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A B S T R A C T

In this paper, we present a complete parametric analysis on a nonlinear predator–prey system
with the generalized Holling type III functional response and a strong Allee effect. We apply
the hierarchical parametric analysis to derive explicit conditions for the existence and stability
of equilibrium solutions in a 5-dimensional parameter space. Specifically, a detailed study on
Hopf bifurcation is given to show bifurcation of multiple limit cycles, and complex dynamics
of multistable states including bistable, tristable and tetrastable phenomena. We also conduct
simulations and provide a biological interpretation of the multistable states under various
conditions.

. Introduction

Different species living together in an area constitute an ecological community whose populations are greatly affected by their
nterspecific relationship with other organisms. Among various kinds of interspecific relationships, the predation relationship forms
he basis of the food chain and energy circle in the ecosystem, and it can be very complicated. Consequently, predator–prey dynamics
s an essential mathematical biology topic, and extensive researches have been conducted. One of the classic frameworks used to
escribe predator–prey dynamics of two species is the so-called Gause-type predator–prey model [1,2] governed by the following
wo nonlinear ordinary differential equations:

𝑥̇ = 𝑔(𝑥)𝑥 − 𝑝(𝑥, 𝑦)𝑦,
𝑦̇ = 𝑐 𝑝(𝑥, 𝑦)𝑦 − 𝑞(𝑦)𝑦,

(1)

ith the initial conditions, 𝑥(0) ≥ 0 and 𝑦(0) ≥ 0, where the dot represents differentiation with respect to time 𝑡, 𝑥 = 𝑥(𝑡) and
= 𝑦(𝑡) denote the prey and predator population densities at time 𝑡, respectively. The positive functions 𝑔(𝑥) and 𝑞(𝑦) describe

he growth rate of prey and the mortality rate of the predator in the absence of the other species. The function 𝑝(𝑥,𝑦) is known as
unctional responses describing the consumption rate of a given prey by its predator as a function of their density [3,4]. In general,
he functional responses can mainly be classified into three types (Holling I, II, III) [5,6]. The Holling Type I functional response,

𝑝(𝑥) = 𝛼𝑥,

as first used in the Lotka–Volterra model [7,8], which is a linear function that will increase boundlessly. However, the boundless
inear relationship is not realistic in the natural world.

∗ Corresponding author.
E-mail addresses: yzeng243@uwo.ca (Y. Zeng), pyu@uwo.ca (P. Yu).
vailable online 11 January 2024
007-5704/© 2024 Elsevier B.V. All rights reserved.

ttps://doi.org/10.1016/j.cnsns.2024.107846
eceived 28 August 2023; Received in revised form 5 January 2024; Accepted 8 January 2024

https://www.elsevier.com/locate/cnsns
https://www.elsevier.com/locate/cnsns
mailto:yzeng243@uwo.ca
mailto:pyu@uwo.ca
https://doi.org/10.1016/j.cnsns.2024.107846
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cnsns.2024.107846&domain=pdf
https://doi.org/10.1016/j.cnsns.2024.107846


Communications in Nonlinear Science and Numerical Simulation 131 (2024) 107846Y. Zeng and P. Yu

f

c
k
d

s
p
s
a
t

I

The Holling Type II functional response [5]

𝑝(𝑥) = 𝛼𝑥
𝛼𝑇ℎ𝑥 + 1

,

urther considers the handling time 𝑇ℎ associated with the prey, where 𝛼 is the attack rate. This is a hyperbolic increasing function
and will reach a saturated state.

The generalized Holling Type III [9] is defined as

𝑝(𝑥) = 𝑚𝑥2

𝑎𝑥2 + 𝑏𝑥 + 1
,

in which the parameters 𝑎 and 𝑚 take positive values, but 𝑏 can be negative satisfying 𝑏 > −2
√

𝑎 to ensure that 𝑎𝑥2 + 𝑏𝑥 + 1 > 0
for 𝑥 > 0, and lim𝑥→∞ 𝑝(𝑥) = 𝑚

𝑎 . Note that the cases 𝑏 ≥ 0 and 𝑏 < 0 are slightly different. For both cases, the ‘‘learning behavior’’
occurs in the predators, describing the case that the predators learn to concentrate on the prey as its population increases, which
was proved by the experimental work conducted by Hassell [10] for several predation cases in invertebrate predators. They modeled
the Holling type III functional response by considering the attack rate in the Holling Type II functional response as

𝛼(𝑥) = 𝑚𝑥
1 + 𝑏𝑥

.

Another interesting phenomenon in predation for the generalized Holling Type III model occurs when 𝑏 < 0: the consumption rate
ontinues to increase until it reaches the maximum and then starts decreasing, approaching 𝑚

𝑎 . This is attributed to the phenomenon
nown as ‘‘group defense’’ [11] in prey, which refers to the collaborative behavior that provides protection from predators. Their
efensive capabilities improve as the population size increases.

The growth rate of a single species is often assumed in the form of logistic type 𝑔(𝑥) = 𝑟(1 − 𝑥
𝐾 ), implying that the species grows

faster when the density is low and decreases when the density is high due to limitations of resources. However, such an assumption
may not be realistic since the growth of the species is also affected by other factors such as difficulties in mating, unable to defend
as a group and social felicitation of reproduction, etc. [12]. In 1931, the concept ‘‘Allee effect’’ [13–15] was proposed to explain
why a decrease appears in the population growth rate at low population density. The concept was further classified as strong and
weak Allee effects. The weak Allee effect describes the situation that the growth rate is decreasing when density is low, but it is still
positive; while the strong Allee effect implies that the growth rate decreases when the density is low and reaches negative values.
In other words, for the strong Allee effect, the species might be extinct if the population density is lower than a critical threshold.

A commonly used function for one species population growth rate is to modify the logistic growth rate by including the Allee
effect, known as the multiplicative Allee effect [12,16],

𝑔(𝑥) = 𝑟
(

1 − 𝑥
𝐾

)

(𝑥 − 𝑒),

where 𝑒 represents the Allee effect threshold and 𝐾 is the carrying capacity, and the restriction |𝑒| < 𝐾 is usually assumed. The
trong and weak Allee effects are then specified by 0 < 𝑒 < 𝐾 and −𝐾 < 𝑒 < 0, respectively [17–19]. Many researchers have studied
redator–prey systems with the Allee effect and different functional responses, such as Holling type II [20]. Gonzrález–Olivares [21]
howed the existence of multiple limit cycles in a predator–prey model with Holling type III functional response and the Allee Effect
dded, while a further study is needed to consider the number of bifurcating limit cycles due to a strong Allee effect. Up to now,
he predator–prey systems with generalized Holling type III and the Allee effect have not been investigated in detail.

This paper considers predator–prey systems with the generalized Holling type III functional responses and the strong Allee effect.
t is assumed that the Allee effect threshold is far from the carrying capacity [22], i.e., the restriction 𝑒 ∈ (0, 𝐾2 ) is imposed on the

model under consideration. The model is written as

𝑥̇ = 𝑟𝑥
(

1 − 𝑥
𝐾

)

(𝑥 − 𝑒) −
𝑚𝑥2𝑦

𝑎𝑥2 + 𝑏𝑥 + 1
,

𝑦̇ = 𝑦
( 𝑚𝑐𝑥2

𝑎𝑥2 + 𝑏𝑥 + 1
− 𝑑

)

,
(2)

where 𝑚 is the capturing rate of the predator, 𝑐 is the positive constant specifying conservation efficiency rate of prey to predator.
The conditions 𝑒 ∈ (0, 𝐾2 ) and 𝑏 > −2

√

𝑎 are required for the aforementioned biological meaning. This model describes the case that
the risk of extinction is significant, and the predator’s consumption rate grows slowly when the population density is low. Then,
the consumption rate will increase as the prey population increases, finally reaching a saturated state.

To simplify the analysis, introducing the following scaling,

𝑥 = 𝐾𝑋, 𝑦 = 𝑟𝑌
𝑚

, 𝜏 = 𝑟𝐾𝑡,

into (2) we obtain the dimensionless system,

𝑋̇ = 𝑋(1 −𝑋)(𝑋 − 𝐸) − 𝑋2𝑌
𝐴𝑋2 + 𝐵𝑋 + 1

,

𝑌̇ = 𝑌
( 𝐶𝑋2

𝐴𝑋2 + 𝐵𝑋 + 1
−𝐷

)

,
(3)

where the new parameters are defined as 𝐴 = 𝐾2𝑎, 𝐶 = 𝑚𝐾𝑐
𝑟 , 𝐷 = 𝑑

𝑟𝐾 and 𝐸 = 𝑒
𝐾 , all of them take positive values, and 𝐵 > −2

√

𝐴,
0 < 𝐸 < 1 , which defines a critical Allee effect value relative to the carrying capacity. In this paper, we will use the hierarchical
2
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parametric analysis developed in [23] to study the stability and bifurcation of system (3), in particular, on Hopf bifurcation to
derive explicit conditions under which Hopf bifurcation can occur, associated with multistable states, including bistable, tristable
and tetrastable phenomena.

The rest of this paper is organized as follows. The bounded region of the system solutions and the existence of equilibrium points
re discussed in Section 2. In Section 3, the analysis of the stability and bifurcation of equilibria are presented, especially Hopf
ifurcation is analyzed. Simulations are given in Section 4 for possible multistable scenarios. Finally, the conclusion and discussion
re provided in Section 5.

. Equilibrium solutions of system (3)

.1. System without the Allee effect

The dynamics of the predator–prey model system (3) with the generalized Holling type III functional response, but without
he Allee effect, has been well studied in [24]. For the convenience of a comparison, we list the main results on the stability and
ifurcation of this model, taken from [24] as follows.

(i) E0 ∶ (𝑋0, 𝑌0) = (0,0) ∶ Saddle,
(ii) E1 ∶ (𝑋1, 𝑌1) = (1,0) ∶ Stable node (saddle) for 𝐶 < 𝐶t (𝐶 > 𝐶t ), 𝐶t = 𝐷(𝐴 + 𝐵 + 1),

(iii) ——
(iv) E3 ∶ (𝑋3, 𝑌3) =

(

𝑋3,
𝐶
𝐷𝑋3(1 −𝑋3)

)

,

where 0 < 𝑋3 < 1 with 𝑋3 being the positive roots of the quadratic polynomial 𝐹1(𝑋3), given by

𝐹1(𝑋3) = (𝐶 − 𝐴𝐷)𝑋2
3 − 𝐵𝐷𝑋3 −𝐷. (4)

The analysis and conditions on the existence and stability of E3 are complex, see more details in [24]. Note that we purposely skip
E2 in the equilibria to conveniently compare with that of the system with the Allee effect.

With the strong Allee effect added, the dynamics of the system (3), especially the stability of the equilibria, will change. For
example, we will show that the extinction equilibrium (0, 0) completely changes its stability when the strong Allee effect is present.
That is, it is always a stable node.

2.2. System with the Allee effect

To study the equilibria of system (3), we first define

𝛺 =
{

(𝑋, 𝑌 ) ∣ 𝑋 > 0, 𝑌 > 0, 𝑌 < 𝐶 max
{ 1−𝐸

𝐷 , 1
}

− 𝐶𝑋
}

,

hich is the positive invariant and trapping region for the flows of system (3) in the first quadrant of the 𝑋-𝑌 plane. The proof to
ind the bounded region is included in the previous research [25]. Based on that, the system (3) has the following four equilibrium
olutions:

(i) the extinction equilibrium E0 ∶ (𝑋0, 𝑌0) = (0,0),

(ii) the predator free equilibrium E1 ∶ (𝑋1, 𝑌1) = (1,0),

(iii) the predator free equilibrium E2 ∶ (𝑋2, 𝑌2) = (𝐸,0),
(iv) the coexistence equilibrium E3 ∶ (𝑋3, 𝑌3), where

𝑌3 =
𝐶
𝐷𝑋3(1 −𝑋3)(𝑋3 − 𝐸),

(

𝐸 < 𝑋3 < 1
)

,

nd 𝑋3 is determined from the same quadratic equation 𝐹1(𝑋3) = 0, indicating that this quadratic equation does not change with
he Allee effect added, but the equilibrium E3 is different due to the change of 𝑌3. Solving 𝐹1 = 0 gives two solutions:

𝑋3± = 1
2(𝐶 − 𝐴𝐷)

(𝐵𝐷 ±
√

𝛥), where 𝛥 = 𝐵2𝐷2 + 4𝐷(𝐶 − 𝐴𝐷). (5)

The condition 𝐸 < 𝑋3 < 1 is required to guarantee that 𝑌3 > 0.
It is easy to get from 𝛥 ≥ 0 that E3 exists only if 𝐶 ≥ 𝐶SN = 𝐷(𝐴− 𝐵2

4 ). When 𝐵 ≥ 0, 𝐹1 = 0 has positive solutions only if 𝐶 > 𝐴𝐷,
leading to that 𝑋3+ > 0 and 𝑋3− < 0. The equilibrium E3 can be represented by a graph of parabola plotted on the 𝐶-𝑋3 plane, with

unique vertex defined at

(𝐶SN, 𝑋SN) =
(

𝐷
(

𝐴 − 𝐵2

4

)

,− 2
𝐵

)

,

here SN denotes Saddle Node. Further, it is straightforward to show that 𝑋3 is monotonically increasing for 𝑋3 > 𝑋SN and
onotonically decreasing as C increases for 𝑋3 < 𝑋SN by examining the derivative,

d𝐶H = −𝐷
( 𝐵

2
+ 2

3

)

,

3

d𝑋3 𝑋3 𝑋3
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Fig. 1. Simulated phase portraits of system (3) for (𝐴,𝐵,𝐷,𝐸) = ( 1
2
, 1
2
, 1, 1

3
), showing the stable node E0 and the saddle E2, and E1 being (a) a stable node when

𝐶 = 1; and (b) a saddle when 𝐶 = 2.3.

where 𝐶H is solved from 𝐹1 = 0 for 𝐶, where the subscript H represents Hopf. The existence conditions of E3± can be described as

𝑋3 ∈ (𝐸, 1) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑋+
3 =

𝐵𝐷 +
√

𝛥
2(𝐶 − 𝐴𝐷)

, for 𝐵 ≥ 0, 𝐶 > 𝐴𝐷

or max{−2
√

𝐴,− 2
𝐸 } < 𝐵 < 0, 𝐶 ≥ 𝐶SN;

𝑋−
3 =

𝐵𝐷 −
√

𝛥
2(𝐶 − 𝐴𝐷)

, for − 2
√

𝐴 < 𝐵 < −2, 𝐶SN ≤ 𝐶 < 𝐴𝐷.

(6)

The special case 𝐶 = 𝐴𝐷 is included in the case 𝐶 ≥ 𝐶SN, 𝐵 < 0, since

lim
ℎ=𝐶−𝐴𝐷→0

𝐵𝐷 +
√

𝛥
2(𝐶 − 𝐴𝐷)

H
= lim

ℎ→0

4𝐷

4
√

𝐵2𝐷2 + 4𝐷ℎ
= − 1

𝐵
,

which requires max{−2
√

𝐴,− 1
𝐸 } < 𝐵 < −1. Hence, it is seen from (6) that only 𝑋3− exists for 𝑋SN < 𝐸 < 𝑋3− < 1 and only 𝑋3+

exists for 𝐸 < 𝑋3+ < 1 < 𝑋SN; while both E3+ and E3− exist if 𝐸 < 𝑋SN < 1. In other words, only E3− exists if −2
√

𝐴 < 𝐵 < − 2
𝐸 ; only

E3+ exists if 𝐵 > max{−2,−2
√

𝐴}; and both E3+ and E3− exist if max{−2
√

𝐴,− 2
𝐸 } < 𝐵 < −2, satisfying 𝐸 < 𝑋3+ < 𝑋SN < 𝑋3− < 1.

3. Stability and bifurcation analysis

3.1. Boundary equilibria

First, note that the three boundary equilibria, E0, E1 and E2 always exist for all admissible parameters values. To obtain the
stability of these equilibria, we compute the Jacobian Matrix of system (3) at these three equilibria to obtain

𝐽
(

E0
)

=
(

−𝐸 0
0 −𝐷

)

, 𝐽
(

E1
)

=

(

−(1 − 𝐸) − 1
𝐴+𝐵+1

0 𝐶
𝐴+𝐵+1 −𝐷

)

, 𝐽
(

E2
)

=
⎛

⎜

⎜

⎝

𝐸(1 − 𝐸) − 𝐸2

𝐴𝐸2+𝐵𝐸+1

0 𝐶𝐸2

𝐴𝐸2+𝐵𝐸+1 −𝐷

⎞

⎟

⎟

⎠

. (7)

It is clear to see from 𝐽 (E0) that E0 is a stable note, i.e., it is asymptotically stable (AS). 𝐽 (E1) has a negative eigenvalue, 𝜆11 = 𝐸−1,
and its second eigenvalue equals 𝜆12 = 𝐶

𝐴+𝐵+1 − 𝐷, implying that 𝜆12 ≷ 0 if 0 < 𝐶 ≷ 𝐶t = 𝐷(𝐴 + 𝐵 + 1). For 𝐽
(

E2
)

, one of its
eigenvalues is positive, 𝜆21 = 𝐸(1 − 𝐸). In summary, we have the following result.

Lemma 1. The predator–prey model (3) has three boundary equilibria E0, E1 and E2. E0 is always AS (a stable node) and E2 is always
unstable (either a saddle or an unstable node); while E1

(i) is a saddle if 𝐶 > 𝐶t ;
(ii) is a stable focus if 𝐶 < 𝐶t ; and

(iii) has a transcritical bifurcation with E3 at the critical point 𝐶 = 𝐶t .

An example of simulated phase portraits for system (3) showing the three equilibria is depicted in Fig. 1.
4
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3.2. Positive equilibrium

In this subsection, we consider the stability of the positive equilibrium E3 and possible Hopf and Bogdanov–Takens bifurcations
from this equilibrium. For convenience, in the following study, we define the positive equilibrium as

E3 = (X3±,Y3±). (8)

We also define three critical values of 𝐵: 𝐵1, 𝐵2 and 𝐵s, where 𝐵1 is determined from the equation 𝑅1 = 0, given by

𝑅1 = (𝐸2 + 𝐸 + 1)4𝐵4 − 4(𝐸 + 1)(𝐸6 − 3𝐸5 − 38𝐸4 + 21𝐸3 − 38𝐸2 − 3𝐸 + 1)𝐵3

+ 6(𝐸6 − 20𝐸5 + 168𝐸4 − 150𝐸3 + 168𝐸2 − 20𝐸 + 1)𝐵2

− 4(𝐸 + 1)(𝐸4 − 51𝐸3 + 40𝐸2 − 51𝐸 + 1)𝐵 + 𝐸4 − 92𝐸3 + 70𝐸2 − 92𝐸 + 1,

𝐵2 = − 2
𝐸

(

1 + 𝐸 −
√

1 − 𝐸 + 𝐸2
)

,

𝐵s = − 1
𝐸

(

1 + 2𝐸 −
√

1 − 𝐸 + 𝐸2
)

,

(9)

as well as the critical values on other parameters 𝐸,𝐶, as well as on 𝑋3:

𝐸∗
t = 0.35056501⋯ ,

𝐶𝐸 = 𝐷
(

𝐴 + 𝐵
𝐸 + 1

𝐸2

)

,

𝑋3 =
1
3

(
√

𝐸2 − 𝐸 + 1 + 1 + 𝐸
)

,

𝐴H(𝑋3) =
2𝐵𝑋3

3 + (1 − 𝐵 − 𝐵𝐸)𝑋2
3 − 𝐸

−[3𝑋2
3 − 2(1 + 𝐸)𝑋3 + 𝐸]𝑋2

3

.

(10)

In the following, we shall use the values 𝐴H(𝑋3 = 𝑋𝑀 ) = 𝐴𝑀
H and 𝐴H(𝑋3 = 𝑋𝑚) = 𝐴𝑚

H, where 𝑋𝑀 and 𝑋𝑚 (𝑋𝑀 < 𝑋𝑚) are the
solutions of 𝐺3(𝑋3) = 0, with 𝐺3 given by

𝐺3(𝑋3) = 3𝐵𝑋5
3 − 3(𝐵𝐸 + 𝐵 − 1)𝑋4

3 +
[

(𝐸2 + 𝐸 + 1)𝐵 − 𝐸 − 1
]

𝑋3
3 − 6𝐸𝑋2

3 + 3𝐸(𝐸 + 1)𝑋3 − 𝐸2. (11)

ote that 𝐴H gains its maximal and minimal values at 𝑋𝑀 and 𝑋𝑚, respectively.
When 𝐶 = 𝐶t , 𝐹1 = 0 has two solutions: 𝑋3 = 1 and 𝑋3 = 𝑋t = − 1

𝐵+1 .
It is easy to show that E3− is a saddle if it exists. The stability of E3+ is much more complex. For convenience, for bifurcation

nalysis on E3+, we treat 𝐶 as the bifurcation parameter and other parameters 𝐴,𝐵,𝐷 and 𝐸 as control parameters. Further, it
can be shown that at most three Hopf bifurcation points are possible by varying the parameter 𝐶 with fixed values of the control
parameters. For simplicity, we denote the Hopf critical points as E3H1

= (XH1
,YH1

), E3H2
= (XH2

,YH2
) and E3H3

= (XH3
,YH3

) when
the bifurcation parameter 𝐶 equals 𝐶H1

, 𝐶H2
and 𝐶H3

, respectively.
We have the following theorem.

Theorem 2. System (3) has a saddle–node bifurcation at the critical point 𝐶 = 𝐶SN from E3. The equilibrium E3− is a saddle when it
xists. System (3) undergoes Hopf bifurcation from E3+ under the conditions described below.

(A) When 𝐵 > max{𝐵2,−2
√

𝐴}, 𝐸3+ is AS for 𝑋3 < 𝑋3+ < min{1, 𝑋SN}. Further, if

(A-1) 𝐵 ≥ 𝐵1, then one Hopf bifurcation occurs at 𝐶H1
, for which 𝐸3+ is AS for 𝐶 ∈ (𝐶SN, 𝐶H1

), and unstable for (𝐶H1
, 𝐶𝐸 );

(A-2) 𝐵 < 𝐵1, then

(a) either one Hopf bifurcation exists at 𝐶H1
if 𝐴 ∈ (0, 𝐴𝑚

H] ∪ [𝐴𝑀
H ,+∞), and E3+ has the same stability condition as that

given in (A-1);
(b) or three Hopf bifurcations exist at 𝐶H1

, 𝐶H2
and 𝐶H3

if 𝐴 ∈ (𝐴𝑚
H, 𝐴

𝑀
H ), for which E3+ is AS for 𝐶 ∈ (𝐶SN, 𝐶H1

) ∪
(𝐶H2

, 𝐶H3
), and unstable for 𝐶 ∈ (𝐶H1

, 𝐶H2
) ∪ (𝐶H3

, 𝐶𝐸 ).

(B) When max{− 2
𝐸 ,−2

√

𝐴} < 𝐵 ≤ 𝐵2, if

(B-1) 𝐴 > 𝐴𝑀
H , then E3+ is unstable;

(B-2) 𝐵2

4 < 𝐴 < 𝐴𝑀
H , then two Hopf bifurcations exist, where E3+ is AS for 𝐶 ∈ (𝐶H1

, 𝐶H2
) and unstable for 𝐶 ∈ (𝐶SN, 𝐶H1

) ∪
(𝐶H2

, 𝐶𝐸 ).

Bogdanov–Takens bifurcation occurs from the equilibrium,
(

𝑋3, 𝑌3
)

=
(

− 2
𝐵
,
2𝐶(𝐵 + 2)(𝐸𝐵 + 2)

𝐷𝐵3

)

,

t the critical point, defined by

𝐴 = 𝐵2𝐷 + 4𝐶 , 𝐸 = −
4 (𝐵 + 3)

, 0 < 𝐸 < 1 .
5

4𝐷 𝐵 (𝐵 + 4) 2
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Proof. Based on the existence condition of E3 obtained in the previous section, we first let 𝐶 = 𝐶H(𝑋3) represent the solution
f 𝐹1(𝑋3) = 0. Then, calculating the Jacobian of system (3) at E3, where E3 represents both E3+ and E3−, yields the trace and
eterminant, given by

tr(𝐽 (E3)) =
tr1 + 𝐴𝑋2

3 tr2
𝐴𝑋2

3 + 𝐵𝑋3 + 1
, (12)

and

det(𝐽 (E3)) =
𝐷(1 −𝑋3)(𝑋3 − 𝐸)(𝐵𝑋3 + 2)

𝐴𝑋2
3 + 𝐵𝑋3 + 1

, (13)

espectively, where

tr1 = 𝐵𝑋2
3 (1 + 𝐸 − 2𝑋3) − (𝑋2

3 − 𝐸),

tr2 = −3𝑋2
3 + 2(1 + 𝐸)𝑋3 − 𝐸.

(14)

t follows from 𝐵 > −2
√

𝐴 that 𝐴𝑋2
3 + 𝐵𝑋3 + 1 > (

√

𝐴𝑋3 − 1)2 ≥ 0. Further, from the existence condition (6) for E3−, we obtain
𝑋3− + 2 < 0, leading to det(𝐽3−) < 0. Thus, E3− is a saddle when it exists. Similarly, we have det(𝐽3+) > 0 since 𝐶 > 𝐶SN, showing

hat the stability of E3+ depends on tr(𝐽3+) and a saddle–node bifurcation occurs when 𝑋3= 𝑋SN =− 2
𝐵 and 𝐶 = 𝐶SN = 𝐷

(

𝐴 − 𝐵2

4

)

.
The necessary conditions for existence of B-T bifurcation from E3 can be easily obtained by solving det(𝐽 (E3)) = tr(𝐽 (E3)) = 0,
yielding the same conditions given in Theorem 2.

In the following, we will use tr(𝐽3+) to study the stability and bifurcation of E3+ according to two cases: (A) 𝐵 > max{𝐵2,−2
√

𝐴},
and (B) max{−2

√

𝐴,− 2
𝐸 } < 𝐵 < 𝐵2. Because 𝐵 = 𝐵2 is the critical point at which 𝑋3 = 𝑋SN, where 𝑋3 is the unique biologically

eaningful solution of tr2 = 0. For −2
√

𝐴 < 𝐵 < 𝐵2, the solution 𝑋3 does not belong to the equilibrium E3+. For convenience, we
will use the notations 𝑋3 = 𝑋3+ and E3 = E3+ in the following analysis. We consider two cases.

Case 1: 𝐵 > max{𝐵2,−2
√

𝐴}. We first show that under the condition (A-1), E3 is AS for 𝑋3 < 𝑋3 < min{1, 𝑋SN}. Note that by
comparing − 2

𝑋3
with −2

√

𝐴, the condition can be further divided into two subcases: 𝑋3
√

𝐴 > 1 and 𝑋3
√

𝐴 < 1.

For the case 𝑋3
√

𝐴 > 1, we only need to consider 𝐵 > − 2
𝑋3

since −2
√

𝐴 < − 2
𝑋3

. Let the numerator of tr(𝐽 (E3)) be tr𝑛(𝐽3), which
an be rewritten as

tr𝑛(𝐽3) = (𝐴𝑋2
3 − 1) tr2 −𝑋3(2𝑋3 − 1 − 𝐸)(𝐵𝑋3 + 2). (15)

t is obvious that tr𝑛(𝐽3) < 0 if tr2 < 0, indicating that E3+ is AS when 𝑋3 < 𝑋3+ < 1.
For the case 𝑋3

√

𝐴 < 1, the condition is reduced to 𝐵 > −2
√

𝐴, and tr𝑛(𝐽3) becomes

tr𝑛(𝐽3) < 𝐴𝑋2
3 tr2 + 2

√

𝐴𝑋2
3 (2𝑋3 − 1 − 𝐸) − (𝑋2

3 − 𝐸)

= (𝑋3

√

𝐴 − 1)
(

𝑋2
3 − 𝐸 −

√

𝐴𝑋3(3𝑋2
3 − 2(1 + 𝐸)𝑋3 + 𝐸)

)

< 0,
(16)

ecause of

𝑋2
3 − 𝐸 −

√

𝐴𝑋3(−2(1 + 𝐸)𝑋3 + 3𝑋2
3 + 𝐸) > 𝑋2

3 − 𝐸 − (3𝑥23 − 2(1 + 𝐸)𝑋3 + 𝐸)

= 2(𝑋3 − 1)(−𝑋3 + 𝐸) > 0,

nder the assumption 𝑋3 < 𝑋3+ < min{1, 𝑋SN}. Summarizing the above discussions leads to the conclusion in (A) that E3+ is AS for
𝑋3 < 𝑋3+ < min{1, 𝑋SN}.

It is known that tr2 ≥ 0 for 𝑋3+ ∈ (𝐸,𝑋3). Therefore, there are two possible cases:

(a) when tr1 ≥ 0, except for tr1 = tr2 = 0, E3+ is unstable;
(b) when tr1 < 0, E3+ is AS (unstable) if A < AH (A > AH),

and Hopf bifurcation occurs at 𝐴 = 𝐴H,

here tr1 = tr2 = 0 defines a special Hopf critical point. 𝐴H denotes the Hopf critical point by considering 𝐴 as the bifurcation
parameter such that Tr(𝐽3) ∣𝐴=𝐴H

= 0, given by

𝐴H(𝑋3) =
tr1(𝑋3)

−tr2(𝑋3)𝑋2
3

. (17)

Further, to find the transversal condition of the Hopf bifurcation, we calculate the derivative of the trace on the equilibrium E3+ at
the critical point 𝐴 = 𝐴H to obtain

𝑇trans =
1
2
𝜕 Tr

(

𝐽3
)

𝜕𝐴

|

|

|

|

|𝐴=𝐴H

=
𝑋2

3 (1 −𝑋3)(𝑋3 − 𝐸)(𝐵𝑋3 + 2)

2
(

𝐴H𝑋2
3 + 𝐵𝑋3 + 1

)2
≠ 0.

his implies that when 𝐵 > max{−2
√

𝐴,− 2
𝑋3

}, Hopf bifurcation occurs from E3+ at the critical point 𝐴 = 𝐴H. To consider the case
6

a), we first determine the sign of tr1 which is a cubic polynomial in 𝑋3. Further, because its closed-form solution is inconvenient
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to be used in the analysis, we try to get information from its values evaluated at 𝑋3 = 𝐸 and 𝑋3 = 1:

tr1∣𝑋3=𝐸 = −𝐸(𝐸 − 1)(𝐵𝐸 + 1)

⎧

⎪

⎨

⎪

⎩

> 0, for 𝐵 > − 1
𝐸 ,

≤ 0, for 𝐵 ≤ − 1
𝐸 ,

tr1∣𝑋3=1 = (𝐸 − 1)(𝐵 + 1)

{

> 0, for 𝐵 < −1,
≤ 0, for 𝐵 ≥ −1,

(18)

as well as its derivatives:
dtr1
d𝑋3

= −6𝐵𝑋2
3 + 2((𝐸 + 1)𝐵 − 1)𝑋3,

d2tr1
d𝑋2

3

= −12𝐵𝑋3 − 2(1 − 𝐵 − 𝐵𝐸).

Since − 1
𝐸 < 1, it is obvious that tr1 may have 1 or 3 roots in the interval 𝑋3 ∈ (𝐸, 1) if − 2

𝐸 < 𝐵 ≤ − 1
𝐸 or 𝐵 > −1, and may have 0

r 2 roots in the interval 𝑋3 ∈ (𝐸, 1) if − 1
𝐸 < 𝐵 < −1.

When −1 ≤ 𝐵 < 0, it is easy to show that the equation tr1 = 0 has only one real root in the interval 𝑋3 ∈ (𝐸, 1) because

lim
𝑥→−∞

tr1 < 0, tr1(𝑋3 = 0) = 𝐸, and lim
𝑥→+∞

tr1 > 0. (19)

oreover, it is straightforward to determine that tr1 has two roots when − 1
𝐸 < 𝐵 < −1, according to (18) and the fact that at the

midpoint of 𝐸 and 1, we have

tr1||𝑋3=
1+𝐸
2

= −
(𝐸 − 1)2

4
< 0.

To further determine the number of solutions for 𝐵 > 0 and − 2
𝐸 < 𝐵 ≤ − 1

𝐸 , we calculate the second derivatives of tr1 at the two
ritical points: 𝑋3 = 0 and 𝑋3 =

𝐵𝐸+𝐵−1
3𝐵 , at which dtr1

d𝑋3
= 0, to obtain

d2tr1
d𝑋2

3

|

|

|

|

|

|𝑋3=0

= 2(1 − 𝐵 − 𝐵𝐸)

⎧

⎪

⎨

⎪

⎩

> 0, for 𝐵 > 1
1+𝐸 ,

< 0, for 𝐵 < 1
1+𝐸 ,

d2tr1
d𝑋2

3

|

|

|

|

|

|𝑋3=
𝐵𝐸+𝐵−1

3𝐵

= 2
[

1 − (𝐸 + 1)𝐵
]

⎧

⎪

⎨

⎪

⎩

< 0, for 𝐵 > 1
1+𝐸 ,

> 0, for 𝐵 < 1
1+𝐸 .

This shows that 𝑋3 = 0 and 𝑋3 = 𝐵𝐸+𝐵−1
3𝐵 are the local maximum point and local minimum point of the function tr1, respectively,

when 𝐵 < 1
1+𝐸 . Moreover, note that 𝐵𝐸+𝐵−1

3𝐵 is out of the interval that we consider (𝐵𝐸+𝐵−1
3𝐵 < 𝐸) when 𝐵 ∈ (0, 1

1+𝐸 ), since
− 1

2𝐸−1 > 1
1+𝐸 for 𝐸 ∈ (0, 12 ). Thus, the function tr1 has one real root when 𝐵 ∈ (0, 1

1+𝐸 ). When 𝐵 > 1
1+𝐸 , tr1 has local minimum

at 𝑋3 = 0 as tr1 ∣𝑋3=0= 𝐸, leading to the same conclusion as that for 𝐵 ∈ (0, 1
1+𝐸 ). The same conclusion can be drawn when

− 2
𝐸 < 𝐵 < − 1

𝐸 by a similar argument.
Summarizing the above discussions, we have the following conclusion on the number of the roots of tr1:

The number of real roots of tr1 =
⎧

⎪

⎨

⎪

⎩

1: 𝑋3𝑎, for − 2
𝐸 < 𝐵 ≤ − 1

𝐸 or 𝐵 ≥ −1,

2: 𝑋3𝑎 and 𝑋3𝑏, for − 1
𝐸 < 𝐵 < −1.

(20)

In additiona, we have dtr1
d𝑋3

∣𝑋3=𝑋3𝑎
< 0 ( dtr1

d𝑋3
∣𝑋3=𝑋3𝑎

> 0) for 𝐵 ≥ 1 ( 2𝐸 < 𝐵 ≤ − 1
𝐸 ). To clarify, we must compare 𝑋3𝑎 and 𝑋3𝑏 with 𝑋3

uch that 𝑋3 < 𝑋3 is satisfied, since it has been shown above that E3+ is AS for 𝑋3 > 𝑋3.
To achieve this, we substitute 𝑋3 = 𝑋3 into tr1 to obtain

t̃r1 = tr1 ∣𝑋3=𝑋3
=

𝑃1
27

(

𝐵2 − 𝐵
)

, where 𝑃1 = 2(1 − 𝐸 + 𝐸2)
3
2 + (1 − 2𝐸)(2 + 𝐸 − 𝐸2), (21)

where 𝐵2 is given in (9). It is easy to see that 𝑃1 > 0 for 𝐸 ∈ (0, 12 ) and t̃r1 < 0 if 𝐵 > 𝐵2. Consequently, 𝑋3𝑎 < 𝑋3 only if
> max{𝐵2,−

1
𝐸 }. Hence, E3+ is unstable for 𝐸 < 𝑋3+ < 𝑋3𝑎 if 𝐵 > max{𝐵2,−

1
𝐸 }, which leads to the conclusion of the case (a).

imilarly, it can be shown that 𝑋3 < 𝑋3𝑎 for the remaining case 𝐵2 < 𝐵 < − 1
𝐸 and tr1 < 0, for which the discussion on tr1 < 0 is

given above. The stability analysis for case (b) has two subcases:

(b-1) 𝐵 > max{− 1
𝐸 , 𝐵2}, 𝑋3𝑎 < 𝑋3 < 𝑋3; and

(b-2) 𝐵 < 𝐵 < − 1 , 𝐸 < 𝑋 < 𝑋 .
7

2 𝐸 3 3



Communications in Nonlinear Science and Numerical Simulation 131 (2024) 107846Y. Zeng and P. Yu

i

c
a
f

We move on to show that Hopf bifurcation exists for these two cases. Using (17) with a direct calculation, we have that

𝐴H(𝑋3 = 𝑋3𝑎) = 0, lim
𝑋3=𝑋

−
3

𝐴H = +∞, 𝐴H

(

𝑋3 = − 2
𝐵

)

= 𝐵2

4
,

and 𝐴H(𝑋3 = 𝐸) =
−(𝐵𝐸 + 1)

𝐸2

⎧

⎪

⎨

⎪

⎩

> 0, for 𝐵 < − 1
𝐸 ,

< 0, for 𝐵 > − 1
𝐸 .

(22)

It is known that Hopf bifurcation exists at 𝐴 = 𝐴H for case (b). Moreover, one observes that the function 𝐴H(𝑋3) takes values
from the interval (0,∞) when the condition in (b-1) is satisfied. This implies that at least one Hopf bifurcation point exists for the
condition in (b-1), since the equation 𝐴 = 𝐴H(𝑋3) must have solution in 𝑋3 ∈ (𝑋3𝑎, 𝑋3).

Similarly, one can find 𝐴 > 𝐴H(𝑋3 = 𝐸) for the case (b-2) and 𝐵 < − 1
𝐸 < −2 since 𝐸 ∈ (0, 12 ). Note that the condition 𝐵 > −2

√

𝐴

s required to ensure that the model being biological meaningful, corresponding to 𝐴 > 𝐵2

4 for negative 𝐵. And a direct calculation
gives the following relationship,

𝐵2

4
− 𝐴H(𝑋3 = 𝐸) =

(𝐵𝐸 + 2)2

4𝐸2
> 0,

which implies that 𝐴 = 𝐴H(𝑋3) has at least one root as the condition 𝐵 > −2
√

𝐴 holds. Therefore, Hopf bifurcation occurs from E3+
for case (b-2), provided that the condition 𝐵 > −2

√

𝐴 is satisfied.
Next, our goal is to identify the potential numbers of Hopf bifurcations and determine the stability conditions for the remaining

onditions. Note that Hopf bifurcation exists at 𝐴 = 𝐴H, where 𝐴H is a function depending upon 𝑋3, 𝐵 and 𝐸. If the parameters 𝐵
nd 𝐸 are fixed, then there may exist multiple Hopf bifurcations if 𝐴H is non-monotonic with respect to 𝑋3. In this case, we first
ind the derivative of 𝐴H with respect to 𝑋3:

d𝐴H
d𝑋3

=
𝑔2

dtr1
d𝑋3

− tr1
d𝑔2
d𝑋3

𝑔22
, (23)

where 𝑔2 = −tr2(𝑋3)𝑋2
3 . Because the sign of dtr1

d𝑋3
and d𝑔2

d𝑋3
can be positive or negative as 𝑋3 is varied, we rewrite the numerator of

d𝐴H
d𝑋3

as

𝑔2
dtr1
d𝑋3

− tr1
d𝑔2
d𝑋3

= 2𝑋3𝐺3(𝑋3),

where
𝐺3(𝑋3) = 𝐵𝐺1(𝑋3) + 𝐺2(𝑋3),

𝐺1(𝑋3) = 𝑋3
3
(

3𝑋2
3 − (3𝐸 + 3)𝑋3 + 𝐸2 + 𝐸 + 1

)

,

𝐺2(𝑋3) = 3𝑋4
3 − (𝐸 + 1)𝑋3

3 − 6𝐸𝑋2
3 + 3𝐸(1 + 𝐸)𝑋3 − 𝐸2,

(24)

for convenience in the analysis. Based on that, it is evident that the monotonicity of 𝐴H(𝑋3) depends on the sign of 𝐺3(𝑋3). It is not
possible to derive the analytic solution of 𝐺3(𝑋3) since it is a 5th-degree polynomial. Nonetheless, the subsequent discussion will
help determine the number of solutions for 𝐺3(𝑋3) = 0. By employing the discriminant of the quadratic polynomial factor of 𝐺1,
given by

𝛥1 = 9(1 + 𝐸)2 − 12(𝐸2 + 𝐸 + 1) = −3 (1 − 𝐸)2 < 0,

we can conclude that 𝐺1 > 0 for 𝐸 ∈ (0, 12 ).
For the quartic polynomial 𝐺2, it can be shown that 𝐺2 = 0 has two real solutions smaller than 𝐸 and out of the considered

range because

lim
𝑥→−∞

𝐺2 > 0, 𝐺2(0) = −𝐸2, 𝐺2(𝐸) = 2𝐸2(1 − 𝐸)2, 𝐺2(1) = 2(1 − 𝐸)2.

𝐺2 = 0 may have either zero or two solutions in 𝑋3 ∈ (𝐸, 1) due to 𝐺2(1) > 0. The discriminant of 𝐺2 is equal to

𝛥2 = 108𝐸3(1 − 𝐸)2(𝐸4 − 92𝐸3 + 70𝐸2 − 92𝐸 + 1),

which yields a unique positive root 𝐸0
ℎ = 0.0109596⋯, implying that 𝐺2 = 0 has two distinct real solutions, denoted by 𝑋1

3 and 𝑋2
3 ,

for 0 < 𝐸 < 𝐸0
ℎ. Moreover, we have 𝐺2 < 0 for 𝑋 ∈ (𝑋1

3 , 𝑋
2
3 ), and 𝐺2 > 0 for 𝑋 ∉ (𝑋1

3 , 𝑋
2
3 ). In addition, 𝐺2 > 0 for 𝐸0

ℎ < 𝐸 < 1
2 . The

above discussion leads to the following conclusion:

(1) When 𝐸 ∈ (0, 𝐸0
ℎ)
⋃

(𝐸0
ℎ,

1
2 ) and 𝑋3 ∈ (𝐸,𝑋1

3 )
⋃

(𝑋2
3 ,

1
2 ), only negative values of 𝐵 can appear in the equation d𝐴H

d𝑋3
= 0.

(2) When 𝐸 ∈ (0, 𝐸0
ℎ), only positive values of 𝐵 can appear in d𝐴H

d𝑋3
= 0 for 𝑋 ∈ (𝑋1

3 , 𝑋
2
3 ).

Based on the above findings, we calculate 𝐺3 at some specific points, as shown in Table 1. The restriction 𝐵 > − 2
𝐸 indicates that

the two solutions of 𝐺 = 0 are less than 𝐸 and fallen outside the interval under consideration. Furthermore, it is found that another
8

3
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Table 1
The function 𝐺3(𝑋3) and its derivatives at some special points.
𝑋3 𝐺3(𝑋3)

−∞ +∞

0 −𝐸2 < 0

𝐸 𝐸2(𝐸 − 1)2(𝐵𝐸 + 2)

{

> 0 for 𝐵 > − 2
𝐸
,

= 0 when 𝐵 = − 2
𝐸
.

1 (𝐸 − 1)2(𝐵 + 2)

⎧

⎪

⎨

⎪

⎩

> 0 for 𝐵 > −2,
= 0 when 𝐵 = −2,
< 0 for 𝐵 < −2.

− 2
𝐵

−
(𝐵𝐸 + 2)

(

𝐵2𝐸 + (4𝐸 + 4)𝐵 + 12
)

(𝐵 + 2)
𝐵4

{

≥ 0, for𝐵 ∈ [𝐵2 ,−2),
< 0, for𝐵 ∈

(

− 2
𝐸
, 𝐵2

)

.

+∞ −∞

real root of 𝐺3 is out of the range (greater than 1) if 𝐵 > −2. Similarly, for 𝐵2 < 𝐵 < −2, another real root of 𝐺3 is in 𝑋3 ∈ (− 2
𝐵 , 1).

This implies that 𝐺3 may have zero or two roots for 𝑋3 ∈ (𝐸,min{− 2
𝐵 , 1}) if 𝐵 > 𝐵2.

The number of solutions to 𝐺3 = 0 can be further determined by eliminating 𝑋3 from the equations 𝐺3 = 0 and d𝐺3
d𝑋3

= 0, giving
the following resultant: Res = 𝐸(𝐸 − 1)𝑅1𝑅2, where

𝑅1 = 𝐵4𝐸8 + 4𝐵4𝐸7 + 10𝐵4𝐸6 − 4𝐵3𝐸7 + 16𝐵4𝐸5 + 8𝐵3𝐸6 + 19𝐵4𝐸4 + 164𝐵3𝐸5 + 6𝐵2𝐸6

+ 16𝐵4𝐸3 + 68𝐵3𝐸4 − 120𝐵2𝐸5 + 10𝐵4𝐸2 + 68𝐵3𝐸3 + 1008𝐵2𝐸4 − 4𝐵𝐸5 + 4𝐵4𝐸 + 164𝐵3𝐸2

− 900𝐵2𝐸3 + 200𝐵𝐸4 + 𝐵4 + 8𝐵3𝐸 + 1008𝐵2𝐸2 + 44𝐵𝐸3 + 𝐸4 − 4𝐵3 − 120𝐵2𝐸 + 44𝐵𝐸2

− 92𝐸3 + 6𝐵2 + 200𝐵𝐸 + 70𝐸2 − 4𝐵 − 92𝐸 + 1,

𝑅2 = 𝐵2𝐸 + 4𝐵𝐸 + 4𝐵 + 12.

(25)

Solving 𝑅2 = 0 gives the solution 𝐵 = 𝐵2 < −2. Furthermore, it is observed that the graph 𝐺3(𝑋) intersects the 𝑋-axis at 𝑋3 = 𝑋3
hen 𝐵 = 𝐵2. At this special point, det(𝐽 (E3)) = tr(𝐽 (E3)) = 0, leading to a B-T bifurcation occurring at 𝑋3 = 𝑋3 if 𝐵 = 𝐵2. The

other intersection points can be found by solving 𝑅1 = 0. However, solving the high-degree polynomial 𝑅1 in 𝐵 and 𝐸 explicitly
is not possible. Hence, we denote 𝐵1 as the solution to the implicit function 𝑅1 = 0, and the intersection point is denoted by 𝑋3.
Then, finding the discriminant of 𝑅1 for 𝐵, we have

𝛥3 = −268435456𝐸7(1 − 𝐸)6(9𝐸2 − 7𝐸 + 9)2(81𝐸6 + 54𝐸5 − 9𝐸4 + 232𝐸3 − 9𝐸2 + 54𝐸 + 81)2 < 0,

implying that 𝑅1 = 0 has only two real solutions 𝐵1𝑎 and 𝐵1𝑏. In addition, it can be shown that the two solutions satisfy that
0 < 𝐵1𝑎 < 𝐵1𝑏 if 0 < 𝐸 < 𝐸0

ℎ, and 𝐵1𝑎 < 0 < 𝐵1𝑏 if 𝐸0
ℎ < 𝐸 < 1

2 . From the conditions in (1), we know that only negative values of 𝐵
can appear in 𝐺3 = 0, implying that 𝐺3(𝑋) intersects the 𝑋-axis when 𝐵 = 𝐵1𝑎 if 𝐸0

ℎ < 𝐸 < 1
2 . Therefore, we will use the notation

1 = 𝐵1𝑎 in the following for the convenience of analysis. Let the corresponding intersection point be 𝑋3. To compare 𝐵1 with 𝐵2,
e substitute 𝐵 = 𝐵2 into 𝑅1, which yields 𝑅1 > 0 for 𝐸 ∈ (0, 12 ), implying that the intersection point 𝑋3 < 𝑋3. Additionally, 𝐵1 and

𝐵2 cannot take the same value simultaneously within the range 0 < 𝐸 < 1
2 because the two equations 𝑅1 = 𝑅2 = 0 do not have a

solution for (𝐵,𝐸) under the condition on 𝐸. Using a graphical approach to plot the implicit function 𝑅1 and 𝑅2 on the 𝐵-𝐸 plane,
one can show that 𝐵1 > 𝐵2.

Besides, calculating the second derivatives of 𝐺3 at 𝐵 = 𝐵2, 𝑋3 = 𝑋3, we obtain

𝑑2𝐺3

𝑑𝑋2
3

|

|

|

|

|

|𝐵=𝐵2 ,𝑋3=𝑋3

= 1
3
[

(10𝐸 + 10)
√

𝐸2 − 𝐸 + 1 − 26𝐸2 + 32𝐸 − 26
]

< 0, for 𝐸 ∈
(

0, 1
2

)

.

This shows that 𝐺3(𝑋3) is concave downward at 𝑋3 = 𝑋3 when 𝐵 = 𝐵2 and concave upward at 𝑋3 = 𝑋3. Hence, based on this result
or (24), we know that as 𝐵 decreases, the curve of 𝐺3 touches the 𝑋3-axis first at 𝑋3 = 𝑋3 when 𝐵 = 𝐵1 and then at 𝑋3 = 𝑋3 when
𝐵 = 𝐵2. 𝐺3 > 0 for 𝑋3 ∈ (𝐸,min{− 2

𝐵 , 1}) if 𝐵 > 𝐵1 and 𝐺3 has two solutions in the given range if 𝐵2 < 𝐵 < 𝐵1.
Summarizing the above discussions, we conclude that 𝐴H increases monotonically for both cases (b-1) and (b-2) if 𝐵 > 𝐵1

ased on (22), since 𝐺3 > 0
( d𝐴H(𝑋3)

d𝑋3
> 0) in the range under consideration. Therefore, 𝐴 = 𝐴H(𝑋3) can have only one solution

in 𝑋3 ∈ (𝐸,𝑋3), which corresponds to the unique Hopf bifurcation point EH1
. Moreover, for both cases (b-1) and (b-2), we have

𝐴 > 𝐴H for 𝑋3 ∈ (𝐸,𝑋H1
). Combining these results with the conclusion for case (a), as well as the previous argument that 𝑋3 is

monotonically decreasing as 𝐶 increases on E3+, we know that under the condition (A-1), 𝑋3 is unstable for 𝐶 ∈ (𝐶H1
, 𝐶𝐸 ), and

asymptotically stable for 𝐶 ∈ (𝐶SN, 𝐶H1
),

When 𝐵 ∈ (𝐵2, 𝐵1), it is noted that 𝐺3 = 0 has two real solutions 𝑋𝑀 and 𝑋𝑚, at which 𝐴H(𝑋3) gets its local maximum and
local minimum, respectively. Therefore, 𝐴 = 𝐴H(𝑋3) can have three real solutions if 𝐴 satisfies 𝐴𝑚

H < 𝐴 < 𝐴𝑀
H , leading to the

⋃

9

three corresponding Hopf bifurcation points. Further, it follows from (22) that 𝐴 > 𝐴H (resp. 𝐴 < 𝐴H) for 𝑋3 ∈ (𝐸,𝑋H3
) (𝑋H2

, 𝑋H1
)
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(resp. 𝑋3 ∈ (𝑋H3
, 𝑋H2

)
⋃

(𝑋H1
, 𝑋3)). Thus, the conclusion on the stability can be drawn for the case (A-2)(b) in Theorem 2. Otherwise,

nly one Hopf bifurcation exists for the remaining case (A-2)(a). Because 𝐴 > 𝐴H when 𝑋3 ∈ (𝐸,𝑋H1
) for the case (A-2)(a), it has

the same stability conclusion as that for the case (A-1).
Case 2: max{−2

√

𝐴,− 2
𝐸 } < 𝐵 ≤ 𝐵2. Now, we turn to consider the case 𝐵 < 𝐵2. First, it follows from (20) that tr1 = 0 has one

olution 𝑋3𝑎 when 𝐵 < min{𝐵2,−
1
𝐸 }. When 𝐸 < 3

8 , tr1 = 0 has two solutions in 𝑋3 ∈ (𝐸, 1) if − 1
𝐸 < 𝐵 < 𝐵2, but only one solution

in 𝑋3 ∈ (𝐸,𝑋SN), since

tr1||𝑋3=𝑋SN
=

𝐵2𝐸 + 4𝐵(𝐸 + 1) + 12
𝐵2

< 0, for 𝐵 < 𝐵2.

urther, we find t̃r1 < 0 for max{−2
√

𝐴,− 2
𝐸 } < 𝐵 < min{𝐵2,−

1
𝐸 }. Thus, if max{− 1

𝐸 ,−2
√

𝐴} < 𝐵 < 𝐵2, E3+ is unstable for
< 𝑋3+ < 𝑋3𝑎, and the stability of E3+ for the remaining cases depends on the function 𝐴H(𝑋3), which follows the conditions

n (b). Because 𝐺3(𝑋3) gets its local maximum at 𝑋3 = 𝑋3 when 𝐵 = 𝐵2, and it is decreasing as 𝐵 is decreasing, 𝐺3 has a unique
oot for −2

√

𝐴 < 𝐵 < 𝐵2, which is smaller than 𝑋3. Note that for this case, 𝑋3 > 𝑋SN. Therefore, when 𝐴 > 𝐴𝑀
H , no Hopf bifurcations

an occur for this case and E3+ is unstable, which is the case (B-1). Otherwise, 𝐴 = 𝐴H(𝑋3) has two solutions, yielding two Hopf
ifurcation points at 𝑋3 = 𝑋H1

and 𝑋3 = 𝑋H2
. Then, 𝐴 > 𝐴H (resp. 𝐴 < 𝐴H) for 𝑋3 ∈ (𝐸,𝑋H2

)
⋃

(𝑋H1
, 𝑋SN) (resp. 𝑋3 ∈ (𝑋H2

, 𝑋H1
)),

eading to the conclusion on the stability for the case (B-2) in Theorem 2.
The proof for Theorem 2 is finished. □

The above analysis shows that for certain parameter values, the system (3) can exhibit multistable states. Note that the
quilibrium E0 remains stable. Further, it will be shown in the simulation part (next section) that the Hopf bifurcation can have
odimension two when the Hopf bifurcation is subcritical. Thus, it is possible to have an outer stable limit cycle surrounding an
nstable small limit cycle, and both of them enclose a stable E3. In this case, we reach a tetrastable state if E1 is also stable. We will
urther show this by simulations in the next section, where we will first determine the conditions which yield at least tristablity.

We define two types of multistable phenomena: Type-I multistable states representing the coexistence of stable equilibria; and
ype-II multistable states involving stable equilibria and stable limit cycles. In the following discussions, the lower multistable states
re not included when we discuss a higher multistable state. For example, the tetrastable state excludes the bistable and tristable
tates. The conditions for bistable states are easy to determine. If 𝐵 > −2, only E0 and E1 are stable when 𝐶 < 𝐶t and 𝑋3 does not
xist under this condition, while when 𝐶 > 𝐶t , bistable state occurs between E0 and E3 if the stability condition in Theorem 2 is
atisfied. Regarding the higher multistable phenomena, we have the following theorem.

heorem 3. For system (3), no tristable states exist if 𝐵 ≥ −2 or when the condition (B-1) is held. Tyep-I tristable states exist, i.e., the
hree stable equilibria E0,E1 and E3+ coexist,

(i) if max{𝐵2,−2
√

𝐴} < 𝐵 < −2 when 𝐶SN < 𝐶 < min{𝐶H1
, 𝐶t}; or when the condition (A-2)(b) is held with the extra condition

𝐶H2
< 𝐶 < min{𝐶H3

, 𝐶t} to be satisfied;
(ii) if the condition (B-2) holds together with the condition 𝐶H1

< 𝐶 < min{𝐶H2
, 𝐶t} to be satisfied.

Type-II tristable states, including the stable E1 and a stable limit cycle surrounding E3+ exist, if 𝑣1 < 0 and one of the following conditions
olds:

(I) (A-1) or (A-2)(a) with 𝐵 < 𝐵s and 𝐴 > 𝐴H(𝑋t );
(II) (A-2)(b) with 𝐵 < 𝐵s and 𝐴 > 𝐴H(𝑋t );

(III) (A-2)(b) with 𝐵 < 𝐵s, 𝐴 < 𝐴H(𝑋t ) and 𝐸 > 𝐸∗
t or 𝐸 < 𝐸∗

t , 𝐺3(𝑋3 = 𝑋t ) < 0;
(IV) (B-2) with 𝐴 < min{𝐴H(𝑋t ), 𝐴𝑀

H }.

o Type-II tristability exists for the case:

(V) when the condition (B-2) and 𝐴 > 𝐴H(𝑋t ) hold.

ere, the first focus value is given by

𝑣1 = −
𝑣1𝑎

8(−3𝑋2
3 + 2(1 + 𝐸)𝑋3 − 𝐸)(𝐵𝑋3 + 2)𝑋3

, where 𝑣1𝑎 = 𝐶2𝐵
2 + 𝐶1𝐵 + 𝐶0, (26)

with
𝐶2 = 𝑋3(12𝑋5

3 − 9(𝐸 + 1)𝑋4
3 + 2(𝐸2 + 𝐸 + 1)),

𝐶1 = 39𝑋4
3 − 26(𝐸 + 1)𝑋3

3 + 6(𝐸2 + 1)𝑋2
3 + 𝐸2,

𝐶0 = (𝐸 − 4𝑋3 + 1)(𝐸 −𝑋2
3 ).

Proof. The conditions for the Type-I tristable phenomenon are easy to find, since the stability conditions for E1 and E3 have been
explicitly obtained. We know that E0 is always asymptotically stable and E1 is stable for 𝐶 < 𝐶t , and the type-I tristable phenomenon
can exist only if E3+ is also stable. This requires the condition 𝐶SN < 𝐶t , leading to the constraint 𝐵 < −2. Combining this with
the stability conditions in Theorem 2, we find that if there is one Hopf bifurcation point in the cases (A-1) and (A-2)(a), E1 and
E are both stable for 𝐶 ∈ (𝐶 ,min{𝐶 ,𝐶 }). When there exist three Hopf bifurcations under the condition (A-2)(b), the Type-I
10
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tristable states again occur for 𝐶 ∈ (𝐶SN,min{𝐶H1
, 𝐶t}), but can also occur for 𝐶 ∈ (𝐶H2

,min{𝐶H3
, 𝐶t}) if 𝐶H2

< 𝐶t . Similarly, when
the condition (B-2) holds, the Type-I tristable states can only exist if 𝐶H1

< 𝐶 < min{𝐶H2
, 𝐶t} is satisfied. Moreover, it is obvious

that no tristable phenomenon can occur under the condition (B-1) since E3+ is unstable.
It is more interesting to study the Type-II tristable phenomenon, for which E0 and E1 are stable, together with a stable periodic

motion. Due to the existence condition 𝐶SN < 𝐶t for E3+, we only need to consider 𝐵 ∈ (max{−2
√

𝐴,− 2
𝐸 },−2). If there exist parameter

values satisfying tr(𝐽3)|𝐶=𝐶SN
tr(𝐽3)|𝐶=𝐶t

< 0, then it is possible to have either one or three Hopf bifurcations, which may exist in the
interval 𝐶 ∈ (𝐶SN, 𝐶t ). On the other hand, if tr(𝐽3)|𝐶=𝐶SN

tr(𝐽3)|𝐶=𝐶t
> 0, then either no Hopf bifurcation or two Hopf bifurcations

ight exist in the interval 𝐶 ∈ (𝐶SN, 𝐶t ). Note that only if at least one Hopf bifurcation exists in the range, then there is a possibility
f having stable limit cycles. Moreover, tetrastable phenomenon is possible if the parameters satisfy the condition under which the
opf bifurcation has codimension two. We leave it to be discussed in the next section.

Now, we assess the signs of tr(𝐽3)|𝐶=𝐶SN
and tr(𝐽3)|𝐶=𝐶t

. A direct computation gives

tr(𝐽3)|𝐶=𝐶SN
= 𝐵2 − 4𝐴

𝐵4
(𝐸𝐵2 + 4(1 + 𝐸)𝐵 + 12)

⎧

⎪

⎨

⎪

⎩

< 0, if 𝐵 ∈
(

max{−2
√

𝐴,𝐵2},−2
)

,
= 0, if 𝐵 = 𝐵2,
> 0, if 𝐵 ∈

(

− 2
𝐸 , 𝐵2

)

.

(27)

ecause tr(𝐽3)|𝐶=𝐶SN
changes its sign at 𝐵 = 𝐵2, the following discussions will be divided into two cases: 𝐵 > 𝐵2 and 𝐵 < 𝐵2, which

are actually the cases (A) and (B) in Theorem 2. Recall the conclusion in Theorem 2 that E3+ remains stable within the interval
𝑋3 ∈ (𝑋3, 𝑋SN) for the case (A). Further, it is determined that 𝐹1 = 0 has two solutions 𝑋3 = 𝑋1 = 1 and 𝑋3 = 𝑋t = − 1

𝐵+1 at 𝐶 = 𝐶t .
To determine the sign of tr(𝐽3)|𝐶=𝐶t

, we substitute the second solution 𝑋3 = 𝑋t into tr(𝐽3). Therefore, for 𝑋t ∈ (𝑋3, 𝑋SN), it is clear
hat no Hopf bifurcation can occur in 𝐶 ∈ (𝐶SN, 𝐶t ) and E3 remains asymptotically stable in this given range and no Type-II tristable
an occur. Thus, the existence of the Type-II tristable states requires the additional condition 𝑋t < 𝑋3, which is guaranteed under

the restriction,

𝐵 < 𝐵s =
−2𝐸 +

√

𝐸2 − 𝐸 + 1 − 1
𝐸

.

Under these conditions, we have tr(𝐽3)|𝐶=𝐶t
> 0 if 𝐴 > 𝐴H(𝑋3 = 𝑋t ), which directly gives the following conclusion when the

condition for case (A) is satisfied:

tr(𝐽3) ∣𝐶=𝐶SN
tr(𝐽3) ∣𝐶=𝐶t

{

> 0, if 𝐴 < 𝐴H(𝑋3 = 𝑋t ),
< 0, if 𝐴 > 𝐴H(𝑋3 = 𝑋t ).

(28)

Since there is only one Hopf bifurcation under the condition (A-1) or (A-2)(a), the Type-II tristable phenomenon can only occur
for these two cases if tr(𝐽3)|𝐶=𝐶SN

tr(𝐽3)|𝐶=𝐶t
< 0 and 𝑋H1

∈ (𝑋t , 𝑋SN), which in turn requires 𝐴 > max{𝐴H(𝑋3 = 𝑋t ),
𝐵2

4 }. Otherwise,
no Hopf bifurcation can exist in 𝐶 ∈ (𝐶SN, 𝐶t ) and so no Type-II tristable states exist for the cases (A-1) and (A-2)(a). The condition
(I) is proved.

For the condition (A-2)(b), three Hopf bifurcations may exist. However, one cannot determine the possibility of the Type-II
tristable state merely based on the sign of tr(𝐽3)|𝐶=𝐶SN

tr(𝐽3)|𝐶=𝐶t
because there are possibilities of having multiple or zero Hopf

bifurcation points located in the interval 𝑋3 ∈ (𝑋t , 𝑋SN). Thus, in order to determine the number of Hopf critical points in the
considered interval, we need to compare 𝑋t with 𝑋𝑀 and 𝑋𝑚, since it leads to the comparison of 𝑋H with 𝑋t . We first calculate 𝐺3
at 𝑋3 = 𝑋t to obtain

𝐺3(𝑋3 = 𝑋t ) =
(𝐵 + 2)
(1 + 𝐵)5

𝐹2,

where

𝐹2 = −
[

𝐵4𝐸2 + 3(2𝐸2 + 𝐸)𝐵3 + (11𝐸2 + 13𝐸 + 1)𝐵2 + 2(4𝐸2 + 7𝐸 + 1)𝐵 + 2(𝐸2 + 2𝐸 − 1)
]

.

t has been proved for Theorem 2 that 𝐺3 has two roots 𝑋3 = 𝑋𝑀 and 𝑋3 = 𝑋𝑚 in the interval 𝑋3 ∈ (𝐸,𝑋3) for the case (A-2)(b).
lso, it is clear from the above discussion that 𝑋t ∈ (𝑋𝑀 , 𝑋𝑚) if 𝐺3(𝑋3 = 𝑋t ) < 0.

However, there are two possibilities for 𝐺3(𝑋3 = 𝑋t ) > 0: 𝑋t < 𝑋𝑀 and 𝑋t > 𝑋𝑚. To further determine the position of 𝑋t , we
eliminate 𝑋t from the two equations: 𝐺3(𝑋3 = 𝑋t ) = 0 and d𝐺3

d𝑋3
(𝑋3 = 𝑋t ) = 0, giving the resultant:

Rest = (𝐸6 + 15𝐸5 + 84𝐸4 − 115𝐸3 + 141𝐸2 − 42𝐸 + 1)(𝐸 − 1).

Solving Rest = 0 for 𝐸, under the constraint 𝐸 ∈ (0, 12 ), we find the parameter values,

(𝐵,𝐸) = (𝐵∗
t , 𝐸

∗
t ) = (−2.579834⋯ , 0.350565⋯),

at which 𝐺3 intersects the 𝑋-axis at 𝑋3 = 𝑋t . Therefore, we have

𝑋t > 𝑋𝑚,
( d𝐺3
d𝑋3

(𝑋3 = 𝑋t ) > 0
)

, if 𝐸 < 𝐸∗
t ,

𝑋t < 𝑋𝑀 ,
( d𝐺3
d𝑋3

(𝑋3 = 𝑋t ) < 0
)

, if 𝐸 > 𝐸∗
t .

This gives the conditions for the position of 𝑋t , which determines the number of Hopf bifurcation points in 𝐶 ∈ (𝐶SN, 𝐶t ). To further
study the stability of the bifurcating limit cycles, we apply the method of normal forms associated with Hopf and generalized Hopf
11
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bifurcations, and the Maple program [26] to obtain the first-order focus value 𝑣1 given in (26). Then, if 𝑣1 < 0 (resp. 𝑣1 > 0), the
opf bifurcation is supercritical (resp. subcritical) and the bifurcating limit cycle is stable (resp. unstable) enclosing an unstable

resp. a stable) focus.
Combining the above results with the formula 𝑣1 given in (26), we obtain the following conclusions, corresponding to the cases

II) and (III).

∙ When the condition (A-2)(b) with 𝐴 < 𝐴H(𝑋t ) holds, then

◦ either no Type-II tristable states exist if 𝐺3(𝑋3 = 𝑋t ) > 0 and 𝐸 < 𝐸∗
t ;

◦ or two Hopf critical points exist within 𝐶 ∈ (𝐶SN, 𝐶t ) if 𝐺3(𝑋3 = 𝑋t ) < 0 or 𝐺3(𝑋3 = 𝑋t ) > 0, and 𝐸 > 𝐸∗
t , for which

tristable states exist if 𝑣1 < 0.

∙ When the condition (A-2)(b) with 𝐴 > 𝐴𝐻 (𝑋t ) holds, then

◦ either one Hopf critical point exists for 𝐶 ∈ (𝐶SN, 𝐶t ) if 𝐺3(𝑋3 = 𝑋t ) < 0 or 𝐺3(𝑋3 = 𝑋t ) > 0, and 𝐸 < 𝐸∗
t ;

◦ or three Hopf critical points exist within 𝐶 ∈ (𝐶SN, 𝐶t ) if 𝐺3(𝑋3 = 𝑋t ) > 0 and 𝐸 > 𝐸∗
t ;

for which tristable states exist if 𝑣1 < 0.

Having discussed the Type-II tristable phenomenon for the case (A), we now turn to consider the possibility of the Type-II tristable
henomenon for the case (B) when 𝐵 < 𝐵2. First, note that no tristable phenomenon can happen under the condition (B-1), because
3+ is unstable. Thus, we only need to consider the tristability for the case (B-2). Based on (27), a similar argument as that used in
he above discussion can be applied to obtain that tr(𝐽3)|𝐶=𝐶SN

tr(𝐽3)|𝐶=𝐶t
< 0 if 𝐴 < 𝐴H(𝑋t ). This implies that one Hopf bifurcation

ppears from E3+ at 𝐶H1
∈ (𝐶SN, 𝐶t ).

On the other hand, tr(𝐽3)|𝐶=𝐶SN
tr(𝐽3)|𝐶=𝐶t

> 0 if 𝐴 > 𝐴H(𝑋t ). So, either no Hopf bifurcation point or two Hopf bifurcation points
xist in (𝐶SN, 𝐶t ) for 𝐴 > 𝐴H(𝑋t ). Moreover, it is known that 𝐺3 has a unique root and continues to decrease for 𝐵 < 𝐵2. Hence,
or the case 𝐴 > 𝐴H(𝑋t ) when (B-2) holds, it is clear that no Hopf bifurcation points exist in (𝐶SN, 𝐶t ) if 𝐺3(𝑋3 = 𝑋t ) < 0; whereas
f 𝐺3(𝑋3 = 𝑋t ) > 0, two Hopf bifurcation points exist in the given range. In particular, we have found that codimension-two Hopf
ifurcation cannot occur under the condition (B-2). Moreover, it is not possible to have 𝑣1 < 0 at the Hopf bifurcation point if
> 𝐴H(𝑋t ) by searching for values in a given numerical range. This implies that no stable limit cycles exist and so no Type-II

ristable states can occur for the case (V). But it is possible to obtain 𝑣1 < 0 for the remaining case (IV) with 𝐴 < min{𝐴𝑀
H , 𝐴H(𝑋t )},

hich will be discussed in the next section.
The existence of tetrastable is again based on the existence of Hopf bifurcation for 𝐶 ∈ (𝐶SN, 𝐶t ), but it requires the existence of

odimension-two Hopf bifurcation, namely, by normal form theory, it requires that the first and second focus values satisfy 𝑣1 = 0
nd 𝑣2 ≠ 0. This will be further discussed in the next section.

The proof of Theorem 3 is complete. □

. Simulations

In this section, we present simulations to demonstrate the theoretical results obtained in the previous sections, particularly on
opf bifurcation and the multistable phenomena, which agree with the bifurcation diagrams. The simulated examples are chosen

rom the following cases representing the multistable states:

∙ bistable state: case (A-1);
∙ tristable state: cases (I), (IV) and (V);
∙ tetrastable state: case (II),

s shown in Figs. 2–6. Some interesting phenomena can be observed such as more than one limit cycles bifurcating from a single
opf critical point.

First, we show a bifurcation diagram, as depicted in Fig. 2, by taking parameter values for the case (A-1) in Theorem 2: 𝐴 = 𝐷 = 1,
𝐵 = −1 and 𝐸 = 3

10 . The bifurcation diagram projected on the 𝐶-𝑋 plane is shown in Fig. 2(a), while the bifurcation diagram in
he 3-d 𝐶-𝑋-𝑌 space is given in Fig. 2(b), from which the bistability can be clearly observed between E0 and E1 for 𝐶 < 𝐶t ,
nd between E0 and E3+ for 𝐶 > 𝐶t . It is seen that the positive (interior) solution of system (3) exists when the population
f predators remains at a relatively small amount. At the above set of parameter values, we have a Hopf bifurcation from the
quilibrium E3+ = (𝑋3+, 𝑌3+) ≈ (0.556287, 0.153965) at the critical point 𝐶H1

≈ 2.433852, at which the first focus value is obtained as
𝑣1 ≈ −0.014168 < 0, indicating that the Hopf bifurcation is supercritical, agree with the bifurcation diagram.

The second example is chosen for the case (I) in Theorem 3, for which both Type-I and Type-II tristable phenomena exist. We
hoose parameter values: 𝐷 = 1 and 𝐸 = 0.3, for which

𝐵1 ≈ −2.563933, 𝐵2 ≈ −2.741204, 𝐵s ≈ −2.370601.

To ensure the conditions 𝐵1 < 𝐵 < 𝐵s and 𝐵 > −2
√

𝐴, we take the values, 𝐵 = −2.5 and 𝐴= 3, which yield that 𝐶SN < 𝐶H1
< 𝐶t , and

the Hopf bifurcation occurs from the equilibrium E3+ = (𝑋3, 𝑌3) ≈ (0.707701, 0.123476) at the critical point 𝐶H1
≈ 1.464078. Three

values of 𝐶 are taken for simulations: (i) 𝐶 = 1.45, for which the Type-I tristable states exist as all the three equilibria E , E and
12

0 1



Communications in Nonlinear Science and Numerical Simulation 131 (2024) 107846Y. Zeng and P. Yu
Fig. 2. Bifurcation diagrams of system (3) for 𝐴 = 𝐷 = 1, 𝐵 = −1, 𝐸 = 0.3: (a) projected on the 𝐶-𝑋3 plane; and (b) projected in the 𝐶-𝑋-𝑌 space.

E3+ are AS. (ii) 𝐶 = 1.48 for which E1 is AS while E3+ is an unstable focus surrounded by a stable limit cycle. (iii) 𝐶 = 1.55 for
which 𝐶 > 𝐶t , implying that both E1 and E3+ are unstable, and E3− does not exist, but a stable limit cycle exists around E3+. At this
Hopf critical point, the first focus value equals 𝑣1 ≈ −1.108573, implying that the Hopf bifurcation is supercritical. The bifurcation
diagram is shown in Fig. 3(a) and simulations are given in Fig. 3(b)–(d), which validate the theoretical predictions. Note that the
notations 𝛺E0 , 𝛺E1 , 𝛺E3+ and 𝛺LCs

in Fig. 3(b) and (c) denote the trapping regions (attracting basins) for E0, E1, E3+ and the stable
limit cycle LCs, respectively. They are separated by the blue curves S1 and S3− which are the stable manifolds connecting the saddles
E2 and E3−, respectively.

Another example showing the tristable states is depicted in Fig. 4 by taking the parameter values for the case (V) in Theorem 3.
To satisfy the condition of this case, we first choose 𝐸 = 0.3, yielding 𝐵2 ≈ −2.741204. We then take a value for 𝐵 = −4 < 𝐵2, which
gives

𝐴𝑀
H ≈ 4.338853, 𝐴H(𝑋t ) ≈ 3.571429, 𝐵2

4 = 4.

Further, we take 𝐴 = 4.3 < 𝐴𝑀
H , which results in two Hopf bifurcation points defined by

𝐶H1
≈ 0.614483, E3H1

≈ (0.390505, 0.013237),
𝐶H2

≈ 0.379446, E3H2
≈ (0.438239, 0.012913).

It can be shown that 𝑣1 > 0 for both the two Hopf bifurcations, implying that both the two Hopf bifurcations are subcritical, see
the bifurcation diagram in Fig. 4(a). This indicates that the bifurcating limit cycles are unstable, as confirmed by the simulations
depicted in Fig. 4(b) and (c). In Fig. 4(c), two initial points are chosen, denoted by the two blue points, to simulate the unstable
limit cycle. Backward time integration is used to obtain the red and green colored trajectories, both converging to the unstable limit
cycle. This clearly indicates that for this case, there does not exist Type-II tristable phenomenon since no stable limit cycles bifurcate
from the Hopf bifurcation point, but the Type-I tristable states do exist.

However, the Type-II tristable phenomenon can also exist for the case (B-2). To achieve this, we must find possible parameter
values such that 𝑣1 < 0. By searching the values of 𝐸 ∈ (0, 0.5) with a step 0.01, and then searching the values of 𝐵 ∈ (− 2

𝐸 , 𝐵2) with
a step 0.1, we obtain 7 sets of solutions satisfying 𝐵2

4 < 𝐴 < 𝐴𝑀
H to yield 𝑣1 < 0. Moreover, all these 7 sets of solutions also satisfy

𝐶SN < 𝐶H1
< 𝐶t < 𝐶H2

, indicating that E3 has only one Hopf bifurcation falling in the range that E1 is AS, corresponding to the case
(IV) in Theorem 3. Moreover, we do not find parameter values satisfying 𝑣1 = 0 for the case (B-2), implying that most likely there
do not exist parameter values which yield codimension-two Hopf bifurcation, and the number of bifurcating limit cycles is one. As
an example, we take one of the 7 sets of solutions:

𝐴 = 2.8025, 𝐵 = −2.9, 𝐷 = 1, 𝐸 = 0.16.

Note that all the conditions listed for the case (IV) in Theorem 3 are satisfied and one can determine the two Hopf bifurcation points
as

𝐶H1
≈ 0.725118, E3H1

≈ (0.621703, 0.078738),
𝐶H2

≈ 5.092997, E3H2
≈ (0.282012, 0.125823).

A direct computation yields

𝑣 (E ) ≈ −0.007294, 𝑣 (E ) ≈ 0.234366,
13
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Fig. 3. Bifurcation diagram and simulations of system (3) for 𝐴 = 3, 𝐵 = −2.5, 𝐷 = 1, 𝐸 = 0.3: (a) bifurcation diagram projected on the 𝐶-𝑋 plane, where solid
and dashed curves represent stable and unstable equilibria, respectively; (b) simulated phase portrait for 𝐶 = 1.45; (c) simulated phase portrait for 𝐶 = 1.48; and
(d) simulated phase portrait for 𝐶 = 1.55.

indicating that the Hopf bifurcation is supercritical (subcritical) at E3H1
(E3H2

), which can be seen from the bifurcation diagram in
Fig. 5(a) and (b), where the pink solid (dashed) curve represents the stable (unstable) limit cycle. The Type-II tristable phenomenon
also exists for 𝐶 ∈ (𝐶SN, 𝐶H1

) and the Type-I tristable state exists for 𝐶 ∈ (𝐶H1
, 𝐶t ). Two values of 𝐶 = 0.72 and 𝐶 = 5 are chosen

for simulations: showing a stable limit cycle bifurcating from the supercritical Hopf bifurcation point 𝐶H1
(see Fig. 5(c)), yielding

the Type-II tristable phenomenon (the AS E0 is not shown in Fig. 5(c)); and an unstable limit cycle bifurcating from the subcritical
Hopf bifurcation point 𝐶H2

, leading to the Type-I bistable phenomenon with both E0 and E3 AS (see Fig. 5(e)).
The next example is chosen for the case (II) in Theorem 3, for which the system has three Hopf bifurcations, and both the tristable

and tetrastable phenomena exist, with the parameters satisfying 𝐶SN < 𝐶H1
< 𝐶H2

< 𝐶H3
< 𝐶t . We first take 𝐷 = 1 and 𝐸 = 0.4,

which gives that

𝐵1 ≈ −2.571408, 𝐵2 ≈ −2.641101, 𝐵s ≈ −2.320551.

Then, 𝐵 = −2.6 is chosen to ensure that the condition (II) is satisfied. Moreover, it is found that

𝑋𝑀 ≈ 0.635210, 𝑋𝑚 ≈ 0.704582, 𝑋t = 0.625
𝐴𝑀
H ≈ 2.055536, 𝐴𝑚

H ≈ 2.040534, 𝐴H(𝑋t ) ≈ 2.054737.

Consequently, 𝐴 = 2.0551 is chosen such that the condition max{𝐴𝑚
H, 𝐴H(𝑋t )} < 𝐴 < 𝐴𝑀

H is satisfied. We choose three particular
values for 𝐶, yielding three different cases. (i) 𝐶 = 0.368 for which the Type-I tristable state exists, as shown in Fig. 6(b) in which
14
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Fig. 4. Bifurcation diagram and simulations of system (3) for 𝐴 = 4.3, 𝐵 = −4, 𝐷 = 1, 𝐸 = 0.3: (a) bifurcation diagram projected on the 𝐶-𝑋 plane, where solid
and dashed curves represent stable and unstable solutions, respectively; (b) simulated phase portrait for 𝐶 = 0.6 showing one unstable limit cycle; and (c) a
zoomed part of the phase portrait in (b), where the unstable limit cycle is approached by the red and green trajectories.

Fig. 5. Bifurcation diagrams and simulations of system (3) for 𝐴 = 2.8025, 𝐵 = −2.9, 𝐷 = 1, 𝐸 = 0.16: (a) bifurcation diagram projected on the 𝐶-𝑋 plane,
where solid and dashed curves represent stable and unstable solutions, respectively; (b) a zoomed part of the bifurcation diagram in part (a); (c) simulated phase
portrait for 𝐶 = 0.72 showing a stable limit cycle; (d) a zoomed part of the phase portrait in part (c); (e) simulated phase portrait for 𝐶 = 5 showing an unstable
limit cycle; and (f) a zoomed part of the phase portrait in part (e), where the unstable limit cycle is approached by the green and red trajectories.
15
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Fig. 6. Bifurcation diagram and simulations of system (3) for 𝐴 = 2.0551, 𝐵 = −2.6, 𝐷 = 1, 𝐸 = 0.4: (a) bifurcation diagram projected on the 𝐶-𝑋 plane, where
solid and dashed curves represent stable and unstable equilibria, respectively; (b) simulated phase portrait for 𝐶 = 0.368; (c) simulated phase portrait for 𝐶 = 0.4;
and (d) simulated phase portrait for 𝐶 = 0.44, where the unstable limit cycle and stable limit cycle are approached by the blue and red curves, respectively.

E0 is not shown. Note that the solution trajectories slowly converge to the focus E3+ and converge fast to the node E1. (ii) 𝐶 = 0.4
for which both the Type-I and Type-II tristable phenomena exist, but they are separated in the two sides of the Hopf critical point
𝐶H1

, see Fig. 6(a). The Type-I tristable states exist on the left side of 𝐶H1
, consisting of the three AS equilibria E0, E1 and E3+. On

the right side of 𝐶H1
, it is seen from Fig. 6(a) that a stable limit cycle LCs surrounds the unstable focus E3+ (see Fig. 6(c)) with

coexistence of stable nodes E0 and E1, showing a Type-II tristable state. The simulated phase portrait is shown in Fig. 6(c), where
all the trajectories in the region 𝛺LCs

, bounded by the stable manifold S3− connecting the saddle E3−, converge to the stable limit
cycle LCs. (iii) 𝐶 = 0.44 for which, again like the case (ii), both Type-I tristable and Type-II tetrastable phenomena occur, but now
they can occur on both sides or just one side of the Hopf critical points. Taking a look on the left side of the Hopf critical point
𝐶H3

in Fig. 6(a), we can see that a stable focus E3+ is surrounded by two limit cycles, as shown in Fig. 6(d), with the inner one
LCu unstable (the blue cycle simulated by using the ‘‘backward time’’ integration scheme) and the outer one LCs stable (in red
color). All the trajectories in the region 𝛺E3+ converge to E3+, while all the trajectories in the region 𝛺LCs

bounded by S3− and
the unstable limit cycle LCu converge to the stable limit cycle LCs. Similarly simulated diagrams can be obtained around the Hopf
critical point 𝐶H2

. This illustrates the coexistence of the three AS equilibria, E0,E1 and E3+ (the Type-I tristable phenomenon), as
well as the coexistence of the three AS equilibria and the larger stable limit cycle LCs (the Type-II tristable phenomenon). This can
be analytically proved by calculating the first and second focus values at the Hopf bifurcation points, given as follows:

𝐶H1
≈ 0.370805, E3H1

≈ (0.726992, 0.024065), 𝑣1 ≈ −0.208041,
𝐶H2

≈ 0.429945, E3H2
≈ (0.643233, 0.0239987), 𝑣1 ≈ 0.0491717, 𝑣2 ≈ −4.697860,
16

𝐶H3
≈ 0.451159, E3H3

≈ (0.627605, 0.0239995), 𝑣1 ≈ 0.071250, 𝑣2 ≈ −4.764436,
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Table 2
Multistable states of system (3).

Bistable Type-I (E0 , E1), (E0 , E3+), (E1 , E3+) Figs. 2, 3(b), 4(b), 5(e)
Type-II E0 and a stable LC Figs. 3(c), 5(c), 6(c)

Tristable Type-I (E0, E1, E3+) Figs. 4(b), 5(e)
Type-II (E0 , E1) and a stable LC Figs. 3(c), 6(c)

Tetrastable Type-II (E0 , E1 , E3+) and a stable LC,
enclosing an unstable LC and E3+

Fig. 6(d)

where the focus values at the Hopf critical points 𝐶H2
and 𝐶H3

satisfy 𝑣1 ≪ − 𝑣2, which guarantees the existence of two limit cycles.
It should be noted that this Type-II tetrastable phenomenon is different from that shown in part (ii). Here, there exists another

nstable limit cycle enclosing the stable equilibrium E3+, indicating that the Hopf bifurcation is subcritical. This implies that the
odimension of Hopf bifurcation in the system considered in this paper is at least two. Moreover, we conduct numerical simulations
o further demonstrate that the codimension-two Hopf bifurcation is only applicable in the cases when the Hopf bifurcation is
ubcritical. A complete study on the codimension of Hopf bifurcation is out of the scope of this paper.

The above obtained results show that the system (3) can exhibit rich dynamics and multistable states. In a summary, we list all
he possible multistable states in Table 2, where LC represents limit cycle.

The multistable phenomenon can cause complex dynamical behaviors and has significant impact on the properties of biological
ystems. For example, consider the Type-I bistable state, as shown in Fig. 3(b), which, in fact, is also a Type-I tristable case since E0
s also asymptotically stable. Let S1 and S3− denote the stable manifolds connecting the saddles E1 and E3−, respectively, see Figs. 3
nd 6. Then, S1 and S3− divides the whole 𝑋-𝑌 plane into three regions, called 𝛺E0 , 𝛺E1 and 𝛺E3+ , which are the trapping areas
or attracting basins) for E0, E1 and E3+, respectively, see Fig. 3(b). Therefore, depending upon the initial condition, I0 = (𝑋0, 𝑌0), a
rajectory may converge to E0 if I0 ∈ 𝛺E0 , or to E1 if I0 ∈ 𝛺E1 , or to E3+ if I0 ∈ 𝛺E3+ . This implies the biological implication that due
o the coexistence of the three stable equilibria, different initial states which characterize a certain situation of the system, the prey
nd predator populations may both extinct, or the prey reaches a fixed value but the predator goes to extinction, or both prey and
redator coexist and stay in a balanced manner. Such complex dynamical behavior may reflect the real situation in reality. For the
ype-II tetrastable states, it has one more unstable limit cycle LCu (see Fig. 6(d)), which is a separatory between the stable equilibrium
3+ and the stable limit cycle LCs, leading to one more trapping region 𝛺LCs

between S3− and LCu. In this case, more complicated
ynamical behaviors including multiple limit cycle bifurcation (oscillation between the populations of prey and predator) show a
ore complex yet more realistic situation due to the existence of the Allee effect.

. Conclusion and discussion

In this paper, we have investigated a predator–prey system with generalized Holling type III functional response and the strong
llee effect. The hierarchical parametric analysis is applied to obtain explicit conditions in a 5-dimensional parameter space for the
xistence and stability of equilibrium solutions. In particular, a detailed study on Hopf bifurcation is given to show bifurcation of
ultiple limit cycles and multistable states. Numerical simulations are conducted to find that the populations of predators and prey

an reach a state of periodic fluctuations, which agrees with theoretical predictions from normal forms. The stability analysis shows
hat the extinction equilibrium is asymptotically stable, implying that both populations tend to go extinct when the population
ensities are low and subject to a strong Allee effect. Also, the complex dynamics of the predator–prey system are analyzed.

To study the rich dynamics of the system, we first derive the parametric conditions for the existence of biologically meaningful
quilibria. It is found that the system has a maximum of five equilibria, two of which are interior equilibria. The hierarchical
arametric analysis is used to further study the stability of these equilibria and possible bifurcations. Especially, Hopf bifurcation is
roved to appear from the interior equilibrium E3+ by choosing the parameter 𝐶 as the bifurcation parameter. Moreover, explicit
xpressions given in terms of the parameters are derived to prove that up to three Hopf bifurcation points are possible as 𝐶 is varied.

An interesting biological behavior has been identified, namely, the system can exhibit multistable states. The method of normal
orms is applied to show that codimension-two Hopf bifurcation is possible under certain parameter values. Combining the analytical
nd numerical studies show that the system admits bistability, tristability and even tetrastability. Simulations show that the system
an have two limit cycles, where a large outer stable limit cycle surrounds a small inner unstable limit cycle, and both of them
nclose a stable interior equilibrium when the parameters satisfy the codimension-two Hopf condition, and the Hopf bifurcation is
ubcritical. Note that the origin of the system (E0) is always stable, meaning that populations will both go extinct when the initial
opulations start close enough to E0 or at any point under the threshold. This also applies to the real situation where a population
ends to go extinct when the population size is subject to a strong Allee effect. The dynamical behaviors found in this paper have
iological implications:

∙ Populations reach a stable oscillation (E1 and E3 unstable with a stable limit cycle).
∙ Both populations (E1 unstable, but E3 stable) coexist.
∙ Either a stable oscillation of the populations or an extinction of the predator (E1 stable, but E3 unstable, with a stable limit

cycle) may occur.
∙ Either a coexistence of the populations or an extinction of the predator (E1 and E3 stable) happens. A stable oscillation is

also possible under certain initial conditions (with codimension-2 Hopf bifurcation).
17
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Compared with the model without the Allee effect [24], the system considered in this paper with the strong Allee effect exhibits
ore complex dynamical behaviors, including bifurcation of multiple limit cycles and multistable phenomena. Since the system
ithout the Allee effect always has an unstable equilibrium at the origin (0, 0), while the system with the Allee effect always has

an unstable equilibrium at (𝐸, 0), it implies that the dynamical behavior near the origin (0, 0) of the former is to appear near the
equilibrium (𝐸, 0) of the later, causing more complex behaviors due to the additional existence of stable equilibrium E0.
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