ v5 = 0.13125 × 10−2, (35)

and further choose the following perturbations:

ε1 = 0.1 × 10−4 ⇒ v4 = −0.4375 × 10−5,

ε2 = 0.1 × 10−7 ⇒ v3 = 0.3125 × 10−8,

ε3 = 0.1 × 10−11 ⇒ v2 = −0.25 × 10−12,

ε4 = 0.1 × 10−16 ⇒ v1 = 0.25 × 10−17,

ε5 = 0.1 × 10−23 ⇒ v0 = −0.1 × 10−23.

(36)

Then, the normal form (16) associated with the fine
focus points (±1, 0) up to term r11 becomes

ṙ = r(−0.1 × 10−23 + 0.25 × 10−17r2

− 0.25 × 10−12r4 + 0.3125 × 10−8r6

− 0.4375 × 10−5r8 + 0.13125 × 10−2r10), (37)

which, in turn, yields the following five positive
roots for r2:

r2
1 = 0.417325236486798093757436070161 × 10−6,

r2
2 = 0.111803604246855209821083043649 × 10−4,

r2
3 = 0.781736615974998919428344832615 × 10−4,

r2
4 = 0.886042291301140181399102333568 × 10−3,

r2
5 = 0.235751969477352094091553077607 × 10−2.

(38)

So the amplitudes of the five limit cycles are approx-
imately equal to

r1 = 0.000646, r2 = 0.003344,
r3 = 0.008842, r4 = 0.029766,

r5 = 0.048554.
(39)

Under the perturbations given in Eq. (36), the
perturbed parameter values are

a0 = −0.001990009999000009999999,
a2 = −0.02992002999999999,
a4 = 0.019900049999,
a6 = 0.02799999,
a8 = −0.01799,

a10 = 0.002,

(40)
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190 P. Yu

under which we apply the Maple program [Yu, 1998] to recompute the focus values, given below:

v0 = −0.1 × 10−23,

v1 = 0.25 × 10−17,

v2 = −0.24999874858487645350844377999333338888875 × 10−12,

v3 = 0.31248592319463145473698564616776822532047714996127 × 10−8,

v4 = −0.43729668984998167395805239671367826480145038363181 × 10−5,

v5 = 0.13092188621480516884116851907719947310507220215075 × 10−2,

v6 = 0.11201788692745322065172995584472168778163393838020 × 10−2,

v7 = 0.21572446829671915961030781924001281001021059005183 × 10−2,

v8 = 0.43178136496957954512126359067753972460949294807702 × 10−2

which, in turn, results in the following roots of r2:

r2
1 = 0.417325145871873343198217715836 × 10−6,

r2
2 = 0.111803557370515325752354199181 × 10−4,

r2
3 = 0.781731053867996798394154100054 × 10−4,

r2
4 = 0.885965623364635521752016958065 × 10−3,

r2
5 = 0.235689632885664418839052249864 × 10−2,

r2
6 = −0.723249613594848097066617028472,

r2
7,8 = 0.110150965372161277030407639683

± 0.638988085546118611924228836755i. (41)

The first five positive roots are identical to that
given in Eq. (38) at least up to six digit points,
indicating that higher order focus values due to
the perturbations do not affect the solutions of the
limit cycles. This indeed shows that ten small limit
cycles exist in the neighborhood of the two fine focus
points (±1, 0).

For the parameter values given in Eq. (40), the
phase portrait for system (20) obtained from com-
puter simulations is shown in Fig. 1, where ten small
limit cycles are depicted near the points (±1, 0). It
should be pointed out that the trajectories which
are not near the two focus points (±1, 0) can be
obtained quite accurately using numerical simula-
tions. However, one cannot obtain the computer
simulation results for the small limit cycles since
the accuracy of some parameters is higher than the
machine precision. That is why one must employ
certain theoretical approach (like the one presented
in this paper) to prove the existence of small limit
cycles. In fact, in the neighborhood of a highly degen-
erate focus point, trajectories behave like around
centers, as shown in Fig. 1. The stabilities of these
small limit cycles can be easily determined by the
signs of the focus values. For convenience, let these

small limit cycles be named, from the smallest to
the largest, as l1, l2, l3, l4 and l5, respectively. Since
v0 < 0, the focus points (±1, 0) are stable. Then the
smallest limit cycle l1 is unstable, and thus l2 is sta-
ble, and so on. It can be observed from Fig. 1 that
besides the small limit cycles, there also exist large
limit cycles. It seems that there are at least two large
limit cycles. In the next subsection, we shall show
that there actually exist three large limit cycles.

3.3. Existence of three large limit
cycles

In this subsection, we shall explore numerical sim-
ulations to investigate the existence of large limit

Fig. 1. The phase portrait of system (20) showing ten
small limit cycles around the fine focus points (±1, 0)
under the perturbed parameter values: b = 1, a0 =
−0.001990009999000009999999,a2=−0.02992002999999999,
a4 = 0.019900049999, a6 = 0.02799999, a8 = −0.01799,
a10 = 0.002.
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13 Limit Cycles in a Liénard Equation 191

cycles in system (20). Again we use the same param-
eter values for obtaining small limit cycles, given
by Eq. (40). It has been observed from Fig. 1 that
large limit cycles do exist. Now we want to show
that there are actually three large limit cycles exhib-
ited by system (20) when the parameter values are
given by Eq. (40). For convenience, we call the large

(a)

(b)

Fig. 2. The phase portrait of system (20) for the unper-
turbed parameter values: b = 1, a0 = −0.002, a2 = −0.03,
a4 = 0.02, a6 = 0.028, a8 = −0.018, a10 = 0.002: (a) show-
ing two large limit cycles, outer one is stable while the inner
one is unstable; (b) showing the trajectories around the fixed
points.

limit cycles from the largest to the smallest as L1, L2

and L3.
In order to give a comparison, we first present

the results obtained from system (20) without per-
turbations. The unperturbed parameter values are

a0 = −0.002, a2 = −0.03, a4 = 0.02,
(42)

a6 = 0.028, a8 = −0.018, a10 = 0.002,

under which vi = 0, i = 0, 1, 2, 3, 4, indicating
that the two points (±1, 0) are unstable since the
fifth-order focus value, v5 = 0.0013125 > 0. The
simulation results are shown in Fig. 2. It seems
that there exist three large limit cycles: the outer
one is stable while the middle one is unstable [see
Fig. 2(a)]. There is a third limit cycle which is sta-
ble, as shown in Fig. 2(b). To simulate unstable
limit cycles (or in general for any unstable solutions
or trajectories), one needs to use reverse time evo-
lution. In other words, negative time steps should
be used in simulations. The trajectories starting
nearby the two focus points diverge very slowly
toward the third large limit cycle (the trajectories
nearby the focus points are not shown in Fig. 2(b)).
This implies that the unperturbed system does not
have small limit cycles around the focus points, as
expected.

Now, we investigate the large limit cycles
that existed in system (20) with the perturbed

Fig. 3. Trajectories of system (20) converging to the largest
limit cycle L1 as t → +∞, one from outside with the initial
point (4, 0), and the other from inside with the initial point
(1.5, 1.5).
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192 P. Yu

parameter values given in Eq. (40). First, consider
the largest limit cycle L1. The numerical simulation
result is given in Fig. 3, where two typical trajecto-
ries are depicted, one from outside L1 and the other
from inside L1. Both two trajectories converge to L1

as t → +∞. This indicates that the limit cycle L1 is
stable. Then, we know that the limit cycle L2 should
be unstable while the limit cycle L3 is stable.

Next, consider the limit cycle L2, which is
unstable. The simulation result is shown in Fig. 4.
Figure 4(a) demonstrates two trajectories, one from
outside L2 and one from inside L2, while Fig. 4(b)
shows the final state of the trajectories. It is seen

Fig. 4. Trajectories of system (20) converging to the larger
limit cycle L2 as t → −∞: (a) one from outside with the
initial point (1, 2), and the other from inside with the ini-
tial point (0.0, 0.5); (b) the final state of the unstable limit
cycle.

that both two trajectories converge to L2 as t →
−∞, implying that the limit cycle L2 is unstable,
as expected.

Finally, consider the limit cycle L3, which is
stable. The numerical simulation result is shown in
Fig. 5. Figure 5(a) depicts two trajectories, one from
outside L3 and one from inside L3. Both of them
converge to the stable limit cycle L3 as t → +∞.
Figure 5(b) shows the final state of the trajectories.
It has been observed that the convergence for this
case is much slower than that of the larger limit
cycles L1 and L2, because this one is close to the
degenerate focus points.

Summarizing the above results on the large
limit cycles gives the following theorem.

Fig. 5. Trajectories of system (20) converging to the large
limit cycle L3 as t → +∞: (a) one from outside with the
initial point (0, 0.3), and the other from inside with the ini-
tial point (0.0, 0.05); (b) the final state of the unstable limit
cycle.
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13 Limit Cycles in a Liénard Equation 193

(a) (b)

Fig. 6. Trajectories of system (20) around the fixed points: (a) near the two focus points; (b) near the saddle point (the
origin).

(a) (b)

Fig. 7. Thirteen limit cycles of system (20) obtained for parameter values: b = 1, a0 = −0.001990009999000009999999,
a2 = −0.02992002999999999, a4 = 0.019900049999, a6 = 0.02799999, a8 = −0.01799, a10 = 0.002, (a) all the 13 limit cycles;
(b) the zoom-in area around the focus point (0, 0) having five small limit cycles.

Table 2. Stabilities of the fixed points and limit cycles of Eq. (20).

Saddle Point Focus Point Limit Cycle

(0, 0) (±1, 0) l1 l2 l3 l4 l5 L3 L2 L1

U S U S U S U S U S

S = Stable, U = Unstable.
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194 P. Yu

Table 3. Limit cycles in the Liénard system near one focus point and two focus points.

deg(f) = k 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Focus

Point
(0, 0)

Local 1 2 2 4 4 6 6 6 8 8 8 10 10 12 12 12 14 14 14 16

1
2 deg(f) = m 1 2 3 4 5 6 7 8 9 10

Focus Local 2 4 6 8 10 12 14 16 18 20

Points

(±1, 0) Global 1 1 2 2 3 3 3 3 4 4

Theorem 4. Given the Liénard equation (20) with
the following parameter values:

b = 1, a0 = −0.001990009999000009999999,
a2 = −0.02992002999999999,

a4 = 0.019900049999, a6 = 0.02799999,
a8 = −0.01799 and a10 = 0.002,

system (20) has three large limit cycles. The outer
and inner ones are stable while the middle one is
unstable. The three large limit cycles enclose all the
ten small limit cycles.

The simulation results shown in Fig. 6 demon-
strate the trajectories around the three fixed points.
Figure 6(a) shows the small limit cycles in the
vicinity of the two fine focus points (±1, 0), while
Fig. 6(b) depicts the behavior of the system near
the saddle point (0, 0). Note that the small limit
cycles are exaggerated (larger than the true ones)
for a clear view, and that the trajectories passing
through the saddle point are no longer homoclinic
orbits due to the perturbations.

Based on the results given in this section, we
conclude that system (20) can have thirteen limit
cycles: five small limit cycles surround each of
the two focus points and three large limit cycles
enclose all the ten small limit cycles, as shown in
Fig. 7(a), while Fig. 7(b) is a zoom-in area around
the focus point (1, 0) showing five small limit cycles.
The stabilities of these limit cycles are given in
Table 2.

4. Limit Cycles in the Liénard
System (10) for 1 ≤ m ≤ 10

The procedure given in the previous section can be
used to consider other integer values of m. Since

the proofs are similar to that of the case m = 5,
we will omit the details but present a summary
of the results. We have used the method of nor-
mal forms to prove that the exact number of the
small limit cycles which exist in the neighborhood
of the two fine focus points (±1, 0) is 2m, i.e.
H (2m, 3) = 2m, where H is the Hilbert number
of the small limit cycles in the vicinity of the two
fine focus points. For the local limit cycles around
the origin, as shown in Table 1, it has been shown
that Ĥ(k, 3) = 2[3(k + 2)/8], where [ · ] denotes the
maximum integer and deg(f) = k, k = 2, 3, . . . , 50
[Lynch & Christopher, 1999]. The comparison for
the above two different cases of local limit cycles is
given in Table 3. Obviously, considering the symme-
try with two focus points can have more limit cycles.

Fig. 8. The phase portrait of system (10) when m = 1,
showing three limit cycles under the perturbed parameter
values: b = 1, a0 = −0.299, a1 = 0.2.
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13 Limit Cycles in a Liénard Equation 195

Fig. 9. The phase portrait of system (10) when m = 2,
showing five limit cycles under the perturbed parameter val-
ues: b = 1, a0 = −0.29002, a1 = −0.01, a2 = 0.3.

Fig. 10. The phase portrait of system (10) when m = 3,
showing eight limit cycles under the perturbed parameter
values: b = 1, a0 = 0.0101999, a1 = 0.0598, a2 = −0.09,
a3 = 0.02.

Fig. 11. The phase portrait of system (10) when m = 4,
showing ten limit cycles under the perturbed parameter val-
ues: b = 1, a0 = 0.09009980001, a1 = 0.7700002, a2 =
−0.9501, a3 = −0.01, a4 = 0.1.

Fig. 12. The phase portrait of system (10) when m =
6, showing 15 limit cycles under the perturbed parame-
ter values: b = 1, a0 = −0.04801995000499990000008,
a1 = −1.1701598500000001, a2 = −0.269800249995, a3 =
2.77200005, a4 = −1.33202, a5 = −0.002, a6 = 0.05.
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196 P. Yu

Fig. 13. The phase portrait of system (10) when m =
7, showing 17 limit cycles under the perturbed parameter
values:

b = 1, a0 = 0.049500999500049999000003999999,

a1 = 1.738014996000149999999996,

a2 = 2.447490004999750001, a3 = −6.62201399999995,

a4 = 1.3365089995, a5 = 1.649999,

a6 = −0.6495, a7 = 0.05.

Fig. 14. The phase portrait of system (10) when m =
8, showing 19 limit cycles under the perturbed parameter
values:

b = 1, a0 = 0.01900999000199990000099999900000001,

a1 = 0.925239850015999700000000001,

a2 = 2.751050099980000499999, a4 = −1.826730089998,

a5 = 3.48700001, a6 = −1.02701, a7 = −0.001,

a8 = 0.02.

Fig. 15. The phase portrait of system (10) when m =
9, showing 19 limit cycles under the perturbed parameter
values:

b = 1,

a0 = −0.009503992003999500009999960000029999999,

a1 = −0.60613980805999600002999999999997,

a2 = −2.93019595996000499995000004,

a3 = 2.40853155205599999999, a4 = 5.1748922159640005,

a5 = −4.972131999996, a6 = 0.494051992, a7 = 0.599996,

a8 = −0.1695, a9 = 0.01.

For large limit cycles, on the other hand, we apply
a fourth-order Rung–Kutta integration scheme to
show their existence, as depicted in Figs. 8–16 for
m = 1, 2, 3, 4, 6, 7, 8, 9, 10. The numbers of the large
limit cycles are also shown in Table 3. A careful
examination of these numbers seems to suggest that
the numbers of the large limit cycles obey the fol-
lowing rule:

H∗ =




1 for m = 1,
p for 2p−1 + 1 ≤ m ≤ 2p,

p = 1, 2, 3, 4, . . .
(43)

In Figs. 8–16, the large limit cycles are truly
obtained from computer simulations. However, the
small limit cycles are shown just for an illustra-
tion since, in particular for larger values of m, they
cannot be obtained via computer simulations. They
have to be proved using a theoretical approach. In
order to present a more accurate information for
these small limit cycles, we list the amplitudes of
the periodic solutions (obtained from the normal
form) below for reference.
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m = 1 : r1 = 0.01333333 (see Fig. 8).
m = 2 : r1 = 0.01333333, r2 = 0.02 (see Fig. 9).
m = 3 : r1 = 0.00225219, r2 = 0.01874441, r3 = 0.37900340 (see Fig. 10).
m = 4 : r1 = 0.00022449, r2 = 0.00279562, r3 = 0.00581885, r4 = 0.06258961 (see Fig. 11).
m = 6 : r1 = 0.00000394, r2 = 0.00002551, r3 = 0.00005344, r4 = 0.00273615, r5 = 0.00658136,

r6 = 0.01605414 (see Fig. 12).
m = 7 : r1 = 0.00000153, r2 = 0.00000381, r3 = 0.00001508, r4 = 0.00006981, r5 = 0.00037915,

r6 = 0.00112468, r7 = 0.00455979 (see Fig. 13).
m = 8 : r1 = 0.00020429, r2 = 0.00105575, r3 = 0.00308633, r4 = 0.00632467, r5 = 0.01074805,

r6 = 0.02308772, r7 = 0.08681535, r8 = 0.14752576 (see Fig. 14).
m = 9 : r1 = 0.00000017, r2 = 0.00000084, r3 = 0.00000312, r4 = 0.00001282, r5 = 0.00010222,

r6 = 0.00030878, r7 = 0.00124938, r8 = 0.00395682, r9 = 0.02377763 (see Fig. 15).
m = 10 : r1 = 0.00000001, r2 = 0.00000002, r3 = 0.00000077, r4 = 0.00000285, r5 = 0.00001212,

r6 = 0.00009727, r7 = 0.00029989, r8 = 0.00121941, r9 = 0.00388862,
r10 = 0.02342640 (see Fig. 16).

Fig. 16. The phase portrait of system (10) when m =
10, showing 19 limit cycles under the perturbed parameter
values:

b = 1,

a0 = −0.009503992003999500009999960000029999999000000002,

a1 = −0.768691720095992500079999880000000000001,

a2 = −5.40055960802000499990000019999997,

a3 = 0.35489493622399300000000004,

a4 = 15.15936021589200449999,

a5 = −8.5477037360000005, a6 = −3.925792103996,

a7 = 3.970000008, a8 = −0.841504,

a9 = −0.0005, a10 = 0.01.

5. Conclusion

In this paper, we have investigated limit cycles in
a class of Liénard equation with deg(f) = 2m and
deg(g) = 3. Both local and global bifurcations are
considered. The numbers of limit cycles are larger
than expected, due to the symmetry of the system.
A general proof needs to be developed to show that
H (2m, 3) = 2m for any integer m ≥ 1, and that the
number of large limit cycles follows the rule given
in Eq. (43).
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