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Abstract Experimental evidence has proved that cal-
cium ions (Ca2+) play an important role in cellular
physiological processes via calcium oscillations. The
entry rate of Ca2+ into cells through plasma membrane
cells is a major modulator of intracellular Ca2+ dynam-
ics, including the voltage-gated Ca2+ channel, the
store-operated Ca2+ channel (SOCC) and the receptor-
operated Ca2+ channel (ROCC). In this paper, we mod-
ify an established four-dimensional dynamical model,
which contains the SOCC and ROCC, and carry out a
bifurcation analysis to study dynamics of the model.
In particular, Hopf bifurcation is identified with the
maximum flow of the SOCC chosen as the bifurca-
tion parameter, and normal form theory is applied to
consider the stability of bifurcating limit cycles. Bifur-
cation of multiple limit cycles arising from generalized
Hopf bifurcation is also discussed, which may yield
complex dynamical behaviors. Further, it is shown that
the variation of the maximum flows for different cal-
cium channels determines the parameter range for sta-
ble oscillations, as well as for the frequency and ampli-
tude of oscillations. The results indicate that Hopf
bifurcation is the main source to generate oscillating
behaviors, yielding a different bistable phenomenon
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which involves stable limit cycle and stable equilib-
rium. Moreover, it is shown that partially blocking the
SOCC or the ROCC can change the parameter region
of stable calcium oscillations, and the ROCC has more
impact than the SOCC on amplitude or frequency of
calcium oscillations.
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calcium channel · Two-parameter bifurcation analysis

1 Introduction

Ca2+ signaling has been recognized as one of the most
versatile second messengers in most cell types [1]
which can cause complex dynamical behaviors [2],
ranging from stochastic spiking to regular oscillations
and from periodic waves to spiral waves. These Ca2+
oscillations and waves regulate an array of cellular
functions as diverse as neuronal activity [3], cell apop-
tosis, gene transcription, muscle contraction [4], etc.
Astrocyte, which is a type of glial cell, has been
considered as a passive element of the brain. Dur-
ing the last decade, experiments indicate that astrocyte
not only provides metabolic and structural support to
the neuronal structures [5], but also plays an impor-
tant role in communication processes with neuronal
activity [6,7]. There exists bidirectional communica-
tion between astrocytes and neurons. Neuronal activity
changes can increase astrocytic Ca2+, while the vari-
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ation of Ca2+ can be fed back to the pre-synaptic and
post-synaptic terminals and then evoke new responses
in adjacent neurons [8]. Ca2+ oscillations and intercel-
lular waves are generally observed in astrocytes after
the Ca2+ waves were found within a cultured astrocytic
syncytium in 1990s [9,10].

The entry rate of Ca2+ into cells is an important
modulator of intracellular Ca2+ dynamics in all cell
types. Therefore, Ca2+ channels play a key role in the
initiation of the Ca2+ signal. There are four principal
entry channels for Ca2+ influx, namely the voltage-
gated channel (VGCC), the store-operated channel
(SOCC), the receptor-operated channel (ROCC), and
the ligand-gated channel (LGCC). The VGCC has sig-
nificant influence on the excitable cells and muscle
cells, while the SOCC and ROCC are the other two
major calcium ions influx pathways, especially for
non-excitable cells like astrocyte. The SOCC can be
evoked when the intracellular store endoplasmic retic-
ulum (ER) is depleted. Reports have shown that the
store-operated Ca2+ entry (SOCE) is linked to several
other Ca2+-dependent processes, such as cell growth
and death, regulation of enzyme activity [11] and the
Alzheimer’s disease [12]. In 2006, an attempt was made
to establish a SOCC model in order to match exper-
imental data [13]. However, the mechanisms of the
SOCC are still not fully understood. The ROCC is
open in the response agonist stimulation, independent
of store depletion or depolarization and is used as the
basis for the Ca2+ entry in most models. Results in [14]
draw a closer analogy between the SOCC and ROCC.

In order to explore the underlying physiological
mechanism of calcium oscillations, researchers have
carried out lots of related experiments. Although a
solid experimental foundation is necessary, mathemati-
cal modeling can also provide a significant approach to
establish the inherent relation between the experimen-
tal data and parameters, which greatly save time and
cost. Some models have been established for astrocytes
and astrocytes-neuron networks over the past 15 years,
which were developed for single astrocytes, see [15–
17], while others were used to describe the interac-
tions of astrocytes with neurons (eg., see [18–20]).
Most of the models were developed on the basis of
the two basic models established by Li and Rinzel [21]
and Höfer et al. [22]. The cytosolic Ca2+ concentra-
tion used in [21] depends on the Ca2+-induced Ca2+
release (CICR) mechanism under the assumption that
the inositol triphosphate (IP3) concentration maintains

constant. However, the cytosolic Ca2+ concentration
defined by Höfer et al. [22] depends not only on the
CICR but also on the SERCA pump across the ER
membrane mechanism, while the IP3 concentration
is varied via the two distinct production terms called
PLCβ and PLCδ through phospholipase C (PLC). It
has been observed that the fields of modeling the SOCC
and ROCC are quite thin. The methods that many
researchers have used to model the SOCC in astrocytes
include the exhaustive approach [22], the phenomeno-
logical capture [18], and the one derived from experi-
mental data [13]. The ROCC is often used as the basis
for the Ca2+ entry and assumed to be an increasing
algebraic function, or even a simple linear function of
stimulation, which is usually described as the G protein
activation [23] or the IP3 production [24].

In this paper, we will modify a four-dimensional
calcium oscillation model in astrocytes established by
Riera et al. [25] in order to give a more sophisticated
study. The original model contains the SOCC which,
proposed by Di Garbo et al. [18], describes the SOCE
effect. However, it has been found that the ROCC is also
a major Ca2+ influx and is active by agonist stimulation
or G protein. The ROCC influence on the amplitude and
frequency of the Ca2+ concentration and the combined
effect of the ROCC and SOCC on the Ca2+ oscilla-
tion are the main focus in research. Thus, in this paper
we will include the ROCC in our mathematical model
to give a more realistic analysis. In addition, a linear
function for the IP3 production is chosen to express
the ROCC influence on the Ca2+ concentration in the
cytosol. We will apply bifurcation theory to show the
complex dynamical behavior of the model, including
Hopf bifurcation from the positive equilibrium of the
system. Further, normal form theory is applied to deter-
mine the stability of bifurcating limit cycles. We will
also study bifurcation of multiple limit cycles and iden-
tify two limit cycles, showing bistable phenomenon.
Two-parameter bifurcation graph is present to show the
influence of different channel parameters on the ampli-
tude and frequency of calcium oscillation in cytosol.

In the next section, we describe the modified four-
dimensional calcium model. In Sect. 3, we use nor-
mal form theory to analyze Hopf bifurcation and deter-
mine the stability of bifurcating limit cycles. Moreover,
multiple limit cycle bifurcation is studied and verified
by simulation. In Sect. 4, the role of the SOCC and
ROCC on calcium response is investigated by using
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two-parameter bifurcation analysis. Finally, conclusion
and discussion are drawn in Sect. 5.

2 Mathematical modeling

2.1 The original model

The original model, established and studied in [25],
consists of four ordinary differential equations, which
describe in detail the global Ca2+ signaling in astro-
cytes and estimate the remarkable parameters by a
deductive reasoning strategy, showing a good consis-
tency with experimental work. As shown in Fig. 1,
this model contains one calcium store: the ER in
cytosol. The Ca2+ concentration changes inside the
ER occur through the activity of the IP3R channel and
the SERCA pump. So there are two flux channels in
the ER: the VRel and the VSERCA. The VRel represents
the release from the ER to cytosol following the CICR
mechanism, and VSERCA denotes the Ca2+ uptake from
cytosol to the ER. For the exchange from extracellular
space, this model contains three fluxes: (i) the leakage
Ca2+ influx, denoted as jin; (ii) the extrusion across
the plasma membrane, named Vout; and (iii) the influx
of extracellular Ca2+ through the SOCC controlled by
any unloading of the ER calcium store, called VSOCC.
These present main pathways of the Ca2+ in the origi-
nal model. Thus, the model is described by the follow-
ing equations for the exchange channels:

VRel = c1(v1m
3∞h3 + v2)([Ca2+]ER

−[Ca2+]Cyt),

VSERCA = VSERCA
[Ca2+]2

Cyt

k2
SERCA + [Ca2+]2

Cyt

,

Vout = kout[Ca2+]Cyt,

VSOCC = vSOCC
k2

SOCC

k2
SOCC + [Ca2+]8

ER

, (2.1)

where

m∞ = [IP3]Cyt[Ca2+]Cyt

([IP3]Cyt + d1)([Ca2+]Cyt + d5)

[
Ca2+]

ER
= [Ca2+]free − [Ca2+]Cyt

c1
(2.2)

There are four state variables involved in the model:
the Ca2+ concentration in the cytosol, the total free
Ca2+ concentration, the fraction of active IP3R, and
the IP3 concentration. Consequently, the mathematical

Fig. 1 Schematic presentation of the model (2.3)

model can be described by the following differential
equations [25]:

d[Ca2+]Cyt

dt
= VRel − VSERCA

+ ε( jin + VSOCC − Vout),

d[Ca2+]free

dt
= ε( jin + VSOCC − Vout),

dh

dt
= αh(1 − h) + βhh,

d[IP3]Cyt

dt
= XIP3 + VPLC − kIP3[IP3]Cyt, (2.3)

where

αh = ad2
[IP3]Cyt + d1

[IP3]Cyt + d3
,

βh = a[Ca2+]Cyt,

VPLC = vδ

[Ca2+]2
Cyt

[Ca2+]2
Cyt + k2

δ

. (2.4)

Note in model (2.3) that except for the third vari-
able, all other expressions are taken from [25], while
that for the third variable is chosen from [26] since the
authors of [26] found a typographical error in [25] for
the third variable. The scaling factor ε = Aρm/AER is
introduced to emphasize that the surface of the plasma
membrane Aρm is much smaller than that of the ER
membrane area AER. All the parameters in this model
are positive, and the physical significance of the param-
eters is described in [25].
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2.2 Our improved model

The receptor-operated calcium channel (ROCC) is
another major Ca2+ influx pathway, which is open in
direct response to agonist stimulation, independent of
store depletion or depolarization. In recent years, the
effect of the SOCC on the behavior of calcium ions
has received much attention and a great deal has been
learned about the molecular mechanisms underlying
the SOCC [27,28]. However, it is believed that the con-
nection between the SOCC and ROCC may be closely
related. In this paper, we improve the model (2.3) by
including the influence of the ROCC channel for the
Ca2+ entry through the plasma membrane and the
effect of the SOCC channel on the calcium ions. In
most of existing models, the ROCC is usually used as
the basis for the Ca2+ entry, so treated as a linear func-
tion. In this paper, we take the ROCC term used in [29],
given by

JROCC = vROCC[IP3]Cyt. (2.5)

It is seen from (2.5) that the IP3 is a variable, imply-
ing that the neurotransmitters which activate the ROCC
simultaneously liberate the IP3. Meanwhile, these same
neurotransmitters might also be expected to activate
store-operated calcium entry as a result of IP3-mediated
depletion of ER. Moreover, the functional overlap
between the two channel types may be identified. Thus,
the improved model can be described by the following
four-dimensional differential equations:

dy1

dt
= c1v1y3

4 y
3
1 y3(

y2−y1
c1

− y1)

(y4 + d1)3(y1 + d5)3

+c1v2

(
y2 − y1

c1
− y1

)

− vSERCA y2
1

k2
SERCA + y2

1

+ ε( jin + vROCCy4

+ vSOCCkSOCC

k2
SOCC + (y2−y1)2

c2
1

− kout y1)

≡ f1(y1, y2, y3, y4),

dy2

dt
= ε( jin + vROCCy4 + vSOCCkSOCC

k2
SOCC + (y2−y1)2

c2
1

− kout y1

≡ f2(y1, y2, y4),

dy3

dt
= ad2(y4 + d1)(1 − y3)

y4 + d3
− ay1y3

Table 1 Parameter values for model (2.6) [25,26]

Parameter Value Parameter Value

a 0.2 µMs−1 jin 0.065 µMs−1

c1 0.185 v1 6 s−1

d1 0.13 µM v2 0.11 s−1

d2 1.049 µM XIP3 0.3 µMs−1

d3 0.9434 µM kIP3 1.25 s−1

d5 0.082 µM kδ 0.55 µM

vSOCC(α) Bifurcation ε 0.01

Parameter

vROCC 0.2 µMs−1 kSERCA 0.1 µM

kout 0.5 µMs−1 kSOCC 10 µM

vSERCA 0.9 µMs−1 vδ 0.152 µMs−1

≡ f3(y1, y3, y4),

dy4

dt
= XIP3 + vδ

y2
1

y2
1 + k2

δ

− kIP3 y4

≡ f4(y1, y4), (2.6)

where

y1 = [Ca2+]Cyt, y2 = [Ca2+]free,

y3 = h, y4 = [IP3]Cyt

The typical parameter values are given in Table 1,
among which except that for the VROCC chosen from
[29], all are taken from [25]. As in this paper our par-
ticular interest is focused on the effect of the store-
operated Ca2+ channel (SOCC) for the calcium oscil-
lation, we thus choose the vSOCC as the bifurcation
parameter, denoted as α for convenience.

3 Stability and bifurcation analysis

3.1 Equilibrium solutions

The equilibrium solutions of model (2.6), denoted as
E = (y10, y20, y30, y40), can be obtained by setting
f1(y1, y2, y3, y4) = f2(y1, y2, y4) = f3(y1, y3, y4) =
f4(y1, y4) = 0. One may first solve f4 = 0 to obtain
y40, then solve f3 = 0 to find y30. Next, solving
f1 = 0 yields y20. Finally, substituting these solutions
into f2 = 0 one obtains a polynomial equation in y10

and α as follows:
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F1(y10, α) = 2

3075
+ 59600 y2

10 + 11979

82500000 y2
10 + 24956250

+ α
{[ 5832 y10 f1a

25(2700 (y10)2 + 27) f2a
− y2

10

]2

+ 100
}−1 − y10

200
= 0, (3.1)

where f1a and f2a are polynomials in y10, given by

f1a = 60746607652492534158983168 (y10)
14

+ 5063443036077158600306589696 (y10)
23

+ 6985354150627019847060544716 × 109 (y10)
12

+ 8353821637992600427558409766 × 109 (y10)
11

+ 60749010004623214501679982889 × 107 (y10)
10

+ 428286730962488278849509328687 × 106 (y10)
9

+ 196270692755393040323994866153736 (y10)
13

+ 917041157613987782485124476363392 (y10)
11

+ 268544600480343615365746768662549 (y10)
10

+ 7813952522725467830014030726966968 (y10)
5

+ 13026514568105774762320722405487933 (y10)
4

+ 14833599503543185353070552072565193 (y10)
3

+ 794682366575222855491953102009945 (y10)
2

+ 18000135495802022729744608967475 y10

+ 24454077558632416854378103500,

f2a = 15186651913123133539745792 × 109 (y10)
12

+ 217464050244027874463514624 × 108 (y10)
11

+ 24357657106490931049542144 × 109 (y10)
10

+ 40477205397375066762259769536 × 106 (y10)
9

+ 127054470039628506760091000448 (y10)
8

+ 1895601233542750329844191314448 (y10)
11

+ 2801112714620534708170364893536 (y10)
9

+ 339924183822297821989941240465 (y10)
9

+ 247435952439989440824560916600240 (y10)
4

+ 211344108807164615066777684574267 (y10)
3

+ 5025189130935442382449782951705 (y10)
2

+ 279621340749030330437658527025 y10

+ 6113519389658104213594525875,

Fig. 2 Bifurcation diagram for system (2.6) projected on the
α-y1 plane, with the blue and red curves to denote stable and
unstable equilibria, respectively. (Color figure online)

in which the parameter values given in Table 1 have
been used. The bifurcation diagram is depicted in Fig. 2,
showing the component y1 of the equilibrium solution
E with respect to α, i.e., y1 = y10 satisfying F1 = 0.
Note that the only biological meaningful part is for α

> 0. The vertical dotted line (in purple color) shown in
Fig. 2 represents the equation α = 0, implying that H2

is the only biologically meaningful Hopf bifurcation
point that we are interested.

3.2 Stability of the equilibrium E

In order to find the stability of the equilibrium E , we
calculate the Jacobian of system (2.6) at E to get a
fourth-degree characteristic polynomial,

P(λ, α, y10) = λ4 + a1(α, y10)λ
3 + a2(α, y10)λ

2

+a3(α, y10)λ + a4(α, y10). (3.2)

According to Hurwitz Criterion [30], we know that
the equilibrium E is asymptotically stable if all the
roots of P(λ, α, y10) have negative real part, or equiva-
lently, if all the Hurwitz arrangements Δi (α, y10), (i =
1, 2, 3, 4) are positive, where

Δ1(α, y10) = a1(α, y10),

Δ2(α, y10) = a1(α, y10)a2(α, y10) − a3(α, y10),

Δ3(α, y10) = a3(α, y10)Δ2(α, y10)

− [a1(α, y10)]2a4(α, y10),

Δ4(α, y10) = a4(α, y10)Δ3(α, y10). (3.3)
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When at least one of the Δi ’s becomes zero, the equi-
librium E loses its stability and bifurcation occurs. In
particular, saddle-node bifurcation happens at a4 = 0
(and so Δ4 = 0), which yields single zero eigenvalue;
and Hopf bifurcation may occur at Δ3 = 0, under
which the characteristic polynomial P contains a pair
of purely imaginary eigenvalues. In the following, we
first investigate possible saddle-node bifurcation and
then consider Hopf bifurcation.

To find whether a saddle-node bifurcation may
occur, we need to determine the critical point at which
P has a zero eigenvalue. To achieve this, we linearly
solve α from F1 = 0, i.e., f1 = 0, to obtain a solu-
tion α = α∗(y10) and then substitute the solution into
a4 and then solve a4 = 0 to obtain two real solutions
y10 = 0.02160301 and y10 = 0.09255394. Then, sub-
stituting these two solutions into α∗(y10) to get two
values α∗

s1
= −0.10556702 and α∗

s2
= −0.13382315,

respectively, which are shown in Fig. 2 as two green
vertical lines. Therefore, due to α∗

sk < 0, k = 1, 2,
there does not exist physically meaningful saddle-node
bifurcation from the equilibrium E .

Next, we turn to consider possible Hopf bifurcations
which may occur from the equilibrium E . We need
the following theorem [31] to find the necessary and
sufficient conditions under which Hopf bifurcation can
occur.

Theorem 3.1 The necessary and sufficient conditions
for a Hopf bifurcation to occur from an equilibrium
solution of the general dynamical system ẋ = f (x),
x ∈ Rn are Δn−1 = 0, an > 0 and Δi > 0 (1 ≤
i ≤ n − 2). where Δi are Hurwitz arrangements of the
characteristic polynomial of the equilibrium solution.

To examine whether a Hopf bifurcation may occur
from the equilibrium E , we need to find the critical
value of α at which the characteristic polynomial P
contains a pair of purely imaginary eigenvalues (and
other two eigenvalues still have negative real part).
According to Theorem 3.1, the Hopf critical point
is determined from Δ3 = 0. Similarly, we substi-
tute α = α∗(y10) into the equations Δ3(α, y10) =
0, and then solving this equation for y10, together
with the solution α∗(y10), yields two Hopf critical
points: (αH1, yH1) = (−0.07995640, 0.17744973)

and (αH2 , yH2) = (0.46726717, 0.41318074). It is
easy to see that only the solution (αH2 , yH2) is biolog-
ically meaningful. These two Hopf critical points are

shown in Fig. 2. At the critical point (αH2 , yH2), other
stability conditions given in Theorem 3.1 are satisfied:

a1 ≈ 1.38541597, a2 ≈ 0.18340547,

a3 ≈ 0.25201194, a4 ≈ 0.00027322,

Δ2 ≈ 0.00208093, Δ3 ≈ 9.012 × 10−100 ≈ 0,

and the associated eigenvalues of system (2.6) evalu-
ated at the equilibrium E are: ±0.42622i , −1.3843,
and − 0.00108.

Moreover, we need to verify the transversality con-
dition of the Hopf bifurcation. Thus, suppose near the
Hopf critical point, the characteristic polynomial P has
a complex conjugate pair, given by

β(α) ± i γ (α).

As we have obtained the solution α = α∗(y10) from
F1 = 0, we may use the polynomials P and F1, and
apply inverse differentiation to obtain

dλ

dα
= dλ

dy10

dy10

dα
= − dλ

dy10

∂P
∂y10

∂P
∂λ

1
dα∗
y10

.

Then, taking the real part and evaluating it at the Hopf
critical point αH , we obtain

dβ

dα

∣∣∣∣
α=αH

= Re
( dλ

dα

)∣∣∣∣
α=αH

≈ − 0.189137 �= 0,

which indeed indicates that Hopf bifurcation occurs at
the critical point α = αH .

3.3 Stability of limit cycles

Having identified the Hopf bifurcation point, from
which a family of limit cycles (isolated periodic
motion) are generated, we now ask how to know
whether the bifurcating limit cycles are stable or not.
Although a numerical simulation may indicate the sta-
bility of limit cycles, it does not provide analytical for-
mulas to show how the stability of the limit cycles
changes with respect to parameters. It is well known
that for planar dynamical systems, the first Lyapunov
constant, whose sign determines the stability of limit
cycles, can be obtained using a simple formula based on
the second and third derivatives of the vector field eval-
uated at the Hopf critical point. However, such closed-
form formulas become much more involved and hard
to calculate for higher-dimensional dynamical systems
since it involves center manifold computation. So in
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general, symbolic computations using a computer alge-
bra system such as Maple are applied to find the Lya-
punov constants. There exist many methods for com-
puting the Lyapunov constants, one of which is the
method of normal forms, which is an efficient compu-
tational approach for higher-dimensional systems and
higher-order Lyapunov constants.

Now, we apply normal form theory and the Maple
program developed in [32] to system (2.6) to ana-
lyze the Hopf bifurcation which occurs at the critical
point (αH2 , yH2). The normal form associated with a
Hopf bifurcation, describing the dynamics on a two-
dimensional center manifold near the critical point, can
be written in polar coordinates as

dr
dt = r(L0μ + L1r2 + · · · ),
dθ
dt = ωc + τ0μ + τ1r2 + · · ·

where μ = α − αH2 . The coefficient L1 is called
the first Lyapunov constant or the first-order focus
value, which determines the stability of bifurcating
limit cycles. When L1 < 0 (> 0), the Hopf bifurcation
is called supercritical (subcritical), and the bifurcating
limit cycles are stable (unstable).

Before applying the Maple program [32], we need
to transfer the equilibrium to the origin and make the
Jacobian of the system in Jordan canonical form. To
achieve this, we introduce the transformation: Y1 =
y1 − 0.41318074, Y2 = y2 − 4.34589883, Y3 =
y3 − 0.46143703, Y4 = y4 − 0.28372850, and μ =
α−0.46726717 into system (2.6) and expand the result-
ing equations in Taylor series around the origin up to
the third order. Further, introducing the following trans-
formation:

⎡
⎢⎢⎣

y1

y2

y3

y4

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

y10(μ)

y20(y10, μ)

y30(y10, μ)

y40(y10, μ)

⎤
⎥⎥⎦ + T

⎡
⎢⎢⎣

Y1

Y2

Y3

Y4

⎤
⎥⎥⎦ ,

where

T =

⎡
⎢⎢⎣

4.9617492 −3.3389010 0.1665505 0.7259937
0.0334766 0.0519165 0.9956699 0.0037586
0.2414924 1.0941556 −0.0918431 0.0997996
0.4632766 −0.6098452 0.0225549 −0.9140820

⎤
⎥⎥⎦,

(3.4)

into (2.6) we obtain

Ẏi = Fi (Y1,Y2,Y3,Y4), (3.5)

where y10(μ) is determined from (3.1). Now, the Jaco-
bian of system (3.5) evaluated at the origin, Yi = 0, i =
1, 2, 3, 4, at the critical point, μ = 0, is in the Jordan
canonical form:

J |(0,0,0,0) =

⎡
⎢⎢⎣

0 ωc 0 0
−ωc 0 0 0

0 0 −0.0010850223 0
0 0 0 −1.38433095

⎤
⎥⎥⎦ ,

where ωc = 0.42622679. Applying the formulas given
in [33] to system (3.5) yields the coefficients L0 and
τ0.

L0 = 1

2

(
∂F1

∂Y1∂μ
+ ∂F2

∂Y2∂μ

)
|Yi=0,μ=0

= −0.189136908,

τ0 = 1

2

(
∂F1

∂Y2∂μ
− ∂F2

∂Y1∂μ

)
|Yi=0,μ=0

= 0.0056113642.

(3.6)

Then, substituting μ = 0 into system (3.5) and apply-
ing the Maple program [32] to the resulting system we
obtain

L1 = − 11.98860783, τ1 = − 0.50752175.

Therefore, the normal form associated with the Hopf
bifurcation up to the third order is given by

dr

dt
= r(L0μ + L1r

2 + · · · )
= r(−0.189136908μ − 11.98860783r2 + · · · ),

dθ

dt
= ωc + τ0μ + τ1r

2 + · · ·
= 0.42622679 + 0.00561136μ

− 0.5075217r2 + · · · , (3.7)

It is clear that the Hopf bifurcation is supercritical
since L1 < 0. To verify the analytical predictions,
we use model (2.6) to perform a simulation with the
parameter values given in Table 1. For the supercritical
Hopf bifurcation, when α decreases from α > αH2

to α < αH2 and passes through the critical point αH2

(i.e., μ is varied to cross zero from positive to nega-
tive), the equilibrium loses its stability and bifurcates
into stable limit cycles, as shown in Fig. 3a, b. When
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Fig. 3 Simulated time history for y1 of system (2.6), a when
α = 0.48µMs−1, converging to the equilibrium E ; and b when
α = 0.45µMs−1, converging to a stable limit cycle

α = 0.48 > αH2 = 0.46726717, the solution trajec-
tory converges to the stable equilibrium E , as shown in
Fig. 3a, while when α = 0.45 < αH2 = 0.46726717
the equilibrium becomes unstable and the trajectory
converges to a stable limit cycle, see Fig. 3b.

3.4 Bifurcation of multiple limit cycles

Complex dynamics may arise from multiple limit cycle
bifurcation. In this section, we will use normal form
theory to prove the existence of two limit cycles bifur-
cating from the Hopf critical point (αH2 , yH2 ). Firstly,
we briefly introduce the method based on normal form
theory. Suppose ẋ = T x + f(x) is a general nonlinear
differential system, where f(x) represents the nonlinear
part of the system and T is the Jacobian of the system.
Moreover, suppose x = 0 is an equilibrium point of
the system and T contains a purely imaginary pair, and
other eigenvalues have negative real parts. Then, by
applying the normal form theory, we obtain the normal
form given in polar coordinates as follows:

ṙ = r(L0 + L1r
2 + L2r

4 + · · · + Lkr
2k + · · · ),

θ̇ = ωc + τ0 + τ1r
2 + τ2r

4 · · · + τkr
2k + · · · ,

(3.8)

where r and θ represent the amplitude and phase of
motion, respectively, and Lk and τk are expressed in
terms of the original system’s coefficients. L0 and τ0

are obtained from linear analysis, and Lk is called the
kth Lyapunov constant or the kth-order focus value.
The first equation of (3.8) can be used to investigate
the bifurcation of limit cycles and their stability. To
find k small-amplitude limit cycles of the system, we
solve L0 = L1 = · · · = Lk−1 = 0, but Lk �= 0.
Then, appropriate small perturbations are performed
to prove the existence of k limit cycles. The following
theorem gives sufficient conditions for the existence
of k small-amplitude limit cycles. (The proofs can be
found in [34].)

Theorem 3.2 Suppose the focus values of a dynamical
system depend on k parameters, expressed as

L j = L j (ε1, ε2, . . . , εk), j = 0, 1, . . . , k, (3.9)

satisfying

L j (0, . . . , 0) = 0, j = 0, 1, . . . , k − 1,

Lk(0, . . . , 0) �= 0,

det

[
∂(L0, L1, . . . , Lk−1)

∂(ε1, ε1, . . . , εk)

]

(0,...,0)

�= 0.

(3.10)

Then, for any given ε0 > 0, there exist ε1, ε2, . . . , εk
and δ > 0 with |ε j | < ε0, j = 1, 2, …, k such that the
equation ṙ = 0 has exactly k real positive roots for r
(i.e., the dynamical system has exactly k limit cycles)
in a δ-ball with the center at the origin.

For the model (2.6), the IP3 represents the stimulus
intensity and is recognized as one of the most impor-
tant agents for the depletion in the intercellular store
ER, and the XIP3 is considered as a basal level of
cytosolic IP3 production [25]. Hence, the XIP3 plays
an important role in the Ca2+ influx. So, in the follow-
ing, in addition to α, the XIP3 is chosen as a second
bifurcation parameter, and the values of other param-
eters are chosen from Table 1. Denote the equilibrium
solution of (2.6) as EG = (y1G , y2G , y3G , y4G). Then,
using a similar computation process as in Sect. 3.1, we
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can get a polynomial equation f1(y1G , α, XIP3) = 0.
According to Theorem 3.1, the critical Hopf bifurca-
tion point is determined by Δ3(XIP3 , α, y1G) = 0.
Therefore, XIP3 = G(α, y1G) can be obtained from
Δ3(XIP3 , α, y1G) = 0 and then substituting XIP3 =
G(α, y1G) into f1(y1G, α, XIP3) to get a function F2 in
y1G and α. In the previous section, we have transferred
the equilibrium E to the origin and make the Jacobian
of the system (2.6) in Jordan canonical form. Now, the
same process is applied to get the linear transformation
TG and the affine transformation,

⎡
⎢⎢⎣

y1

y2

y3

y4

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

y1G

y2G(y1G , α)

y3G(y1G, α)

y4G(y1G, α)

⎤
⎥⎥⎦ + TG

⎡
⎢⎢⎣

Y1

Y2

Y3

Y4

⎤
⎥⎥⎦ ,

which are used to obtain the new system,

Ẏi = Fi (Y1,Y2,Y3,Y4, y1G , α). (3.11)

Then, we apply the Maple program [32] for com-
puting the normal form of system (3.11) to obtain
L1 and L2 which are expressed in α and y1G . Solv-
ing L1(α, y1G) = 0 and F2(α, y1G) = 0 for y1G

and α restricted to biologically meaningful values,
we obtain α = 0.06298906, y1G=0.37747689. Then,
XIP3 = G(α, y1G) = 0.56840217. Thus, at the critical
point defined by α = 0.06298906, XIP3 = 0.56840217,
we have L1 = 0 and L2 ≈ −227.5876. So by Theo-
rem 3.2, we conclude that system (2.6) can have two
small-amplitude limit cycles bifurcating from the equi-
librium EG due to Hopf bifurcation. To get the two
small-amplitude limit cycles, we take small perturba-
tions on XIP3 and α as XIP3 = 0.56840217+ε1, α =
0.06298906+ε2, with ε1 = 0.0001 and ε2 = 0.0000001,
for which the focus values become

L0 ≈ −6.89398415 × 10−9, L1 ≈ 0.00329618,

L2 ≈ −92.94241575.

Thus, the truncated normal form equation ṙ = L0 +
L1r2 +L2r4 = 0 yields two positive roots: r1 ≈ 0.0015
and r2 ≈ 0.0058 which are the approximate ampli-
tudes of the two limit cycles. Since L0 < 0 and
L2 < 0, the equilibrium point EG = (0.37747689,
2.66095798, 0.54690561, 0.49353478) and the outer
limit cycle are stable, while the inner limit cycle
is unstable because L1 > 0. In Fig. 4, two ini-
tial points: (y1, y2, y3, y4) = (0.417056, 2.660542,

0 100 200 300 400
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t(s)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

y 1
(
M
)

y 1
(
M
)

(a)

(b)

Fig. 4 Two simulated trajectories of system (2.6), converg-
ing to the same stable limit cycle, one from the initial points
(y1, y2, y3, y4) = (0.417056, 2.660542, 0.546936,0.523611)(in
red color) and the other from (y1, y2, y3, y4) = (0.687056,
2.660542, 0.546936, 0.543611)(in blue color): a phase portrait;
and b time history. (Color figure online)

0.546936,0.523611) and (0.687056, 2.660542,
0.546936, 0.543611), are chosen to produce two tra-
jectories. It is clear to see that the trajectory starting
from the second initial point (in red color) converges
to the outer stable limit cycle, and the trajectory start-
ing from the first initial point (in blue color) also con-
verges to the stable limit cycle, showing the existence
of a stable limit cycle. The time history corresponding
to the trajectory given in Fig. 4a is shown in Fig. 4b
which demonstrates that both oscillations (in red and
blue colors) converge to the stable limit cycle from two
different initial conditions.

The above result shows an interesting new bistable
phenomenon involving coexisting stable equilibrium
and stable limit cycle, as depicted in Fig. 5a, where
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(a)

(b)

Fig. 5 Simulation of system (2.6), showing the bistable phe-
nomenon with a stable equilibrium and a stable limit cycle: a
phase diagram; and b time history

the red circle denotes the coexisting stable equilibrium,
EG , of the astrocyte cell, while the blue curve repre-
sents the coexisting stable calcium oscillation. Since
the EG is stable, there must exist an unstable limit cycle
on an invariant manifold between the EG and the sta-
ble limit cycle, which is a separatory dividing the whole
phase plane into two trapping regions, one for the sta-
ble equilibrium and one for the stable limit cycle. The
time history is displayed in Fig. 5b.

4 Numerical simulation of the calcium ions entry
via SOCC and ROCC

4.1 The roles of store-operated calcium ions entry

The store-operated Ca2+ entry (SOCE) via the SOCC,
also called capacitative Ca2+ entry(CCE), has been

Fig. 6 The two-parameter bifurcation diagram in α and XIP3

observed in many different cell types and recorded
electro-physiologically as a persistent current. It is an
influx of Ca2+ from the extracellular space that hap-
pens when intercellular Ca2+ stores are sufficiently
depleted [35].

4.1.1 Effect on the calcium response

The IP3 is recognized as one of the most important
agents for the depletion in the intercellular store ER,
leading to the opening of plasma membrane Ca2+ chan-
nels. In our model, we consider the XIP3 to be a basal
level of cytosolic IP3 production like the extrinsic IP3

fluctuations. Therefore, in this section we use bifurca-
tion analysis to investigate the interaction between the
store-operated Ca2+ entry (SOCE) and the IP3.

The two-parameter bifurcation diagram, as shown in
Fig. 6, uses the XIP3 and vSOCC as bifurcation param-
eters. The region (I) (shaded area) represents the area
where stable oscillations exist. The intersection point
of the vertical dashed line and the curve (H2) represents
a Hopf critical point (αH2 , yH2), which is the same as
that shown in Fig. 2. The generalized Hopf critical point
is denoted by GH, at which the first Lyapunov constant
L1 = 0, leading to bifurcation of multiple limit cycles,
as discussed in Sect. 3.4, where the fold bifurcation of
limit cycles, labeled by LPC, is the curve in black color.
As shown in Fig. 6, with the vSOCC decreasing, the cor-
responding value of XIP3 for the first Hopf bifurcation
point (H1) shows a slight change while the correspond-
ing value of XIP3 for the second Hopf bifurcation point
(H2) displays a gradual increase. Due to the change in
the second bifurcation point, the interval of the XIP3 in
the shaded area (a vertical line segment) increases as
the vSOCC decreases, implying that as the maximal rate
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Fig. 7 Impact on cytosol due to the change in basal Ca2+ levels
with respect to jin with the values of the SOCC chosen from
region II in Fig. 4a. vSOCC = 0.1 µMs−1, XIP3 = 1.2 µMs−1

(blue line), vSOCC = 0.01 µMs−1, XIP3 = 1.2 µMs−1 (red
line), vSOCC = 0.1 µMs−1, XIP3 = 0.2 µMs−1 (green line),
vSOCC = 0.01 µMs−1, XIP3 = 0.2 µMs−1 (purple line). (Color
figure online)

of the SOCC influx decreases, the stimulus intensity
which causes the Ca2+ in cytosol to oscillate increases
slightly, while higher stimulus intensity is required in
order for the system to return to the resting state as
the maximal rate of the SOCC influx decreases. More-
over, as the vSOCC goes to zero, the value of XIP3 is
still meaningful and realistic. So with zero SOCE flux,
the sustained oscillations still exist, and so adequately
blocking the vSOCC may increase the region of stable
calcium oscillations.

Figure 6 mainly shows the effects of the vSOCC and
XIP3 on Hopf bifurcation. When the value of the vSOCC

and XIP3 is chosen from region II, the trend of basal
Ca2+ concentration cytoplasm as the vSOCC and XIP3

are varied is shown in Fig. 7. Two estimated values
of the SOCE influx with maximal rate vSOCC are cho-
sen for the Ca2+ concentration: 0.01 µMs−1 and 0.1
µMs−1. Moreover, a smaller value 0.2 µMs−1 and a
larger value 1.2 µMs−1 are chosen for the IP3 produc-
tion rate XIP3 to reflect two contrasting situations. It
is seen from Fig. 7 that four lines are almost paral-
lel, implying that the XIP3 and vSOCC have no or little
influence on the growth rate of the basal Ca2+ in cyto-
plasm. In model (2.6), jin is taken as 0.065 µMs−1

which is depicted by the dotted line in Fig. 7. Also, it is
observed from this figure that for the smaller value of
XIP3 (shown in green and purple lines), the increment
Δc2 is small, indicating that the vSOCC does not have an
obvious impact on the change in the basal Ca2+ level.
For the larger value of XIP3 (shown in red and blue

lines), the change in the basal Ca2+ level Δc1 is larger
than Δc2, implying that the vSOCC has a more remark-
able effect under this condition. For a fixed value of
vSOCC (comparing the blue line with the green line or
the red line with the purple line), a larger value of XIP3

yields an obvious larger value of Ca2+ concentration in
cytosol, which implies that higher stimulus intensity in
XIP3 forces the calcium store ER to release Ca2+ from
the ER into cytosol and a decrease in the Ca2+ con-
centration in the ER can cause the Ca2+ to flow from
extracellular into intercellular via the SOCC, yielding
higher Ca2+ concentration in cytosol.

4.1.2 Simulation of the calcium flux for blocking or
opening the SOCC

Experiments have manifested that the flux through the
SOCC can be activated when the ER is depleted [36].
Using our model (2.6), we can simulate the calcium
flux by blocking or opening the SOCC and SERCA
with the parameter values close to the experimental
data [37] as shown in Fig. 8, where four phases are
indicated. The phase I corresponds to a steady state at
the beginning, and then, the removal of calcium ions
from the extracellular space can be simulated by setting
jin = vSOCC = 0 at t = 2000s. A gradual decrease in
the Ca2+ in cytosol is observed since the flux goes into
the extracellular space (phase II). Then, the SERCA
pump is set to zero at t = 6000s, causing a calcium
spike in cytosol (phase III). This is because blocking
the SERCA channel results in a one-way flow from
ER into cytosol. As the Ca2+ concentration in cytosol
gets higher, the calcium ions can be removed from
the cytosol to extracellular space via Vout pump. At
t = 10000s, the calcium is reintroduced into the extra-
cellular space by setting vSOCC = 0.01 and calcium
ions rapidly reenter cells (phase IV).

4.1.3 Effect on the frequency and amplitude of
calcium oscillation

Various types of complex physiological information in
cells can be transmitted via oscillating waves, occur-
ring by means of the frequency modulation (FM) and
amplitude modulation (AM). Therefore, the frequency
or amplitude is crucial in regulating mechanisms [38].
In this section, we investigate how the vSOCC affects the
changes in frequency, amplitude, and the range of sta-
ble oscillations. Figure 9a, b shows the changes in the
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Fig. 8 Simulation of blocking (SOCC and SERCA)

Fig. 9 a Change in the period of calcium oscillation versus
vSOCC (XIP3 = 0.3); and b change in the amplitude of calcium
oscillation versus vSOCC (XIP3 = 0.3)

period and amplitude of the calcium oscillation as the
vSOCC is varied with the fixed XIP3 = 0.3 µMs−1. It is
seen from Fig. 9a that as the value of vSOCC gets bigger,
the period of the calcium oscillation changes slightly,
which demonstrates that vSOCC has little impact on
the frequency of the calcium oscillation. However, as
shown in Fig. 9b, the amplitude of the calcium oscil-

Fig. 10 The two-parameter (VROCC, XIP3 )bifurcation diagram

lation first has a gradual increase and then decreases
as the vSOCC gets bigger. These observations indicate
that the Ca2+ concentration in cytosol does not always
grow as the vSOCC increases, and may depend on the
Ca2+ concentration in the intercellular Ca2+ store ER
during the calcium oscillation.

4.2 The roles of the receptor-operated calcium ions
entry

4.2.1 Effect on the calcium response

Receptor-operated Ca2+ channels open in direct
response to agonist stimulation. It has been mentioned
that the IP3 represents the stimulus intensity and the
XIP3 is considered as a basal level of the cytosolic
IP3 production. Hence, a two-parameter bifurcation
diagram is more appropriate to display the dynami-
cal behaviors as shown in Fig. 10, where the vROCC

and XIP3 are treated as bifurcation parameters. It can
be seen that there exist two generalized Hopf critical
points (GH1, GH2) at which the first focus value van-
ishes. The black curve labeled LPC is the fold bifurca-
tion of the limit cycle, which connects the two general-
ized Hopf critical points and exhibits two limit cycles.
As the vROCC decreases, the corresponding value of
XIP3 for the first Hopf bifurcation point (H1) shows a
slight change first and then becomes sharp, while that
for the second Hopf bifurcation point (H2) displays a
gradual increase, causing the width of the oscillatory
interval (the length between H1 and H2 on a same verti-
cal line) to increase as the vROCC decreases. The oscilla-
tion can be avoided by decreasing the XIP3 to 0.1, yield-
ing a sufficient distance away from the oscillatory area
(the shaded region), indicating that reasonable stimulus
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intensity can control the oscillatory regime appropri-
ately. However, partially blocking the vROCC influx can
create a larger oscillatory regime and the system may
oscillate even when the vROCC is completely blocked
provided that the stimulus intensity is strong enough.

4.2.2 Effect on the frequency and amplitude of the
calcium oscillation

How the vROCC affects the frequency and amplitude of
the calcium oscillation in cytosol is shown in Fig. 11
for a wide range of the XIP3 values. Four estimated val-
ues are chosen for the vROCC: 0.05 µMs−1, 0.1µMs−1,
0.2µMs−1 and 0.4µMs−1. It can be seen that for a wide
range of the XIP3 values, larger values of the vROCC

cause the period of oscillation to have a sharper decent
rate with a narrowed oscillatory region according to
Fig. 11a. The maximal period of the calcium oscilla-
tion increases as the vROCC grows, as shown in the same
figure. Moreover, it is seen from Fig. 11a that for fixed
values of XIP3 (indicated by the vertical dotted line), the
period of oscillation increases as the vROCC decreases.
On the other hand, as shown in Fig. 11b, the amplitude
peak of the calcium oscillation decreases as the vROCC

decreases for a fixed value of XIP3 (along the vertical
dotted line). For a range of XIP3 values, larger values
of vROCC cause the amplitude peak to have a sharper
ascent rate. These results imply that using the IP3 as
a stimulation may be efficient in controlling the fre-
quency and amplitude of calcium oscillation. When an
external stimulus arrives at the cell surface, a series of
calcium spikes is activated. Then, cells may encode the
information by varying the frequency and amplitude
of the oscillation. Further, variation of the vROCC can
increase cytoplasmic calcium ions directly, which may
activate a process of calcium-induced calcium release
(CICR). Any process that influences the CICR may
change the refilling period of the calcium oscillation,
and thus may alter the frequency and amplitude of
the oscillation. The above findings are consistent with
those reported in [39].

5 Conclusion and discussion

In this paper, a four-dimensional calcium oscillation
model is studied in detail, particularly for stability and
bifurcation. The main goal is to study the effect of the
SOCC and ROCC on the dynamical oscillating behav-

Fig. 11 a Period of the calcium oscillation versus XIP3 ; and
b amplitude of the calcium oscillation versus XIP3 , for various
vROCC values: 0.4µMs−1(the red line), 0.2µMs−1(the blue line),
0.1 µMs−1(the gray line), and 0.05 µMs−1(the yellow line).
(Color figure online)

ior and mutual interaction by using bifurcation and nor-
mal form theory.

We have modified an established four-dimensional
model with the ROCC term, and chosen the maximal
influx of the SOCC as a bifurcation parameter. Two
Hopf critical points are identified by linear analysis,
and the stability of limit cycles is obtained by employ-
ing the nonlinear analysis with the aid of normal form
theory. The study shows that Hopf bifurcation is the
source of oscillation behavior. We also investigate the
bifurcation of multiple limit cycles, which may gen-
erate complex dynamical behaviors in biological sys-
tems. With the maximal influx of the SOCC and XIP3

chosen as bifurcation parameters, we have shown that
the four-dimensional model of the calcium oscillation
can have two limit cycles due to generalized Hopf bifur-
cation, one of which is stable and the other is unsta-
ble, yielding a new bistable phenomenon consisting of
a stable limit cycle (outer) and a stable equilibrium.
In biological systems, equilibria and limit cycles are

123



746 A. Zhou et al.

two significant steady states for signal transduction.
The coexistence of an stable equilibrium and a stable
limit cycle may yield transform between these states,
showing complex, yet more realistic dynamical behav-
iors. For example, codimension-2 bifurcations with
bistable phenomenon in neuron have been investigated
to achieve an important finding: Negative feedback
can play a positive role in nonlinear dynamics (e.g.,
see [40]). Moreover, biological experiments have been
performed on several types of cells to display bifurca-
tions [41,42]. It is also noted that the above-discussed
bifurcation scenarios with complex processes simu-
lated in mathematical models match very well with
those observed in experiments [3].

Moreover, the effects of the SOCC and the ROCC for
the calcium amplitude and frequency are investigated.
A two-parameter bifurcation diagram is present to show
the relationship between the vSOCC and XIP3 for the
Hopf bifurcation. The following results for the SOCC
are obtained.

1. As the vSOCC goes to zero, the XIP3 is still bio-
logically meaningful and realistic, implying that
with zero SOCE flux, the sustained oscillations still
exist, and so adequately blocking the SOCC will
have a larger region for generating stable calcium
oscillation.

2. For resting state of Ca2+, larger XIP3 causes an
obvious higher Ca2+ concentration in cytosol for a
same given value of vSOCC. This shows that a higher
stimulus intensity forces the calcium store ER to
release Ca2+ from ER to cytosol and a decrease in
the Ca2+ concentration in ER results in the Ca2+
inflow from extracellular.

3. The change in the amplitude of calcium oscillation
first shows a gradual increase and then a decrease
as the vSOCC is increasing. The period of the cal-
cium oscillation has almost no change, implying
that the vSOCC has little impact on the frequency of
the calcium oscillation.

The results obtained for the ROCC are summarized
below.

(a) Partially blocking the vROCC influx can yield a
larger oscillatory regime, and the system can get
into oscillation even when the vROCC is completely
blocked as long as the stimulus intensity is strong
enough. Thus, one can apply appropriate stimulus
intensity to control the oscillatory regime as one
wishes.

(b) Larger values of vROCC cause the period of calcium
oscillation to have sharper decent rate, while the
period increases as the vROCC decreases for a fixed
XIP3 value. The amplitude of the calcium oscilla-
tion decreases as the vROCC is decreased for a fixed
XIP3 value, while larger vROCC values may cause
the amplitude to have a sharper ascent rate for a
range of XIP3 values. These results suggest that the
IP3 may be used to effectively control the frequency
and amplitude of the calcium oscillation, and the
vROCC may be used to change the period and ampli-
tude of calcium oscillation by CICR mechanism.

Overall, the investigation on the SOCC and the ROCC
shows that influxes from extracellular space into
cytosol have an important influence on the formation
and characteristics of the calcium oscillation in cytosol.
Moreover, the SOCC and ROCC have coupling effect
and the interaction between different Ca2+ influxes
can also affect the dynamical properties such as the
frequency and amplitude of the calcium oscillation in
cytosol.

The study given in this paper reveals that the SOCC
and ROCC are two critical channels in determining the
dynamical behaviors of the calcium oscillation in astro-
cyte. The multiple limit cycle bifurcation occurring in
the calcium oscillation model may be one of the sources
to generate complex dynamics, which may explain
some realistic complex dynamical phenomenon. More-
over, this method can be used to consider other nonlin-
ear systems. Since the exact mechanism of the commu-
nication between the channels and intracellular calcium
store is still under investigation, the simple model stud-
ied in this paper provides a good try to reach a good
understanding. The systems used to modeling chan-
nels need to be updated as more experimental data
become available. Meanwhile, as the complex feed-
back mechanisms are responsible for regulating intra-
cellular calcium, the function of calcium oscillation is
still unknown and needs a further study. Therefore, the
actual roles in these channels require further evalua-
tion and we hope that the results obtained in this paper
are helpful in providing a theoretical basis for future
research.
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