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Abstract. A common task in studying nonlinear dynamical systems is to

derive the conditions on stability and bifurcations, which becomes difficulty
when the system contain multiple parameters. In particular, finding the explicit

conditions under which Hopf bifurcation can occur is not easy and becomes very

involved even for simple models. In this paper, an epidemic model is presented
to illustrate how to use a hierarchical parametric analysis for bifurcation study,

in particular to demonstrate how to choose proper parameters as bifurcation

parameters, how to deal with other “control” parameters, and how to derive
the conditions on stability and Hopf bifurcation, which are explicitly expressed

in terms of system parameters.

1. Introduction. Bifurcation and limit cycle theory plays a very important role in
the study of nonlinear dynamical systems, related to the well-known phenomenon
of self-oscillations arising from sciences and engineering [5, 6]. Hopf and Bogdanov-
Takens bifurcations are two main bifurcations generating limit cycles in real world
systems. A common task of the study for such systems is to determine the con-
ditions under which bifurcations may happen and to derive the associated normal
form, which is not easy even for lower-dimensional systems. Particularly, when con-
sidering practical systems, due to physical limitations on the system parameters,
determining the conditions on stability and bifurcations becomes very difficult such
as determining the codimension of bifurcations. When a dynamical system contains
multiple parameters, the classical method for stability and bifurcation analysis is
often to put all parameters in a general formula, which makes it very difficult in
applications, since such a general formula does not provide any clues for choosing
parameter values in identifying different bifurcation phenomena. A more sophis-
ticated approach is to choose appropriate parameters as bifurcation/perturbation
parameters so that the unfolding in the normal form can be properly determined.
The chosen bifurcation parameters usually play an important role in the bifurca-
tion analysis, but their choice is not unique and often depends upon the physical
properties. Once the bifurcation parameters are determined, then how to treat the
remaining parameters, called “control parameters”, is also important since some of
these parameters may determine the “marginal values” in the parameter space for
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bifurcation analysis. Therefore, developing a hierarchical parametric analysis, like
what was used in [7, 14], is necessary for the applications in solving stability and
bifurcations arising from real world problems.

Another difficulty in solving bifurcation problems is to determine the maximal
number of bifurcating limit cycles, since it is related to complex behaviours of
the system. For example, suppose in a 2-dimensional dynamical system there exists
one unstable limit cycle arising from Hopf bifurcation, which encloses a stable focus,
then the phase portraits of the system have at least two regions on the 2-dimensional
plane, which are separated by the unstable limit cycle, and each of the regions may
exhibit complete different dynamical behaviours. However, due to more parameters
involved in the system, there may simultaneously exist two limit cycles enclosing
a stable focus, the situation becomes more complex since there are three regions
separated by the two limit cycles, and each region may exhibit different dynamical
behaviour. In reality, there always exist physical constraints on system parameters,
which makes it much more difficult in determining the number of bifurcating limit
cycles. For instance, considering the limit cycles arising from Hopf bifurcation in
a nonlinear system described by ordinary differential equations in a 2-dimensional
plane, we suppose that the system involves 4 real parameters. In general, the maxi-
mal number of limit cycles may be 4, the same as the number of parameters, if there
are no restrictions on these parameters, for example, all parameters are assumed
to be real, leading to solving multi-variate polynomial equations in real domain.
However, if it is a biological system, due to physical limitation on the parameters,
the maximal number of limit cycles might be 3, 2, or even only 1. In such a case, it
is much more difficult to determine the maximal number of bifurcation limit cycles,
that is, to determine the codimension of Hopf bifurcation. The difficulty is not only
from computing the normal form (or the focus values) associated with generalized
Hopf bifurcation, but also from solving the polynomial systems, since one needs to
determine the sign of the polynomials with many variables (parameters).

For Bogdanov-Takens bifurcation, the analysis of codimension-2 Bogdanov-Takens
bifurcation has become standard [5, 8]. However, for codimension-3 or higher-
codimension Bogdanov-Takens bifurcations, the computation of the normal forms
becomes much more involved, particularly in order to establish the relation between
the original system and the simplified system (the normal form). Recently, an ef-
ficient computation approach, called “one-step” transformation method, has been
developed [14, 15] for higher-codimensional Bogdanov-Takens bifurcations, which is
based on the simplest normal form theory [4, 13]. This approach not only derives
the simplest normal form with unfolding in one unified step, but also generates
the nonlinear transformations between the normal form and the original system,
as well as that between the new and the original bifurcation parameters. That
makes it very convenient in real applications. However, this approach demands
more computational effort.

In this paper, we will use a simple epidemic model to illustrate how to determine
the explicit conditions on Hopf bifurcation. The epidemic model has been stud-
ied in [10] for Hopf bifurcation and codimension-2 Bogdanov-Takens bifurcation.
Later, Li et al. [9] gave a complete analysis on the codimension-3 Bogdanov-Takens
bifurcation using the method developed in [3]. In the next section, we introduce
the simple epidemic model and briefly discuss the solution property of the model.
In Section 3, we provide a complete stability analysis and obtain all conditions for
generating Hopf bifurcation. A concluding remark is given in Section 4.
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2. System modelling and solution property. In this paper, the simple SI-
epidemic model studied in [10] will be reinvestigated and main attention is focused
on stability and bifurcations, specially on Hopf bifurcation. This model is described
by the following ordinary differential equations:

dS

dt
= A− dS − β(1 + εI)SI,

dI

dt
= β(1 + εI)SI − (d+ α)I,

(1)

where S and I represent the numbers of the susceptible and infective populations,
respectively; A, d and α denote the recruitment rate of susceptibles, the nature
death rate, and the sum of the recover rate and the disease-related death rate,
respectively; and β(1 + εI)SI is the incidence rate, suggested in [1, 2, 11]. All the
parameters A, d, α, β and ε take real positive values.

Let N = S + I be the total number of the susceptibles and infectives. Then
system (1) can be rewritten as

dX

dτ
= X

[
k(1 + εX)(Y −X)− (n+ 1)

]
,

dY

dτ
= m− nY −X,

(2)

where

X = I, Y = N, dτ = α dt, k =
β

α
, m =

A

α
, n =

d

α
. (3)

It should be pointed out that solutions of most epidemic models have well-
posedness property, that is, solutions remain positive if initial points are chosen
positive, and are bounded. However, for the model (2), the first quadrant in the
X-Y plane is not invariant. Trajectories starting from the initial points in the first
quadrant may pass through the X-axis to enter the fourth quadrant and then return
to the first quadrant, as shown in Figure 1. Note that since the Y -axis is invariant,
any trajectories starting from the initial points in the first or fourth quadrant will
stay in these two quadrants and eventually enter the first quadrant. In other words,
if the domain is restricted to the region: {(X,Y ) |X> 0}, then the well-posedness
property on the solutions of (2) is well defined. The domain of interest for system
(2) may be defined as (see Figure 1)

Ω =
{

(X,Y )
∣∣∣ 0 6 X < Y 6

m

n

}
. (4)

It should be noted that Ω is invariant, but it does not serve as a trapping region
for the dynamical solutions in the first quadrant. However, any trajectory starting
from a point in Ω will be remained in Ω. This can be simply proved as follows.
The Y -axis is invariant, and more precisely, the trajectory X = 0 (Y ∈ R) moves
towards the equilibrium (X,Y ) = (0, mn ). On the line segment Y = m

n (0<X< m
n ),

it is obvious that dY
dτ < 0 and dX

dτ < 0 as long as X > m
n −

n(n+1)
k(n+mε) , which holds for

the whole line segment if m
n −

n(n+1)
k(n+mε) 6 0, and at least for X near the end point

(X,Y ) = (mn ,
m
n ) if m

n −
n(n+1)
k(n+mε) > 0. On the line segment Y =X (0<X < m

n ), it

can be shown that the trajectory passes through this line to enter Ω, since when
Y =X, we have dX

dτ =−(n + 1)X < 0 and dY
dτ =m−(n+1)X, which yields dY

dX =
(n+1)X−m
(n+1)X = 1− m

(n+1)X < 1 for positive m, n and X. As a matter of fact, on the

whole line Y =X in the first quadrat, trajectories move through the line from the
right side to the left side. It is seen from Figure 1 that the nullcline, m−nY−X=0
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Figure 1. Simulation of the epidemic model (2) for m = 2, n = 1
6 ,

ε = 1
2 and k = 13

100 , showing non-well-posedness solution preperty.

(in green color) on which trajectories moving in the horizontal direction, divides
the X-axis into two parts. On the right part, trajectories enter the fourth quadrant
from the first quadrant, while on the left part, trajectories enter the first quadrant
from the fourth quadrant. Although the epidemic model is not perfect, this paper
does not intend to improve the model, since the aim of this paper is to use this
simple model to introduce a hierarchical parametric analysis, providing a complete
stability analysis related to Hopf bifurcation.

3. Stability and bifurcation analysis. In this section, we will first derive the
equilibrium solutions of system (2) and their stability. Although a stability analysis
on the equilibria of system (2) was given in [10], the results on the bifurcation,
in particular, for the conditions of Hopf bifurcations, are not completely explored.
In the following, we first derive the conditions for the existence of the equilibrium
solutions of system (2) and their stability. We will give a complete partition in the
parameter space for the bifurcation analysis. Setting dX

dτ = dY
dτ = 0 in system (2)

yields two equilibrium solutions:

E1 : (X1, Y1) =
(

0,
m

n

)
,

E2 : (X2, Y2) =
(
m− nY2, Y2

)
,
(

0 < Y2 <
m

n

)
,

(5)

where E1 is the infection-free equilibrium (boundary equilibrium) and E2 is the
infectious equilibrium (positive equilibrium), with Y2 determined from the following
quadratic polynomial,

F2(Y2, k) = 1 + kεn(Y2 − Y2L)(Y2 − Y2U), (6)

where

Y2L =
m

n+ 1
, Y2U =

m

n
+

1

εn
. (7)

Note that at Y2 = m
n , E2 becomes E1, at which a transcritical bifurcation will be

shown to occur between these two equilibrium solutions.
Solving F2 = 0 gives the infectious equilibrium solutions:

Y2± =
1

2kεn(n+ 1)

{
k
[
(2n+ 1)mε+ n+ 1

]
±
√

∆
}
, (8)
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in which

∆ = k (εm+ n+ 1)2
[
k − 4 εn(n+ 1)2

(εm+ n+ 1)2

]
. (9)

For convenience, we define the non-zero equilibria:

E2± :
(
m− nY2±, Y2±

)
, (10)

the marginal values of ε:

ε1 =
n+ 1

m
,

ε2 =
4n(n+ 1)2

m
= 4n(n+ 1)ε1,

ε3 =
(n+ 1)2

m(1− n)
=
( 2

1− n
− 1
)
ε1, (n < 1),

ε4 =
(n+ 1)2

mn
=
(

1 +
1

n

)
ε1,

ε∗ =
n+ 1

2nm

[
n+ 1 +

√
(n+ 1)(1− 3n)

]
,
(
n 6

1

3

)
,

ε∗ =
n+ 1

2nm

[
1 + n−

√
(1 + n)(1− 3n)

]
,
(
n 6

1

3

)
,

(11)

and the critical values of k and Y2:

kT = n ε1,

kSN =
ε ε2

m(ε+ ε1)2
,

R0 =
k

kT
,

k∗ =
2n ε ε1ε4

(ε+ ε1)(ε+ ε4)
,

kH± =
ε[n (ε+ ε4) + ε2]± n (ε4 − ε)

√
ε(ε− ε2)

}
2m(ε+ ε1)2

, (ε > ε2),

Y2 SN =
m(2n+ 1)

2n(n+ 1)
+

1

2nε
∈ (Y2L, Y2U),

Y2T =
m

n
∈ (Y2L, Y2U),

(12)

where R0 represents the basic reproduction number. Note that E2 denotes E2±. It is
easy to show that kT>kSN, where the subscripts T and SN denote the transcritical
bifurcation and saddle-node bifurcation, respectively. In the following analysis,
we treat k as a bifurcation parameter, and other parameters ε, m and n as control
parameters. In addition, we call Type-I bistable phenomenon (or Type-I coexistence
of bistable states) if two stable equilibria coexist, and Type-II bistable phenomenon
(or Type-II coexistence of bistable states) if a stable equilibrium and a stable limit
cycle coexist.

We have the following results for stability of the equilibria E1 and E2, and the
conditions for Hopf bifurcation emerging from E2−.

Theorem 3.1. For the epidemic model (2), the infection-free equilibrium E1 is
asymptotically stable for k<kT (i.e., R0<1) and unstable for k>kT (i.e., R0>1).
The infectious equilibrium E2 does not exist for k<kSN; only E2− exists for k>kT
and ε 6 ε1; both E2± exist for k > kSN and ε > ε1. Moreover, E2+ is a saddle
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point when it exists. A trascritical bifurcation between E1 and E2 happens at the
critical point k=kT. The model may undergo Hopf bifurcation from E2− for certain
conditions. The conditions on the stability of E2− and Hopf bifurcation are given
below.

(1) Suppose ε6ε1 holds.
(1a) If ε6min{ε1, ε2}, E2− is asymptotically stable for k>kT.

(1b) If n6
√
2−1
2 and ε2<ε6ε1, two Hopf bifurcations occur at k=kH− and

k = kH+
; E2− is asymptotically stable for k ∈ (kT, kH−)

⋃
(kH+

,∞), and
unstable for k∈(kH− , kH+

).
No bistable phenomenon can happen.

(2) Suppose ε> n+1
m is satisfied.

(2a) E2− is asymptotically stable if one of the following conditions holds:
(i) ε>ε4 and k>max{kSN, k∗};

(ii) n<1, ε>max{ε3, ε4} and k = k∗; and

(iii) n>
√
2−1
2 , ε1<ε<min{ε2, ε4} and k>kSN (> k∗).

Type-I bistable phenomenon can occur.
(2b) E2− is unstable if 0<n< 1

2 , ε3<ε6ε4 and kSN<k6k∗.
(2c) (i) If n< 1

2 , ε3<ε<ε4 and k>k∗ (>kSN), one Hopf bifurcation occurs
at k=kH+

; E2− is asymptotically stable for k∈ (kSN, k
∗)
⋃

(kH+
,∞),

and unstable for k ∈ (k∗, kH+
). Type-I bistable states coexist, and

Type-II bistable states coexist if 1
3 6n<

1
2 , or if n< 1

3 with ε> ε∗, for
which kH+< kT.

(ii) If n<1, ε>max{ε3, ε4} and kSN<k<k
∗, one Hopf bifurcation occurs

at k=kH+
; E2− is asymptotically stable for k>kH+

, and unstable for
k∈ (kSN, kH+

). Both Type-I and Type-II bistable states coexist, since
kH+

< kT.

(2d) Two Hopf bifurcations happen at k=kH− and k=kH+
if n< 1

2 , max{ε1,
ε2} < ε < ε3 and k > kSN (> k∗); E2− is asymptotically stable for k ∈
(kSN, kH−)

⋃
(kH+ ,∞), and unstable for k ∈ (kH− , kH+). Type-I bistable

states coexist, and Type-II bistable states coexist if
√
5−1
4 6 n < 1

2 and

ε2 < ε < ε3, or n <
√
5−1
4 and ε∗ < ε < ε3 for which kH− < kT; and if

√
5−1
4 6 n < 1

3 and ε2 < ε < ε∗, or 1
3 6 n < 1

2 and ε2 < ε < ε3 for which
kH+

<kT.

Bogdanov-Takens bifurcation occurs at the critical point, defined by

ε =
(n+ 1)2

m(1− n)
, k =

n(1− n)(n+ 1)2

m
, (0 < n < 1), (13)

associated with the equilibrium,

(
X2, Y2

)
=

(
mn

(n+1)2
,
m(n2+n+1)

n(n+ 1)2

)
. (14)

Proof. It is easy to see from (9) that F2 =0 does not have real solutions and so E2

does not exist if k<kSN. E2 exists for k>kSN. However, the part of the solution Y2
satisfying Y2 >Y2T is biologically meaningless since X2 < 0 when Y2 >Y2T. Thus,
the curve F2 =0 in the bifurcation diagram, projected on the k-Y2 plane, represents
the equilibrium solution E2 (see Figures 2(a), 3(a), 4(a) and 5(a)). It is clear that
Y2 = Y2L and Y2 = Y2U are two horizontal asymptotes of this curve, serving as the
lower and upper boundaries of the solution E2. The curve has a unique vertex at
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(k, Y2)=(kSN, Y2SN). Moreover, the derivative dk
dY2

, given by

dk

dY2
=

2 (Y2 − Y2 SN)

n ε(Y2 − Y2L)2(Y2 − Y2U)2
,

implies that the solution Y2, determined by a function k=k(Y2), is monotonically
decreasing for Y2<Y2 SN and monotonically increasing for Y2>Y2 SN, like a parabola.
Hence, when Y2 SN>Y2T, i.e., when ε6ε1, E2 has one solution E2−, see Figure 2(a);
while when Y2 SN < Y2T, i.e., when ε > ε1, E2 has two solutions: E2+ and E2−,
and E2+ exists for Y2 SN 6 Y2 6 Y2T, while E2− exists for m

n+1 < Y2 6 Y2 SN, see

Figures 3(a), 4(a) and 5(a).
To find stability of the equilibria, we use the Jacobian of system (2), given by

J(X,Y ) =

[
k[Y − 2X + εX(2Y − 3X)]− (n+ 1) kX(1 + εX)

−1 −n

]
. (15)

Evaluating J at E1 yields the eigenvalues λ1 =−n and λ2 =(k− kT)Y2T, indicating
that E1 is a stable focus for k<kT (i.e., R0<1), and it becomes a saddle point for
k>kT (i.e., R0>1).

For stability of E2, we consider two cases: ε6ε1 for which only E2− exists, and
ε>ε1 for which both E2− and E2+ exist.

We first consider the case ε6ε1. It is easy to use

X2− =
2(k − kT)

k(ε1 − ε) + (ε1 + ε)
√
k(k − kSN)

to show that k > kT for the existence of E2−. Then, calculating the Jacobian of
system (2) at E2− yields the trace and determinant as follows:

Tr(J(E2−)) =
2 Trn

Trd +m2(ε1 + ε)[n(ε1 − ε) + ε1]
√
k(k − kSN)

,

where Trn = m3(ε1 + ε)2k2 −m2nε[ε+ (4n+ 1)ε4] k + εn(n+ 1)4,

Trd = n
[
m2k (ε1 + ε)(ε+ ε4)− 2ε(n+ 1)3

]
,

det(J(E2−)) =
2m(ε+ ε1)2(k − kT)(k − kSN)

(ε+ ε1)2(k − kSN) + (ε21 − ε2)
√
k(k − kSN)

.

(16)

It is clearly seen from (16) that det(J(E2−)) > 0 for k > kT (> kSN), and that a
transcritical bifurcation exists between E1 and E2− at the critical point k = kT.
Thus, the stability of E2− is determined by the sign of Tr(J(E2−)). It can be shown
that

Trd > Trd|k=kT > Trd|k=kSN =
2n ε (n+ 1)2[n(ε1 + ε) + (ε1 − ε)]

ε1 + ε
> 0.

Hence, the sign of Tr(J(E2−) is determined by Trn which is a quadratic polynomial
in k. The discriminant of this quadratic polynomial is equal to

∆1 = m4n2ε(ε− ε4)2(ε− ε2). (17)

Thus, when ε 6 min{ε1, ε2}, ∆1 6 0 and so Trn > 0, implying that the whole

solution E2− is asymptotically stable. If ε2<ε6ε1, which requires n6
√
2−1
2 , then

Trn =0 has two positive solutions kH± . Moreover, a direct computation shows that
kH− >kT:

kH− > kT ⇐⇒ m2ε(nε+ ε2)−
√

∆1

2m3(ε1 + ε)2
> n ε1

⇐⇒
√

∆1 6 −n(2n+ 1)(mε)2 + (n+ 1)2mε− 2n(n+ 1)3
4
= F3(mε).
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Since F3 is a quadratic polynomial in mε, and moreover for n6
√
2−1
2 ,

F3(4n(n+ 1)2) = 2n(n+ 1)3(2n+ 1)2(1− 2n− 4n2) > 0,

F3(n+ 1) = (n+ 1)2(1− 2n− 4n2) > 0,

we know that F3 > 0 for 4n(n+1)2 < mε 6 n+1. Then,√
∆1 6 F3 ⇐⇒ ∆1 − F 2

3 = −4n2(n+ 1)(n+ 1mε)2 F4(mε) 6 0,

where

F4(mε) = n(mε)2 − (n+ 1)2mε+ (n+ 1)3. (18)

It is easy to show F4 > 0 because that

F4(4n(n+ 1)2) = (n+ 1)3(4n2 + 4n− 1)2 > 0,

F4(n+ 1) = n(n+ 1)2 > 0,

and the minimum point of F4 is on the right-hand side of the end point n+1:

(n+ 1)2

2n
> n+ 1, for n 6

√
2− 1

2
.

Note that when ε=ε1, kH− = kT, and that when ε=ε2, kH+
= kH−>kT, leading to

an isolated Hopf critical point.
Therefore, both kH+ and kH− define Hopf critical points due to kH+>kH− .
Next, we turn to the case ε > ε1. For this case, both E2+ and E2− exist for

k > kSN. Moreover, using the condition X2+ > 0 we can show that E2+ exists for
kSN<k<kT for which Y2 SN<Y2<Y2T. Similarly, a linear analysis yields

det(J(E2+)) =
− 2m(ε1 + ε)2(k − kSN)(kT − k)

(ε1 + ε)2(k − kSN) + (ε2 − ε21)
√
k(k − kSN)

< 0, (19)

for kSN<k<kT, indicating that E2+ is a saddle point.
For the equilibrium E2−, we have

det(J(E2−)) =
m(ε1 + ε)2(k − kSN) +m(ε2 − ε21)

√
k(k − kSN)

2 ε1 ε
> 0, (20)

and thus the stability of E2− is determined by the sign of Tr(J(E2−)). Using the
Jacobian of system (2) evaluated at E2−, we obtain

Tr(J(E2−)) =
G1 +G2

2 ε(n+ 1)2
, (21)

where
G1 = m2(ε1 + ε)(ε+ ε4) (k − k∗),

G2 = m2(ε1 + ε)(ε− ε4)
√
k(k − kSN).

(22)

To determine the sign of Tr(J(E2−)), we need to discuss four cases, based on the
signs of G1 and G2:

(a) G1 > 0, G2 > 0 (excluding G1 =G2 =0), E2− asymptotically stable,

(b) G1 6 0, G2 6 0 (excluding G1 =G2 =0), E2− unstable,

(c) G1G2 < 0, Hopf bifurcation from E2−,

where G1 =G2 = 0 defines a special Hopf critical point. G1 = 0 gives the unique
solution k= k∗, and G2 = 0 yields the unique solution ε= ε4. Combining the two
solutions easily generates the results for the item (a): E2− is asymptotically stable
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for ε>ε4 and k>max{kSN, k∗}; or for n<1, ε>max{ε3, ε4} and k = k∗. Further,
we can show that kT>k

∗ for ε>ε4 by proving that

kT − k∗ =
ε1(nε2 − ε1ε+ n ε1ε4)

(ε+ ε1)(ε+ ε4)
> 0.

This easily follows that the term in the bracket of the numerator equals 2nε1ε4>0
at ε=ε4, and its derivative w.r.t. ε is given by 2nε− ε1> (2n+ 1)ε1>0 for ε>ε4.
Therefore, Type-I bistable phenomenon can occur for the cases (2a)(i) and (ii).

For the item (b), we can similarly obtain that E2− is unstable if n< 1
2 , ε3<ε<ε4

and kSN < k < k∗. The case shown in Figure 3 satisfies kH+
< kT and thus both

Type-I and Type-II bistable phenomena exist. More precisely, if k takes values from
the interval (kSN, kH+), then trajectories converge either to the stable node E1 or to
a stable limit cycle, as shown in Figure 3(b). Here, the saddle-node bifurcation can
generate limit cycles. If k takes values from the interval (kH+

, kT), then trajectories
converge either to the stable node E1 or to the stable focus E2−, as depicted in
Figure 3(c). For both of the two bistable phenomena (Type-I and Type-II), the
separators between the two stable states are the stable and unstable manifolds
generated from the saddle point E2+.

For the item (c), there are two cases: (c-1) G1 > 0, G2 < 0, which requires the
conditions ε1<ε<ε4 and k>max{kSN, k∗}; and (c-2) G1<0, G2>0, which needs
the conditions n< 1, ε>max{ε3, ε4} and kSN<k<k

∗. We first consider the case
(c-1). Note that Tr(J(E2−))≷0 is equivalent to G2

1 −G2
2≷0, where

G2
1 −G2

2 =
4ε(n+ 1)2

n

{
m3(ε+ ε2)2k2 −m2nε[ε+ (4n+ 1)ε4] k + εn(n+ 1)4

}
,

in which the term in the script bracket is a quadratic polynomial in k, with its dis-
criminant ∆1 given in (17). Hence, when ε6ε2, ∆160 and so E2− is asymptotically
stable for k>kSN since k∗6kSN. When ε>ε2, ∆1>0 and Tr(J(E2−))=0 has two
real positive solutions, kH− and kH+ (kH− < kH+). Further, a direct computation
shows that kH−> kSN, and

kH− − k∗ ≷ 0 ⇐⇒ −4m3n(1− n)ε(n+ 1)3(ε+ ε1)(ε− ε3) ≷ 0,

which indicates that when ε < ε3, there exist two Hopf critical points satisfying
kH+

> kH− > kSN (> k∗) under the condition n < 1
2 and max{ε1, ε2} < ε < ε3. If

ε>ε3, then it can be shown that k∗>kSN, and kH−<k
∗<kH+

under the condition

n< 1
2 and ε3<ε<ε4, implying that there exists one Hopf critical point at k=kH+

.
E2− is asymptotically stable for k>kH+

and unstable for (kSN <) k∗<k<kH+
.

Next, consider the case (c-2). For this case, kH−>kH+
and the conditions become

n< 1, ε >max{ε3, ε4} and kSN < k < k
∗. Similar to case (c-1), we can prove that

kSN < kH+ < k∗ < kH− . This shows that there exists one Hopf critical point at
k=kH+

∈ (kSN, k
∗). E2− is asymptotically stable for kH+

<k<k∗ and unstable for
kSN<k<kH+

. However, for this case E2− is also asymptotically stable for k>k∗,
and so E2− is also asymptotically stable for k>kH+

.
It is easy to see from the above results that Type-I bistable phenomenon always

exists for the cases (2a), (2c) and (2d), while Type-II bistable states coexist if
kH+

< kT (for the Case (2c)), or at least if kH− < kT (for the Case (2d)). In the
following, we derive the explicit conditions under which kH±<kT.
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First, consider the Case (2c)(i) for which n < 1
2 and ε3 < ε < ε4. Using the

formulas kT and kH+ given in (12), we obtain

kT − kH+
=

F5a − F5b

2m(n+ 1 +mε)2
,

where F5a = n(2n+ 1)(mε)2 − (n+ 1)2mε+ 2n(n+ 1)3,

F5b = [(n+ 1)2 −mnε]
√
mε [mε− 4n(n+ 1)2].

(23)

Note that mε − 4n(n + 1)2 > 0 due to ε > ε3, and (n + 1)2−mnε > 0 because of
ε<ε4. Also, note that F5a is a quadratic polynomial in mε, with the discriminant,

∆2 = (n+ 1)3(1 + n− 8n2 − 16n3)

{
6 0 for n > 0.317382 =⇒ F5a > 0,

> 0 for n < 0.317382.

When n < 0.317382, F5a =0 has two positive solutions:

εL =
(n+ 1)2 −

√
∆2

2mn(2n+ 1)
, εU =

(n+ 1)2 +
√

∆2

2mn(2n+ 1)
. (24)

A direct computation shows that

εL < ε3 < εU < ε4 for n 6 0.298036,

εL < εU < ε3 < ε4 for 0.298036 < n < 0.317383.
(25)

Hence, for n60.298036 and ε3<ε<εU, we have F5a60, which yields kT < kH+
and

so no Type-II bistable phenomenon can occur. The remaining cases are for F5a>0:

(A) 0.298036 < n < 0.5 and ε3 < ε < ε4

or

(B) n 6 0.298036 and εU < ε < ε4.

For these two cases, the sign of F5a−F5b is the same as that of F 2
5a−F 2

5b, which
yields

F 2
5a − F 2

5b = 4n2(n+ 1)(n+ 1 +mε)2 F4, (26)

where F4 is given in (18), which is a quadratic polynomial in mε, with the discrim-
inat,

∆3 = (n+ 1)3(1− 3n), (27)

and its minimum value (n+1)3(3n−1)
4n is obtained at the point ε= (n+1)2

2mn . Thus, for

the Case (A), F 2
5a−F 2

5b> 0 for 1
3 6 n< 1

2 , implying that kH+
<kT and so Type-II

bistable states coexist. When 0.2980366n< 1
3 , we have

F4|ε=ε3 = − n(n+ 1)3(1− 3n)

(1− n)2
, F4|ε=ε4 = (n+ 1)3, (28)

indicating that there exists a unique solution, ε= ε∗ such that F4 = 0. Moreover,
one may use a direct computation to show that

εL < ε3 < εU < ε∗ < ε4 for n 6 0.298036,

εL < εU < ε3 < ε∗ < ε4 for 0.298036 < n < 0.317383.
(29)

Therefore, we obtain for the Case (A) when 0.298036 6 n < 1
3 that kT < kH+

for
ε3<ε<ε

∗, and kH+
<kT for ε∗<ε < ε4.

Now, consider the Case (B). Similarly we have

F4|ε=εU =
(n+ 1)3(4n2 + 2n− 1)

n+
√

(n+ 1)(1 + n− 8n2 − 16n3)
< 0 for n 6 0.298036, (30)
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implying that F4 has a unique solution ε=ε∗∈ (εU, ε4) since F4>0 at ε=ε4. This
shows that for this case, kT < kH+ for εU < ε < ε∗, and kH+ < kT for ε∗ < ε < ε4.
Summarizing the above results for the cases having kH+

<kT proves the Case (2c)(i)
in Theorem 3.1.

For the Case (2c)(ii) with n < 1 and ε > max{ε3, ε4), it is easy to show that
(n+1)2−mnε<0, and thus −F5b>0. Now, we prove that F5a>0. Since it has been
shown in the above that F5a>0 for n>0.317383, we only need to prove that F5a>0
for n<0.317383. It is noted from (25) that ε>max{ε3, ε4)>εU which implies that
F5a>0 because εU is the larger root of F5a. Hence, kH+

<kT and Type-II bistable
states coexists for the Case (2c)(ii).

Next, consider the Case (2d). For this case, Type-II bistable states coexist as long
as at least kH− <kT. If in addition, kH+ <kT, then Type-II bistable phenomenon
appears near both the two Hopf critical points. First, it can be shown that kSN<
kH−<kH+

under the condition max{ε1, ε2}<ε<ε3. Thus, we only need to find the
condition under which kH− <kT and that for which kH+

<kT. Similar to (23), we
have

kT − kH− =
F5a + F5b

2m(n+ 1 +mε)2
, (31)

where F5a and F5b are given in (23).
Similar to the discussion in the above for the Case (2c)(i), we divide the proof

for the following two cases:

(α) n > 0.317383 and (β) n < 0.317383.

For the Case (α), we have ε2>ε1, and it is obvious that kH− <kT since both F5a

and F5b are positive. Considering the sign of kT − kH+
, we use F4 in (18) and ∆3

in (27) to obtain kH+
<kT for 1

3 6n<
1
2 due to ∆360. When 0.3173836n< 1

3 , we
have

F4|ε=ε2 = (n+ 1)3(4n2 + 2n− 1)2 > 0,

which, together with F4|ε=ε3 < 0 (see (28)), implies that there exists a unique

solution ε=ε∗ such that F4 =0. Thus, for 0.3173836n< 1
3 , we have that kH+<kT

if ε2<ε<ε∗, and that kH+ >kT if ε∗6ε<ε3.
For the Case (β) n< 0.317383, both εL and εU are positive. Further, it is easy

to show that for this case, the following holds:

εL < ε1 < εU, and

{
εL < ε2 6 εU for n 6

√
5−1
4 ,

εL < εU 6 ε2 for
√
5−1
4 < n < 0.317383.

The relation between ε3 and εU is given in (29). More precisely, we have

εU − ε3 =
(1 + n)[(1− n)

√
(1 + n)(1 + n− 8n2 − 16n3)− (n+ 1)2(4n− 1)]

2mn(1− n)(2n+ 1)

=
2(1 + n)2(1− 3n− 4n3)

m(1− n)[(1− n)
√

(1 + n)(1 + n− 8n2 − 16n3) + (n+ 1)2(4n− 1)]
.

Then, a direct computation with the above formulas leads to the following results:

n <
√
5−1
4 , kH+

> kT for max{ε1, ε2} < ε < ε3,
√
5−1
4 6 n < 0.317383, kH+

> kT for ε∗ < ε < ε3,
√
5−1
4 6 n < 0.317383, kH+

< kT for ε2 < ε < ε∗.
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Figure 2. (a) bifurcation diagram for the epidemic model (2) pro-

jected on the k-Y2 plane with m = 2, n = 1
6 , ε = 1

2 , corresponding

to Case (1b) in Theorem 3.1 having two Hopf critical points, with
kT = 0.097222, kH− = 0.110329 and kH+

= 0.149040; and (b) sim-
ulations of three stable limit cycles, starting from the initial point
(X,Y ) = (0.25, 5), for three values of k (marked by the red cir-
cles on the k-axis): k = 0.112 (blue color), k = 0.13 (red color),
k = 0.147 (green color).

Similarly, for kH− , we have that

n <
√
5−1
4 , kH− > kT for max{ε1, ε2} < ε < ε∗,

n <
√
5−1
4 , kH− < kT for ε∗ < ε < ε3,

√
5−1
4 6 n < 0.317383, kH− < kT for ε2 < ε < ε3.

Combining the above results in the Cases (α) and (β) yields the conclusion for the
coexistence of bistable states in (2d) of Theorem 3.1.

Finally, to find the critical point of Bogdanov-Takens bifurcation, we may use the
formulas in (16) to solve the equations Tr(J(E2−))=det(J(E2−))=0 to determine
the critical values of k and ε, which implies that the Bogdanov-Takens bifurca-
tion critical point is the intersection of saddle-node and Hopf bifurcations. Thus,

k = kSN and Y2 = n+1+mε(2n+1)
2n(n+1)ε , for which the equation Tr(J(E2−)) = 0 becomes

(n+1)2−m(1−n)ε
n+1+mε =0, yielding the solution ε= (n+1)2

m(1−n) , (0<n<1). Then, substituting

this solution into Y2 and k we obtain the solutions given in (13) and (14).
This completes the proof for Theorem 3.1.

Bifurcation diagrams, projected on the k-Y2 plane, and their simulations for
the examples taken from the Cases (1b), (2c)(i), (2c)(ii) and (2d) are shown in
Figures 2, 3, 4 and 5, respectively. The parameter values taken for Figure 2 are

m=2, n= 1
6 <

√
2−1
2 and ε= 1

2 ∈(ε2, ε1)=( 49
108 ,

7
12 ), satisfying the conditions for the

Case (1b). It can be seen from Figure 2 that periodic solutions bifurcating near the
two Hopf critical points are stable, implying that both the two Hopf bifurcations
are supercritical. In fact, for any values of k ∈ (kH− , kH+

), the bifurcating limit
cycles are stable. The simulated three limit cycles as depicted in Figure 2(b) take
the values of k from this interval and are indeed stable. Note that the amplitudes
of the limit cycles are small for the k near the two Hopf critical points and large
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Figure 3. (a) bifurcation diagram for the epidemic model (2) pro-
jected on the k-Y2 plane with m= 2, n= 2

5 , ε= 2, corresponding

to the Case (2c)(i) in Theorem 3.1 having one Hopf critical point,
with kSN =0.215089, k∗=0.228381, kH+

=0.235367 and kT =0.28;
(b) simulated phase portrait with k= 0.222, showing the bistable
phenomenon with two stable equilibria E1 and E2−; (c) simulated
phase portrait with k = 0.232, showing the bistable phenomenon
with the stable equilibrium E1 and a stable limit cycle; and (d)
simulated phase portrait with k= 0.25, showing the bistable phe-
nomenon with two stable equilibria E1 and E2−. The three values
of k are marked by the circles on the k-axis in Figure 3(a).

when k is near the middle point of the two Hopf critical points. It is clear that no
bistable phenomenon can happen since this is a forward bifurcation.

Figure 3 shows the results for the Case (2c)(i) by choosing the parameter values:
m = 2, n = 2

5 ∈ ( 1
3 ,

1
2 ) and ε = 2 ∈ (ε3, ε4) = ( 49

30 ,
49
20 ), which indeed yields kSN <

k∗ < kH+
< kT. Three values of k are used for simulations: k = 0.222 ∈ (kSN, k

∗),
showing Type-I bistable phenomenon in Figure 3(b) with two stable equilibria E1

and E2−; k=0.232∈ (k∗, kH+
), showing Type-II bistable phenomenon in Figure 3(c)

with stable equilibrium E1 and a stable limit cycle; and k=0.25∈ (kH+ , kT), again
showing Type-I bistable phenomenon in Figure 3(d) with two stable equilibria E1

and E2−.
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Figure 4. (a) bifurcation diagram for the epidemic model (2) pro-

jected on the k-Y2 plane with m = 2, n = 3
4 , ε = 8, correspond-

ing to the Case (2c)(ii) in Theorem 3.1 having one Hopf critical
point, with kSN = 0.233287, kH+

= 0.233834, k∗ = 0.240547, and
kT = 0.656250; (b) simulated phase portrait with k=0.2336, show-
ing the stable node E1 and the unstable focus E2−; (c) simulated
phase portrait with k= 0.234, showing the stable node E1 and an
unstable limit cycle; and (d) simulated phase portrait with k=0.24,
showing the bistable phenomenon with two stable equilibria E1 and
E2−. The three values of k are marked by the circles on the k-axis
in Figure 4(a).

The results for the Case (2c)(ii) are shown in Figure 4, with the parameter
values: m = 2, n = 3

4 < 1 and ε = 8 > max{ε3, ε4) = ( 98
16 ,

49
24 ), which indeed gives

kSN < kH+ < k∗ < kT. It can be seen from the bifurcation diagram in Figure 4(a)
that the interval (kSN, kH+) is very narrow, see the zoomed figure in Figure 4(a). The
Hopf bifurcation shown for this example is subcritical. But it may be supercritical
for choosing some parameter values. For example, taking m = 2, n = 5

12 yields

ε3 = 289
168 and ε4 = 289

120 . Then, we can show that v1 < 0 for ε = 3 and v1 > 0 for

ε = 5. Three simulations are depicted in Figures 4(b), (c) and (d), respectively.
The value of k taken for Figure 4(b) is k = 0.2336 ∈ (kSN, kH+) (see the left red
circle in Figure 4(a)), showing the stable node E1 and an unstable focus E2−. The
unstable limit cycle, as shown in Figure 4(c), is obtained by using the value of
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Figure 5. (a) bifurcation diagram for the epidemic model (2)
projected on the k-Y2 plane with m = 2, n = 1

3 , ε = 5
4 , corre-

sponding to the Case (2d) in Theorem 3.1 having two Hopf criti-
cal points, with k∗ = 0.197348, kSN = 0.201638, kH− = 0.202731,
kH+

= 0.221025 and kT = 0.222222; (b) simulated phase portrait
with k= 0.202, showing the bistable phenomenon with two stable
equilibria E1 and E2−; (c) simulated phase portrait with k=0.205,
showing the bistable phenomenon with the stable equilibrium E1

and a stable limit cycle; and (d) simulated phase portrait with
k=0.22, showing the bistable phenomenon with the stable equilib-
rium E1 and a stable limit cycle. The three values of k are marked
by the circles on the k-axis in Figure 5(a).

k>kH+ but very close to kH+ (see the middle red circle in Figure 4(a)). If the value
of k is increasing from kH+

, the limit cycle disappears, resulting in the bistable
phenomenon with two stable equilibria E1 and E2−.

Figure 5 demonstrates the Case (2d) with two Hopf bifurcations by choosing the

parameter values: m= 2, n= 1
3 ∈ (

√
5−1
4 , 12 ) and ε= 5

4 ∈ (ε2, ε3) = ( 32
27 ,

4
3 ), satisfying

the conditions in the Case (2d) for kH−<kH+
<kT. This is similar to the Case (1b)

but this case can have both Type-I and Type-II bistable phenomena because the
chosen parameter values satisfy kSN<kH− < kT<kT. Hence, two stable equilibria
E1 and E2− coexist for k ∈ (kSN, kH−)

⋃
(kH+ , kT), as shown in Figure 5(b), while

stable E1 and a stable limit cycle coexist for k∈(kH− , kH+), as shown in Figures 5(c)
and 5(d).



A HIERARCHICAL ANALYSIS ON HOPF BIFURCATION 723

Since the model (2) contains four parameters, more parameters may be included
in the bifurcation diagram. For example, if two parameters are used to plot the
bifurcation diagram, we may obtain a bifurcation diagram like the one shown in
Figure 6, where ε and k are chosen as bifurcation parameters. The v1, called the
first-order focus value, is obtained under the condition of Hopf bifurcation. Thus,
the intersection of the curve v1 = 0 and the Hopf bifurcation curve determines the
generalized Hopf bifurcation. There are many methods for computing the focus
values, and a perturbation approach can be found in [12]. The difference between
this bifurcation diagram in Figure 6 and others in Figure 2–5 is obvious since the
diagram in Figure 6 does not show any state variables while others do, which clearly
shows the relation between the bifurcation parameters and the state variables. In
order to show the impact of the bifurcation parameters on dynamical behaviours of
the system using the bifurcation diagram in Figure 6, the traditional method is to
plot some phase portraits using a typical parameter value chosen from each of the
regions in the bifurcation diagram. The phase portraits for this bifurcation diagram
are omitted here for brevity.

•

•

•

H

GH

v1 = 0

SN

BT

T

ε

k

Figure 6. Bifurcation diagram for the epidemic model (2) on the
k-ε parameter plane with m = 2, n = 5

11 , where SN, T, H, BT and
GH denote the saddle-node, transcritical, Hopf, Bogdanov-Takens
and generalized Hopf bifurcations, respectively.

4. Conclusion. In this paper, we have reinvestigated an SI-epidemic model and
provided a further study on stability and bifurcation. In particular, we have intro-
duced a hierarchical parametric analysis which enables us to give a complete study
on Hopf bifurcation and derived explicit conditions for the occurrence of different
Hopf bifurcations. Simulations are presented to demonstrate that the theoretical
predictions match very well with the numerical results. Note that the proof of The-
orem 3.1 does not rigorously show whether the Hopf bifurcation is supercritical or
subcritical, since it needs the computation of the normal form (or the focus value)
associated with the Hopf bifurcation (e.g., see [12]). It should be pointed out that
it is impossible to compute the focus values using the solution Y2− given in (8) and
the Hopf critical points kH± given in (12). A different method must be developed
for classifying the Hopf bifurcations or determining the stability of bifurcating limit
cycles. Other future works include the study on the comdimension of Hopf bifur-
cation, as well as bifurcation analysis on higher-codimensional Bogdanov-Takens
bifurcation, with particular attention to the computation of the simplest normal
form.
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