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A B S T R A C T

In solving real world systems for higher-codimension bifurcation problems, one often faces
the difficulty in computing the normal form or the focus values associated with generalized
Hopf bifurcation, and the normal form with unfolding for higher-codimension Bogdanov–Takens
bifurcation. The difficulty is not only coming from the tedious symbolic computation of focus
values, but also due to the restriction on the system parameters, which frequently leads to
failure of the conventional approach used in the computation even for simple 2-dimensional
nonlinear dynamical systems. In this paper, we use a simple 2-dimensional epidemic model, for
which the conventional approach fails in analyzing the stability of limit cycles arising from
Hopf bifurcation, to illustrate how our method can be efficiently applied to determine the
codimension of Hopf bifurcation. Further, we apply the simplest normal form theory to consider
codimension-3 Bogdanov–Takens bifurcation and present an efficient one-step transformation
approach, compared with the classical six-step transformation approach to demonstrate the
advantage of our method.

. Introduction

Limit cycle theory plays a very important role in the study of nonlinear dynamical systems, related to the well-known
henomenon of self-oscillations arising from physical science and engineering [1,2]. Hopf and Bogdanov–Takens (B–T) bifurcations
re two main bifurcations generating limit cycles in real world systems. A common task of the study in such systems is to determine
he codimension of the bifurcation and to derive the associated normal form, which is not easy for higher-codimension bifurcations.
articularly, when considering practical systems, determining the codimension of the two bifurcations becomes very difficult due to
hysical limitations on the system parameters. For example, consider the maximal number of limit cycles arising from generalized
opf bifurcation in a 2-dimensional nonlinear system, which may be reduced from an 𝑛-dimensional system by applying center
anifold theory, described by the following ordinary differential equations:

𝑥̇ = 𝑓 (𝑥, 𝜇, 𝛼), 𝑥 ∈ R2, 𝜇 ∈ R, 𝛼 ∈ R𝑚, (1)

here the dot denotes differentiation with respect to time 𝑡, 𝜇 is a perturbation parameter, and 𝛼 is a constant vector representing
he coefficients or parameters in the function 𝑓 . Assume that 𝑥 = 0 is an equilibrium of (1), yielding 𝑓 (0, 𝜇, 𝛼) = 0. Moreover, suppose
hat the Jacobian of the system evaluated on the equilibrium 𝑥 = 0 at the critical point 𝜇 = 𝜇𝑐 = 0 has a pair of purely imaginary
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eigenvalues ± 𝑖 𝜔𝑐 . Then, applying the normal form theory (e.g. see [1–5]) to (1), associated with the Hopf bifurcation, we obtain
the following classical/conventional normal form (CNF) in the polar coordinates,

𝑟̇ = 𝑟 (𝑣0 + 𝑣1 𝑟2 + 𝑣2 𝑟4 +⋯ + 𝑣𝑘 𝑟2𝑘 +⋯),

𝜃̇ = 𝜔𝑐 + 𝜏0 𝜇 + 𝜏1 𝑟2 + 𝜏2 𝑟4 +⋯ + 𝜏𝑘 𝑟2𝑘 +⋯ ,
(2)

where 𝑟 and 𝜃 are the amplitude and phase of motion, respectively, 𝑣𝑗 (𝑗 = 0, 1, 2,…) is called the 𝑗th-order focus value. Note that
𝑣𝑗 ’s are functions of 𝛼 and 𝜇. 𝑣0 is obtained from a linear analysis as 𝑣0 =𝑣H 𝜇, where 𝑣H ≠ 0 is called the transversal condition of
Hopf bifurcation, while finding 𝑣𝑗 (𝑗 ≥ 1) needs a nonlinear analysis such as normal form or focus value computation. Note that the
frequency 𝜔𝑐 is usually scaled to 1.

The CNF can be further simplified to the so called simplest normal form (SNF) or unique/minimal normal form or hypernormal
form (e.g, see [6–14]). The SNF of Hopf bifurcation can be classified into three categories (at the Hopf critical point with 𝜇 = 0,
i.e., 𝑣0=0) [9] as follows:

(I) 𝑣1 ≠ 0∶

{

𝑟̇ = 𝑣1𝜌3 + 𝑣2𝜌5,

𝜃̇ = 1 + 𝜏1𝜌2;

(II)
{

𝑣1 = 𝑣2 = ⋯ = 𝑣𝑘−1 = 0, 𝑣𝑘 ≠ 0

𝜏1 = 𝜏2 = ⋯ = 𝜏𝑘−1 = 0
∶

{

𝑟̇ = 𝑣𝑘𝜌2𝑘+1 + 𝑣2𝑘𝜌4𝑘+1,

𝜃̇ = 1 + 𝜏𝑘𝜌2𝑘;

(III)
{

𝑣1 = 𝑣2 = ⋯ = 𝑣𝑘−1 = 0, 𝑣𝑘 ≠ 0

𝜏1 = 𝜏2 = ⋯ = 𝜏𝑗−2 = 0, 𝜏𝑗−1 ≠ 0, (1 ≤ 𝑗 ≤ 𝑘)
∶

{

𝑟̇ = 𝑣𝑘𝜌2𝑘+1 + 𝑣2𝑘𝜌4𝑘+1,

𝜃̇ = 1 + 𝜏𝑗−1𝜌2(𝑗−1) + 𝜏𝑗𝜌2𝑗 +⋯ + 𝜏𝑘𝜌2𝑘.

(3)

It can be seen that the CNF (2) contains an infinite number of ‘‘tails’’, while the SNF (3) has only a finite number of terms, since the
infinite tails in the CNF have been removed by a further arbitrarily high-order nonlinear transformation. Then, the codimension of
Hopf bifurcation is defined by the first non-vanishing focus value. Thus, the codimension of Hopf bifurcation is 1 for the case (I),
and 𝑘 for the cases (II) and (III). However, it should be noted that the above conclusion is based on the assumption that the vector
parameter 𝛼 is real (without any additional restriction), and therefore the number 𝑘 can usually reach its maximal value.

In solving Hopf bifurcation problems, the standard approach is to compute the focus values (or the normal form) of the system
associated with a Hopf bifurcation from an equilibrium solution. The computation is often carried out with the aid of a computer
algebraic software such as Maple or Mathematica. Then, one needs to solve a multi-variate polynomial system based on the normal
form or the focus values. There are two main difficulties in dealing with the problems related to the above normal forms. The first
one is due to the symbolic computational complexity in the focus value (or the normal form) computation, which is a result of
the application of the conventional approach used in stability and bifurcation analysis. This will be seen in the next section when
we deal with Hopf bifurcation in a simple epidemic model. The second difficulty is owing to that practical systems often have
extra restriction on the system parameters because system parameters must be positive or even restricted to certain limited values.
Suppose that the system under consideration involves 4 real parameters. In general, if these parameters are assumed real, then the
maximal number of bifurcating limit cycles may be 4, the same as the number of parameters. However, if it is a biological system
or other physical systems, due to limitation on the parameters, the maximal number of limit cycles might be 3, 2, or even only
1. In this case, determining the codimension of the Hopf bifurcation, that is, determining the maximal number of bifurcating limit
cycles can be much more difficult. The difficulty is mainly from solving the polynomial systems (suppose the focus values have been
obtained), since one needs to determine the sign of the polynomials with the variation of many variables (parameters).

For the Bogdanov–Takens (B–T) bifurcation, the analysis of codimension-2 B–T bifurcation has become standard [1,5]. However,
for codimension-3 or higher-codimension (or degenerate) B–T bifurcations, the computation of the normal forms becomes much
more involved, particularly in order to establish the relation between the original system and the simplified system (the normal
form). Consider the system (1) which now has a nilpotent critical point at the origin (characterized by a double-zero eigenvalue),
with more than one perturbation parameters (unfolding), which is rewritten as

𝑥̇ = 𝑓 (𝑥, 𝜇, 𝛼), 𝑥 ∈ R2, 𝜇 ∈ R𝑝, (𝑝 ⩾ 2), 𝛼 ∈ R𝑚. (4)

Then, the CNF of B–T bifurcation for system (4) at the critical point 𝜇=0 can be written as (e.g., see [1–3,5])

𝑥̇1 = 𝑥2,

𝑥̇2 =
∞
∑

𝑘=2

(

𝑐𝑘0 𝑥
𝑘
1 + 𝑐(𝑘−1)1 𝑥

𝑘−1
1 𝑥2

)

,
(5)

where the normal form coefficients 𝑐𝑘0 and 𝑐(𝑘−1)1 are functions of the vector parameter 𝛼 and 𝜇. Unlike the SNF of Hopf bifurcation,
2

the classification of the SNF of (4) is much more complicated. The most common case in real applications is the cusp B–T bifurcation
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and degenerate cusp B–T bifurcations when 𝑐20 ≠ 0. The SNF for such B–T bifurcations is given by [14,15]

𝑥̇1 = 𝑥2,

𝑥̇2 = 𝑐20 𝑥21 + 𝑐11 𝑥1𝑥2 + 𝑐31 𝑥31𝑥2 + 𝑐41 𝑥41𝑥2 + 𝑐61 𝑥61𝑥2 + 𝑐71 𝑥71𝑥2 +⋯
(6)

hich can be used to estimate the codimension of the B–T bifurcation. Besides the case 𝑐20≠0, the first non-vanishing coefficients
etermines the codimension. For example, it is a codimension-2 (cusp) B–T bifurcation when 𝑐11 ≠ 0; a codimension-3 (degenerate
usp) B–T bifurcation when 𝑐11=0 and 𝑐31≠0; and a codimension-4 (degenerate cusp) B–T bifurcation when 𝑐11=𝑐31=0 and 𝑐41≠0;
nd so on. In general, the first non-vanishing coefficient can be written as 𝑐𝑗1, where 𝑗=

[ 3(𝑘−1)
2

]

, (𝑘 ⩾ 2). However, whether or not
such an estimate of the codimension is true depends upon the derivation of the unfolding expressed in the perturbation parameters.
This leads to much more computational demanding and will be seen in Section 3.

The codimension-3 degenerate cusp B–T bifurcation (when 𝑐20𝑐31 ≠ 0, 𝑐11 = 0) was studied by Dumortier et al. in 1987 [16], and
the classical six-step transformation approach was developed and widely used by researchers in deriving the SNF with unfolding. We
remark that some mistakes appeared in discussing B–T bifurcation in [16], and were pointed out and corrected in [17]. Recently,
the so-called one-step transformation method was proposed [14,18], which provides the transformation for the state variables, the
parameters and the time rescaling in just one step, yielding a direct relation between the original system and the SNF. This not
only greatly simplifies the analysis, but also clearly shows the impact of the original system parameters on the dynamical behaviors
of the system. This method is based on the SNF theory and the parametric simplest normal (PSNF) theory [9–14]. The key step
involved in this method is to choose appropriate bases for the SNF and PSNF, as well as in the nonlinear transformations.

Nowadays, using computer software package such as MATCONT [19] or XPPAUTO [20] to plot bifurcation diagrams of nonlinear
dynamical systems becomes very popular and quite useful in applications, particularly for lower-codimension bifurcations such
as saddle–node, transcritical, Hopf and B–T bifurcations. The basic idea is to use computer simulation to search the critical
bifurcation points/curves in the parameter space, and the bifurcation diagram is usually plotted in a 2-dimensional parameter plane.
However, such techniques do not provide analytical formulas in terms of parameters for a parametric study in designs. Also, they
are not applicable for higher-codimension bifurcations. Therefore, it is necessary to develop efficient methods for the analysis of
higher-codimension bifurcations.

In this paper, we will use a simple epidemic model to illustrate how to determine the codimension of Hopf and B–T bifurcations.
In particular, we will show how to determine the codimension of Hopf bifurcation, and introduce both the six-step and one-step
transformation approaches for the codimension-3 (degenerate cusp) B–T bifurcation to give a comparison. The epidemic model has
been studied in [21] for Hopf bifurcation and codimension-2 B–T bifurcation. Later, Li et al. [22] gave a complete analysis on the
codimension-3 B–T bifurcation using the six-step method. The simple SI-epidemic model is described by the following differential
equations,

d𝑆
d𝑡

= 𝐴 − 𝑑𝑆 − 𝛽(1 + 𝜀𝐼)𝑆𝐼,

d𝐼
d𝑡

= 𝛽(1 + 𝜀𝐼)𝑆𝐼 − (𝑑 + 𝛼)𝐼,
(7)

where 𝑆 and 𝐼 represent the numbers of the susceptible and infective populations, respectively; 𝐴, 𝑑 and 𝛼 denote the recruitment
rate of susceptibles, the nature death rate, and the sum of the recover rate and the disease-related death rate, respectively; and
𝛽(1 + 𝜀𝐼)𝑆𝐼 is the incidence rate. All the parameters 𝐴, 𝑑, 𝛼, 𝛽 and 𝜀 take positive real values.

In [21], the authors use 𝐼 = 𝑋, 𝑁 = 𝑆 +𝐼 = 𝑌 and apply the rescaling 𝜏 = 𝛼 𝑡 to model (7) to obtain the following dimensionless
system,

d𝑋
d𝜏

= 𝑋
[

𝑘(1 + 𝜀𝑋)(𝑌 −𝑋) − (𝑛 + 1)
]

,

d𝑌
d𝜏

= 𝑚 − 𝑛𝑌 −𝑋,
(8)

where the new parameters are defined as

𝑘 =
𝛽
𝛼
, 𝑚 = 𝐴

𝛼
, 𝑛 = 𝑑

𝛼
. (9)

ater, this model was further studied by Zeng and Yu [23] for a detailed analysis on Hopf bifurcation. Note that the dimensionless
odel (8) contains 4 parameters. However, one can make a further transformation, as given by

𝑋 = 𝑚𝑥, 𝑌 = 𝑚𝑦, 𝑘 = 1
𝑚

𝜅, 𝜀 = 1
𝑚

𝑒, (10)

to eliminate the parameter 𝑚, yielding

d𝑥
d𝜏

= 𝑥
[

𝜅(1 + 𝑒 𝑥)(𝑦 − 𝑥) − (𝑛 + 1)
]

,

d𝑦
= 1 − 𝑛𝑦 − 𝑥.

(11)
3

d𝜏
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In other words, under the transformation (10), without loss of generality, one can simply set 𝑚 = 1 in system (8). In this paper, we
will use system (11) for bifurcation analysis. In fact, using the system (8) shows that 𝑚 does not play any roles on the bifurcation
analysis. However, in order to keep our simulation results consistent with those given in [21,23], our simulations presented in this
paper are still based on system (8), and all the notations introduced later for system (11) can be easily extended to system (8) with
the transformation (10).

It should be pointed out that most epidemic models have the well-posedness property, that is, solutions of such a model remain
positive if the initial points take positive values, and are bounded. However, for the system (11) (or the system (8)), the first quadrant
in the 𝑥-𝑦 plane is not invariant. Trajectories starting from the initial points in the first quadrant may pass through the 𝑥-axis to
enter the fourth quadrant and then return to the first quadrant. Since the 𝑦-axis is invariant, any trajectories starting from the initial
points in the first or fourth quadrant will either remain in or eventually enter the first quadrant. In other words, if restricted to
the region: {(𝑥, 𝑦) ∣ 𝑥 ⩾ 0}, the well-posedness property on the solutions of (8) is well defined. Although this model is not perfect,

e do not intend to improve it since the aim of this paper is to use this model to demonstrate a solution procedure for studying
igher-codimension Hopf and B–T bifurcations. As discussed in [21], we may focus on the domain of interest for the model, defined
y

𝛺 =
{

(𝑥, 𝑦)
|

|

|

|

0 ⩽ 𝑥 < 𝑦 ⩽ 1
𝑛

}

for system (11),

or 𝛺 =
{

(𝑋, 𝑌 )
|

|

|

|

0 ⩽ 𝑋 < 𝑌 ⩽ 𝑚
𝑛

}

for system (8).
(12)

Note that 𝛺 does not serve as a trapping region for the dynamical solutions in the first quadrant.
In the next section, we study Hopf and generalized Hopf bifurcations of system (11) and focus on the study of codimension.

Then, in Section 3 we consider the B–T bifurcation in system (11) and pay particular attention to codimension-3 B–T bifurcation.
Various simulations showing different bifurcation phenomena are given to illustrate the theoretical predictions. A concluding remark
is given in Section 4.

2. Hopf bifurcation of system (11)

In this section, we first derive the equilibrium solutions of system (11) and their stability, and then consider the maximal number
of limit cycles which may bifurcate from Hopf critical points. Although the stability conditions for the equilibria of system (8) were
given in [21], the analysis on Hopf bifurcation has not been completely explored. In particular, we will rigorously prove that the
codimension of the Hopf bifurcation is two. When using a classical method, one usually expresses equilibrium solutions in terms
of the system parameters. The advantage of this approach is to show the dynamical behaviors of the system, such as stability and
bifurcations, clearly in the parameter space. However, if the equilibrium solutions cannot be simply expressed in terms of the system
parameters, for example, if they are determined by a quadratic equation, then the analysis on stability and bifurcations becomes
much more involved. Especially, it causes more difficulty in computing normal forms (focus values) and it is almost impossible
to determine whether a focus value can change its sign or not, which is directly related to determining the codimension of Hopf
bifurcation.

2.1. Stability of bifurcating limit cycles

First, we derive the conditions for the existence of the equilibrium solutions of system (11) and their stability. We will give a
complete partition in the parameter space for the bifurcation analysis. Setting d𝑥

d𝜏 = d𝑦
d𝜏 = 0 in system (11) yields two equilibrium

solutions,

P0 ∶ (𝑥0, 𝑦0) =
(

0, 1
𝑛

)

,

P1 ∶ (𝑥1, 𝑦1) =
(

1 − 𝑛𝑦1, 𝑦1
)

,
(

0 < 𝑦1 <
1
𝑛

)

,
(13)

where P0 is the infection-free equilibrium (boundary equilibrium) and P1 is the infectious equilibrium (positive equilibrium), with
𝑦1 determined from the following quadratic polynomial,

𝑔(𝑦1, 𝜅) = 1 + 𝜅 𝑒 𝑛(𝑦1 − 𝑦1∗)(𝑦1 − 𝑦∗1), where 𝑦1∗ = 1
𝑛 + 1

, 𝑦∗1 = 1
𝑛
+ 1

𝑒 𝑛
. (14)

Solving 𝑔 = 0 gives the infectious equilibrium solutions,

𝑦1± = 1
2𝜅 𝑒 𝑛(𝑛 + 1)

{

𝜅
[

𝑒 (2𝑛 + 1) + 𝑛 + 1
]

±
√

𝛥
}

, 𝑥1± = 1 − 𝑛𝑦1±, (15)

where

𝛥 = 𝜅
[

𝜅 (𝑒 + 𝑛 + 1)2 − 4 𝑒 𝑛(𝑛 + 1)2
]

. (16)
4
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For convenience, define

P1± = (1 − 𝑛 𝑦1±, 𝑦1±),

𝑒1 = 𝑛 + 1, 𝑒2 = 4𝑛 𝑒21, 𝑒3 =
𝑒21

1 − 𝑛
, (𝑛 < 1), 𝑒4 =

𝑒21
𝑛
,

𝑒± =
𝑒1
2𝑛

[

𝑛 + 1 ±
√

(𝑛 + 1)(1 − 3𝑛)
]

,
(

𝑛 ⩽ 1
3

)

,

𝜅T = 𝑛 𝑒1, 𝜅SN =
𝑒 𝑒2

(𝑒 + 𝑒1)2
, 𝜅∗ =

2𝑛 𝑒 𝑒1𝑒4
(𝑒 + 𝑒1)(𝑒 + 𝑒4)

,

𝜅H±
=

𝑒 [ 𝑛 (𝑒 + 𝑒4) + 𝑒] ± 𝑛 (𝑒4 − 𝑒)
√

𝑒(𝑒 − 𝑒2)
2(𝑒 + 𝑒1)2

,

𝑦1SN = 1
𝑒1

+ 1
2𝑛

( 1
𝑒
+ 1

𝑒1

)

∈ (𝑦1∗, 𝑦∗1), 𝑦1T = 1
𝑛
∈ (𝑦1∗, 𝑦∗1),

R0 =
𝜅

𝑛(𝑛 + 1)
▵
= 𝜅

𝜅T
,

(17)

here R0 is the basic reproduction number, and the subscripts T, SN and H represent Transcritical, Saddle–node and Hopf
ifurcations. All the above notations for 𝑦1, 𝑒 and 𝜅 can be similarly defined for 𝑌1, 𝜀 and 𝑘 of system (8) via the transformation

(10) as follows:

𝑌1± =𝑚𝑦1±, 𝑌1SN = 𝑚𝑦1SN, 𝑌1T = 𝑚𝑦1T, 𝑌1∗ = 𝑚𝑦1∗, 𝑌 ∗
1 = 𝑚𝑦∗1

𝜀𝑖 =
𝑒𝑖
𝑚
, 𝑖 = 1, 2, 3, 4, 𝜀± =

𝑒±
𝑚

,

𝑘T =
𝜅T
𝑚

, 𝑘SN =
𝜅SN
𝑚

, 𝑘∗ = 𝜅∗

𝑚
, 𝑘H±

=
𝜅H±

𝑚
,

(18)

and 𝑋1±=𝑚−𝑛𝑌1±. The notations given in (18) will be used in figures for simulations and in bifurcation diagrams.
In the following analysis, P1 denotes P1±. It is easy to show that 𝜅T>𝜅SN. Further, we treat 𝜅 as a bifurcation parameter, and the

other two parameters 𝑒 and 𝑛 as control parameters. In addition, we call the Type-I bistable phenomenon (or Type-I coexistence of
istable states) if two stable equilibria coexist, and the Type-II bistable phenomenon (or Type-II coexistence of bistable states) if a
table equilibrium and a stable limit cycle coexist.

In [23], the following lemma about the stability and bifurcation of the equilibria P0 and P1 has been proved. However, whether
he Hopf bifurcations are supercritical or subcritical is not proved in [23] since the conventional analytical method does not work due
o the complex expressions of 𝑦1− and 𝜅H±

, which makes it impossible to compute the focus values or the normal forms associated
ith Hopf bifurcations. In the following, we first derive the explicit conditions on the parameters to classify the types of Hopf
ifurcations, and then consider the codimension of Hopf bifurcations. For the readability of the readers, we list Theorem 2.1 in [23]
or system (8) as a lemma below, with a modification to adapt system (11).

emma 2.1. For the system (11), the infection-free equilibrium P0 is asymptotically stable if the basic reduction number, R0<1 (i.e., 𝜅<𝜅T),
nd unstable if R0>1 (i.e., 𝜅>𝜅T). The infectious equilibrium P1 does not exist for 𝜅<𝜅SN; P1− exists only for 𝜅⩾𝜅T and 𝑒⩽𝑒1; both P1±
xist for 𝜅>𝜅SN and 𝑒>𝑒1, with P1+ being a saddle point. A transcritical bifurcation occurs between P0 and P1 at the critical point 𝜅=𝜅T.
opf bifurcations can occur from the equilibrium P1− under certain conditions on the parameters. More details are given below.

(I) When 𝑒⩽𝑒1, no bistable phenomenon can happen. Moreover,

(I-a) if 𝑒⩽min{𝑒1, 𝑒2}, then P1− is asymptotically stable for 𝜅>𝜅T, and no Hopf bifurcation can happen;
(I-b) if 𝑛 ⩽

√

2−1
2 and 𝑒2 < 𝑒 ⩽ 𝑒1, then two Hopf bifurcations occur at 𝜅 = 𝜅H−

and 𝜅 = 𝜅H+
; P1− is asymptotically stable for

𝜅∈(𝜅T, 𝜅H−
)
⋃

(𝜅H+
,∞), and unstable for 𝜅∈(𝜅H−

, 𝜅H+
).

(II) When 𝑒>𝑛 + 1, the following holds.

(II-a) P1− is asymptotically stable, and no Hopf bifurcation can happen if one of the following conditions is satisfied:
(II-a-i) 𝑒⩾𝑒4 and 𝜅>max{𝜅SN, 𝜅∗};
(II-a-ii) 𝑛<1, 𝑒>max{𝑒3, 𝑒4} and 𝜅 = 𝜅∗;
(II-a-iii) 𝑛⩾

√

2−1
2 , 𝑒1<𝑒<min{𝑒2, 𝑒4} and 𝜅>𝜅SN (> 𝜅∗).

Type-I bistable phenomenon can occur in all the above three subcases.
(II-b) If 0<𝑛< 1

2 , 𝑒3<𝑒⩽𝑒4 and 𝜅SN<𝜅⩽𝜅∗, then P1− is unstable, excluding Hopf bifurcation.
(II-c) One Hopf bifurcation occurs in the following cases.

(II-c-i) If 𝑛 < 1
2 , 𝑒3 < 𝑒 < 𝑒4 and 𝜅 > 𝜅∗ (> 𝜅SN), then a Hopf bifurcation occurs at 𝜅 = 𝜅H+

; P1− is asymptotically stable for
𝜅∈(𝜅H+

,∞), and unstable for 𝜅∈(𝜅SN, 𝜅H+
). Both type-I bistable states and Type-II bistable states coexist if 1

3 ⩽𝑛< 1
2 , or

if 𝑛< 1
3 with 𝑒> 𝑒+, for which 𝜅H+

< 𝜅T.
(II-c-ii) If 𝑛 < 1, 𝑒 > max{𝑒3, 𝑒4} and 𝜅SN < 𝜅 < 𝜅∗, then a Hopf bifurcation occurs at 𝜅 = 𝜅H+

; P1− is asymptotically stable for
5

𝜅>𝜅H+
, and unstable for 𝜅∈(𝜅SN, 𝜅H+

). Both Type-I and Type-II bistable states coexist, since 𝜅H+
< 𝜅T.
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Fig. 1. Bifurcation diagram for the model (8) projected on the 𝑘-𝑌 plane with 𝑚 = 2, 𝑛 = 1
3

and 𝜀 = 5
4
, corresponding to the Case (II-d) in Lemma 2.1 with

𝑘∗= 640
3243

, 𝑘SN=
320
1587

and 𝑘SN=
320
1587

, having two Hopf critical points at 𝑘H±
= 4035±17

√

105
19044

. The colored solid and dashed curves denote stable and unstable equilibria,
respectively, while the dotted curve represents a mathematical solution without biological meaning.

(II-d) Two Hopf bifurcations occur at 𝜅 = 𝜅H−
and 𝜅 = 𝜅H+

if 𝑛 < 1
2 , max{𝑒1, 𝑒2} < 𝑒 < 𝑒3 and 𝜅 ⩾ 𝜅SN (> 𝜅∗); P1− is asymptotically

stable for 𝜅 ∈ (𝜅SN, 𝜅H−
)
⋃

(𝜅H+
,∞), and unstable for 𝜅 ∈ (𝜅H−

, 𝜅H+
). Type-I bistable states coexist, and Type-II bistable states

coexist if
√

5−1
4 ⩽𝑛< 1

2 and 𝑒2 <𝑒<𝑒3, or 𝑛<
√

5−1
4 and 𝑒− <𝑒<𝑒3 for which 𝜅H−

<𝜅T; and if
√

5−1
4 ⩽𝑛< 1

3 and 𝑒2 <𝑒<𝑒−, or
1
3 ⩽𝑛< 1

2 and 𝑒2<𝑒<𝑒3 for which 𝜅H+
<𝜅T.

The bifurcation diagram for the Case (II-d) is given in Fig. 1 for system (8), with the parameter values: 𝑚=2, 𝑛= 1
3 and 𝜀= 5

4 . Note
hat the notations given in (18) are used in the bifurcation diagrams. First note that P1, determined from 𝑔=0, only exists for 𝑘⩾𝑘SN.
owever, the part of the solution 𝑌1 satisfying 𝑌1 > 𝑌1T is biologically meaningless since 𝑋1 < 0 when 𝑌1 > 𝑌1T. On the bifurcation
iagram, projected on the 𝑘 − 𝑌 plane, 𝑌1=𝑌1∗ and 𝑌1=𝑌 ∗

1 are two horizontal asymptotes of the curve 𝑔=0 (which are not shown in
he diagram), serving as the lower and upper boundaries of the solution P1. The curve has a unique vertex at (𝑘SN, 𝑌1SN). Moreover,
sing the derivative d𝑘

d𝑌1
, we can show that the solution 𝑌1, determined by a function 𝑘 = 𝑘(𝑌1), is monotonically decreasing for

𝑌1<𝑌1SN and monotonically increasing for 𝑌1>𝑌1SN, like a parabola. Hence, when 𝑌1SN⩾𝑌1T, i.e., when 𝜀⩽𝜀1, P1 has one solution
P1−; while when 𝑌1SN < 𝑌1T, i.e., when 𝜀 > 𝜀1, P1 has two solutions: P1+ and P1−, and P1+ exists for 𝑌1SN ⩽ 𝑌1 ⩽ 𝑌1T, while P1−
exists for 𝑌1∗ < 𝑌1 ⩽ 𝑌1SN. It is shown in the figure that there exist two Hopf bifurcations, and both Type-I and Type-II bistable
phenomena exist because the chosen parameter values satisfy 𝑘SN<𝑘H−

< 𝑘H+
<𝑘T. Hence, two stable equilibria P0 and P1− coexist

for 𝑘∈ (𝑘SN, 𝑘H−
)
⋃

(𝑘H+
, 𝑘T), while stable P0 and a stable limit cycle (which is verified by simulation and needs a rigorous proof)

coexist for 𝑘∈(𝑘H−
, 𝑘H+

).
Whether the Hopf bifurcations for the cases (I-b), (II-c) and (II-d) in Lemma 2.1 are supercritical or subcritical depends on the

sign of the first-order focus value associated with the Hopf bifurcation. However, if one uses the expressions of the solution 𝑦1− and
the critical points 𝜅H±

given in (17) to derive the first-order focus value, it is impossible to compute the first-order focus value since
the resulting equations are too complex to deal with. We will use a parameter which is linear in the function 𝑔, instead of 𝑦1, to
solve 𝑔 = 0. 𝑦1 is then treated as a ‘‘parameter’’ in the stability and bifurcation analysis, because it is a component of the equilibrium
solution P1 and is indeed a function of the system parameters. Consequently, the stability conditions on the parameters need to be
rederived using 𝑦1 and the other parameters.

We have following result for determining whether the Hopf bifurcations in Lemma 2.1 are supercritical or subcritical.

Theorem 2.2. Hopf bifurcation of system (11) exists for 0 < 𝑛 <1, and it is supercritical for 0<𝑛⩽ 1
3 , and subcritical for 1

2 ⩽𝑛<1. When
1
3 <𝑛< 1

2 , Hopf bifurcation is supercritical if 𝑒<𝑒∗, and subcritical if 𝑒>𝑒∗, where

𝑒∗ =
𝑛(𝑛 + 1)2

(1 − 2𝑛)
√

(1 + 𝑛)(1 − 2𝑛) + (𝑛2 + 2𝑛 − 1)
, 𝑛 ∈

( 1
3
, 1
2

)

. (19)

For the cases in Lemma 2.1, the Hopf bifurcations in the Cases (I-b), (II-c-i) and (II-d) are supercritical. For the Case (II-c-ii), the Hopf
ifurcation is supercritical when 0<𝑛⩽ 1

3 , or when 1
3 <𝑛< 1

2 and max{𝑒3, 𝑒4}<𝑒<𝑒∗; and subcritical when 1
2 ⩽𝑛<1, or when 1

3 <𝑛< 1
2 and

𝑒>𝑒∗.
6

The proof of Theorem 2.2 is included in the proof for Theorem 2.3.
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2.2. Codimension of Hopf bifurcation

In this section, we consider the codimension of the Hopf bifurcation from the positive equilibrium P1−. Numerical examples have
been given in [21] to show that both stable and unstable limit cycles can bifurcate from Hopf critical points. This implies that the
first focus value may become zero, and thus at least 2 limit cycles can bifurcate due to the generalized Hopf bifurcation, leading to
a codimension-2 Hopf bifurcation. We have the following theorem.

Theorem 2.3. The system (11) has generalized Hopf bifurcation with codimension 2, yielding maximal 2 limit cycles enclosing an unstable
quilibrium P1−, and the inner limit cycle is stable while the outer one is unstable.

roof (For Theorems 2.2 and 2.3). In order to derive the stability of P1 for studying the codimension of Hopf bifurcation, we solve
= 0 for 𝑒, instead of 𝑦1, to obtain

𝑒 =
𝑦1∗ +

1
𝜅 − 𝑦1

𝑛 (𝑦1T − 𝑦1)(𝑦1 − 𝑦1∗)
. (20)

It follows from 𝑒 > 0 that

𝑦1∗ < 𝑦1 < min
{

𝑦1T, 𝑦1∗ +
1
𝜅

}

. (21)

The stability of equilibria is determined from the Jacobian of system (11), given by

𝐽 (𝑥, 𝑦) =

[

𝜅 [ 𝑦 − 2𝑥 + 𝑒 𝑥(2𝑦 − 3𝑥) ] − (𝑛 + 1) 𝜅 𝑥(1 + 𝑒 𝑥)

−1 −𝑛

]

.

valuating this Jacobian at P1=(1−𝑛𝑦1, 𝑦1) yields the trace and determinant of the Jacobian 𝐽 (P1) as

Tr(𝐽 (P1)) =
𝜅 [(𝑛 + 1)𝑦1 − 1]2 + 𝑛 + 2 − (𝑛 + 1)2𝑦1

(𝑛 + 1)𝑦1 − 1
,

det(𝐽 (P1)) =
(𝑛 + 1)3(𝑛𝑦1 − 1)2 + 𝑛 (𝜅 − 𝜅T) [(𝑛 + 1)𝑦1 − 1]2

(𝑛 + 1)𝑦1 − 1
.

(22)

he determinant clearly shows that there exists a transcritical bifurcation between P0 and P1 at the critical point 𝜅 = 𝜅T at which
et(𝐽 (P1)) = 0 leads to 𝑦1 =

1
𝑛 .

Hopf bifurcation occurs when Tr(𝐽 (P1)) = 0 and det(𝐽 (P1)) > 0. Note that the formulas given in (22) are applicable for both
olutions 𝑦1+ and 𝑦1−. In other words, the following results for P1 include both P1± ∶ (𝑥1±, 𝑦1±). However, we know from the results
n the previous section that Hopf bifurcation can only occur from the equilibrium P1−, since P1+ is a saddle point when it exists.

A necessary condition for system (11) to undergo a Hopf bifurcation is Tr(𝐽 (P1)) = 0 which needs (𝑛 + 2) − (𝑛 + 1)2𝑦1 < 0, that is
hen combined with the condition (21) to yield

𝑛 + 2
(𝑛 + 1)2

< 𝑦1 < min
{1
𝑛
, 1
𝑛 + 1

+ 1
𝜅

}

and 𝜅 < (𝑛 + 1)2. (23)

Solving Tr(𝐽 (P1)) = 0 for 𝜅 leads to the Hopf critical point, defined by

𝜅H =
(𝑛 + 1)2𝑦1 − (𝑛 + 2)
[1 − (𝑛 + 1)𝑦1]2

= (𝑛 + 1)2 −
[2(𝑛 + 1)2𝑦1 − (2𝑛 + 3)]2 + 3

4[1 − (𝑛 + 1)𝑦1]2
, (24)

hich indicates that 𝜅H∈
(

0, (𝑛 + 1)2
)

. Hence, the equilibrium P1 is asymptotically stable if 𝜅∈(0, 𝜅H) (for which Tr(𝐽 (P1))<0) and
nstable if 𝜅∈

(

𝜅H, (𝑛 + 1)2
)

(for which Tr(𝐽 (P1))>0). Hopf bifurcation occurs from P1 at the critical point 𝜅 = 𝜅H.
Next, in order to determine the stability of the bifurcating limit cycles, we need to compute the focus values. To achieve this,

etting 𝜅=𝜅H and introducing the following affine transformation,
(

𝑥

𝑦

)

=

(

1 − 𝑛𝑦1
𝑦1

)

+
⎡

⎢

⎢

⎣

1 0
𝑛[(𝑛 + 1)𝑦1 − 1]
(𝑛 + 1)(𝑛𝑦1 − 1)

−𝜔𝑐 [(𝑛 + 1)𝑦1 − 1]
(𝑛 + 1)(𝑛𝑦1 − 1)

⎤

⎥

⎥

⎦

(

𝑢

𝑣

)

,

here

𝜔𝑐 =

√

𝑛2 + 𝑛 + 1 − 𝑛(𝑛 + 1)2𝑦1
(𝑛 + 1)𝑦1 − 1

,

into (11) we obtain the following system,
d𝑢
d𝜏

=𝜔𝑐 𝑣 −
1

(𝑛 + 1)𝑄2
1𝑄

2
2

(

𝑄1𝑢2 − 𝜔𝑐𝑄1𝑄2𝑄3 𝑢𝑣 + 𝑢3 − 𝜔𝑐𝑄2 𝑢2𝑣
)

,

d𝑣 =−𝜔𝑐 𝑢 −
𝑛
2 2

(

𝑄1𝑢2 − 𝜔𝑐𝑄1𝑄2𝑄3 𝑢𝑣 + 𝑢3 − 𝜔𝑐𝑄2 𝑢2𝑣
)

,
(25)
7

d𝜏 (𝑛 + 1)𝑄1𝑄2 𝜔𝑐
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whose linear part is in the Jordan canonical form, where

𝑄1 = 1 − 𝑛𝑦1, 𝑄2 = (𝑛 + 1)𝑦1 − 1, 𝑄3 = (𝑛 + 1)2𝑦1 − 𝑛.

ote that 𝜔𝑐 > 0 requires that

𝑦1 <
𝑛2 + 𝑛 + 1
𝑛(𝑛 + 1)2

= 1
𝑛
− 1

(𝑛 + 1)2
. (26)

As a matter of fact, P1 is a saddle point when 𝑦1 >
1
𝑛 − 1

(𝑛+1)2 , and a B–T bifurcation point when 𝑦1 =
1
𝑛 − 1

(𝑛+1)2 .
Combining the condition 𝑦1 >

𝑛+2
(𝑛+1)2 in (23) and that in (26) yields that 𝑛+2

(𝑛+1)2 < 1
𝑛 − 1

(𝑛+1)2 , which in turn gives 𝑛 <1. Therefore,
t follows from (23) and (26) that the restriction conditions on 𝑦1 and 𝜅 are given by

𝑦1L < 𝑦1 < 𝑦1U,

here

𝑦1L = 𝑛 + 2
(𝑛 + 1)2

, 𝑦1U = min
{1
𝑛
− 1

(𝑛 + 1)2
, 1
𝑛 + 1

+ 1
𝜅H

}

, (0 < 𝑛 < 1), (27)

under which 𝑄𝑖>0, 𝑖 = 1, 2, 3, and 𝑛+1−𝑛𝑄3>0.
Now, applying the Maple program [24] for computing the normal form of Hopf and generalized Hopf bifurcations to system

(25), we obtain the following focus values,

𝑣1 =
𝑣1a

8(𝑛 + 1)𝑄1𝑄3
2 [𝑛 + 1 − 𝑛𝑄3]

,

𝑣2 =
− 𝑣2a

192(𝑛 + 1)3𝑄3
1𝑄

6
2 [𝑛 + 1 − 𝑛𝑄3]3

,

𝑣3 =
𝑣3a

18432(𝑛 + 1)5𝑄5
1𝑄

9
2 [𝑛 + 1 − 𝑛𝑄3]5

,

⋮

(28)

showing that 𝑣𝑖 and 𝑣𝑖a (𝑖 = 1, 2, 3) have the same sign. Here, 𝑣1a, 𝑣2a, … are polynomials in 𝑛 and 𝑦1. In particular,

𝑣1a = 𝑛(𝑛 + 1)4𝑦21 − 2(𝑛2 + 𝑛 + 1)(𝑛 + 1)2𝑦1 + (𝑛3 + 2𝑛2 + 5𝑛 + 3),

𝑣2a = 𝑛3(𝑛+1)12(28𝑛+27)𝑦71−𝑛
2(𝑛+1)10(196𝑛3+350𝑛2+267𝑛+108)𝑦61

+ 𝑛(𝑛 + 1)8(588𝑛5 + 1533𝑛4 + 2101𝑛3 + 1683𝑛2 + 672𝑛 + 135)𝑦51
− (𝑛 + 1)6(980𝑛7 + 3360𝑛6 + 6500𝑛5 + 7711𝑛4 + 5620𝑛3 + 2567𝑛2

+ 602𝑛 + 54)𝑦41 + (𝑛 + 1)4(980𝑛8 + 4165𝑛7 + 10330𝑛6 + 16174𝑛5

+ 16730𝑛4 + 11680𝑛3 + 5215𝑛2 + 1400𝑛 + 169)𝑦31
− (𝑛 + 1)2(588𝑛9 + 2982𝑛8 + 8995𝑛7 + 17466𝑛6 + 23190𝑛5

+ 21409𝑛4 + 13397𝑛3 + 5563𝑛2 + 1443𝑛 + 192)𝑦21
+ (𝑛 + 1)(196𝑛9 + 959𝑛8 + 3138𝑛7 + 6349𝑛6 + 8961𝑛5 + 8410𝑛4

+ 4886𝑛3 + 1470𝑛2 + 84𝑛 − 36)𝑦1 − 28𝑛9 − 132𝑛8 − 474𝑛7

− 979𝑛6 − 1470𝑛5 − 1291𝑛4 − 460𝑛3 + 334𝑛2 + 517𝑛 + 189.

(29)

To find the maximal number of limit cycles bifurcating from the Hopf critical point, we need to find the solutions satisfying
𝑘 = 0 as many as possible. Since there are only two free parameters (𝑛, 𝑦1) in 𝑣𝑘, the maximal number of bifurcating limit cycles
an be three. However, in solving practical problems, due to the constraints on the parameters, this maximal number is usually not
eachable. Now, let us first consider the possibility of 3 limit cycles. Eliminating 𝑦1 from the two equations, 𝑣1a = 𝑣2a = 0, yields a
olution for 𝑦1 = 𝑦̄1, where

𝑦̄1 =
23 + (1 − 2𝑛)

[

(1 − 2𝑛)(1 + 14𝑛 + 24𝑛2) + 46𝑛3
]

4(4 + 𝑛) + 2𝑛(1 − 2𝑛)[(1 − 2𝑛)(6 + 15𝑛 + 28𝑛2) + 55𝑛3]
, (30)

and a resultant equation:

Res (𝑛) = 𝑛(2𝑛 + 1)(3𝑛2 − 11𝑛 + 11)(2𝑛 − 1) = 0, (31)

which has only one positive solution 𝑛 = 1
2 for which 𝑦̄1 =

23
18 , yielding 𝑣1 =

3240
17303 ≠ 0. Hence, bifurcation of 3 limit cycles is not

ossible, since it requires that 𝑣1 = 𝑣2 = 0.
The next best possibility is bifurcation of 2 limit cycles, which needs 𝑣1 = 0. The discriminant of quadratic polynomial 𝑣1a is

5

8

𝛥1 = 4(1 − 2𝑛)(𝑛 + 1) .
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Thus, 𝛥1 < 0 when 𝑛> 1
2 , yielding 𝑣1a > 0 and so 𝑣1 > 0. When 𝑛= 1

2 , the condition 𝑛+2
(𝑛+1)2 <𝑦1 <

1
𝑛 −

1
(𝑛+1)2 is reduced to 10

9 < 𝑦1 < 14
9 ,

and then 𝑣1 becomes

𝑣1 =
14 − 9𝑦1

3𝑚2(2 − 𝑦1)(3𝑦1 − 2)3
> 0.

he above result indicates that when 1
2 ⩽ 𝑛 < 1, the Hopf bifurcation is subcritical and bifurcating limit cycles are unstable. When

< 1
2 , solving the quadratic polynomial equation 𝑣1a = 0 yields two real positive solutions,

𝑦1± = 1
𝑛(𝑛 + 1)2

[

𝑛2 + 𝑛 + 1 ±
√

(1 − 2𝑛)(𝑛 + 1)
]

. (32)

ence, 𝑣1a < 0 for 𝑦1 ∈ (𝑦1−, 𝑦1+) and 𝑣1a > 0 for 𝑦1 ∈ (0, 𝑦1−)
⋃

(𝑦1+,∞).
Moreover, it is easy to show that

𝑦1− < 1
𝑛
− 1

(𝑛 + 1)2
< 𝑦1+,

nd

𝑦1− ≷ 𝑦1L = 𝑛 + 2
(𝑛 + 1)2

⟺
√

(1 − 2𝑛)(𝑛 + 1) ≶ 1 − 𝑛 ⟺ 𝑛(3𝑛 − 1) ≷ 0.

herefore, for 𝑛⩽ 1
3 , the condition 𝑦1−⩽𝑦1L implies that any feasible values of 𝑦1 for Hopf bifurcation satisfy

𝑦1− ⩽ 𝑦1L < 𝑦1 < 𝑦1U ⩽ 1
𝑛
− 1

(𝑛 + 1)2
< 𝑦1+,

nd so 𝑣1a < 0, that is, 𝑣1 < 0. Hence, the Hopf bifurcation is supercritical and bifurcating limit cycles are stable for 0 < 𝑛 ⩽ 1
3 .

Summarizing the above results, we have shown that one limit cycle can be generated from Hopf bifurcation for 𝑛∈
(

0, 13
]
⋃
[ 1
2 , 1

)

,
and the Hopf bifurcation is supercritical if 𝑛∈

(

0, 13
]

, and subcritical if 𝑛∈
[ 1
2 , 1

)

. The conditions under which two limit cycles can
occur from a Hopf bifurcation are given by

1
3
< 𝑛 < 1

2
, 𝑦1 = 𝑦1− ⟹ 𝑣1 = 0, and thus 𝑦1 ≷ 𝑦1− ⟺ 𝑣1 ≶ 0.

urther, it can been shown by using (27) that for 1
3 <𝑛< 1

2 , the following holds:

1
𝑛
− 1

(𝑛 + 1)2
< 1

𝑛 + 1
+ 1

𝜅H

⟺
1
𝑛
− 1

(𝑛 + 1)2
− 1

𝑛 + 1
− 1

𝜅H
< 0

⟺ −
𝑛(𝑛 + 1)4𝑦21 − (2𝑛2 + 2𝑛 + 1)(𝑛 + 1)2𝑦1 + 𝑛3 + 2𝑛2 + 2𝑛 + 2

𝑛(𝑛 + 1)2[(𝑛 + 1)2𝑦1 − (𝑛 + 2)]
< 0,

ecause the discriminant of the numerator of the left-hand side of the last inequality in the above is equal to −(𝑛+1)4(4𝑛−1)<0 for
∈( 13 ,

1
2 ). This implies that 𝑦1U=

1
𝑛−

1
(𝑛+1)2 and 𝑦1L<𝑦1−<𝑦1U<𝑦1+ for 𝑛∈( 13 ,

1
2 ). Consequently, when 𝑛∈

( 1
3 ,

1
2

)

, the Hopf bifurcation
is supercritical for 𝑦1∈(𝑦1−, 𝑦1U) (𝑣1<0), and subcritical for 𝑦1∈(𝑦1L, 𝑦1−) (𝑣1>0).

To transform the above stability expression in 𝑦1 back to that in the parameter 𝑒, we substitute 𝜅 = 𝜅H and 𝑦1 into 𝑒 in (20) to
obtain

𝑒(𝑦1) =
1

(1 − 𝑛𝑦1)[(𝑛 + 1)2𝑦1 − (𝑛 + 2)]
> 0, for 𝑦1L < 𝑦1 < 𝑦1U.

hen, substituting 𝑦1 = 𝑦1− into 𝑒(𝑦1) yields 𝑒∗=𝑒(𝑦1−). Further, we can show that

d 𝑒(𝑦1)
d𝑦1

=
2𝑛(𝑛+1)2𝑦1−(2𝑛2+4𝑛+1)

(1−𝑛𝑦1)2[(𝑛+1)2𝑦1−(𝑛+2)]2

{

< 0, for 𝑦1<𝑦1min,

> 0, for 𝑦1>𝑦1min,
𝑦1min =

2𝑛2+4𝑛+1
2𝑛(𝑛 + 1)2

.

t is easy to prove that 𝑦1L<𝑦1min<𝑦1U, and 𝑦1−<𝑦1min.
In addition, a direct computation leads to that

𝑒∗ − 𝑒(𝑦1U) = 𝑒∗ − 𝑒3 =
(1+𝑛)2(1−2𝑛)

[

(1+𝑛)(5𝑛−2)−(1−𝑛)
√

(1+𝑛)(1−2𝑛)
]

(1 − 𝑛)(3𝑛 − 1)(3𝑛2 + 𝑛 − 1)
> 0

for 1
3 < 𝑛< 1

2 . This clearly indicates that 𝑒 < 𝑒∗ (respectively 𝑒 > 𝑒∗) when 𝑦1 > 𝑦1− (respectively 𝑦1 < 𝑦1−). Hence, for 𝑛∈
( 1
3 ,

1
2

)

, the
Hopf bifurcation is supercritical (respectively subcritical) if 𝑒 < 𝑒∗ (respectively 𝑒 > 𝑒∗). This finishes the proof for the first part of
Theorem 2.2.

Now, based on the above established results, we consider the Hopf bifurcations in Lemma 2.1. For the Case (I-b), it is obvious
that the two Hopf bifurcations are supercritical since 𝑛⩽

√

2−1
2 < 1

3 , and bifurcating limit cycles are stable. For the Case (II-c)(i), with
he condition 𝑛< 1

2 and 𝑒3<𝑒<𝑒4, we know that the Hopf bifurcation is supercritical for 0<𝑛⩽ 1
3 . When 1

3 <𝑛< 1
2 , similar to prove

𝑒 < 𝑒∗, we can show that 𝑒 < 𝑒∗, which yields 𝑒 < 𝑒∗. Thus, the Hopf bifurcation is also supercritical for 1 < 𝑛 < 1 . For the Case
9

3 4 3 2
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(II-c-ii) with the condition 𝑛< 1 and 𝑒 >max{𝑒3, 𝑒4}, the Hopf bifurcation is supercritical for 0<𝑛⩽ 1
3 , and subcritical for 1

2 ⩽ 𝑛< 1.
When 1

3 <𝑛< 1
2 , it has been shown in the above that 𝑒>max{𝑒3, 𝑒4}, the Hopf bifurcation is supercritical for max{𝑒3, 𝑒4}<𝑒<𝑒∗, and

ubcritical for 𝑒>𝑒∗.
This finishes the proof for Theorem 2.2.
To prove Theorem 2.3, note that we have shown that 𝑣1=0 at 𝑦1=𝑦1− (or at 𝑒=𝑒∗), indicating that two limit cycles can bifurcate

from the Hopf critical point 𝜅 = 𝜅H if 𝑒= 𝑒∗. To complete the proof for Theorem 2.3, we need to verify 𝑣2 ≠ 0 when 𝑣1 = 0 (i.e., at
1=𝑦1− or 𝑒=𝑒∗). Substituting the solutions 𝑦1− into 𝑣2 we obtain

𝑣2||𝑣1=0 =
− 𝑣̃2

48𝑛3(1−2𝑛)(𝑛+1)9[
√

(1−2𝑛)(𝑛+1)+𝑛]6[
√

(1−2𝑛)(𝑛+1)−1]6
,

where
𝑣̃2 = [(1 − 2𝑛)(8 + 8𝑛 + 15𝑛2) + 32𝑛3]

√

(1 − 2𝑛)(𝑛 + 1)

− [(1 − 2𝑛)(8 + 4𝑛 + 2𝑛2 + 11𝑛3) + 20𝑛4],

whose sign is the same as that of
̃̃𝑣2 = [(1 − 2𝑛)(8 + 8𝑛 + 15𝑛2) + 32𝑛3]2(1 − 2𝑛)(𝑛 + 1)

− [(1 − 2𝑛)(8 + 4𝑛 + 2𝑛2 + 11𝑛3) + 20𝑛4]2

= − 𝑛4(2𝑛 + 1)2(3𝑛2 − 11𝑛 + 11) < 0,

yielding 𝑣̃2 < 0, that is, 𝑣2||𝑣1=0 > 0. This shows that the codimension of the Hopf bifurcation is indeed two. Moreover, the outer
bifurcating limit cycle is unstable and the inner one is stable, and both them enclose an unstable focus P1−.

Finally, we want to show that the generalized Hopf bifurcation, leading to bifurcation of 2 limit cycles under the condition
1
3 <𝑛< 1

2 , can only occur in Case (II-c-ii). First, it is easy to see that it is not possible for the Case (I-b) since it requires 𝑛<
√

2−1
2 .

Then, with the condition 1
3 <𝑛< 1

2 , we can show that 𝑒>𝑒3 and 𝑒>𝑒4. By using (20) with 𝑦1=𝑦1− given in (32) and 𝜅 = 𝜅H given in
(24), we obtain

𝑒 =
(𝑛 + 1)2[1 − 𝑛 +

√

(1 − 2𝑛)(𝑛 + 1)]

(3𝑛 − 1)[𝑛 +
√

(1 − 2𝑛)(𝑛 + 1)]
.

Then, a direct computation shows that

𝑒 − 𝑒3 =
(𝑛 + 1)2(1 − 2𝑛)[1 + 𝑛 + 2

√

(1 − 2𝑛)(𝑛 + 1)]

(1 − 𝑛)(3𝑛 − 1)[𝑛 +
√

(1 − 2𝑛)(𝑛 + 1)]
> 0,

𝑒 − 𝑒4 =
(𝑛 + 1)2(1 − 2𝑛)[2𝑛 +

√

(1 − 2𝑛)(𝑛 + 1)]

𝑛(3𝑛 − 1)[𝑛 +
√

(1 − 2𝑛)(𝑛 + 1)]
> 0,

or 1
3 <𝑛< 1

2 . This indicates that 2 limit cycles cannot occur in Cases (II-c-i) and (II-d), and can only bifurcate in Case (II-c-ii), for
hich 𝜀>max{𝜀3, 𝜀4}, and it can be shown that 𝜅SN<𝜅H+

<𝜅∗ as follows:

𝜅H+
− 𝜅SN =

2𝑒𝑛(1 − 𝑛2)2(𝑒 − 𝑒3)2

(𝑒 + 𝑒1)2{𝑒[𝑛(𝑒 + 𝑒4) − 𝑒2] + 𝑛(𝑒 − 𝑒4)
√

𝑒(𝑒 − 𝑒2)}
> 0,

𝜅∗ − 𝜅H+
=

2𝑒𝑛(1 + 𝑛)(1 − 𝑛2)2(𝑒 − 𝑒3)(𝑒 − 𝑒4)

(𝑒 + 𝑒1)2{𝑒(𝑒 − 𝑒4) + 𝑛(𝑒 − 𝑒4)
√

𝑒(𝑒 − 𝑒2)}
> 0,

since for this case, we have 𝑒 > 𝑒4 > 𝑒3 > 𝑒2 > 𝑒1, and

𝑛(𝑒 + 𝑒4) − 𝑒2 > 2𝑛𝑒4 − 𝑒2 = 2(1 − 2𝑛)(𝑛 + 1)2 > 0.

The proof for Theorem 2.3 is complete. □

2.3. Simulations

Simulations for the stable limit cycles in the Cases (I-b), (II-c-i) and (II-d), as well as an unstable limit cycle in the Case (II-c-ii)
with 𝑛 = 3

4 ∈
[ 1
2 , 1

)

have been shown in [23]. In [21], the authors used system (8) to give four simulations to show the existence
f bifurcating limit cycles, among them three are stable, and one is unstable. The parameter values for these simulations are given
elow, with our formula 𝑣1 in (28) and (29) to confirm the stability (with the bold-faced numbers for the values of 𝑛). In order to
eep consistent with the results given in [21], we also use (8) for our simulation, which will give the same results obtained by using
11) under the transformation (10).

Stable LC ∶ (𝑚, 𝑛, 𝜀, 𝑘) = (1.6, 𝟎.𝟑𝟎, 1.50, 0.25), 𝑣1 = −0.082227,

(2.0, 𝟎.𝟐𝟓, 1.50, 0.15625), 𝑣1 = −0.038194,

(1.5, 𝟎.𝟑𝟎, 1.55, 0.25), 𝑣1 = −0.135503,
10

Unstable LC ∶ (𝑚, 𝑛, 𝜀, 𝑘) = (11.07825, 𝟎.𝟒𝟕𝟕𝟏, 0.995, 0.0295), 𝑣1 = +0.001773.
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Fig. 2. Simulated phase portraits for the Case (II-c-ii) of the model (8) with 𝑛=0.4771: (a) an unstable limit cycle for 𝑚=11.07825, 𝜀=0.995 and 𝑘=0.0295 [21];
(b) a stable limit cycle for 𝑚=10.5, 𝜀=0.43 and 𝑘=0.0509; (c) an unstable limit cycle for 𝑚=11.07825, 𝜀=0.995 and 𝑘=0.029225; and (d) a stable limit cycle for
=10.5, 𝜀=0.43 and 𝑘=0.05094.

It is not surprising to see that the first three values of 𝑛 are less than 1
3 , yielding stable limit cycles. For the last example,

= 0.4771 ∈
( 1
3 ,

1
2

)

, and using the formula (19), we obtain 𝜀∗ = 0.485004 < 𝜀 = 0.995, yielding 𝑣1 = 0.001773 and thus the Hopf
bifurcation is subcritical and the bifurcating limit cycle is unstable, as shown in Fig. 2(a). However, for this case when 𝑛 ∈ ( 13 ,

1
2 ),

he Hopf bifurcation is not necessarily subcritical. Parameters can be changed to get a supercritical Hopf bifurcation. For example,
eeping 𝑛=0.4771 unchanged and the following values for other parameter values, we obtain

Stable LC ∶ (𝑚, 𝑛, 𝜀, 𝑘) = (10.5, 𝟎.𝟒𝟕𝟕𝟏, 0.43, 0.0509),

hich yields 𝜀∗ = 0.511714 > 𝜀 = 0.43 and 𝑣1 = −0.000831, implying that the Hopf bifurcation is supercritical and the bifurcating
imit cycle is stable, see Fig. 2(b). It can be seen that the limit cycles shown in Fig. 2(a) and (b) are pretty large and so the Hopf
ifurcation prediction for the amplitude based on the normal forms might be not applicable. The Hopf critical value for Fig. 2(a) and
b) are 𝑘H ≈ 0.029221 and 𝑘H ≈ 0.050942, respectively, which yields the perturbations 𝜇 ≈ 0.000279 ( 𝜇

𝑘H
= 0.96%) and 𝜇 ≈ 0.000042

( 𝜇
𝑘H

= 0.08%) for Fig. 2(a) and (b), respectively. This indicates that the perturbations for both cases are actually small, but they
yield the approximation for the amplitudes of the two small limit cycles as 𝑟 = 2.4734 and 𝑟 = 0.8514, respectively. They are pretty
large, but it is interesting that the normal forms still predict their correct stability. For a comparison, we present another two
simulations depicted in Fig. 2(c) and (d), corresponding to 𝑘 = 0.029225 (giving 𝜇 ≈ 0.000004 and 𝜇

𝑘H
= 0.015%) and 𝑘 = 0.05094

(giving 𝜇 ≈ 0.000002 and 𝜇
𝑘H

= 0.005%), respectively. Both bifurcating limit cycles are quite small, with unstable and stable ones for
the former and latter cases, respectively. The normal forms for these two cases predict the amplitudes for the two limit cycles as
𝑟 ≈ 0.3142 and 𝑟 ≈ 0.2055, respectively, showing that Hopf bifurcation theory is perfectly applicable.

For the two limit cycles arising from Hopf bifurcation, there exists an infinite set of parameter values. For example, we first
hoose 𝑚 = 2 since it is free, and then take

𝑛 = 5
11

∈
( 1
3
, 1
2

)

,

yielding the values for the critical point,

𝑦1 = 𝑦1− =
𝑌1−
2

= 1727
1280

, 𝑘H = 1280
5929

, 𝜀∗ = 320
99

,

or which 𝑣0=𝑣1=0, 𝑣2=
46661632000
845676707337 . It is easy to verify that the above parameter values belong to the case (II-c-ii) in Lemma 2.1.

Only one Hopf critical point exists in this case.
11
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Fig. 3. (a) Bifurcation diagram for the epidemic model (8) projected on the 𝑘-𝑦1 plane for 𝑚 = 2, 𝑛 = 5
11

and 𝜀 = 320
99

, corresponding to the Case (II-c-ii) in
Lemma 2.1 having one Hopf critical point, with 𝑘SN=

57600
290521

, 𝑘H+
= 1280

5929
and 𝑘T=

40
121

; and (b) simulation of 2 limit cycles for perturbed values 𝑘 = 203821518599
924070050000

and
𝜀 = 3407490109063040

1096763591581219
, with the outer one unstable (in green color) and inner one stable (in red color).

Then, perturbing 𝑦1 and 𝑘 as follows:

𝑦1 = 𝑦1− + 𝜖1, 𝑘 = 𝑘H + 𝜖2, where 𝜖1 =
1
100

, 𝜖2 = − 1
50000

,

e obtain

𝑘 = 203821518599
924070050000

and 𝜀 = 3407490109063040
1096763591581219

.

For these perturbed parameter values, we have the normal form for the amplitude of oscillation up to 5th-order, given by

𝑟̇= 𝑟
(

𝑣0 + 𝑣1𝑟2 + 𝑣2𝑟4
)

= 𝑟
( 4299
220000000−

216980684800000
83938145042658897 𝑟

2+ 14817759528898477514254458827898880000000
200973840260810036901676626005378422866729 𝑟

4).

Setting 𝑟̇ = 0 gives the approximate solutions for the amplitudes of the two limit cycles:

𝑟1 ≈ 0.105015, 𝑟2 ≈ 0.155024.

The simulation of this numerical example is shown in Fig. 3. It is seen from this figure that the amplitudes of the simulated two
limit cycles agree very well with the analytical predictions given above.

3. B–T bifurcation of system (11)

In this section, we present an analysis on the B–T bifurcation of system (11). In [21], the classical method was used to find the
condition for codimension-2 B–T bifurcation for system (8). In [22], the six-step transformation approach was applied to analyze
the codimension-3 B–T bifurcation of system (8).

3.1. Determining the codimension of B–T bifurcation

Here, we apply the SNF theory [9,12,14] to determine the codimension of B–T bifurcation. To achieve this, we first use 𝜅 to
solve the equation 𝑔 = 0, where the function 𝑔 is given in (14), and then use 𝑦1 and 𝑒 to solve Tr(𝐽 (P1)) = det(𝐽 (P1)) = 0 to obtain

𝜅 = 𝑛(1 − 𝑛)(1 + 𝑛)2, 𝑒 =
(1 + 𝑛)2

1−𝑛
, 𝑥1 =

𝑛
(1 + 𝑛)2

, 𝑦1 =
𝑛2 + 𝑛 + 1
𝑛(1 + 𝑛)2

, (33)

hich requires 0 < 𝑛 < 1. Then, introducing the affine transformation,

(

𝑥

𝑦

)

=

⎛

⎜

⎜

⎜

⎝

𝑛
(1 + 𝑛)2

𝑛2 + 𝑛 + 1
𝑛(1 + 𝑛)2

⎞

⎟

⎟

⎟

⎠

+

[

𝑛 1

−1 0

](

𝑢

𝑣

)

(34)

into (11) yields
d𝑢
d𝜏

= 𝑣,

d𝑣 = −(𝑛 + 1)3(𝑛𝑢 + 𝑣)[𝑛2𝑢 + (𝑛 − 1)𝑣] − 𝑛(𝑛 + 1)4(𝑛𝑢 + 𝑣)2[(𝑛 + 1)𝑢 + 𝑣].
(35)
12

d𝜏
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Next, applying the 5th-order change of variables:

𝑢 = 𝑦1 −
(𝑛+1)2(2𝑛2−1)

4
𝑦21 −

(𝑛+1)(𝑛2+𝑛+1)(2𝑛2−3𝑛−1)(2𝑛2+4𝑛+1)
12𝑛2

𝑦1𝑦2

−
(𝑛 + 1)(20𝑛5 − 80𝑛3 + 16𝑛2 + 5𝑛 + 4)

240𝑛4
𝑦22 +⋯

𝑣 = 𝑦2 − (𝑛 − 1)(𝑛 + 1)3 𝑦1𝑦2 −
(𝑛 + 1)(2𝑛2 − 3𝑛 − 1)(2𝑛2 + 4𝑛 + 1)

12𝑛2
𝑦22 +⋯

and the time scaling,

𝜏 =
[

1 +
(𝑛 + 1)2

2𝑚
𝑦1 + 𝑡30 𝑦

3
1

]

𝜏1,

where 𝑡30 is a function in 𝑛, into (11) yields the SNF up to 5-th order as follows:

d𝑦1
d𝜏1

= 𝑦2,

d𝑦2
d𝜏1

= 𝑐20 𝑦21 + 𝑐11 𝑦1𝑦2 + 𝑐31 𝑦31𝑦2 + 𝑐41 𝑦41𝑦2,
(36)

in which

𝑐20 =− 𝑛3(𝑛 + 1)3,

𝑐11 =− 𝑛(𝑛 + 1)3(2𝑛 − 1),

𝑐31 =−
(𝑛 + 1)6(40𝑛5 + 44𝑛4 − 18𝑛3 + 9𝑛2 − 7𝑛 + 2)

40
,

𝑐41 =⋯ ,

hich shows that 𝑐20 < 0, and 𝑐11 ≠ 0 if 𝑛 ≠ 1
2 . It should be pointed out that since we know 𝑐20 ≠ 0 from the computation, we

can assume the SNF in the form given in (36). This implies that higher codimension B–T bifurcation can only occur when 𝑐11 = 0,
leading to the so-called degenerate cusp B–T bifurcation. If 𝑐20 can be zero, then we need to consider a different form of the SNF
for the case 𝑐20 = 0.

When 𝑛 = 𝑛0 =
1
2 , we have

𝜅0 =
9
16

, 𝑒0 =
9
2
, 𝑥01 =

2
9
, 𝑦01 =

14
9
, (37)

and

𝑐20 = −27
64

, 𝑐11 = 0, 𝑐31 = − 729
1024

≠ 0.

herefore, we have the following result.

heorem 3.1. For system (11), B–T bifurcation occurs from the endemic equilibrium P1:
( 𝑛
(𝑛+1)2 ,

𝑛2+𝑛+1
𝑛(𝑛+1)2

)

at the critical point (𝑒, 𝜅) =
(𝑛+1)2
1−𝑛 , 𝑛(1 − 𝑛)(𝑛 + 1)2

)

, with 0 < 𝑛 < 1. Moreover, the B–T bifurcation is

(i) codimension 2 if 𝑛 ∈ (0, 12 )
⋃

( 12 , 1); or
(ii) codimension 3 if 𝑛 = 1

2 .

3.2. Codimension-2 B–T bifurcation

In [21], with 𝑚 involved in the parameter set, a number of transformations were applied to obtain the normal form with unfolding
up to second order. In the following, we apply our one-step transformation approach to derive the parametric simplest normal form
(PSNF) [10,11,13,14]. Let

𝜅 = 𝑛(1 − 𝑛)(𝑛 + 1)2 + 𝜇1, 𝑒 =
(𝑛 + 1)2

1 − 𝑛
+ 𝜇2, (38)

which, together with the transformation (34), is substituted into (11) to yield the following system up to second-order terms,

d𝑢
d𝜏

= 𝑣,

d𝑣
d𝜏

= 1
3

𝜇1 +
𝑛2(1 − 𝑛)

3
𝜇2 +

∑

𝑝𝑖𝑗𝑘𝑙 𝑢
𝑖𝑣𝑗𝜇𝑘

1𝜇
𝑙
2,

(39)
13

(1 + 𝑛) (1 − 𝑛) (1 + 𝑛) 𝑖+𝑗+𝑘+𝑙=2
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where 𝑝𝑖𝑗𝑘𝑙 ’s are coefficients expressed in terms of the parameter 𝑛. Next, applying the change of variables,

𝑢 = − 1
𝑛3(1 + 𝑛)3

𝑦1 −
1

2𝑛4(1 + 𝑛)4
𝛽1 +

1
𝑛(1 + 𝑛)3

𝛽2 −
𝑛2 − 2

4𝑛7(𝑛 + 1)5
𝛽1𝑦1

− 2𝑛2 − 𝑛 + 1
𝑛4(1 + 𝑛)4(1 − 𝑛)

𝛽2𝑦1 +
1 − 𝑛

2𝑛6(1 + 𝑛)3
𝑦21 −

2𝑛3 + 𝑛2 − 5𝑛 − 2
6𝑛7(1 + 𝑛)5

𝑦1𝑦2,

𝑣 = − 1
𝑛3(1 + 𝑛)3

𝑦2 −
2𝑛3 + 𝑛2 − 5𝑛 − 2

6𝑛7(1 + 𝑛)5
𝛽1𝑦1 −

𝑛2 − 2
4𝑛7(1 + 𝑛)5

𝛽1𝑦2

+ 2𝑛2 − 𝑛 + 1
𝑛4(1 + 𝑛)4(1 − 𝑛)

𝛽2𝑦2 +
1 − 𝑛

𝑛6(1 + 𝑛)3
𝑦1𝑦2 −

2𝑛3 + 𝑛2 − 5𝑛 − 2
6𝑛7(1 + 𝑛)5

𝑦22,

(40)

and the parametrization,

𝜇1 = − 1 − 𝑛
𝑛3

𝛽1 − 2𝑛2(1 + 𝑛) 𝛽2,

𝜇2 =
2(1 + 𝑛)
(1 − 𝑛)2

𝛽2 +
(1 + 𝑛)(3𝑛 − 1)

𝑛(1 − 𝑛)3
𝛽22 ,

(41)

into (39), we obtain the PSNF up to second-order terms:
d𝑦1
d𝜏

= 𝑦2,

d𝑦2
d𝜏

= 𝛽1 + 𝛽2𝑦2 + 𝑦21 −
1 − 2𝑛
𝑛2

𝑦1𝑦2, for 𝑛 ∈
(

0, 1
2

)

⋃

( 1
2
, 1

)

.
(42)

ote from the above equation that the coefficient of 𝑦1𝑦2 is not normalized into ±1 in order to show the direct effect of the original
ystem parameter 𝑛 on the dynamics of the system. It is clear that this coefficient can be positive or negative. Also, note that there
s a negative multiplier − 1

𝑛3(𝑛+1)3 in the transformation from (𝑢, 𝑣) to (𝑦1, 𝑦2).
Based on the PSNF (42), we have the following bifurcation result.

heorem 3.2. For the system (11), codimension-2 B–T bifurcation occurs from the equilibrium P1 ∶ (𝑥, 𝑦) = ( 𝑛
(𝑛+1)2 ,

𝑛2+𝑛+1
𝑛(𝑛+1)2 ) when

𝜅 = 𝑛(1 − 𝑛)(𝑛 + 1)2 and 𝑒 = (𝑛+1)2
1−𝑛 if 𝑛 ∈

(

0, 1
2

)
⋃
( 1
2 , 1

)

. Moreover, three local bifurcations with the representations of the bifurcation
urves are given below.

(1) Saddle–node bifurcation occurs from the bifurcation curve:

SN =

{

(𝛽1, 𝛽2) ∣ 𝛽1 = 0,

{

𝛽2 < 0 (0 < 𝑛 < 1
2 )

𝛽2 > 0 ( 12 < 𝑛 < 1)

}

.

(2) Hopf bifurcation occurs from the bifurcation curve:

H =

{

(𝛽1, 𝛽2)
|

|

|

|

𝛽1 = − 𝑛4

(1−2𝑛)2
𝛽22 ,

{

𝛽2 < 0 (0 < 𝑛 < 1
2 ), supercritical

𝛽2 > 0 ( 12 < 𝑛 < 1), subcritical

}

.

(3) Homoclinic loop bifurcation occurs from the bifurcation curve:

HL =

{

(𝛽1, 𝛽2)
|

|

|

|

𝛽1 = − 49
25

𝑛4

(1−2𝑛)2
𝛽22 ,

{

𝛽2 < 0 (0 < 𝑛 < 1
2 ), stable

𝛽2 > 0 ( 12 < 𝑛 < 1), unstable

}

.

The above formulas for bifurcation curves can be expressed in terms of the original perturbation parameters 𝜇1 and 𝜇2 by using
(40). The bifurcation diagram is depicted in Fig. 4.

In the following, we present simulations for the codimension-2 B–T bifurcations discussed above to illustrate the theoretical
results. In order to give a direct impression of the original system’s dynamical behaviors, we use the model (8), rather than the
normal forms (42) to perform the simulations. We choose 𝑚=2, and two values of 𝑛: 𝑛= 2

5 ∈(0, 12 ), and 𝑛= 3
4 ∈( 12 , 1). For 𝑛= 2

5 , using
the formulas given in (38)–(41), we transform the bifurcation diagram in Fig. 4(a) back to that for the original model (8) near the
B–T critical point plotted in the 𝑘-𝜀 plane, as shown in Fig. 5(a). On the other hand, a bifurcation diagram directly based on the

odel (8) is given in Fig. 5(b). It is seen that the bifurcation diagram based on the normal form (42) (see Fig. 4(a)) gives a good
ndication for the dynamical behavior of the original model near the B–T critical point. Moreover, the vertical line 𝛽1=0.01 in the
ifurcation diagram in Fig. 4(a) is mapped to a curve (almost a straight line) in Fig. 5(a). Therefore, we use the direct bifurcation
iagram in Fig. 5(b) and choose four points on the straight line (in green color),

11𝜀 + 300𝑘 = 90, with 𝜀 = 1.55, 1.60, 1.676171875, 1.80.

The corresponding simulated phase portraits are shown in Fig. 6(a), (b), (c) and (d), respectively, representing the stable focus P1−,
a stable limit cycle and the unstable P1−, the stable homoclinic loop, and the unstable P1−. These phase portraits exactly correspond
to that in Fig. 4(a) in the upward direction.
14
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Fig. 4. Bifurcation diagrams for the codimension-2 B–T bifurcation of the model (8) based on the normal form (42): (a) for 0 < 𝑛 < 1
2
; and (b) for 1

2
< 𝑛 < 1.

Fig. 5. Bifurcation diagrams for the codimension-2 B–T bifurcation of the model (8) with 𝑚=2 and 𝑛= 2
5
: (a) based on the PSNF (42), where the straight line

(in brown color) corresponds to the vertical line 𝛽1 =−0.0015 in the bifurcation diagram in Fig. 4(a); and (b) based on the model (8), with four points chosen
from the line 11𝜀+300𝑘=90, with 𝜀=1.55, 1.60, 1.676171875 and 1.80, respectively.

Next, consider 𝑛= 3
4 . The bifurcation diagram is given in Fig. 7(a). The region between the saddle–node bifurcation curve and

the Hopf bifurcation curve is quite narrow, and a zoomed region in shown in Fig. 7(b). Again, we choose four points from the line,

𝜀 = 8, with 𝑘 = 0.2336, 0.23395, 0.23426542, 0.2345,

and the corresponding simulated phase portraits are depicted in Fig. 8(a), (b), (c) and (d), respectively, representing the unstable
focus P1−, an unstable limit cycle and the stable P1−, the unstable homoclinic loop, and the stable P1−. These phase portraits exactly
correspond to those in Fig. 4(b) in the downward direction.

3.3. Codimension-3 B–T bifurcation

In this section, we consider codimension-3 B–T bifurcation for the epidemic model (8). First, we give a brief summary on the
six-step transformation approach, and then introduce our one-step transformation method.

3.3.1. Summary of the six-step transformation method
In [22], Li et al. applied the six-step transformation approach [16] to provide a detailed analysis on the codimension-3 B–T

bifurcation of the epidemic model (8). In order to give a comparison, in the following, we first give a brief summary of the result
(more details can be found in [22]). The basic idea of this approach is to employ a transformation in each step to remove one or
two terms in the Taylor expansion of the vector field, which is not necessarily in algebraic formula and maybe in differential forms.
Introducing the following transformation from the critical point,

𝑘 = 9
16𝑚

+ 𝜇1, 𝜀 = 9
2𝑚

+ 𝜇2, 𝑛 = 2𝑚
9

+ 𝜇3, 𝑥 = 𝑋 −𝑋0
1 , 𝑦 = 𝑌 − 𝑌 0

1 ,

where 𝑋0
1 = 2𝑚

9 , 𝑌 0
1 = 14𝑚

9 , into (8) yields

d𝑥 = −
(1 + 𝜇

)

𝑥 − 𝑦 − 14𝑚𝜇 ,
d𝑦

= 𝑄 (𝑥, 𝑦), (43)
15
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Fig. 6. Simulated phase portraits for the codimension-2 B–T bifurcation of the epidemic model (8) with 𝑚=2, 𝑛= 2
5
, and 𝑘= 90−11𝜀

300
, for (a) 𝜀=1.55 showing the

stable focus P1−, (b) 𝜀=1.60 showing Hopf bifurcation yielding a stable limit cycle and the unstable P1−, (c) 𝜀=1.676171875 showing the stable homoclinic loop
and unstable P1−, and (d) 𝜀=1.80 showing the unstable focus P1−.

Fig. 7. Bifurcation diagram for the codimension-2 B–T bifurcation of the epidemic model (8) with 𝑚=2, 𝑛= 3
4
: (a) a neighborhood of the B–T bifurcation point;

and (b) the zoomed area along the line 𝜀=8, marked with four points by circles at 𝑘=0.2336, 0.23395, 0.23426542 and 0.2345.

where 𝑄1 is a Taylor expansion in 𝑥, 𝑦 and 𝜇 = (𝜇1, 𝜇2, 𝜇3). To simplify (43), setting 𝑢1 = 𝑥, 𝑣1 = −( 12 + 𝜇3)𝑥 − 𝑦 − 14𝑚
9 𝜇3 yields

d𝑢1
d𝜏

= 𝑣1,
d𝑣1
d𝜏

= 𝑄2(𝑢1, 𝑣1),

where

𝑄2(𝑢1, 𝑣1) = 𝛼0 + 𝛼1𝑢1 + 𝛼2𝑣1 + 𝛼3𝑢1𝑣1 + 𝑎1𝑢
2
1 + 𝑎2𝑣

2
1 + 𝑎3𝑢

3
1 + 𝑎4𝑢

2
1𝑣1 + 𝑎5𝑢1𝑣

2
1 + 𝑎6𝑣

3
1,

in which 𝛼𝑗 ’s and 𝑎𝑘’s are parameters, expressed in terms of the coefficients in 𝑄1.
Step 1. Use a nonlinear transformation 𝑢1 = 𝑢2 +

𝑎0
2 𝑢

2
2, 𝑣1 = 𝑣2 + 𝑎2𝑢2𝑣2 to remove the 𝑣21-term from 𝑄2, yielding

d𝑢2 = 𝑣 ,
d𝑣2 = 𝑄 (𝑢 , 𝑣 ) + 𝑅(𝑢 , 𝑣 , 𝜇),
16
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Fig. 8. Simulated phase portraits for the codimension-2 B–T bifurcation of the epidemic model (8) with 𝑚 = 2, 𝑛 = 3
4
, and 𝜀 = 8, for (a) 𝑘 = 0.2336 showing

he unstable focus P1−, (b) 𝑘 = 0.23395 showing Hopf bifurcation yielding an unstable limit cycle and the stable P1−, (c) 𝑘 = 0.23426542 showing the unstable
omoclinic loop and the stable P1−, and (d) 𝑘=0.2345 showing the stable focus P1−.

here the residue term 𝑅 has special property, and

𝑄3(𝑢2, 𝑣2) = 𝛽0 + 𝛽1𝑢2 + 𝛽2𝑣2 + 𝛽3𝑢2𝑣2 + 𝑏1𝑢
2
2 + 𝑏2𝑢

3
2 + 𝑏3𝑢

4
2 + 𝑏4𝑢

2
2𝑣2 + 𝑏5𝑢2𝑣

2
2 + 𝑏6𝑣

3
2 + 𝑏7𝑢

3
2𝑣2,

here 𝛽𝑗 ’s and 𝑏𝑘’s are parameters, expressed in terms of the coefficients in 𝑄2.
Step 2. Use two nonlinear transformations, one in differential form (𝑢2, 𝑣2) → (𝑢3, 𝑣3) and one in algebraic form (𝑢3, 𝑣3) → (𝑢4, 𝑣4),

o remove the 𝑢2𝑣22- and 𝑣32-terms from 𝑄3, resulting in

d𝑢4
d𝜏

= 𝑣4,
d𝑢4
d𝜏

= 𝑄5(𝑢4, 𝑣4) + 𝑅(𝑢4, 𝑣4, 𝜇).

Step 3. Similarly, use a nonlinear transformation (𝑢4, 𝑣4) → (𝑢5, 𝑣5) to remove the 𝑢34- and 𝑢44-terms from 𝑄5, giving

d𝑢5
d𝜏

= 𝑣5,
d𝑣5
d𝜏

= 𝑄6(𝑢5, 𝑣5) + 𝑅(𝑢5, 𝑣5, 𝜇).

Step 4. Applying a nonlinear transformation (𝑢5, 𝑣5) → (𝑢6, 𝑣6) to remove the 𝑢25𝑣5-term from 𝑄6 gives

d𝑢6
d𝜏

= 𝑣6,
d𝑣6
d𝜏

= 𝑄7(𝑢6, 𝑣6) + 𝑅(𝑢6, 𝑣6, 𝜇),

where

𝑄7(𝑢6, 𝑣6) = 𝜂0 + 𝜂1𝑢6 + 𝜂2𝑣6 + 𝜂3𝑢6𝑣6 + 𝑒1𝑢
2
6 + 𝑒3𝑢

3
6𝑣6.

Step 5. Normalizing 𝑒1 and 𝑒3 to be 1 in 𝑄7 yields
d𝑢6
d𝜏

= 𝑣6,
d𝑣6
d𝜏

= 𝑄8(𝑢6, 𝑣6) + 𝑅(𝑢6, 𝑣6, 𝜇),

where

𝑄8(𝑢6, 𝑣6) = 𝜎0 + 𝜎1𝑢6 + 𝜎2𝑣6 + 𝜎3𝑢6𝑣6 + 𝑢26 + 𝑢36𝑣6.

Step 6. Use a nonlinear transformation (𝑢6, 𝑣6) → (𝑦1, 𝑦2) to remove the 𝑢6-term from 𝑄8, finally yielding the normal form,
d𝑦1
d𝜏

= 𝑦2,

d𝑦2 = 𝜀 + 𝜀 𝑦 + 𝜀 𝑦 𝑦 + 𝑦2 + 𝑦3𝑦 + 𝑅(𝑦 , 𝑦 , 𝜇).
(44)
17
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A careful checking on the transformations given in [22] we obtain

𝑒1 =
27
64𝑚

, 𝑒3 = − 3645
1024𝑚3

.

oreover, combining the transformations from (𝜇1, 𝜇2, 𝜇3) to (𝜀1, 𝜀2, 𝜀3) yields

det
[

𝜕(𝜇1, 𝜇2, 𝜇3)
𝜕(𝜀1, 𝜀2, 𝜀3)

]

𝜇=0
= − 6

𝑚2
𝑒
12
5
1 𝑒

− 4
5

3 = − 27
64𝑚2

(72)
1
5

5
4
5

≠ 0, (45)

mplying that system (44) with (𝜀1, 𝜀2, 𝜀3) ∼ (0, 0, 0) for (𝑦1, 𝑦2) near (0, 0) is equivalent to system (8) with (𝑘, 𝜀, 𝑛) ∼ (𝑘0, 𝜀0, 𝑛0) for
(𝑋, 𝑌 ) near (𝑋0

1 , 𝑌
0
1 ).

It should be pointed out that although the computation demand in each step of the above process is not heavy, finding the
complete transformation between the system (8) and the final normal form (44) is not an easy task. Also note that in each of the
above transformations, only the dominant terms 𝑄𝑘 are take into account, while the 𝑅’s with special property are ignored, which
reduces computation demanding.

3.3.2. One-step transformation method
Now, we turn to consider our one-step transformation approach, which is based on the parametric simplest normal form (PSNF)

[12–14]. The main difficulty of this method is how to determine the basis for nonlinear transformations, since different systems
require different forms of transformations.

Introducing the transformation,

𝑥 = 𝑥01 + 𝑢, 𝑦 = 𝑦01 + 𝑣, 𝜅 = 𝜅0 + 𝜇1, 𝑒 = 𝑒0 + 𝜇2, 𝑛 = 𝑛0 + 𝜇3,

together with (37) into (11) yields the following system up to 4th order,

d𝑢
d𝜏

= 𝑣,

d𝑣
d𝜏

= 16
27

𝜇1 +
1
27

𝜇2 +
4
∑

𝑖+𝑗+𝑘+𝑙+𝑠=2
𝑝𝑖𝑗𝑘𝑙𝑠 𝑢𝑖𝑣𝑗𝜇𝑘

1𝜇
𝑙
2𝜇

𝑠
3 + h.o.t.,

(46)

where the coefficients 𝑝𝑖𝑗𝑘𝑙𝑠 are real values. Then, applying the change of variables,

𝑢 =− 4
948

1
5 𝑦1 −

1
6 48

2
5 𝛽1 +

1
2748

3
5 𝛽2 +

1
1848

2
5 𝑦21 +

1
948

2
5 𝑦1𝑦2 +

1
240 48

3
5 𝑦22

+
( 763
2160 48

3
5 𝛽1 −

8
8148

4
5 𝛽2 +

16
243 48

3
5 𝛽3

)

𝑦1

+
( 2386838

93555 48
1
5 𝛽1 −

24223
9355548

2
5 𝛽2 +

8306
510348

1
5 𝛽3

)

𝑦2 +
103439
25920048

4
5 𝛽21 + 22

8148
1
5 𝛽22

− 32
9 𝛽1𝛽2 +

5
162 48

4
5 𝛽1𝛽3 −

32
243 𝛽2𝛽3 +

4
∑

𝑖+𝑗+𝑘+𝑙+𝑠=3
𝑎𝑖𝑗𝑘𝑙𝑠 𝑦𝑖1𝑦

𝑗
2𝛽

𝑘
1 𝛽

𝑙
2𝛽

𝑠
3 ,

𝑣 =− 48
4
5

36 𝑦2 +
7
5448

3
5 𝑦22 +

7
54 48

3
5 𝛽1 𝑦1 +

( 149
144 48

1
5 𝛽1 −

2
948

2
5 𝛽2 +

2
27 48

1
5 𝛽3

)

𝑦2

+ 1193419
748440 48

4
5 𝛽21 + 24233

31185 𝛽1𝛽2 +
4153
4082448

4
5 𝛽1𝛽3 +

4
∑

𝑖+𝑗+𝑘+𝑙+𝑠=3
𝑏𝑖𝑗𝑘𝑙𝑠 𝑦𝑖1𝑦

𝑗
2𝛽

𝑘
1 𝛽

𝑙
2𝛽

𝑠
3 ,

here the coefficients 𝑏𝑖𝑗𝑘𝑙𝑠 are real values, the parametrization,

𝜇1 =
9
6448

2
5 𝛽1 + 3108

1
5 𝛽2 +

15
128 48

4
5 𝛽21 + 41

6448
1
5 𝛽22 − 59

16 𝛽1𝛽2

+ 11
384 48

4
5 𝛽1𝛽3 −

31
48 𝛽2𝛽3 +

4
∑

𝑖+𝑗+𝑘=3
𝛼𝑖𝑗𝑘 𝛽𝑖1𝛽

𝑗
2𝛽

𝑘
3 ,

𝜇2 = −972
1
5 𝛽1 + 3108

1
5 𝛽2 − 3162

1
5 𝛽21 − 848

1
5 𝛽22 + 38𝛽1𝛽2

− 13
3 162

1
5 𝛽1𝛽3 +

31
3 𝛽2𝛽3 +

34
3 162

1
5 𝛽32 − 115

9 108
1
5 𝛽22𝛽3 +

25
6 72

1
5 𝛽2𝛽23 ,

𝜇3 =
5
1272

1
5 𝛽1 −

1
4108

1
5 𝛽2 −

1645571
51840 162

1
5 𝛽21 + 1

648
1
5 𝛽22 + 2

81 162
1
5 𝛽23

− 9119
1800 𝛽1𝛽2 −

31
810 162

1
5 𝛽1𝛽3 −

1
3 𝛽2𝛽3,

and the time rescaling,

d𝜏 =
(

1108
1
5 − 1162

1
5 𝑦 − 148

1
5 𝛽 + 5 𝛽

)

d𝜏 ,
18
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into (46) yields the following PSNF up to 4th-order terms,
d𝑦1
d𝜏1

= 𝑦2,

d𝑦2
d𝜏1

= 𝛽1 + 𝛽2 𝑦2 + 𝛽3 𝑦1𝑦2 + 𝑦21 + 𝑦31𝑦2 + (|(𝑦1, 𝑦2, 𝛽)|5).
(47)

It is easy to verify that

det
[

𝜕(𝜇1, 𝜇2, 𝜇3)
𝜕(𝛽1, 𝛽2, 𝛽3)

]

𝛽=0
= − 27

64
72

1
5 ≠ 0, (48)

which shows that near the critical point 𝜇 = 0, system (8) has the same bifurcation set with respect to 𝜇 as system (47) has that
with respect to 𝛽, up to a homeomorphism in the parameter space.

Comparing our one-step transformation method with the classical six-step transformation approach, we have the following
observations.

(i) The one-step approach depends upon purely algebraic computation; while the six-step approach involves different types of
transformations.

(ii) The one-step approach yields a direct relation between the SNF (or PSNF) and the original system, which makes it convenient
in applications; while for the six-step approach, finding a direct relation needs to put all the transformation together, which
involves a lot of computations.

(iii) The one-step approach is easier to be used for developing a general algorithm for the symbolic computation.
(iv) The one-step approach provides a complete nonlinear transformation up to a given order, while the six-step approach only

take the dominant parts in each step of transformation.
(v) The six-step approach has less computation in each step; while the computation demands for the one-step is higher, in

particular for higher-codimension bifurcations.

Now, following the method described in [16], and the computations in [14], we apply the method of normal forms and Abelian
integral (or the Melnikov function method) to derive the bifurcations for the codimension-3 B–T bifurcation. In [14], the term 𝑥31𝑥2
(same as 𝑦31𝑦2 in (47)) in the normal form has a coefficient − 𝑏1. So, theoretically speaking, we can use the formulas in [14] and
set 𝑏1 =−1 to directly obtain the bifurcation results for our system (47). However, it has been noted that there are some errors in
the formulas given in [14] for the codimension-3 B–T bifurcation, as listed below (the equation numbers appearing in the following
items (a)–(d) are referred to the equations in [14]).

(a) In Eq. (91), 𝜉3 + 3𝑏1𝜉1 should be 𝜉3 − 3𝑏1𝜉1.
(b) In Eq. (93), 103

55 should be 179
11 .

(c) In Eq. (107), 𝑧1(𝑡) = −3 sech2(𝑡) and 𝑧2(𝑡) = 3 sech2(𝑡) tanh(𝑡) should be 𝑧1(𝑡) = −3 𝜈̄1 sech
2(𝑡) and 𝑧2(𝑡) = 3 𝜈̄1 sech

2(𝑡) tanh(𝑡),
respectively, and thus − 103

77 should be 895
77 .

(d) In Eq. (109), 103
55 should be 179

11 .

hen, other changes in Eqs. (112)-(115) are followed accordingly. However, note that the bifurcation results shown in Figure 19
f [14] are qualitatively not changed.

In order to correct the errors in [14] and provide readability for readers, in the following we briefly describe the derivations.
irst of all, it is easy to see that system (47) has two equilibrium solutions E±,

Ẽ± = (𝑦1±, 0), where 𝑦1± = ±
√

−𝛽1 for 𝛽1 < 0. (49)

The Jacobian of (47) evaluated at Ẽ± is given by

𝐽± =

[

0 1

2𝑦1± 𝛽2 + 𝛽3𝑦1± + 𝑦31±

]

,

hich indicates that Ẽ+ is a saddle, and Ẽ− is either a focus or node. It is easy to see from the Jacobian that the plane

SN =
{

(𝛽1, 𝛽2, 𝛽3) ∣ 𝛽1 = 0
}

, (50)

xcluding the origin in the parameter space is the saddle–node bifurcation surface. Hopf bifurcation occurs from Ẽ− on the critical
urface, defined by that the trace equals zero, i.e.,

𝛽2 − (𝛽3 − 𝛽1)
√

−𝛽1 = 0, (𝛽1 < 0).

Based on Hopf bifurcation theory, a direct computation (e.g., with the Maple program in [24]) yields the following focus values,

𝑣1 =
𝛽3 + 3𝛽1
16

√

−𝛽1
and 𝑣2||𝑣1=0 =

5
96

√

−𝛽1
> 0,

which implies that generalized Hopf bifurcation occurs on the surface, defined by 𝑣1 = 0,

𝛽 + 3𝛽 = 0, (𝛽 < 0), (51)
19
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leading to two limit cycles, with the outer one unstable and the inner one stable, and both of them enclose the unstable focus Ẽ−.
Next, to find the homoclinic and the degenerate homoclinic bifurcations, we apply the Melnikov function method [2]. Introducing

he scaling,

𝑦1 = 𝜀
2
5 𝑤1, 𝑦2 = 𝜀

3
5 𝑤2, 𝛽1 = 𝜀

4
5 𝜑1, 𝛽2 = 𝜀

6
5 𝜑2, 𝛽3 = 𝜀

4
5 𝜑3, 𝜏2 = 𝜀

1
5 𝜏1, (0 < 𝜀 ≪ 1),

together with the following transformation,

𝑤1 = 𝜑̄1 + 𝑥̃1, 𝑤2 =
√

2𝜑̄1 𝑥̃2, 𝜏3 =
√

2𝜑̄1 𝜏2, 𝜑1 = −𝜑̄2
1, (𝜑̄1 > 0),

into (47) we obtain
d𝑥̃1
d𝜏3

= 𝑥̃2,

d𝑥̃2
d𝜏3

= 𝑥̃1 +
1

2𝜑̄1
𝑥̃21 + 𝜀 𝑞(𝑥̃1, 𝑥̃2, 𝜑̄),

(52)

where

𝑞(𝑥̃1, 𝑥̃2, 𝜑̄) =
1

√

2𝜑̄1

[

(𝜑2 + 𝜑̄1 𝜑3 + 𝜑̄3
1)𝑥̃2 + (𝜑3 + 3𝜑̄2

1)𝑥̃1𝑥̃2 + 3𝜑̄1𝑥̃
2
1𝑥̃2 + 𝑥̃31𝑥̃2

]

,

ith 𝜑̄ = (𝜑̄1, 𝜑2, 𝜑3).
The system (52)|𝜀=0 is a Hamiltonian system with two equilibrium solutions,

Ē− = (−2𝜑̄1, 0) and Ē0 = (0, 0),

ith Ē− and Ē0 being center and saddle, respectively. These two equilibria correspond to the Ẽ± defined in (49). The Hamiltonian
s given by

𝐻(𝑥̃1, 𝑥̃2) =
1
2
(𝑥̃22 − 𝑥̃21) −

1
6𝜑̄1

𝑥̃31,

and the homoclinic orbit connecting E0 is described by

𝛤0 ∶ 𝐻(𝑥̃1, 𝑥̃2) =
1
2
(𝑥̃22 − 𝑥̃21) −

1
6𝜑̄1

𝑥̃31, with 𝐻(0, 0) = 0,

and 𝐻(−2𝜑̄1, 0) = − 2
3 𝜑̄

2
1. Thus, any closed orbits of the Hamiltonian system (52)|𝜀=0 inside 𝛤0 can be described by

𝛤h ∶ 𝐻(𝑥̃1, 𝑥̃2, ℎ) =
1
2
(𝑥̃22 − 𝑥̃21) −

1
6𝜑̄1

𝑥̃31 − ℎ = 0, ℎ ∈
(

−2
3
𝜑̄2
1, 0

)

.

Now, the Abelian integral or the (first-order) Melnikov function for the perturbed system (52) can be written as [2]

𝑀(ℎ, 𝜑) = ∮𝛤h

[

𝑞(𝑥̃1, 𝑥̃2, 𝜑) d𝑥̃1 − 𝑝(𝑥̃1, 𝑥̃2, 𝜑) d𝑥̃2
]

𝜀=0 (𝑝 = 0)

= ∮𝛤h
𝑞(𝑥̃1, 𝑥̃2, 𝜑) ∣𝜀=0 d𝑥̃1 = ∮𝛤h

𝐻𝑥̃2𝑞(𝑥̃1, 𝑥̃2, 𝜑) ∣𝜀=0 d𝜏3

= 1
√

2𝜑̄1
∮𝛤h

𝑥̃22
[

𝜑2 + 𝜑̄1 𝜑3 + 𝜑̄3
1 + (𝜑3 + 3𝜑̄2

1)𝑥̃1 + 3𝜑̄1𝑥̃
2
1 + 𝑥̃31

]

d𝜏3

= 𝐶0(𝜑) + 𝐶1(𝜑)ℎ ln |ℎ| + 𝐶2(𝜑)ℎ + 𝐶3(ℎ)ℎ2 ln |ℎ| +⋯ ,

for 0 < −ℎ ≪ 1, where

𝐶0(𝜑) =
1

√

2𝜑̄1
∮𝛤0

𝑥̃22
[

𝜑2 + 𝜑̄1 𝜑3 + 𝜑̄3
1 + (𝜑3 + 3𝜑̄2

1)𝑥̃1 + 3𝜑̄1𝑥̃
2
1 + 𝑥̃31

]

d𝜏3,

𝐶1(𝜑) = 𝑎10 + 𝑏01,

n which 𝑎10 and 𝑏01 are the coefficients in the functions 𝑝(𝑥̃1, 𝑥̃2, 𝜑) and 𝑞(𝑥̃1, 𝑥̃2, 𝜑), given by

𝑎10 = 0, 𝑏01 =
1

√

2𝜑̄1
(𝜑2 + 𝜑̄1 𝜑3 + 𝜑̄3

1).

To compute 𝐶0(𝜑), introducing the parametric transformation,

𝑥̃1(𝜏3) = −3 𝜑̄1 sech
2(𝜏3), 𝑥̃2(𝜏3) = 3 𝜑̄1 sech

2(𝜏3) tanh(𝜏3),

into 𝐶0(𝜑) with a direct integration we obtain

𝐶0(𝜑) =
6𝜑̄1

√

2𝜑̄1

5

(

𝜑2 −
5
7
𝜑̄1 𝜑3 −

895
77

𝑏1𝜑̄
3
1

)

.

inally, we express 𝐶0(𝜑) and 𝐶1(𝜑) in terms of the original perturbation parameters 𝛽𝑗 by using

𝜑̄ =
√

−𝜑 =
√

−𝜀−
4
5 𝛽 = 𝜀−

2
5
√

−𝛽 , 𝜑 = 𝜀−
6
5 𝛽 , 𝜑 = 𝜀−

4
5 𝛽 ,
20
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as

𝐶0(𝛽) =
6𝜑̄1

√

2𝜑̄1

5
𝜀−

6
5
[

𝛽2 −
5
7

(

𝛽3 −
179
11

𝛽1
)

√

−𝛽1
]

,

𝐶1(𝛽) =
1

√

2𝜑̄1
𝜀−

6
5
[

𝛽2 + (𝛽3 − 𝛽1)
√

−𝛽1
]

.
(53)

Hence, the homoclinic and degenerate homoclinic bifurcation surfaces are defined by 𝐶0(𝛽)=0 and 𝐶1(𝛽) = 0, respectively.
Summarizing the above results we obtain the following theorem. Note that a summary of the result was given in [22]. Here,

ore detailed formulas are provided.

heorem 3.3. For the epidemic model (11), codimension-3 B–T bifurcation occurs from the equilibrium P1: (𝑥, 𝑦)= ( 29 ,
14
9 ) when 𝜅= 9

16 ,
𝑒= 9

2 and 𝑛= 1
2 . Moreover, six local bifurcations with the representations of the bifurcation surfaces/curves are obtained, as given below.

(1) Saddle–node bifurcation occurs from the critical surface:

SN =
{

(𝛽1, 𝛽2, 𝛽3) ∣ 𝛽1 = 0
}

.

(2) Hopf bifurcation occurs from the critical surface:

H =
{

(𝛽1, 𝛽2, 𝛽3) ∣ 𝛽1 < 0, 𝛽2 =
(

𝛽3 − 𝛽1
)
√

−𝛽1
}

.

(3) Homoclinic loop bifurcation occurs from the critical surface:

HL =
{

(𝛽1, 𝛽2, 𝛽3) ∣ 𝛽1 < 0, 𝛽2 =
5
7

(

𝛽3 −
179
11 𝛽1

)√

−𝛽1
}

.

(4) Generalized Hopf bifurcation occurs from the critical curve:

GH =
{

(𝛽1, 𝛽2, 𝛽3) ∣ 𝛽1 < 0, 𝛽2 = −4𝛽1
√

−𝛽1, 𝛽3 = −3𝛽1
}

.

(5) Degenerate homoclinic bifurcation occurs from the critical curve:

DHL =
{

(𝛽1, 𝛽2, 𝛽3)
|

|

|

𝛽1 < 0, 𝛽2 = − 70
11 𝛽1

√

−𝛽1, 𝛽3 =
81
11 𝛽1

}

.

(6) Double limit cycle bifurcation occurs from a critical surface, which is tangent to the Hopf bifurcation surface H on the critical curve
GH, and tangent to the homoclinic bifurcation surface HL on the critical curve DHL.

The bifurcation diagram projected on a 2-sphere is shown in Fig. 9. Fig. 9(a) is an exact bifurcation diagram for 𝜎 = 0.05, in
which the intersection points C, GH and DHL, as shown in Fig. 9(a), are given by

C = (𝛽2, 𝛽3)C = (0.001880, 0.049947), for 𝛽1 = −0.001343,

GH = (𝛽2, 𝛽3)GH= (0.007807, 0.046852), for 𝛽1 = −0.015617,

DHL = (𝛽2, 𝛽3)DHL = (0.003499,−0.049424), for 𝛽1 = −0.006712.

For a better view of bifurcations, a schematic general bifurcation diagram is shown in Fig. 9(b) with typical phase portraits,
which is similar to Figure 3 in [16] and Figure 2 in [22].

Finally, we present the simulation for the codimension-3 B–T bifurcation to show the dynamics described in Theorem 3.3. For
convenience, we use the model (8) to plot the bifurcation diagram in the 𝑘-𝜀 plane. For this purpose, we take 𝑚 = 2, and 𝜇3 = − 1

12 ,
yielding

𝑛 = 𝑛0 + 𝜇3 =
1
2
− 1

12
= 5

12
.

Then, the bifurcation diagram plotted in the 𝑘-𝜀 space, is shown in Fig. 10, where the red, blue and green curves represent the
saddle–node, Hopf and homoclinic loop bifurcations, respectively. The green curve for the homoclinic loop bifurcation is obtained
from numerical computation. It is seen that the bifurcation diagram in Fig. 10 agrees well with those in Fig. 9, but in a reflection
matter, namely, the stable equilibrium E2− in Fig. 10 appears on the right side of the Hopf bifurcation curve, while it is on the
left side of Hopf bifurcation curve in Fig. 9. The eight blank circles in Fig. 10 indicate the points of (𝑘, 𝜀) parameter values for
imulation, which, except for the red circle point yielding 2 limit cycles, are located on the two lines: 𝑘 = 0.16202 and 𝑘 = 0.2439.

Note that the red circle point, (𝑘, 𝜀) = (0.2, 3.13) for the 2 limit cycles, is below both the blue (H) and green (HL) curves, since at
𝑘 = 0.2, 𝜀 = 3.14402 and 𝜀 = 3.14519 on the Hopf and homoclinic loop curves, respectively. The two green circles (on the green
curves) denote the two homoclinic loop bifurcations, with the right one (on the line 𝑘 = 0.2439) stable and the left one (on the line
𝑘 = 0.16202) unstable. Therefore, starting from the points on the line 𝑘 = 0.2439 (in the downward direction) to the 2-LC point, and
then to the points on the line 𝑘 = 0.16202 (in the upward direction), we obtain the corresponding simulation figures depicted in
Fig. 11, as indicated in Fig. 10, which indeed, with a careful selection of the parameter values, demonstrates the complex bifurcation
behaviors around the codimension-3 B–T bifurcation point.
21
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Fig. 9. Bifurcation diagram for the codimension-3 B–T bifurcation based on the normal form (47), displayed in the intersection of the cone and the 2-sphere
2
1 + 𝛽22 + 𝛽23 = 𝜎2, with the red color curve for saddle–node, blue curve for Hopf and green curve for homoclinic loop bifurcations, respectively: (a) with 𝜎=0.05,
here the intersection point of the pink and blue curves is the degenerate Hopf bifurcation, and the intersection point of the brown and green curves denotes

he degenerate homoclinic loop bifurcation; and (b) a schematic bifurcation diagram, where the GH and DHL represent the generalized Hopf critical point and
he degenerate homoclinic critical point, respectively.

Fig. 10. Bifurcation diagram for the codimension-3 B–T bifurcation of the epidemic model (8) with 𝑚=2, 𝑛 = 5
12

, in the parameter 𝑘-𝜀 space, with the red, blue
and green curves (obtained from numerical computation) representing the saddle–node (SN), Hopf (H) and homoclinic loop (HL) bifurcations, respectively, and
the blank circles indicate the parameter values for simulations, which are given in Fig. 11.

4. Conclusion

In this paper, we have studied Hopf and Bogdanov–Takens bifurcations and paid particular attention to the codimension of the
two bifurcations as well as to the dynamical behaviors around the bifurcation points. We have used an epidemic model to illustrate
how to determine the codimension of Hopf and Bogdanov–Takens bifurcations. It has been shown that the difficulty mainly comes
from the restriction on the system parameters. Moreover, for the codimension-3 Bogdanov–Takens bifurcation, we have introduced
the one-step transformation approach, showing the advantage of this method compared to the classical six-step transformation
approach. Numerical simulations are presented to show an excellent agreement with the theoretical predictions.

However, we have noticed that the one-step approach needs higher computation demanding, compared to the six-step method,
in particular for higher-codimension bifurcations. We also want to point out that the one-step approach is based on theory of the
simplest normal forms, which requires to choose appropriate basis for the nonlinear transformations. This is actually a much more
difficult task compared to the conventional normal form theory, and needs future research.
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Fig. 11. Simulated trajectories for the epidemic model (8) with 𝑚=2, 𝑛= 5
12

, showing the bifurcations given in Fig. 10: (a) the stable P1− for (𝑘, 𝜀) = (0.2439, 2.2);
b) a stable LC for (𝑘, 𝜀) = (0.2439, 1.95); (c) the stable HL for (𝑘, 𝜀) = (0.2439, 1.871268); (d) 2 LC for (𝑘, 𝜀) = (0.2, 3.13); (e) the unstable E2− for (𝑘, 𝜀) = (0.16202, 4.2);
f) an unstable LC for (𝑘, 𝜀) = (0.16202, 4.44); (g) the unstable HL for (𝑘, 𝜀) = (0.16202, 4.485125); and (h) the stable E2− for (𝑘, 𝜀) = (0.16202, 4.6), where LC and HL
epresent limit cycle and homoclinic loop, respectively.
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