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Abstract. In this paper, we consider Bogdanov-Takens bifurcation in two

predator-prey systems. It is shown that in the full parameter space, Bogdanov-

Talens bifurcation can be codimension 2, 3 or 4. First, the simplest normal
form theory is applied to determine the codimension of the systems as well

as the unfolding terms. Then, bifurcation analysis is carried out to describe

the dynamical behaviour and bifurcation property of the systems around the
critical point.

1. Introduction. Since Lotka and Volterra created the so-called Lotka-Volterra
predator-prey model [18, 22], more sophisticated predator-prey models have been
developed, given in the following general form of ordinary differential equations [6],

ẋ = x g(x,K)− y p(x),

ẏ = y [−d+ c q(x)],
(1)

where g(x,K) is a continuous and differentiable function, describing the specific
growth rate of the prey in the absence of predators. A specific form of g, the
logistic growth g(x,K) = r(1− x

K ), is usually considered as a prototype, satisfying
g(0,K) = r > 0, g(K,K) = 0, gx(K,K) < 0, gx(x,K) ≤ 0, and gK(x,K) > 0 for
any x > 0.

The functional response p(x) of predators to the prey is a continuous and dif-
ferentiable function, satisfying p(0) = 0, which describes the change in the density
of the prey attacked per unit time per predator as the prey density changes. The
functional response functions which have been extensively used in modeling popula-
tion dynamics have the following three forms. (a) Lotka-Volterra type: p(x) = mx,
where m > 0, which is a linear function with lim

x→∞
p(x) = ∞. (b) Holling type II:

p(x) = mx
a+x , where m > 0, a > 0, and a is called the half-saturation constant, sat-

isfying p′(x) > 0 and lim
x→∞

p(x) = m. (c) Generalized Holling type III or sigmoidal:

p(x) = mx2

ax2+bx+1 , where m > 0, a > 0 and b is a constant. When b = 0, it is called

the Holling type III response function. When b > −2
√
a (so that ax2+bx+1 > 0 and

hence p(x) > 0), it is called the generalized Holling type III or sigmoidal functional
response [1].
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The function q(x) in system (1), on the other hand, describes how predator
convert the consumed prey into the growth of predators, and the parameter c rep-
resents the efficiency of predators in converting consumed prey into their growth,
while d denotes the predator mortality rate. In the literature, the following three
typical forms of q(x) have been used. (i) q(x) = p(x), which is used in most clas-
sical predator-prey models. (ii) q(xy ) = p(xy ), which depends upon the ratio of the

prey to predators, not the prey density. (iii) q( yx ), which is based on the ratio
of the predators to their prey, and the typical second equation of (1) is given by
ẏ = yq( yx ) = sy(1− y

hx ) while the first equation of (1) still takes p(x).
Now, we combine the three types of function q(x) with the three types of function

p(x) to obtain nine systems:

Ai :

{
ẋ = r x

(
1− x

K

)
−mxy,

ẏ = y (mcx− d);
(2)

Aii :

{
ẋ = r x

(
1− x

K

)
− mxy

a+x ,

ẏ = y
(
mcx
a+x − d

)
;

(3)

Aiii :

{
ẋ = r x

(
1− x

K

)
− mx2 y

ax2+bx+1 ,

ẏ = y
(

mcx2

ax2+bx+1 − d
)
;

(4)

Bi :

{
ẋ = r x

(
1− x

K

)
−mx,

ẏ = mcx− d y;
(5)

Bii :

{
ẋ = r x

(
1− x

K

)
− mxy

x+ay ,

ẏ = y
(
mcx
x+ay − d

)
;

(6)

Biii :

{
ẋ = r x

(
1− x

K

)
− mx2 y

ax2+bxy+y2 ,

ẏ = y
(

mcx2

ax2+bxy+y2 − d
)
;

(7)

Ci :

{
ẋ = r x

(
1− x

K

)
−mxy,

ẏ = s y
(
1− y

hx );
(8)

Cii :

{
ẋ = r x

(
1− x

K

)
− mxy

a+x ,

ẏ = s y
(
1− y

hx

)
;

(9)

Ciii :

{
ẋ = r x

(
1− x

K

)
− mx2 y

ax2+bx+1 ,

ẏ = s y
(
1− y

hx

)
.

(10)

In order to simplify the analysis on the above models, we first use state scaling and
time scaling τ = r t to transform (2)-(10) into the following dimensionless systems
(through x = KX with D = d

r and S = s
r ):

System Ai :

{
Ẋ = X (1−X − Y ),

Ẏ = Y (C X −D),
Y = my

r , C= mcK
r ; (11)

System Aii :

{
Ẋ = X

(
1−X − Y

A+X

)
,

Ẏ = Y ( CX
A+X −D),

Y = my
rK , A= a

K , C= mc
r ; (12)

System Aiii :

{
Ẋ = X

(
1−X− XY

AX2+BX+1

)
,

Ẏ = Y ( CX2

AX2+BX+1 −D),

Y = mKy
r , A = K2a,

B = Kb, C = mK2c
r ;

(13)
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System Bi :

{
Ẋ = X (1−M −X),

Ẏ = X −DY,
Y = ry

mcK , M= m
r ; (14)

System Bii :

{
Ẋ = X

(
1−X− MY

X+Y

)
,

Ẏ = Y
(
CX
X+Y −D

)
,

Y = ay
K , M= m

ar , C= mc
r ; (15)

System Biii :

{
Ẋ = X

(
1−X− XY

AX2+BXY+Y 2

)
,

Ẏ = Y
(

CX2

AX2+BXY+Y 2 −D
)
,

Y = ry
mK , A = r2a

m2 ,

B = rb
m , C = rc

m ;
(16)

System Ci :

{
Ẋ = X (1−X −M Y ),

Ẏ = S Y
(
1− Y

X

)
,

Y = y
hK , M= hKm

r ; (17)

System Cii :

{
Ẋ = X

(
1−X − M Y

A+X

)
,

Ẏ = S Y
(
1− Y

X

)
,

Y = y
hK , A= a

K , M= hm
r ; (18)

System Ciii :

{
Ẋ = X

(
1−X− MXY

AX2+BX+1

)
,

Ẏ = S Y
(
1− Y

X

)
,

Y = y
hK , A=K2a,

B=Kb, M = hK2m
r .

(19)

We still use the dot to denote the differentiation with respect to the new time τ .
Note that all the parameters should take positive values, except for B (or b) which

may also take zero or negative values, provided B >−2
√
A (or b > −2

√
a). If we

add a negative, constant term to the second equation of the above systems, which
measures the rate of harvesting or removal [23] for the systems, we can study the
general effect of harvesting on these models. This investigation is left for future
work.

The dynamics and bifurcations of systems (2)-(6) (or (11)-(15)) have been studied
completely in [14], except for the Bogdanov-Takens (BT) bifurcation for system (4)
(or (13)). Similarly, in [15] the dynamics and bifurcations of system (7) (or (16))
have been completely analyzed, but the BT bifurcation. Thus, in this paper we
will particularly investigate the BT bifurcations in systems (4) and (7) (or (13) and
(16)). General theory of BT bifurcation for codimension two was established by
Bogdanov [2] and Takens [21], which has been presented and discussed in many
books (for example, see [4, 10, 16]). Recently, Han et al. revisited this problem and
gave a fairly complete study [11]. For codimension three and higher were studied
by Dumortier et al. [5] and Mardesic [19]. The cusp case was studied by Han [12] to
obtain the normal form with unfolding up to any higher order. Suppose the normal
form of BT bifurcation without unfoliding is given by

ẋ = y, ẏ = x2 ± xky, (20)

where k =
[ 3(n−1)

2

]
(n ≥ 2). It has been shown in [12] that the general unfolding

of (20) can be put in the form,

ẋ = y, ẏ = x2 + β0 +

k−1∑
i=0

βi+1x
iy ± xky +O(|(x, y)|k+2). (21)

However, in reality not all practical problems can have a standard (“perfect”)
unfolding due to limitation on the physical parameters. In the following sections,
the BT bifurcation analysis is given to the two systems (13) and (16) by using
the simplest normal form (SNF) theory (e.g., see [7, 8, 24]) and the parametric
simplest normal form (PSNF) theory (e.g., see [9, 26]). We will show that both the
two systems can exhibit the cusp case of BT bifurcation, but the codimension for
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system (13) is not over three, while that for system (16) is not over four which does
not have a standard unfolding.

2. BT bifurcation for system (13). In this section, we present BT bifurcation
analysis for system (13). It is noted that global stability for predator-prey systems

with p(x) = q(x) = mxn

a+xn (m > 0) has been investigated by Cheng et al. [3], with

p(x) = q(x) = x
a+x2 has been considered by Ruan and Xiao [20]. Also, global

stability for a class of predator-prey systems, which consist of the first equation in
(13) and the second equation in (15), has been studied in [13]. However, to our best
knowledge, global stability and dynamics for system (13) have not been completely
studied.

2.1. Equilibria and BT critical point. System (13) has three equilibria:

E0 : (X0, Y0) = (0, 0);

E1 : (X1, Y1) = (1, 0);

E2 : (X2, Y2) =
(
X2,

C
DX2(1−X2)

)
; (0 < X2 < 1),

(22)

where X2 is determined from the following quadratic polynomial equation:

F1 = (C −AD)X2
2 −BDX2 −D = 0. (23)

The condition 0<X2<1 guarantees that the equilibrium E2 is an interior (positive)
equilibrium.

It is easy to show that E0 is always a saddle. Define

C∗ = D
(
A− 1

4B
2
)
, Ct = (A+B + 1)D. (24)

Then, when B>max{−2
√
A,−2}, E1 is globally asymptotically stable (GAS) for

C∈(0, Ct] and unstable for C>Ct; when −2
√
A<B≤−2, E1 is GAS for C∈(0, C∗]

and locally asymptotically stable (LAS) for C ∈ (C∗, Ct), and unstable for C>Ct.
No Hopf bifurcation can occur from E1, but transcritical bifurcation can happen
between E1 and E2, which may be a forward bifurcation if B>max{−2

√
A,−2} or

backward bifurcation if −2
√
A<B≤−2. It has been shown in [14] that either none

or two Hopf bifurcations can occur from E2 when B>max{−2
√
A,−2}; while when

−2
√
A<B≤−2, saddle-node bifurcation, none, one or two Hopf bifurcations may

occur from E2. Thus, bistable or even tristable phenomenon (involving equilibria

and stable limit cycles) may occur. In addition, for −2
√
A < B ≤ −2, when the

saddle-node bifurcation and a Hopf bifurcation coincide, a BT bifurcation occurs.
The condition for a BT bifurcation to occur can be found from the characteristic
polynomial:

P (λ) = λ2 + Tr(J2)λ+ det(J2), (25)

where J2 is the Jacobian of system (13) evaluated at the equilibrium E2, yielding

Tr(J2) = 1
AX2

2+BX2+1

[
− 2AX3

2 + (A−B)X2
2 − 1

]
,

det(J2) = D
AX2

2+BX2+1
(1−X2)(BX2 + 2).

(26)

The necessary and sufficient conditions for system (13) to have a BT bifurcation
from E2 are Tr(J2) = det(J2) = 0, which gives (note that X2 =1 is not a solution)

A = 4 + C
D , B = − 4,

at which the equilibrium E2 becomes

E2 =
(
1
2 ,

C
4D

)
. (27)

In the following, we will apply the simplest normal form (SNF) theory (e.g.,
see [7, 8, 24]) to determine the codimension for BT bifurcation of system (13) and
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the parametric simplest normal form (PSNF) theory (e.g., see [9, 26]) to obtain the
normal form of system (13) with unfolding terms.

2.2. The SNF and codimension of the BT bifurcation. In order to obtain
the normal form for the BT bifurcation, we first need to determine the codimention
of system (13). Define the BT critical point as (µ1, µ2)=(0, 0), where

µ1 = A−Ac ≡ A−
(
4 + C

D

)
, µ2 = B −Bc ≡ B + 4. (28)

So (µ1, µ2) = (0, 0) implies that (A,B) = (Ac, Bc)≡ (4 + C
D ,−4). Now, we assume

(µ1, µ2) = (0, 0), and apply the simplest normal form theory [7, 8, 24] to deter-
mine the codimension of system (13). To achieve this, introducing the following
transformation:

X = 1
2 + u, Y = C

4D −
C
D v, (29)

into (13), we obtain the following system:

du

dτ1
= (1+2u)[Cv−(C−4D)u2+2Cuv−2(C+4D)u3]

C(1+4u)+4(C+4D)u2 ,

dv

dτ1
= 4D2(1−4v)u2

C(1+4u)+4(C+4D)u2 .
(30)

Then, we expand the above system around (u, v) = (0, 0) and apply the SNF the-
ory [8, 24] to the resulting system to obtain the following results. First, consider
C 6=4D. We introduce the following transformation,

u = x1, v = x2 + C−4D
C x21,

into (13) to obtain the SNF up to 2nd-order terms:

dx1
dτ1

= x2 +O(|(x1, x2)|3),

dx2
dτ1

= 4D2

C x21 −
2(C−4D)

C x1x2 +O(|(x1, x2)|3).

Further, introducing the transformation,

x1 → x1, x2 +O(|(x1, x2)|3)→ x2, (31)

into the above equations, we obtain

dx1
dτ1

= x2,

dx2
dτ1

= 4D2

C x21 −
2(C−4D)

C x1x2 +O(|(x1, x2)|3).
(32)

Next, consider C= 4D, for which the coefficient of the term x1x2 in (32) becomes
zero. Thus, we need to find higher-order terms in the SNF. To achieve this, applying
the change of state variables:

u = x1 + x21 −
4(3+D)

3D x1x2 − 9
5Dx

2
2 + 3

5 x
3
1 + 5600D2+65283D+36000

3150D2 x21x2

+ 2(56D2+375D+360)
63D2 x1x

2
2 +

7∑
i+j=4

aijx
i
1x
j
2,

v = x2 − 4(3+D)
3C x22 − 4D

3 x
3
1 −

2(2240∗D2+72213D+36000)
1575D2 x21x2

+ 2(56D2+375D+360)
63D2 x1x

2
2 + 2(56D2+375D+360)

63D2 x32 +

7∑
i+j=4

bijx
i
1x
j
2,

where aij and bij are functions in D, and the time rescaling,

τ1 =
[
1− 2x1 + 2(280D2−283D+3720)

945D x31
]
τ2,
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into (13) yields the SNF up to 7th-order terms:

dx1
dτ2

= x2 +O(|(x1, x2)|8),

dx2
dτ2

= Dx21 − 16x31x2 − 16x41x2 −
8(560D2+17443D−67080)

945D x61x2 +O(|(x1, x2)|8).

Finally, applying the transformation

x1 → x1, x2 +O(|(x1, x2)|8)→ x2, (33)

into the above system we obtain

dx1
dτ2

= x2,

dx2
dτ2

= Dx21−16x31x2−16x41x2−
8(560D2+17443D−67080)

945D x61x2+O(|(x1, x2)|8).
(34)

The following theorem directly follows from (32) and (31).

Theorem 2.1. For system (13), when B = −4, A = 4 + C
D , BT bifurcation occurs

from the equilibrium solution E2 : (X,Y ) = ( 1
2 ,

C
4D ). The BT bifurcation is codi-

mension 2 if C 6= 4D, and codimesion 3 if C = 4D. No codimension higher than 3
can happen.

In the following two sections, we will use the PSNF theory to obtain the normal
forms with unfolding terms up to 2nd-order terms for the codimension-2 BT bifur-
cation and up to 4th-order terms for the codimension-3 BT bifurcation, and give a
summary on the bifurcation analysis. Note that in the literature usually a number
of nonlinear transformations are used to obtain the normal form with unfolding
terms (e.g., see [5, 17]). However, here we apply the PSNF theory to obtain the
normal form with unfolding terms via only one nonlinear transformation.

2.3. The PSNF of the codimension-2 BT bifurcation and bifurcation anal-
ysis. Now, suppose C 6= 4D. To obtain the normal form with unfolding, we intro-
duce the parametric transformation,

A = Ac + µ1 = 4 + C
D + µ1, B = Bc + µ2 = − 4 + µ2, (35)

together with the change of state variables (28), into (13) to obtain

du

dτ1
= (1+2u){D[µ1(1+2u)+2µ2](1−4u2)+16Du2(1−2u)+4C(v−u2)(1+2u)}

4{2D[8u2+µ2(1+2u)]+(C+Dµ1)(1+2u)2} ,

dv

dτ1
= D2(1−4v)[16u2+2µ2(1+2u)+µ1(1+2u)2]

4{2D[8u2+µ2(1+2u)]+(C+Dµ1)(1+2u)2} .
(36)

Then, we expand the above system around the point (u, v, µ1, µ2) = (0, 0, 0, 0) and
apply the PSNF theory, with the change of state variables:

u = − 1
2β2 + C(D3−Cβ1)

4D5 x1 − C2

12D4 x1x2,

v = − C
4D3 β1 + 1

4β
2
2 −

C(Cβ1+3D2β2)
12D4 x1 + C

4D2x2 + C(C−4D)
16D4 x21 − C2

12D4x
2
2,

(37)

and the parametric transformation:

µ1 = C2

D4 β1 + 8β2, µ2 = − 4β2 + 2β2
2 , (38)

to obtain the standard normal form with unfolding:

dx1
dτ1

= x2 +O(|(x1, x2, µ1, µ2)|3),

dx2
dτ1

= β1 + β2x2 + x21 − C−4D
2D2 x1x2 +O(|(x1, x2, µ1, µ2)|3).
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Finally, introducing the transformation

x1 → x1, x2 +O(|(x1, x2, µ1, µ2)|3)→ x2,

into the above system yields the normal form with unfolding up to 2nd-order terms:

dx1
dτ1

= x2,

dx2
dτ1

= β1 + β2x2 + x21 − C−4D
2D2 x1x2 +O(|(x1, x2, µ1, µ2)|3).

(39)

Now, we use the normal form (39) to analyze the codimension-2 BT bifurcation.
Note that the normal form (39) is in the standard form given in [10]. Thus, we
follow the approach described in [10] to obtain the following theorem.

Theorem 2.2. For system (13), codimension-2 BT bifurcation occurs from the
equilibrium E2 : (X,Y )=( 1

2 ,
C
4D ) when A=4+ C

D and B=− 4 if C 6=4D. Moreover,
three local bifurcations with the representations of the bifurcation curves are given
below.

(1) Saddle-node bifurcation occurs from the bifurcation curve:

SN =
{

(β1, β2) | β1 =0
}
.

(2) Hopf bifurcations occur from the bifurcation curve:

H =
{

(β1, β2) | β1 =−
(

2D2

C−4D
)2
β2
2

}{β2>0 (C−4D < 0), subcritical,

β2<0 (C−4D > 0), supercritical.

(3) Homoclinic orbits occur from the bifurcation curve:

HL =
{

(β1, β2) | β1 =− 49
25

(
2D2

C−4D
)2
β2
2

}{β2>0 (C−4D < 0), unstable,

β2<0 (C−4D > 0), stable.

The above formulas for bifurcation curves can be expressed in terms of the orig-
inal perturbation parameters µ1 and µ2 by using (38).

2.4. The PSNF of the codimension-3 BT bifurcation and bifurcation anal-
ysis. To analyze the codimension-3 BT bifurcation under the condition C=4D, at
which E2 becomes (X,Y ) = ( 1

2 , 1), we need to find the corresponding normal form
with unfolding. To achieve this, let

A = 8 + µ1, B = − 4 + µ2, C = 4D + µ3, (D > 0). (40)

We denote µ=(µ1, µ2, µ3) and then apply (40) together with

X = 1
2 + u, Y = 1− 4v, (41)

into (13) to obtain the following system:

du

dτ1
= (1+2u)[µ1+2µ2+2µ1u+16v−4(µ1+2µ2)u

2+32uv−8(8+µ1)u
3]

4[4+µ1+2µ2+4(4+µ1+µ2)u+4(8+µ1)u2] ,

dv

dτ1
= (1−4v){D(µ1+2µ2)−µ3+4[D(µ1+µ2)−µ3]u+4[D(4+µ1)−µ3]u

2}
4[4+µ1+2µ2+4(4+µ1+µ2)u+4(8+µ1)u2] .

(42)

Then, we expand the vector field of (42) around the point (u, v, µ) = (0, 0, 0)
and employ the PSNF theory [9, 26] to obtain the parametric normal form. More
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precisely, applying the following change of state variables:

u = 1
D x1 + 5

D2 β1 − 1
2 β2 −

320D2+11103D+2888
75D5 β2

1 + 1
6β

2
2 + 2(D+6)

3D3 β1β2

− 2
3Dβ1β3−

D
12β2β3+ 1

D2x
2
1−

4(3+D)
3D3 x1x2− 9

5D3x
2
2−
(

57
5D3 β1− 1

3Dβ2+ 1
6β3
)
x1

−
[ 4(320D3+4173D2+11619D+8640)

1305D5 β1+ 1480D2+18747D+11520
1305D3 β2− 40D+291

522D β3
]
x2

+
∑

i+j+k+l+m=3,4

U1ijklmxi1x
j
2β

k
1β

l
2β

m
3 ,

v = 1
D x2 + 12

D2 β1 − 5
4 β2 + D

8 β3 −
2(8180D3+134148D2+756909D+220868)

1305D5 β2
1

− 17
6 β

2
2 − D2

48 β
2
3 − 46120D2−231957D+162180

13050D3 β1β2 + 400D−36501
5220D β1β3

− 11D
24 β2β3−

4(D+3)
3D3 x22−

( 4(D−6)
3D3 β1+ 1

Dβ2
)
x1 −

(
63
D3 β1− 5

Dβ2+ 1
2β3
)
x2

+
∑

i+j+k+l+m=3,4

U2ijklmxi1x
j
2β

k
1β

l
2β

m
3 ,

(43)
where U1ijklm and U2ijklm are functions in D, with the time rescaling:

τ1 =
(
1− 2

D x1 − 1
3 β2 + D

6 β3
)
τ2, (44)

and then the parametrization:

µ1 = − 288
D2 β1 + 28β2 − 2Dβ3 + 32(260D3+4338D2+30969D+7020)

45D5 β2
1

+ 176
3 β2

2 + D2

3 β
2
3 + 8(120D2−2857D+180)

25D3 β1β2 + 684
5D β1β3 − 6Dβ2β3

+ 16(731200D4+11156880D3+34785063D2+25040880D+10368000)
6525D8 β3

1 + 8β3
2

+ 16(273280D3+4240617D2+7747020D+3456000)
6525D6 β2

1β2 − 304
3D2 β1β

2
2 + 4Dβ2

2β3

− 8(4000D2+8301D+24660)
1305D4 β2

1β3 − 4
3β1β

2
3 − 32

3Dβ1β2β3,

µ2 = 48
D2 β1 − 4β2 − 1536

D4 β
2
1 − 8

3β
2
2 + 112

D2 β1β2 − 8
Dβ1β3

− 2D
3 β2β3 −

4
3β

3
2 − 4D

3 β
2
2β3,

µ3 = − 208
D β1 + 20Dβ2 − 2D2β3 + 32(260D3+4338D2+27279D+7020)

45D4 β2
1

+ 148D
3 β2

2 + D3

3 β
2
3 + 8(360D2−6271D+540)

75D2 β1β2 + 1892
15 β1β3

− 22D2

3 β2β3 − 40D
9 β4

2 − 32D2

9 β3
2β3 − D3

9 β
2
2β

2
3 ,

(45)

into (13) yields

dx1
dτ2

= x2 +O(|(x1, x2, β)|5),

dx2
dτ2

= β1 + β2 x2 + β3 x1x2 + x21 − 16
D3 x

3
1x2 +O(|(x1, x2, β)|5),

where β=(β1, β2, β3). Finally, introducing the transformation

x1 → x1, x2 +O(|(x1, x2, β)|5)→ x2, (46)

into the above equations yields the normal form with unfolding up to 4th-order
terms:

dx1
dτ2

= x2,

dx2
dτ2

= β1 + β2 x2 + β3 x1x2 + x21 − 16
D3 x

3
1x2 +O(|(x1, x2, β)|5).

(47)
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It is easy to use (45) to verify that

det
[
∂(µ1,µ2,µ3)
∂(β1,β2,β3)

]
= 128 +O(β) 6= 0 for small β with D>0,

which shows that near the critical point (A,B,C) = (8,− 4, 4D), system (13) has
the same bifurcation set with respect to µ as system (47) has with respect to β, up
to a homeomorphism in the parameter space.

Now based on the results of [5], we apply the method of normal forms and Abelian
integral (or Melnikov function) to obtain the following result (proof is omitted due
to page limit).

Theorem 2.3. For system (13), codimension-3 BT bifurcation occurs from the
equilibrium E2 : (X,Y ) = ( 1

2 , 1) when A = 8, B = − 4 and C = 4D. Moreover,
six local bifurcations with the representations of the bifurcation surfaces/curves are
given below.

(1) Saddle-node bifurcation occurs from the critical surface:

SN =
{

(β1, β2, β3) | β1 = 0
}
.

(2) Hopf bifurcation occurs from the critical surface:

H =
{

(β1, β2, β3) | β1 < 0, β2 =
(
β3 + 16

D3 β1
)√
−β1

}
.

(3) Homoclinic bifurcation occurs from the critical surface:

HL =
{

(β1, β2, β3) | β1 < 0, β2 = 5
7

(
β3 + 1648

55D3 β1
)√
−β1

}
.

(4) Generalized Hopf bifurcation occurs from the critical curve:

GH =

(β1, β2, β3)

∣∣∣∣∣∣∣
β1 < 0, β2 = 4

D3

(
1 + 3

√
2√
−β1

)
β1
√
−β1,

β3 = − 12
D3

(
1−

√
2√
−β1

)
β1.


(5) Degenerate homoclinic bifurcation occurs from the critical curve:

DHL =
{

(β1, β2, β3)
∣∣β1 < 0, β2 = 64

11D3 β1
√
−β1, β3 = − 240

11D3 β1
}
.

(6) Double limit cycle bifurcation occurs from a critical surface, which is tangent
to the Hopf bifurcation surface H on the critical curve GH, and tangent to the
homoclinic bifurcation surface HL on the critical curve DHL.

3. BT bifurcation for system (16). In this section, we present BT bifurcation
analysis for system (16).

3.1. Equilibria and BT critical point. System (16) has also the exact three
equilibria given in (22), but now X2 is determined from the following quadratic
polynomial equation:

F2 = C2X2
2 − C(2C +BD)X2 + C2 +BCD −D(C −AD) = 0. (48)

Again, the condition 0<X2 < 1 guarantees that the equilibrium E2 is an interior
(positive) equilibrium. Define

X±2 = 1
2C

(
2C +BD ±

√
∆
)
, (49)

where

∆ = (2C +BD)2 − 4
[
C2 +BCD −D(C −AD)

]
= B2D2 + 4D(C −AD) = 4D

[
C −D

(
A− B2

4

)]
= 4D(C − C∗).

(50)

It is straightforward to prove that E0 is always a saddle. Moreover, it is easy to
see that E1 is a stable node for C<AD, and a saddle for C>AD. Furthermore, we
can show that E1 is GAS for C≤AD. There is no Hopf bifurcation from E1. For
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the stability of E2, the negative part (with X+
2 < 0 or X−2 < 0) is a saddle (only

mathematically meaningful), and the positive equilibrium E+
2 (with X+

2 >0) is also
a saddle; while the positive equilibrium E−2 (with X−2 >0) may lose stability at Hopf
critical points, whose number must be two if they exist. So the only possibility for
a BT bifurcation to occur is from E2. The condition for a BT bifurcation to occur
can be found from the characteristic polynomial (25) for which J2 represents the
Jacobian of system (16) evaluated at the equilibrium E2, with

Tr(J2) = X2

C

[
D(C −AD) + C2(1−X2)2

]
,

det(J2) = − 1
CD

{
(1 +D −X2)

[
C2(1−X2)2 −AD2

]
+DC(D +X2)

}
.

(51)

The necessary and sufficient conditions for system (16) to have a BT bifurcation
from E2 are Tr(J2) = det(J2) = 0. Solving the three equations: F2 = Tr(J2) =
det(J2) = 0, yields (noting that X2 = 1 is not a solution) a family of biologically
meaningful solutions for system (16) to have a BT bifurcation from E2, given by

X2 = 1
2 , A = C(C+4D)

4D2 , B = − C
D , (52)

for which the equilibrium E2 becomes the same one given in (27): E2 :
(
1
2 ,

C
4D

)
.

Similarly, we will first apply the SNF theory to determine the codimension for
the BT bifurcation of system (16) and then employ the PSNF theory to obtain the
normal form of system (16) with unfolding terms.

3.2. The SNF and codimension of the BT bifurcation. Define

A = Ac + µ1 ≡ C(C+4D)
4D2 + µ1, B = Bc + µ2 ≡ − C

D + µ2. (53)

Then, the BT critical point is defined by (µ1, µ2)=(0, 0). Now, we assume (µ1, µ2)=
(0, 0), and apply the SNF theory [7, 8, 24] to determine the codimension of system
(16). To achieve this, introducing the same transformation (29) into (16) yields the
following system:

du

dτ1
= (1+2u)[4Dv+C(u+2v)2−4Du(u−2v)−2(C+4D)u3−8Cuv(u+v)]

4[D(1+4u)+4Du2+C(u+2v)2] ,

dv

dτ1
= CD(1−4v)(u+2v)2

4[D(1+4u)+4Du2+C(u+2v)2] .
(54)

Then, we expand the above system around (u, v) = (0, 0) and apply the SNF theory
[8, 24] to the resulting system to obtain the following results. For C 6= 4D

1+2D , we
apply the following transformation:

u = x1 + C(1+D)
2D x21, v = x2 − C−4D

4D x21 + Cx1x2 − C
D x22,

into (16) to obtain the following SNF up to 2nd-order terms:

dx1
dτ1

= x2 +O(|(x1, x2)|3),

dx2
dτ1

= C
4 x

2
1 + (1+2D)C−4D

2D x1x2 +O(|(x1, x2)|3).

Further, applying the transformation (31) into the above system we obtain

dx1
dτ1

= x2,

dx2
dτ1

= C
4 x

2
1 + (1+2D)C−4D

2D x1x2 +O(|(x1, x2)|3).
(55)
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If C= 4D
1+2D , we apply the change of state variables,

u = x1 + 2(1+D)
1+2D x21 −

4(3+7D+6D2)
3D(1+2D) x1x2 − 4(3+6D+5D2)

5D(1+2D) x22 +

7∑
i+j=3

aijx
i
1x
j
2,

v = x2 + 2D
1+2D x21 + 4D

1+2Dx1x2 −
4(3+10D+6D2)

3D(1+2D) x22 +

7∑
i+j=3

bijx
i
1x
j
2,

where aij and bij are functions in C and D, and the time rescaling,

τ1 =
[
1 + t30 x

3
1 − 48

35(1+2D)2x
4
1

]
τ2,

where

t30 = 116303904D5+302636680D4+305396494D3+145198611D2+31408128D+2298240
613230D(1+D)(1+2D)3(18D2+23D+6) ,

to obtain the SNF up to 7th-order terms as follows:

dx1
dτ2

= x2 +O(|(x1, x2)|8),

dx2
dτ2

= D
1+2D x21 + 32(1+2D)

(1+2D)2 x41x2 −
384(1+D)
5(1+2D)3 x

6
1x2 +O(|(x1, x2)|8).

Further, introducing the transformation (33) into the above equations we obtain

dx1
dτ2

= x2,

dx2
dτ2

= D
1+2D x21 + 32(1+2D)

(1+2D)2 x41x2 −
384(1+D)
5(1+2D)3 x

6
1x2 +O(|(x1, x2)|8).

(56)

Based on (55) and (56), we have the following theorem.

Theorem 3.1. For system (16), when A = C(C+4D)
4D2 , B = − C

D , BT bifurcation

occurs from the equilibrium E2 : (X,Y ) = ( 1
2 ,

C
4D ). The BT bifurcation is codimen-

sion 2 if C 6= 4D
1+2D , and at most codimesion 4 if C = 4D

1+2D . No codimension higher
than 4 can happen.

Similarly, in the following two sections, we will use the PSNF theory to obtain the
normal forms with unfolding terms for the BT bifurcations, and present a summary
on the bifurcation analysis. More precisely, we will show that due to the limitation
on the parameters, the codimension of Hopf bifurcation is 2, which implies that the
possible condimension-4 BT bifurcation is degenerate. Again, we will obtain the
normal forms with unfolding terms through only one nonlinear transformation.

3.3. The PSNF of the codimension-2 BT bifurcation and bifurcation anal-
ysis. Assume C 6= 4D

1+2D . To obtain the normal form with unfolding up to 2nd-order

terms, we first apply the parametric transformation (53) together with the change
of state variables (29) into (16) and then expand the resulting equations around the
point (u, v, µ1, µ2) = (0, 0, 0, 0) to obtain the following equations:

du

dτ1
= v + D

4C µ1 + 1
8 µ2 − D2

4C2µ
2
1 − D

4Cµ1µ2 − 1
16 µ

2
2 − 1

4 µ2u

−
(
D
C µ1 − µ2) v + C−4D

4D u2 + C
D uv + C

D v2 +O(|(u, v, µ1, µ2)|3),

dv

dτ1
= D2

4C µ1 + D
8 µ2 − D3

4C2µ
2
1 − D2

4C µ1µ2 − D
16µ

2
2 − D

4 µ2u

−D
(
D
C µ1 + µ2)v + C

4 u
2 + Cuv + Cv2 +O(|(u, v, µ1, µ2)|3).

(57)
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Next, we apply the PSNF theory, with the change of state variables:

u = 4
Cx1 + 8(1+D)

CD β1 − 1
2 β2 + 16[(2+D)C−4]

C2D β1x1

+
[ 16[DC−4(1+D)2]

C2D2 β1 + 8(1+D)
CD β2

]
x2 + 8(1+D)

CD x21

+ 16[(3+2D)C−4(1+2D)]
3C2D x1x2,

v = 4
Cx2 −

4
CDβ1 + 1

4β
2
2 + 4

C

[ 8(CD+4+2D)
3C2D β1 − β2

]
x1

+ 16
C β1x2 − 4(C−4D)

C2 x21 + 16
C x1x2 −

32[CD−2(1+2D)]
3C2D x22,

(58)

and the parameter transformations:

µ1 = 16
D2 β1 + C2

2D2 β2, µ2 = −C
Dβ2 + C

2Dβ
2
2 , (59)

to obtain the standard normal form with unfolding:

dx1
dτ1

= x2 +O(|(x1, x2, µ1, µ2)|3),

dx2
dτ1

= β1 + β2x2 + x21 −
(1+2D)C−4D

CD x1x2 +O(|(x1, x2, µ1, µ2)|3).

Finally, introducing the transformation:

x2 +O(|(x1, x2, µ1, µ2)|3)→ x2

yields the normal form with unfolding up to 2nd-order terms:

dx1
dτ1

= x2,

dx2
dτ1

= β1 + β2x2 + x21 −
(1+2D)C−4D

CD x1x2 +O(|(x1, x2, µ1, µ2)|3).
(60)

Again, the normal form (60) is in the standard form given in [10], which yields
the following theorem.

Theorem 3.2. For system (16) with C > 0, D > 0, codimension-2 BT bifurcation

occurs from the equilibrium E2 : (X,Y ) = (1
2 ,

C
4D ) when A= C(C+4D)

4D2 and B=− C
D

if C 6= 4D
1+2D . Moreover, three local bifurcations with the representations of the

bifurcation curves are given below.
(1) Saddle-node bifurcation occurs from the bifurcation curve:

SN =
{

(β1, β2) | β1 =0
}
.

(2) Hopf bifurcations occur from the bifurcation curve:

H=
{

(β1, β2) | β1 =−
(

CD
(1+2D)C−4D

)2
β2
2

}{β2>0 (C< 4D
1+2D ), subcritical,

β2<0 (C> 4D
1+2D ), supercritical.

(3) Homoclinic orbits occur from the bifurcation curve:

HL=
{

(β1, β2) | β1 =− 49
25

(
CD

(1+2D)C−4D
)2
β2
2

}{β2>0 (C< 4D
1+2D ), unstable,

β2<0 (C> 4D
1+2D ), stable.

The above formulas for bifurcation curves can be expressed in terms of the orig-
inal perturbation parameters µ1 and µ2 by using (59).
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3.4. The PSNF of the codimension-3 BT bifurcation and bifurcation anal-
ysis. To study the codimension-3 BT bifurcation under the condition C = 4D

1+2D ,

at which E2 becomes (X,Y ) = ( 1
2 ,

1
1+D ), we need to compute the corresponding

normal form with unfolding. Thus, let

A = 8(1+D)
(1+2D)2 + µ1, B = − 4

1+2D + µ2, C = 4D
1+2D + µ3, (D > 0). (61)

Denote µ=(µ1, µ2, µ3). We apply (61) together with

X = 1
2 + u, Y = 1

1+2D − 4v, (62)

to (16) to obtain the following system:

du

dτ1
= 1+2u

4{[4+µ1(1+2D)](1+2D)(1+2u)2+2µ2(1−4v)(1+2D)(1+2u)+16(u+2v)2}

×
{

16(1− 2u)(u+ 2v)2 + 16(1 + 2D)(1 + 2u)(v − u2)

+(1 + 2D)[µ1(1 + 2D)(1 + 2u) + 2µ2(1− 4v)](1− 4u2)
}
,

dv

dτ1
= 1−4v

4{[4+µ1(1+2D)](1+2D)(1+2u)2+2µ2(1−4v)(1+2D)(1+2u)+16(u+2v)2}

×
{

16D(u+ 2v)2 + µ1D(1 + 2D)2(1 + 2u)2

+2µ2D(1 + 2D)(1 + 2u)(1− 4v)− µ3(1 + 2D)2(1 + 2u)2
}
.

(63)

Then, we expand the vector field of (63) around the point (u, v, µ) = (0, 0, 0)
and employ the PSNF theory [9, 26] to obtain the parametric normal form. In
particular, applying the following change of state variables:

u = 1+2D
D x1 + 6(1+D)(1+2D)

D2 β1 − 1
2 β2 + 2(1+D)(1+2D)

D2 x21

− 4(1+2D)(6D2+7D+3)
3D3 x1x2 − 4(1+2D)(5D2+6D+3)

5D3 x22

+

5∑
i+j+k+l+m=2

U1ijklmxi1x
j
2β

k
1β

l
2β

m
3 ,

v = 1+2D
D x2 − 2(2D2+6D+3)

D2 β1 + 1+D
2(1+2D) β2 −

D
8(1+2D)β3

+ 2(1+2D)
D x21 + 4(1+2D)

D x1x2 − 4(1+2D)(6D2+10D+3)
3D3 x22

+

5∑
i+j+k+l+m=2

U2ijklmxi1x
j
2β

k
1β

l
2β

m
3 ,

(64)

where U1ijklm and U2ijklm are functions in D, with the time rescaling:

τ1 =
{

1− 16(1+D)(15255D4+30681D3+24469D2+6333D−45)
1155D3(6D2+7D+3) x1x2

+
[
t10200 β1 + 4(1+D)

D β2 − β2β3 + t10110β1β2 + t10101β1β3
]
x1

− 48(4D2+3D−3)(1+2D)2

77D4 x31 + t31000 x
3
1x2 +

∑
k+l+m=2

t00klm β
k
1β

l
2β

m
3

}
τ2,

(65)

where tijklm are functions in D, and then the parametrization:

µ1 = 64(3+2D)(1+D)2

D2(1+2D)2 β1 − 8(3D+2D2+2)
(1+2D)3 β2 + 2D(3+2D)

(1+2D)3 β3 + 2D2(D+2)
(1+2D)4 β2

3

− 128(1+D)(32D4+152D3+236D2+152D+33)
D4(1+2D)2 β2

1 + 4(16D3+36D2+26D+9)
(1+2D)4 β2

2

− 32(1+D)(16D3+24D2+6D+3)
D2(1+2D)3 β1β2 + 8(80D3+264D2+318D+123)

5D(1+2D)3 β1β3
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− 8D(2D2+4D+3)
(1+2D)4 β2β3 +

∑
k+l+m=3

m1klm β
k
1β

l
2β

m
3 ,

µ2 = − 16(4D+3)
D2(1+2D) β1 + 4

(1+2D)2 β2 −
2D

(1+2D)2 β3 + 64(24D2+44D+21)
D4 β2

1

− 8(2D2+2D+1)
(1+2D)3 β2

2 − D2

(1+2D)3 β3 + 16(8D3+8D2−2D−1)
D2(1+2D)2 β1β2

− 8(40D2+72D+31)
5D(1+2D)2 β1β3 + 2D(3+2D)

(1+2D)3 β2β3 +

4∑
k+l+m=3

m2klm β
k
1β

l
2β

m
3 ,

µ3 = 16(4D2+10D+5)
D(1+2D) β1− 8D(1+D)

(1+2D)2 β2+ 2D2

(1+2D)2 β3−
64(16D3+68D2+82D+31)

D3 β2
1

+ 8D(4D2+5D+2)
(1+2D)3 β2

2 + D3

(1+2D)3 β
2
3 −

32(1+D)(8D2+4D+1)
D(1+2D)2 β1β2

+ 8(40D2+72D+31)
5(1+2D)2 β1β3 − 8(1+D)D2

(1+2D)3 β2β3 +

5∑
k+l+m=3

m3klm β
k
1β

l
2β

m
3 ,

(66)

where mjklm are functions in D, to (16), we obtain

dx1
dτ2

= x2 +O(|(x1, x2, β)|6),

dx2
dτ2

= β1 + β2 x2 + β3 x1x2 + x21 −
32(1+D)(1+2D)2

D4 x41x2

− 24(1+2D)
5D2 β3x

3
1x2 +O(|(x1, x2, β)|6),

where β= (β1, β2, β3). Finally, introducing the transformation (46) into the above
equations we obtain the normal form with unfolding up to 5th-order terms:

dx1
dτ2

= x2,

dx2
dτ2

= β1 + β2 x2 + β3 x1x2 + x21 −
32(1+D)(1+2D)2

D4 x41x2

− 24(1+2D)
5D2 β3x

3
1x2 +O(|(x1, x2, β)|6).

(67)

It is easy to use (66) to verify that

det
[
∂(µ1,µ2,µ3)
∂(β1,β2,β3)

]
= − 128

(1+2D)3 +O(β) 6= 0, for small β with D>0,

which implies that near the critical point (A,B,C)=( 8(1+D)
(1+2D)2 ,−

4
1+2D ,

4D
1+2D ), sys-

tem (16) has the same bifurcation set with respect to µ as system (67) has with
respect to β, up to a homeomorphism in the parameter space.

It is seen from (67) that the system has three unfolding parameters and the
coefficient of the term x31x2 contains the parameter β3. Since the coefficient of the
term x41x2 is equal to − 32

D4 (1+D)(1+2D)2 6= 0, it seems that the system may have
codimension-4 BT bifurcation. However, we will show that due to limitation on the
parameters, codimension-3 of Hopf bifurcation is not possible. To achieve this, first
it is easy to use (67) to obtain the trace of the Jacobian of system (67), J2, given
by

Tr(J2) = β2 − (−β1)
1
2 β3 − 32(1+D)(1+2D)2

D4 β2
1 + 24(1+2D)

5D2 (−β1)
3
2 β3, (β1 < 0).

The necessary condition for system (67) to have Hopf bifurcation is Tr(J2) = 0,
yielding

β2 = β2h = (−β1)
1
2 β3 + 32(1+D)(1+2D)2

D4 β2
1 −

24(1+2D)
5D2 (−β1)

3
2 β3, (68)

under which the determinant of J2 is

det(J2) = 2
√
−β1 > 0, (β1 < 0),
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implying that β2 = β2h is indeed a Hopf critical point, with the critical frequency
ωc =

√
2 (−β1)

1
4 , (β1 < 0).

Next, we introduce the following transformation:

x1 = x− (−β1)
1
2 , x2 =

√
2 (−β1)

1
4 y, τ =

√
2 (−β1)

1
4 τ2,

into (67) to obtain the following system:

dx

dτ2
= y,

dy

dτ2
= −x+ (−β1)

− 1
2

2 x2

+
√

2
[ 64(1+D)(1+2D)2

D4 (−β1)
5
4 + (−β1)

− 1
4

2 β3 − 36(1+2D)
5D2 (−β1)

3
4 β3
]
xy

+
√

2
[
( 36(1+2D)

5D2 (−β1)
1
4 β3 − 96(1+D)(1+2D)2

D4 (−β1)
3
4

]
x2y

+
√

2
[ 64(1+D)(1+2D)2

D4 (−β1)
1
4 − 12(1+2D)

5D2 (−β1)−
1
4 β3
]
x3y

− 16
√
2(1+D)(1+2D)2

D4 (−β1)−
1
4x4y.

(69)

Further, we apply the Maple program in [25] for computing the normal forms of
Hopf and generalized Hopf bifurcations to get the first Lyapunov coefficient (or the
first focus value):

V1 = D2β3(5D
2−72(1+2D)β1)−1280(−β1)

3
2 (1+D)(1+2D)2

80(−β1)
1
2D4

. (70)

Therefore, if β3 6= 1280(−β1)
3
2 (1+D)(1+2D)2

D2(5D2−72(1+2D)β1)
, then V1 6=0, and so system (69) has Hopf

bifurcation of codimension one. When

β3 = 1280(−β1)
3
2 (1+D)(1+2D)2

D2(5D2−72(1+2D)β1)
,

we have V1 = 0, and then the second Lyapunov coefficient is simplified as

V2 = 2(1+D)(1+2D)2(35D2−24(1+2D)β1)
3D4(5D2−72(1+2D)β1)

> 0 (due to β1 < 0). (71)

Moreover, it is noted that V2 ≈ 14
3D4 (1 + D)(1 + 2D)2, and thus V2 → 0 only if

D →∞. This clearly indicates that it is not possible for system (70) to have Hopf
bifurcation of codimension 3, implying that 3 limit cycles cannot bifurcate from the
Hopf critical point. Summarizing the above results we have the following theorem.

Theorem 3.3. For system (16) with D > 0, at least codimension-3 BT bifurcation

occurs from the equilibrium E2 : (X,Y )=(1
2 ,

1
1+2D ) when A= 8(1+D)

(1+2D)2 , B=− 4
1+2D

and C = 4D
1+2D . Moreover, three local bifurcations with the representations of the

bifurcation surfaces/curves are given below.

(1) Saddle-node bifurcation occurs from the critical surface:

SN =
{

(β1, β2, β3) | β1 = 0
}
.

(2) Hopf bifurcation occurs from the critical surface:

H=

(β1, β2, β3)
β2 = 5D2+24(1+2D)β1

5D2

√
−β1 β3 + 32(1+D)(1+2D)2

D4 β2
1 ,

β3 6= 1280(−β1)
3
2 (1+D)(1+2D)2

D2(5D2−72(1+2D)β1)
.


(3) Generalized Hopf bifurcation occurs from the critical curve:

GH=

(β1, β2, β3)
β2 = 480(1+D)(1+2D)2[3D2+8(1+2D)β1]

D2[5D2−72(1+2D)β1]
,

β3 = 1280(−β1)
3
2 (1+D)(1+2D)2

D2[5D2−72(1+2D)β1]
.


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4. Conclusion. In this paper, we have considered Bogdanov-Takens (BT) bifurca-
tion in two predator-prey systems. Although the two systems have only difference

on the functional responses: XY 2

AX2+BX+1 and XY 2

AX2+BXY+Y 2 , their bifurcations are
different. The simplest normal forms for both without unfoloding and with unfold-
ing are obtained for bifurcation analysis. It is shown that both the two systems
have codimension-2 BT bifurcation. Further, it is proved that the former one has a
codimension-3 BT bifurcation, while the later one has a degenerate codimension-3
BT bifurcation. Moreover, we have shown that for the second system, the codimen-
sion of Hopf bifurcation is two. It needs further work to investigate whether the
second system can have codimension-4 BT bifurcation.
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