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a b s t r a c t

In this paper, a class of nonlinear reaction–diffusion equations is studied, and
Abelian integral method is applied to show the existence of a unique periodic
traveling wave solution. Simulation is presented to verify the theoretical prediction.
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1. Introduction

Reaction–convection–diffusion equation, a fundamental class of nonlinear Partial Differential Equations
(PDE), plays an important role in many fields of science and engineering, which describes many inter-
esting phenomena such as heat transfer, fluid dynamics, and population dynamics. The general form of
reaction–convection–diffusion equations can be written as [1,2]

∂u

∂t
= ∂

∂x

(
D(u) ∂u

∂x

)
+ F (u) ∂u

∂x
+ R(u), (1.1)

where the function D(u) is the diffusion coefficient that measures dispersal rate, F (u) can be regarded as a
nonlinear convective flux function, and R(u) is the reaction term. One of the important class of the reaction–
convection–diffusion equations is the reaction–diffusion equation, and the generalized Fisher equation is a
typical one in real applications. For example, Wang and Xiong have studied the explicit front wave solution
of the generalized Fisher equation [3]:

∂u

∂t
= D

∂2u

∂x2 + p u(1 − uα)(uα + q), D, p, α ∈ R+, q ∈ R, (1.2)
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with the bounded conditions: limx→−∞ u(t, x) = 0, limx→+∞ u(t, x) = 1. This equation can be used to
investigate the propagation of advantageous genes in populations.

On the other hand, a class of nonlinear second-order PDE is given by [1,2]

∂u

∂t
= ∂2um

∂x2 + ∂

∂x

[
(a0 + a1 up)u

]
+ u2−m(1 − up)(c0 + c1 up), u > 0, (1.3)

where m, p, q, a0, a1, c0 and c1 are constants, which contains a number of well known reaction–convection–
diffusion equations. For example, it is the Burgers–Huxley equation [4] when m = 1, p = n, a0 = 0, a1 =
− α

n+1 , c1 = β, − c0
c1

= γ ∈ [0, 1], (c0 < 0). In order to make (1.3) more general, the p in the third term on
the right-hand side is changed to q [5], yielding

∂u

∂t
= ∂2um

∂x2 + ∂

∂x

[
(a0 + a1 up)u

]
+ u2−m(1 − uq)(c0 + c1 uq). (1.4)

In this paper, we consider the system (1.4) with m = 1, c0 < 0, and p = 1, q = 2, c1 = −1. In addition,
for convenience in analysis, letting γ = −c0 > 0 we have (1.4) in the form of

∂u

∂t
= ∂2u

∂x2 + (a0 + 2a1u)∂u

∂x
+ u (u2 − 1)(u2 + γ). (1.5)

The aim of this work is to apply global bifurcation theory (e.g., see [6,7]) to prove the existence of periodic
traveling wave solutions in (1.5). In the next section, system reduction is conducted and Poincaré bifurcation
is studied. Then in Section 3, the monotonicity of the ratio of related Abelian integrals is examined and the
existence of a unique periodic traveling wave solution is proved. Finally, simulation is presented in Section 4
to verify the theoretical prediction.

2. System reduction and Poincaré bifurcation

Assume that Eq. (1.4) has a traveling wave solution, given by

u(x, t) = u(ξ), ξ = x − ct, (2.1)

where c ∈ R is the wave speed. For ξ ∈ (−∞, +∞), (2.1) satisfies the boundary conditions: limξ→+∞ u(ξ) =
m, limξ→−∞ u(ξ) = n. Substituting (2.1) into (1.5) yields

d2u

dξ2 = (c − a0 − 2a1u) du

dξ
− u(u2 − 1)(u2 + γ). (2.2)

Let y = du
dξ . Then the system (2.2) can be rewritten as a dynamical system,

du

dξ
= y,

dy

dξ
= (c − a0 − 2a1 u)y − u(u2 − 1)(u2 + γ). (2.3)

It is well known (e.g., see [7]) that u(x, t) is a solitary wave solution of (1.5) if m = n, which corresponds to
a homoclinic orbit of (2.3). If m ̸= n, u(x, t) represents a kink or anti-kink solution, which corresponds to a
heteroclinic orbit of (2.3). Further, a periodic orbit of (2.3) represents a periodic traveling wave solution of
(1.5), and a limit cycle of (2.3) represents an isolated periodic traveling wave solution of (1.5).

In order to apply bifurcation theory, assume c − a0 and a1 are small. Thus, let c − a0 = εα0, −2a1 =
εα1, (0 < ε ≪ 1), and α0, α1 ∈ R. Then, system (2.3) becomes

du

dξ
= y,

dy

dξ
= ε (α0 + α1u) y − u (u2 − 1)(u2 + γ). (2.4)
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Fig. 1. Phase portrait of system (2.5) for γ = 1
2 .

Consider the unperturbed system when ε = 0,

du

dξ
= y,

dy

dξ
= −u(u2 − 1)(u2 + γ), (2.5)

which is a Hamiltonian system with the Hamiltonian function,

H(u, y) = 1
2y2 +

[1
6u6 + (γ − 1)

4 u4 − 1
2γu2

]
△= 1

2y2 + Ψ(u). (2.6)

It is obvious that system (2.5) has three singular points : E1 = (0, 0), E2 = (1, 0) and E3 = (−1, 0).
Calculating the Hamiltonian values at the three singular points, we obtain

h1 = H(0, 0) = 0, h2 = H(1, 0) = h3 = H(−1, 0) = − 1
12(1 + 3γ). (2.7)

It is straightforward to use the Jacobian of system (2.5) to show that E1 is a saddle point, while E2 and E3

are centers.
In this paper, we consider γ ∈ (0, 1), for which there exist two homoclinic orbits, both of them are

connected to the saddle point E1, and the centers E2 and E3 are surrounded by the families of periodic
orbits, defined by

Γh : H(u, y) = h, h ∈
(

− 1
12(1 + 3γ), 0

)
. (2.8)

The corresponding phase portrait of system (2.5) for γ = 1
2 is shown in Fig. 1.

Now, suppose there exists one closed orbit around E2 that starts from a point A(h) on the positive u-axis
and first intersects with the positive u-axis at a point B(h). Then, the displacement function of system (2.4)
can be written as [8]

d(h, ε) =
∫

ÂB

dH = ε
(
I(h, δ) + O(ε)

)
, (2.9)

where δ = (α0, α1), and

I(h, δ) =
∮
Γh

(α0 + α1u) ydu = α0

∮
Γh

y du + α1

∮
Γh

uy du
△= α0I0(h) + αI1(h). (2.10)

The Abelian integral method plays an important role in the study of bifurcation of limit cycles. By the
Poincaré bifurcation theory [8], the number of zeros of I(h, δ) corresponds to the number of limit cycles
of system (2.4). The monotonicity of the ratio I1

I0
implies that I(h, δ) has at most one zero, leading to the

existence of one limit cycle, and so one periodic traveling wave solution of system (1.5).
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3. Existence of a unique periodic traveling wave

In this section, we will show that the Abelian integral ratio I1(h)
I0(h) is monotonic with respect to h, and

further prove the existence of a unique periodic traveling wave in system (1.5). We need the following Lemma
to prove our main result.

Lemma 3.1 ([6]). Assume that the Hamiltonian function H(x, y) can be written as y2 + Ψ(x), satisfying

Ψ ′(x)(x − a) > 0 for x ∈ (α, A),

then U ′(h) > 0 (or U ′(h) < 0) in (h1, h2) implies P ′(h) > 0 (or P ′(h) < 0) in (h1, h2). Here,

U(h) ≜ µ(h) + ν(h), P (h) =

∮
Γh

uydu∮
Γh

ydu
,

where µ(h) and ν(h) are the inverse functions of the corresponding mapping, which will be given later in the
proof of Theorem 3.1.

Our main result is given in the following theorem.

Theorem 3.1. For system (2.4), the ratio
∮
Γh

uydu∮
Γh

ydu
is monotonic for h ∈

(
− 1

12 (1 + 3γ), 0
)
, implying that

I(h, δ) has at most one zero, and the unique zero exists.

Proof. Due to symmetry of the system (2.5), we only need to prove the case when the family of closed
orbits surrounds the center E2 = (1, 0). Let Γh, which is defined in (2.6), represent a continuous family of
closed orbits surrounding E2 and bounded by a homoclinic loop connecting the saddle point E1 = (0, 0).
Then, for γ ∈ (0, 1), it is easy to show that Ψ(u) is analytic in the interval (0, A), where

A = 1
2

√
3 (1 − γ) +

√
3(γ + 3)(3γ + 1),

satisfying Ψ(0) = Ψ(A). Further, we have

Ψ ′(u)(u − 1) = u(u2 − 1)(u2 + γ)(u − 1) = u(u + 1)(u − 1)2(u2 + γ) > 0

for u ∈ (0, A) and γ ∈ (0, 1). We define two maps:

Ψ : (0, 1) →
(

− 1
12(1 + 3γ), 0

)
and Ψ : (1, A) →

(
− 1

12(1 + 3γ), 0
)

, (3.1)

which are strictly monotonic and have inverse functions µ(h) and ν(h), respectively, satisfying 0 < µ(h) <

1 < ν(h) < A. It is easy to see that

Ψ(µ(h)) = Ψ(ν(h)) = h, h ∈
(

− 1
12(1 + 3γ), 0

)
.

Thus, by Lemma 3.1, it is suffice to prove that U(h) = µ(h) + ν(h) is monotonic for h ∈
(
− 1

12 (1 + 3γ), 0
)
.

Let
s(h) = U(h)

2 = v(h) + µ(h)
2 , s̃(h) = v(h) − µ(h)

2 , h ∈
(
− 1

12(1 + 3γ), 0
)
.

Since Ψ(µ(h)) = Ψ(ν(h)) = h, we obtain∫ µ(h)

1
u (u2 − 1)(u2 + γ)du =

∫ v(h)

1
u (u2 − 1)(u2 + γ)du.
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Thus, by the change of variable (LHS: u → 1 − u, RHS: u → u + 1), we have∫ 1−µ(h)

0
u(u − 1)(u − 2)

[
(u − 1)2 + γ

]
du =

∫ v(h)−1

0
u(u + 1)(u + 2)

[
(u + 1)2 + γ

]
du.

Noticing that the integrand on RHS is bigger than that on the LHS, we have 1 − µ(h) > v(h) − 1, and so
0 < U(h) < 2, leading to 0 < s(h) < 1. Further, for any h ∈

(
− 1

12
(
1 + 3α2)

, 0
)
, define

g(t) = Ψ(s(h) + t) − Ψ(s(h) − t), t ∈ (0, s̃(h)). (3.2)

It can be shown that t = 0 and t = ±s̃(h) are roots of g(t). With the function Ψ , a direct computation
yields that

g(t) = 2s(h)t
[
t4 +

(
γ + 10s2

3 − 1
)

t2 + (s2 + γ)(s2 − 1)
]
. (3.3)

The term in the square bracket of the above equation has two different real roots for t2 because
(
s2 + γ

)(
s2 − 1

)
< 0. Thus, since g(t) can have maximal three real roots, g(t) has no real roots for t ∈ (0, s̃(h)), and

further one can show that g(t) < 0 for t ∈ (0, s̃(h)).
Next, we use contradiction argument to prove that U(h) is monotonic for h ∈

(
− 1

12 (1 + 3γ) , 0
)
. Suppose

otherwise that there exist h1 and h2 such that − 1
12 (1 + 3γ) < h1 < h2 < 0 and U (h1) = U (h2), which

implies that s (h1) = s (h2) and s̃ (h1) < s̃ (h2).
Setting h = h2 in g(t) gives

g(t) = Ψ (s (h2) + t) − Ψ (s (h2) − t) < 0, t ∈ (0, s̃(h2)).

Noticing s̃ (h1) < s̃ (h2), and then letting t = s̃ (h1) and h = h2 in g(t) we obtain

g(t) = Ψ (s (h2) + s̃ (h1)) − Ψ (s (h2) − s̃ (h1))
= Ψ (s (h1) + s̃ (h1)) − Ψ (s (h1) − s̃ (h1)) = Ψ (v (h1)) − Ψ (µ (h1)) = h1 − h1 = 0,

which contradicts with that g(t) < 0. So U(h) is monotonic for h ∈
(
− 1

12 (1 + 3γ) , 0
)
.

Moreover, note that Γh tends to the center E2 as h → − 1
12 (1 + 3γ), while to the homoclinic loop when

h → 0. Let D be the region enclosed by Γh. Then I0 can be rewritten as I0 =
∮
Γh

ydu =
∫∫

D
du dy > 0.

Now, we rewrite I(h) as

I(h) = α0I0(h) + α1I1(h) = I0(h)
(

α0 + α1
I1(h)
I0(h)

)
= α1I0(h)

(α0

α1
+ I1(h)

I0(h)

)
. (3.4)

For α0, α1 ∈ R, there exists an h∗ which satisfies α0
α1

= − I1(h∗)
I0(h∗) , indicating that there exists a unique periodic

solution, corresponding to a unique periodic traveling wave solution for system (1.5). □

4. Simulation

In this section, to illustrate the theoretical results obtained in the previous sections, we give simulation
for the dynamical system (2.4). Taking ε = 0.01, γ = 1

4 ∈ (0, 1) and choosing an initial point (u, y) = ( 3
4 , 0),

we get H( 3
4 , 0) = − 1017

16384 . By a direct computation, the corresponding Abelian integral ratio equals I1(h)
I0(h) =

0.9659, which in turn gives α0
α1

= −0.9659. Thus, we may set α0 = −0.9659 and α1 = 1. The simulated phase
portrait and time history for system (2.4) are shown in Fig. 2(a) and (b), respectively. These figures show a
very good agreement between the simulation and the analytical prediction.
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Fig. 2. Simulated periodic solution of system (2.4) for γ = 0.25, α0 = −0.9659, α1 = 1, ε = 0.001: (a) phase portrait; and (b) time
history.
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