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This paper is concerned with bifurcation and stability in an autoimmune model, which was
established to study an important phenomenon — blips arising from such models. This model
has two equilibrium solutions, disease-free equilibrium and disease equilibrium. The positivity
of the solutions of the model and the global stability of the disease-free equilibrium have been
proved. In this paper, we particularly focus on Hopf bifurcation which occurs from the disease
equilibrium. We present a detailed study on the use of center manifold theory and normal form
theory, and derive the normal form associated with Hopf bifurcation, from which the approximate
amplitude of the bifurcating limit cycles and their stability conditions are obtained. Particular
attention is also paid to the bifurcation of multiple limit cycles arising from generalized Hopf
bifurcation, which may yield bistable phenomenon involving equilibrium and oscillating motion.
This result may explain some complex dynamical behavior in real biological systems. Numerical
simulations are compared with the analytical predictions to show a very good agreement.

Keywords : Autoimmune disease model; stability; Hopf bifurcation; generalized Hopf bifurcation;
limit cycle; center manifold; normal form.

1. Introduction

Autoimmune diseases arise from an inappropriate
immune system in responding against its own cells
and tissues, which are normally present in the body.
A substantial minority of population, approximately
3% of people in “developed” countries, suffer from
over 40 recognized autoimmune diseases [DeFranco
et al., 2007], which are often chronic, depleting and
fatal. Some autoimmune diseases show recurrent
(or blips) behavior, which was found typically in
multifocal osteomyelitis [Girschick et al., 2007; Iyer
et al., 2011], eczema [Fergusson et al., 1990], sub-
acute discoid lupus erythematosus [Munro, 1963],
and psoriasis [Farber et al., 1986]. During recurrent

autoimmune disease, the disease symptoms can
disappear spontaneously, but it will occasionally
relapse later. Therefore, a profound study on the
recurrent dynamics of autoimmune disease is impor-
tant to obtain a broad understanding of this disease
phenomenon.

In immune system, regulatory T (Treg) cells, a
subpopulation of T cells, play a crucial role in tol-
erating the body’s own cells and tissues, and sup-
press the autoimmune response. Treg cells operate
primarily at the site of inflammation. The mecha-
nisms for Treg cells modulating the immune reac-
tion is one of the most intensely studied and debated
issues, while “there might be a single key mechanism
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that has a predominant role”, as Miyara and Sak-
aguchi pointed out in [Miyara & Sakaguchi, 2007].
Here, we adopt two mechanisms proposed in a gen-
eral autoimmune disease model by Alexander and
Wahl [2011]. One mechanism is that Treg cells sup-
press directly on professional antigen presenting
cells (pAPCs), which play a vital role in activating
naive T cells, and remove pAPCs permanently. The
other mechanism is that the Treg cells directly
reduce and remove the peripheral auto-reactive
effector T cells, which have antigen receptors
specific to self-antigens and ready to attack host
cells. Phenotypic analysis shows that Treg cells
subset is heterogeneous [Sakaguchi et al., 2010] in
the expression of HLA-DR, which identifies a ter-
minally differentiated subpopulation of Treg cells
with HLA-DR+, called terminal Treg cells. The ter-
minal Treg cells are generated from natural Treg
cells proliferation [Sakaguchi et al., 2010], while sup-
pressing more efficiently and tend to be apoptotic
much faster than the natural Treg cells. The follow-
ing mathematical model was established to model
the Treg cells activity in modulating the immune
response [Zhang et al., 2014],

Ȧ = αE − σ1(Rn + dRd)A − b1A − µAA,

Ṙn = (π3E + β)A − µnRn − ξRn,

Ṙd = cξRn − µdRd,

Ė = λEA − σ3(Rn + dRd)E − b3E − µEE,

(1)

where the state variables A, Rn, Rd and E represent
the population of the mature pAPCs, the activated
natural Treg cells specific for antigen of interest,
terminally differentiated Treg cells, and the active
auto-reactive effector T cells with specific antigen
of interest. The pAPCs are activated at a rate of
αE by uptaking self-antigen, which is generated by
effector T cells attacking body cells. The relation
between effector T cells and self-antigen is linear
under quasi-steady state assumption. The pAPCs
are suppressed by the Treg cells with specific anti-
gen of interest at a rate of σ1(Rn + dRd)A, where
d is the ratio of suppressive effectiveness between
the natural Treg cells and terminally differentiated
Treg cells, while the Treg cells with other specifici-
ties and therapy can also suppress pAPCs at a rate
of b1. The natural Treg cells are activated with inter-
action of the pAPCs in the presence of IL-2 which
is generated by the effector T cells at a rate of π3E,
and by other sources like dendritic cells (DCs) [Field

et al., 2007; Scheffold et al., 2005; Scheffold et al.,
2007] at a rate of β, and thus the natural Treg cells
generation rate is (π3E + β)A. The activated nat-
ural Treg cells may undergo further differentiation
and proliferation [Sakaguchi et al., 2010] at a rate
of ξ and give birth to terminally differentiated Treg
cells at a rate of cξRn. The vicious effector T cells
are activated by the pAPCs bearing a specific anti-
gen receptor, at a rate of λEA, and are suppressed
by the Treg cells with specific antigen of interest at
a rate of σ3(Rn + dRd)E, and the Treg cells with
other specifities and therapy at a rate of b3E. The
death rates of the pAPCs, natural Treg cells, termi-
nally differentiated Treg cells, and effector T cells
are µA, µn, µd, and µE, respectively.

It has been shown in [Zhang et al., 2014] that
all solutions of (1) are non-negative, if the initial
conditions are taken non-negative, and they are
bounded. Moreover, a detailed analysis on the sta-
bility of equilibrium solutions is also given in [Zhang
et al., 2014]. Thus, in this paper, we will focus on
the nonlinear study of model (1), in particular on
Hopf and generalized Hopf bifurcations, giving rise
to multiple limit cycles bifurcating from the dis-
ease equilibrium. The rest of the paper is organized
as follows. In the next section, we provide a brief
summary on the linear analysis of system (1), and
find the transcritical and Hopf bifurcations from the
equilibrium solutions. Then, in Sec. 3, we devote to
nonlinear analysis and focus on Hopf bifurcation.
Center manifold theory and normal form theory will
be used to find the approximate solution of limit
cycles and determine their stability. In Sec. 4, we
present a study on generalized Hopf bifurcation,
showing that at least two small-amplitude limit
cycles can bifurcate from the disease equilibrium.
Numerical simulations are given in Sec. 5 to show
the good agreement between simulations and ana-
lytical predictions. Finally, the conclusion is drawn
in Sec. 6.

2. Equilibrium Solutions, Stability
and Bifurcation: Linear Analysis

In order to consider stability of equilibrium solu-
tions of model (1), we first present certain results
and formulas for general systems. Consider the gen-
eral nonlinear differential system:

ẋ = f(x,µ), x ∈ Rn, µ ∈ Rm,

f : Rn+m �→ Rn,
(2)
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where the dot denotes differentiation with respect
to time t; x and µ are the n-dimensional state vari-
able and m-dimensional parameter variable, respec-
tively. It is assumed that the nonlinear function
f(x,µ) is analytic with respect to x and µ. Sup-
pose that the equilibrium solutions of Eq. (2) are
given in the form of xe = xe(µ), which are deter-
mined from f(x,µ) = 0. To find the stability of xe,
evaluating the Jacobian of system (2) at x = xe(µ)
yields J(µ) = Dxf |x=xe(µ). If all eigenvalues of J(µ)
have nonzero real parts, then the system is said to
be hyperbolic and no complex dynamics exists in
the vicinity of the equilibrium solution. If at some
point µ = µc, at least one of the eigenvalues of J(µ)
has zero real part, then µc is called a critical point,
and bifurcations may occur from xe(µ). To deter-
mine the stability of the equilibrium solution, we
need to find the eigenvalues of the Jacobian J(µ),
which are the roots of the following characteristic
polynomial equation:

Pn(L) = det[LI − J(µ)]

= Ln + a1(µ)Ln−1 + a2(µ)Ln−2

+ · · · + an−1(µ)L + an(µ) = 0. (3)

If for a value of µ, all the roots of the polynomial
Pn(L) have negative real part, then the equilibrium
solution is asymptotically stable for this value of µ.
If at least one of the eigenvalues has zero real part
as µ crosses a critical point µc, then the equilibrium
solution becomes unstable at µc and bifurcation
occurs from this critical point. When all the roots of
Pn(L) have negative real part, we call Pn(L) a stable
polynomial, otherwise an unstable polynomial.

In general, for n ≥ 3, it is hard or impossible
to find the roots of Pn(L). Thus we use the Routh–
Hurwitz criterion [Hinrichsen & Pritchard, 2005] to
analyze the local stability of the equilibrium solu-
tion x = xe(µ). The criterion states that the nec-
essary and sufficient conditions, under which the
corresponding equilibrium is locally asymptotically
stable, i.e. all the roots of the characteristic poly-
nomial Pn(L) have negative real part, are given by

∆i(µ) > 0, i = 1, 2, . . . , n, (4)

where ∆i(µ) are called the ith-principal minors of
the Hurwitz arrangements of order n, defined as fol-
lows (here, order n means that there are n coeffi-
cients ai (i = 1, 2, . . . , n) in Eq. (3), which construct
the Hurwitz principal minors):

∆1 = a1, ∆2 = det
[
a1 1
a3 a2

]
,

∆3 = det



a1 1 0
a3 a2 a1

a5 a4 a3


, . . . , ∆n = an∆n−1.

(5)

Suppose as µ is varied to reach a critical point
µ = µc, at least one of ∆i’s becomes zero, then
the fixed point xe(µc) becomes unstable, and µc is
called critical point. It is easy to see from Eq. (3)
that if an(µ) = 0 (then ∆n = 0), but other Hur-
witz arrangements are still positive (i.e. ∆i(µ) > 0,
i = 1, 2, . . . , (n − 1)), Pn(L) = 0 has one zero root,
indicating that system (2) has a simple zero sin-
gularity and a static bifurcation occurs from xe.
For other complex dynamical behavior, for example,
Hopf bifurcation occurs at a critical point at which
Pn(L) = 0 has a pair of purely imaginary eigen-
values, ±iω (ω > 0). But this pair of purely imagi-
nary eigenvalues are often difficult to be determined
explicitly for high dimensional systems. Based on
the Hurwitz criterion, the following theorem states
the necessary and sufficient conditions for determin-
ing a Hopf critical point without computing the
eigenvalues of the Jacobian of the corresponding
system. Its proof can be found in [Yu, 2005].

Theorem 1 [Yu, 2005]. The necessary and sufficient
conditions for system (2) to have a Hopf bifurcation
at an equilibrium solution x = xe is ∆n−1 = 0, with
other Hurwitz conditions being still held, i.e. an > 0
and ∆i > 0, for i = 1, . . . , n − 2.

2.1. Equilibrium solutions

Having established the results for general nonlinear
dynamical systems in the previous subsection, we
now return to model (1). The equilibrium solutions
of this model can be obtained by simply setting
Ȧ = Ṙn = Ṙa = Ė = 0 and solving the resulting
algebraic equations, which yields two equilibrium
solutions: the disease-free equilibrium E0 and the
disease equilibrium E1. They are given by

E0 : (0, 0, 0, 0)

E1 :
(

A1, Rn,
cξRn

µd
,

[σ1Rn(µd + dcξ) + µd(b1 + µA)]A1

µdα

)
,
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Table 1. Parameter values used in model (1) [Alexander & Wahl, 2011].

Parameter Value Parameter Value

π3 0.0256 day−1 per E per A (π3) β 200 day−1 per A

λE 1000 day−1 per A b1 0.25 day−1 per E

σ1,3 3 × 10−6 day−1 per R (or Rn or Rd) per A b3 0.25 day−1 per E

µA 0.2 day−1 per A µE 0.2 day−1 per E

µn 0.1 day−1 per Rn µd 0.2 day−1 per Rd

ξ 0.025 per Rn α Bifurcation parameter

d 2 c 23 = 8

Rn =
µd[π3(b1 + µA)A1 + βα]A1

µdα(µn + ξ) − π3σ1(µd + dcξ)A2
1

,

(6)

where A1 is given in a function of the system param-
eters, particularly in α, which is implicitly deter-
mined by the following fourth-degree polynomial
equation in A1:

F1(A1, α) =
81

38146972656250
A4

1 −
1521

625000000
αA2

1

− 81
10000000

αA1 +
5
8
α2 − 81

640000
α

= 0, (7)

in which the parameter values given in Table 1 have
been used. Note that the rational numbers given in
this equation are obtained by using symbolic com-
putation in which all the parameter values given
in digital format (see Table 1) have been trans-
formed to rational numbers for the convenience of
computation.

The graph showing the component A of the
equilibrium solutions E0 and E1, i.e. A = 0 and
A = A1 satisfying F1(A1, α) = 0, is given in
Fig. 1. Note that a complete bifurcation diagram
is depicted in Fig. 1(a), while its part which has
biological meaning is given in Fig. 1(b). In order

to display the biologically meaningful solutions, a
three-dimensional plot is shown in Fig. 1(c), indi-
cating that one branch of each solution in Fig. 1(a)
is biologically meaningless.

2.2. Stability of the equilibria

For the stability of the disease-free equilibrium E0,
the characteristic equation method and Lyapunov
function method have been used in [Zhang et al.,
2014] to obtain the following result.

Lemma 1. When α < αt = 1
λE

(b1+µA)(b3+µE)αt,

the disease-free equilibrium E0 of model (1) is glob-
ally asymptotically stable. It loses stability at α = αt

and becomes unstable for α > αt.

Next, consider the stability of the disease equi-
librium E1. Evaluating the Jacobian of (1) at E1

yields a fourth-degree characteristic polynomial,
given by

P1(L,A1, α) = L4 + a1(A1, α)L3 + a2(A1, α)L2

+ a3(A1, α)L + a4(A1, α) = 0 (8)

where the coefficients a1(A1, α), a2(A1, α), a3(A1,
α), and a4(A1, α) are expressed in terms of A1 and
α, with other parameter values taken from Table 1,
given below:

a1(A1, α) =
1

40(18A2
1 − 9765625α)

(234A2
1 − 11250000αA1 − 478515625α),

a2(A1, α) =
1

5000(18A2
1 − 9765625α)2

[972A5
1 + (1620000000α + 20250)A4

1 + 8226562500αA3
1

+ (−1856689453125000α2 + 268066406250α)A2
1 − 10929107666015625α2A1

+ 476837158203125000000α3 − 247955322265625000α2 ],

1650079-4
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(a) (b)

(c)

Fig. 1. (a) Complete bifurcation diagram for model (1) projected on the α–A plane, with the red and blue lines denoting E0

and E1, respectively; (b) a part of bifurcation diagram in (a), restricted to the first quadrant and (c) bifurcation diagram for
model (1) projected on the α–A–Rn space, with the red, green and blue lines denoting E0, the inner branch of E1, and the
outer branch of E1 which is biologically meaningless since Rn takes negative values. Here, the dotted and solid lines indicate
unstable and stable equilibria, respectively.
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a3(A1, α) =
1

10000000(18A2
1 − 9765625α)2

[248832A6
1 − 1166400A5

1 − (1307812500000α + 72900000)A4
1

+ 632812500000αA3
1 + (1296569824218750000α + 44494628906250)αA2

1

+ 5561828613281250000α2A1 − 309944152832031250000000α3 + 84221363067626953125α2 ],

a4(A1, α) =
1

50000000(18A2
1 − 9765625α)2

[746496A6
1 − 1169437500000αA4

1 + 5695312500000αA3
1

+ (733337402343750000α + 133483886718750)αA2
1 + 3089904785156250000α2A1

− 119209289550781250000000α3 + 24139881134033203125α2 ].

Based on the characteristic polynomial (8), we consider possible bifurcations from E1, including
both static bifurcation and dynamic (Hopf) bifurcations. First, the static bifurcation occurs when P1(L,
A1, α) = 0 has zero roots (zero eigenvalues). The simplest case is single zero, i.e. when a4(A1, α) = 0, and
A1 should simultaneously satisfy F1(A1, α) = 0 [see Eq. (7)]. Thus, we obtain

A1s(αs) = −21333593750000000α3
s + 26617447265625α2

s − 49464843750αs + 8748000
3525388312500α2

s − 4572342000αs + 979776
, (9)

where αs is determined from the equation,

F2(αs) = αs(13530125αs − 2592)(400000αs − 81)

= 0. (10)

Solving F2(αs) = 0 for αs, and then substituting
the solutions into A1s(αs) using Eq. (9), yields three
critical values. The first one defines a transcritical
bifurcation point (αt, At) = ( 81

400000 , 0) = (0.2025 ×
10−3, 0), which is exactly the same as that which
we obtained from the disease-free equilibrium E0,
αt = 1

λE
(b1 +µA)(b3 +µE) = 1

1000 (1
4 + 1

5)2 = 81
400000 .

Here, the subscript “t” denotes transcritical bifur-
cation. Moreover, at this critical point, all other
Hurwitz arrangements are still positive: ∆1 = 49

40 ,
∆2 = 5863

16000 , and ∆3 = 52767
6400000 . This implies that

the two equilibrium solutions E0 and E1 actually
intersect at this critical point, and the equilibrium
E1 emerges. That is, the biologically meaningful
equilibrium solution E1 exists only for α ≥ αt and
no further static bifurcation can occur from E1 for
α > αt. The second critical value defines a turning
point (αTurning, ATurning) = ( 2592

13530125 ,−1125
658 ), which

has a negative value for A and so is not biologically
interesting [see Fig. 1(a)]. The third critical value is
(αs, A1s)=(0, 0), which is not allowed since α must
take positive values for the components Rn and E in
the equilibrium solution E1 [see Eq. (6)]. Therefore,
the equation F2(αs) defines a unique transcritical
bifurcation point.

Next, we turn to consider possible Hopf
bifurcations which may occur from the disease

equilibrium E1. To achieve this, we apply Theo-
rem 1 to the equilibrium E1, where A1 satisfies
the polynomial equation F1(A1, α) = 0 in (7).
Based on the fourth-degree characteristic poly-
nomial P1(L,A1, α) [see Eq. (8)], we apply the
formula, ∆3(A1, α) = a1a2a3 − a2

3 − a2
1a4 to solve

the two polynomial equations, ∆3(A1, α) = 0 and
F1(A1, α) = 0, together with the parameter val-
ues given in Table 1, yielding two Hopf bifurcation
points: (αH1, AH1) ≈ (0.7867 × 10−3, 11.4436), and
(αH2, AH2) ≈ (0.5039 × 10−3,−13.1534), as shown
in Fig. 1(a). We only take the biologically meaning-
ful point with two positive entries to get a unique
Hopf bifurcation point: (αH, AH) ≈ (0.7867 ×
10−3, 11.4436). Here, the subscript “H” stands for
Hopf bifurcation. At the critical point (αH, AH),
other stability conditions given in Theorem 1 are
still satisfied:

a1 ≈ 2.098879937, a2 ≈ 0.6310564343,

a3 ≈ 0.1144843602, a4 ≈ 0.0314460534,

∆2 ≈ 1.2100273294, ∆3 ≈ −0.1 × 10−18 ≈ 0.

As a matter of fact, by using these given parameter
values, we may numerically compute the Jacobian of
system (1) at the equilibrium E1 to obtain a purely
imaginary pair and two negative real eigenvalues:
±0.2335i,−1.7739, and −0.325. Therefore, the dis-
ease equilibrium E1 is stable for α ∈ (αt, αH) ≈
(0.2025×10−3 , 0.7867×10−3) and loses its stability
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at α = αH , where a Hopf bifurcation occurs, leading
to bifurcation of a family of limit cycles.

In the next section, we will study the Hopf
bifurcation from E1 and use center manifold the-
ory and normal form theory to consider stability
and direction of bifurcating limit cycles.

3. Hopf Bifurcation and Limit
Cycles: Nonlinear Analysis

In this section, we pay attention to the Hopf bifur-
cation determined in the previous section, and use
center manifold theory and normal form theory to
find the approximate solutions of the limit cycles
and determine their stability. In the following, for
convenience, we first briefly describe center man-
ifold theory and normal form theory. Suppose a
dynamical system under consideration is described
by the following differential equation (D.E.),

ẋ = F(x,µ), x ∈ Rn, µ ∈ Rk,

F : Rn+k → Rn,
(11)

where x = (x1, x2, . . . , xn) is a state vector, µ =
(µ1, µ2, . . . , µn) is a parameter vector, and the non-
linear vector function F is assumed to be analytic
in x and µ. The equilibrium solution xe = xe(µ)
of (11) is determined from F(x, µ) = 0. We con-
sider Hopf bifurcation, so set k = 1 and assume
the Jacobian of the system evaluated at the equi-
librium solution xe is given by J(µ) = DxF(xe, µ),
which has a pair of purely imaginary eigenvalues at
a critical point µ = µc, and other eigenvalues have
negative real part.

Now, we first apply center manifold theory to
reduce the dimension of system (11) and obtain a
simplified differential system on the center mani-
fold. Then we apply normal form theory to fur-
ther simplify the resulting differential system, and
perform a bifurcation study of a given type. To
achieve this, we introduce a sliding transformation
x = xe(µ)+u, and a parameter shifting µ = µc + µ
into system (11) to obtain

u̇ = F(xe(µc + µ) + u, µc + µ)

= F̃(u, µ),

which yields DuF̃(0, 0) = J̃ whose eigenvalues con-
tain an imaginary pair. In addition, introducing
another linear transformation u = Tx such that
J = T−1J̃T is in Jordan canonical form, therefore,
we obtain the following general D.E.:

ẋ = f(x, µ), x ∈ Rn, µ ∈ R, f : Rn+1 → Rn,

(12)

where f(x, µ) = T−1F̃(Tx, µ). Now x = 0 is an
equilibrium solution of system (12) for any real
values of µ, i.e.

f(0, µ) ≡ 0 and

J(µ) = Dxf(0, µ) =

[
A(µ) 0

0 B(µ)

]

with

J(0) =

[
A(0) 0

0 B(0)

]

satisfying

Re(λ(A(0))) = 0, Re(λ(B(0))) < 0.

λ(·) stands for the eigenvalues of a given matrix.
Then, we can rewrite (12) as

ẋc = A(µ)xc + fc(xc,xs;µ),

ẋs = B(µ)xs + fs(xc,xs;µ),
(13)

where x = (xc,xs)T , xc and xs are state variables
associated with the eigenvalues of the linearized sys-
tems with zero and negative real parts, respectively.
nc + ns = n (for Hopf bifurcation, nc = 2), and

A(µ) = A + Aµ, B(µ) = B + Bµ. (14)

Moreover, fc and fs satisfy fc(0,0; 0) = fs(0,0; 0) =
0 and ∂fc(0,0;0)

∂xc
= ∂fc(0,0;0)

∂xs
= ∂fc(0,0;0)

∂µ = ∂fs(0,0;0)
∂xc

=
∂fs(0,0;0)

∂xs
= ∂fs(0,0;0)

∂µ = 0. By center manifold the-
ory, there exists an analytic function h, such that
xs = h(xc;µ) with h(0; 0) = Dh(0; 0) = 0. Thus,
ẋs = Dh(xc;µ)ẋc, which can be rewritten as

N (h(xc;µ))

≡ Dh(xc;µ)[A(µ)xc + fc(xc,h(xc;µ);µ)]

−B(µ)h(xc;µ) − fs(xc,h(xc;µ)) = 0.
(15)

In general, the above equation with the boundary
conditions h(0; 0) = Dh(0; 0) = 0 cannot be solved
analytically. To find the approximation of h(xc;µ),
we use the Taylor series of h(xc;µ) expanded near
(xc;µ) = (0; 0) with undetermined coefficients,
and then expanding (15) and balancing the coeffi-
cients of like powers to determine the coefficients in
h(xc;µ), and so an approximation of xs = h(xc;µ)
is obtained.
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We now consider the projection of the vector
field on the center manifold W c = {(xc,xs) |xs =
h(xc;µ)}, yielding ẋc = A(µ)xc + fc(xc,h(xc;µ);µ)
or

ẋc = A(µ)xc + fc(xc;µ), xc ∈ R2, µ ∈ R, (16)

satisfying fc(0; 0) = Dfc(0; 0) = 0, and A(µ) =
A + Aµ where A =

[
0 ω
−ω 0

]
and A =

[
a11 a12

a21 a22

]
.

Now applying the method of normal forms to sys-
tem (16) and putting the result in the polar coor-
dinates, yields

ṙ = r(υ0µ + υ1r
2 + υ2r

4 + · · ·),
θ̇ = ω + τ0µ + τ1r

2 + τ2r
4 + · · · ,

(17)

where r and θ denote the amplitude and phase of
motion, respectively; υ0 and τ0 can be obtained

from linear analysis, while υ1, υ2, . . . and τ1, τ2, . . .
are obtained from nonlinear analysis. We have the
following theorem for finding υ0 and τ0.

Theorem 2. For the linearized system of (16),

ẋc = A(µ)xc =

[
a11µ ω + a12µ

−ω + a21µ a22µ

]
xc,

the following holds:

υ0 =
1
2
(a11 + a22),

τ0 =
1
2
(a12 − a21).

(18)

Proof. This is a two-dimensional system. Let
xc = (xc1, xc2)

T . There exists a nonsingular matrix
P , given by

P =



−(ω + a12µ) 0

1
2
(a11 − a22)µ −

√
ω2 + ω(a12 − a21)µ +

[
a12a21 − 1

4
(a11 − a22)2

]
µ2


, (19)

which is used in the transformation (xc1 , xc2)
T = P (y1, y2)T to yield

(
ẏ1

ẏ2

)
= P−1AP

(
y1

y2

)
=




1
2
(a11 + a22)µ ω

−ω
1
2
(a11 + a22)µ



(

y1

y2

)
, (20)

where P−1 is the inverse matrix of P , and

ω = ω

√
1 +

1
ω

(a12 − a21)µ +
1
ω2

[
a12a21 − 1

4
(a11 − a22)2

]
µ2.

Next, we put the new system (20) in polar coordinates, via y1 = r sin θ, y2 = r cos θ. Thus, r2 = y2
1 + y2

2,
and tan θ = y1

y2
. Therefore, 2rṙ = 2y1ẏ1 + 2y2ẏ2, yielding

ṙ =
1
2
(a11 + a22)µr = υ0µr (21)

and θ̇ sec2θ = ẋ1x2−ẋ2x1

x2
2

, gives

θ̇ =
ẋ1x2 − ẋ2x1(
1 +

x2
1

x2
2

)
x2

2

= ω

√
1 +

1
ω

(a12 − a21)µ +
1
ω2

[
a12a21 − 1

4
(a11 − a22)2

]
µ2

= ω

[
1 +

1
2ω

(a12 − a21)µ
]

+ O(µ2) = ω +
1
2
(a12 − a21)µ + O(µ2) = ω + τ0µ + O(µ2). (22)

The proof of Theorem 2 is complete. �
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Note that if the original system is a nonlinear
system, given in the general form, ẋc = f(xc, µ),
with f(0, 0) = 0, and J(0, 0) = Dxcf(0, 0) =[

0 ω
−ω 0

]
, then aij = ∂f2

i
∂xj∂µ , i, j = 1, 2.

Finally, to find υ1, υ2, . . . and τ1, τ2, . . ., we set
µ = µc = 0 in system (16) to consider

ẋc = A(0)xc + fc(xc,h(xc; 0); 0)

= Axc + fc(xc)

and apply normal form theory (e.g. see [Gucken-
heimer & Holmes, 1990]) to obtain

ẋc1 = xc1[υ1(x2
c1 + x2

c2) + υ2(x2
c1 + x2

c2)
2 + · · ·]

+ xc2[ω + τ1(x2
c1 + x2

c2)+ τ2(x2
c1 + x2

c2)
2 + · · ·],

ẋc2 = −xc1[ω + τ1(x2
c1 + x2

c2) + τ2(x2
c1 + x2

c2)
2 + · · ·]

+ xc2[υ1(x2
c1 + x2

c2) + υ2(x2
c1 + x2

c2)
2 + · · ·],

which can be written via xc1 = r sin θ, xc2 = r cos θ
as

ṙ = r(υ1r
2 + υ2r

4 + · · ·),
θ̇ = ω + τ1r

2 + τ2r
4 + · · · .

The proof can be found in [Yu, 1998].
It should be pointed out that the above two

steps in computing the center manifold and normal
form of general nonlinear systems can be combined
into one procedure, e.g. see [Yu, 1998, 2003].

3.1. Normal form computation
associated with the Hopf
bifurcation from E1

Now we apply normal form theory and the Maple
program developed in [Yu, 1998] to system (1) to
analyze the Hopf bifurcation which occurs at the
critical point (αH, AH) ≈ (7.8666 × 10−4, 11.4436)
(with other parameter values given in Table 1). We
show the details of finding the normal form for sys-
tem (1) associated with this Hopf critical point.

Let α = αH+µ, where µ is a small perturbation
(bifurcation) parameter. Then, with

P =



−0.0001169099 −0.0002184341 −0.0008788039 −0.0001219983

−0.8049052552 0.0 0.1059811404 0.5249612314

−0.3405368387 0.3976613541 −0.0134675000 −0.8399379702

−0.1318126011 −0.2462783299 0.9942765471 −0.1375496158




we introduce the affine transformation,




A

Rn

Rd

E


 =




A(µ)

Rn(A(µ), µ)

Rd(A(µ), µ)

E(A(µ), µ)


+ P




x1

x2

x3

x4


, (23)

where

Rn(A(µ), µ) =
−0.002304(A + 13.65733522 + 17361.11111µ)A

0.4608 × 10−7A2 − 0.1966656271 × 10−4 − 0.025µ
,

Rd(A(µ), µ) =
−0.002304(A + 13.65733522 + 17361.11111µ)A

0.4608 × 10−7A2 − 0.1966656271 × 10−4 − 0.025µ
,

E(A(µ), µ) =
−7812.5(0.02458320339 + 0.7866625085 × 10−3A + Aµ + 31.25µ)A

(0.0007866625084 + µ)(A2 − 426.7917255 − 542534.7222µ)
,

while A and µ have the following relation:

F4a = 0.21233664 × 10−11A4 + (−0.191442188 × 10−8 − 0.24336 × 10−5µ)A2

− (0.6371966318 × 10−8 + 0.81 × 10−5µ)A − 0.9956197372 × 10−7

− 0.1265625 × 10−3µ + 0.625(0.7866625084 × 10−3 + µ)2 = 0,
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into system (1) to obtain

ẋi = Fi(x1, x2, x3, x4;µ), i = 1, 2, 3, 4, (24)

in which

F1 = 0.2335496834x2 + 0.1 × 10−5

+ (79.07737301x1 + 65.85310456x2 − 917.0159663x3 + 73.44534378x4)µ + o(µ)

+ 0.6907346099 × 10−7x2
1 − 0.7871759754 × 10−6x1x2 + 0.3970174728 × 10−6x1x3

+ 0.283435609 × 10−7x1x4 − 0.2450834082 × 10−6x3x2 + 0.2071989330 × 10−4x2
3

+ 0.3049539696 × 10−6x3x4 − 0.1037827494 × 10−5x4x2 − 0.456398326 × 10−7x2
4

− 0.1711886771 × 10−5x2
2,

F2 = −0.2335496834x1 + 0.3 × 10−5

+ (600.2222024x1 + 735.9644840x2 − 1588.592053x3 + 583.6348214x4)µ + o(µ)

+ 0.1870133257 × 10−5x2
1 + 0.2707944533 × 10−5x1x2 − 0.165759520 × 10−6x1x3

+ 0.3428802216 × 10−5x1x4 − 0.1445942971 × 10−6x3x2 − 0.5061600581 × 10−5x2
3

− 0.154680119 × 10−6x3x4 + 0.1939706942 × 10−5x4x2 + 0.1541570112 × 10−5x2
4

− 0.1468948484 × 10−5x2
2,

F3 = −1.773879937x3 − 0.2 × 10−5

+ (21.72751810x1 + 168.3180208x2 − 62.7868030x3 + 36.82458413x4)µ + o(µ)

+ 0.3 × 10−15x2
1 − 0.5 × 10−16x1x2 + 0.4457936798 × 10−5x1x3

+ 0.4 × 10−15x1x4 − 0.2385968125 × 10−5x3x2 − 0.2371384210 × 10−6x2
3

+ 0.3464744128 × 10−5x3x4 − 0.1 × 10−15x4x2 + 0.2 × 10−15x2
4,

F4 = −0.3250000000x4 + 0.1 × 10−5

+ (251.7612101x1 + 319.0383240x2 − 379.3117812x3 + 245.9493920x4)µ + o(µ)

+ 0.8573938681 × 10−6x2
1 + 0.1601198369 × 10−5x1x2 − 0.310918787 × 10−6x1x3

+ 0.1611845343 × 10−5x1x4 + 0.6916390751 × 10−7x3x2 − 0.1079305444 × 10−4x2
3

− 0.2524231766 × 10−6x3x4 + 0.1339104819 × 10−5x4x2 + 0.7483468117 × 10−6x2
4

− 0.14090733 × 10−8x2
2,

where o(µ) represents higher-order terms of µ. Now, the Jacobian of system (24) evaluated on the equi-
librium, xi = 0, i = 1, 2, 3, 4, at the critical point, µ = 0 [corresponding to the disease equilibrium E1 for
model (1)] is in the Jordan canonical form:

J =




0 0.233549683 0 0

−0.233549683 0 0 0

0 0 −1.773879938 0

0 0 0 −0.3250000000


.
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Applying the formula (18) to system (24), we obtain

υ0 =
1
2

(
∂2F1

∂x1∂µ
+

∂2F2

∂x2∂µ

)∣∣∣∣
xi=0,µ=0

= 34.2047656142,

τ0 =
1
2

(
∂2F1

∂x2∂µ
− ∂2F2

∂x1∂µ

)∣∣∣∣
xi=0,µ=0

= 132.8997934535.

(25)

Next, substituting µ = 0 into (24) and then apply-
ing the Maple program [Yu, 1998] yields

υ1 = −0.2016072570 × 10−11,

τ1 = −0.1318624299 × 10−10.
(26)

Therefore, the normal form associated with this
Hopf bifurcation, up to third-order terms, is given
by

ṙ = r(υ0µ + υ1r
2)

= r(34.2047656142µ − 0.2016072570 × 10−11r2),

θ̇ = ωc + τ0µ + τ1r
2

= 0.233549683 + 132.8997934535µ

− 0.1318624299 × 10−10r2.

(27)

The steady-state solutions of Eq. (27) are deter-
mined by ṙ = θ̇ = 0, resulting in

r = 0, r2 ≈ 0.1696603893 × 1014µ. (28)

The equilibrium r = 0 represents the disease equi-
librium E1 of model (1). A linear analysis on
the first differential equation of (27) shows that
d
dr (dr

dt )|r=0 = υ0µ, and thus r = 0 (E1) is stable
(unstable) for µ < 0 (> 0), as expected. When µ is
increased from negative to cross zero, a Hopf bifur-
cation occurs and the amplitude of the bifurcating
limit cycles is approximated by the nonzero steady
state solution,

r ≈ 0.4118985182 × 107√µ (µ > 0). (29)

Since d
dr (dr

dt )|(29) = 2υ1r
2 = −2υ0µ < 0 (µ >

0, υ0 > 0, υ1 < 0), it indicates that the Hopf bifur-
cation is supercritical since v1 < 0 and so the bifur-
cating limit cycles are stable. Equation (29) gives
the approximate amplitude of the bifurcating limit
cycles, while the phase of the motion is determined
by θ = ωt, where ω is given by

ω =
dθ

dt

∣∣∣∣
(29)

= 0.233549683 − 90.8185182µ. (30)

Having found the nonzero steady-state solution
(limit cycle) in terms of r and θ = ωt, the peri-
odic solution of Eq. (24) can be written in a general
form:

x1(µ) = r cos(ωt) + h1(r cos(ωt), r sin(ωt)),

x2(µ) = −r sin(ωt) + h2(r cos(ωt), r sin(ωt)),

xi(µ) = hi(r cos(ωt), r sin(ωt)), i = 3, 4,

hi starts from second-order term,

(31)

while the first-order approximation of the limit
cycles is given by

x1(µ) = r cos(ωt),

x2(µ) = −r sin(ωt), x3 = x4 = 0,

where r and ω are given in Eqs. (29) and (30),
respectively. However, in order to get higher-order
(e.g. third-order) approximate solutions of the oscil-
lation in terms of the original variables A, Rn, Rd,
and E for a comparison with the numerical simu-
lation to be discussed in the next section, we need
the nonlinear transformations (including the cen-
ter manifold transformation and the normal form
transformation) between xi (i = 1, 2, 3, 4), and the
polar coordinates (r, θ). Fortunately, these nonlin-
ear transformations can be obtained directly from
the computer output of the Maple program [Yu,
1998] as follows:

x1(t) = cos(ωt)r + [0.8588852860 × 10−6 − 0.3506344360 × 10−5 cos(2ωt)

+ 0.4474326340 × 10−5 sin(2ωt)]r2 + [0.1097332343 × 10−10 cos(3ωt)

+ 0.3484198508 × 10−10 sin(3ωt)]r3,

x2(t) = −sin(ωt)r + [0.3517053177 × 10−5 + 0.5135844613 × 10−5 cos(2ωt)

+ 0.5327445638 × 10−5 sin(2ωt)]r2 − [0.3403071221 × 10−10 cos(ωt)
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+ 0.4194098549 × 10−11 sin(ωt) + 0.4874935933 × 10−10 cos(3ωt)

− 0.532632423 × 10−11 sin(3ωt)]r3,

x3(t) = [0.8456040162 × 10−16 + 0.7213644930 × 10−16 cos(2ωt) + 0.4718182329 × 10−16 sin(2ωt)]r2,

x4(t) = [0.1316899684 × 10−5 − 0.1841270059 × 10−6 sin(2ωt) + 0.1585867935 × 10−5 cos(2ωt)]r2

+ [0.1207672844 × 10−10 cos(ωt) + 0.1812966212 × 10−10 sin(ωt)

− 0.8220638067 × 10−11 cos(3ωt) + 0.1214100228 × 10−10 sin(3ωt)]r3.

(32)

Finally, with the above transformations we can
now use the affine transformation (23) to obtain the
periodic solution in terms of the original variables.
The comparison between the analytical prediction
and numerical simulation is given in Sec. 5.

4. Generalized Hopf Bifurcation
Leading to Multiple Limit Cycles

In the previous sections, we have given a detailed
analysis on Hopf bifurcation, which is limited to the
bifurcation of single limit cycle. However, disease
models may exhibit complex dynamical behaviors
caused by bifurcation of multiple limit cycles, yield-
ing bistable or multiple stable solutions involving
equilibria and steady motions. It has been noted
that such a study is often ignored in the literature
on the analysis of practical systems, in particular,
on biological systems, since the analysis is not easy
even for two-dimensional systems. Most of the pub-
lished works are limited to bifurcation of single limit
cycle with very few of them using numerical simu-
lation to show two limit cycles.

In this section, we will use the reduced three-
dimensional model presented in [Zhang et al., 2014]
to prove the existence of two limit cycles bifur-
cating from a Hopf critical point. To reduce the
four-dimensional system (1) to a three-dimensional
model, we assume the following:

(i) Only the suppression for which Treg (Rn and
Rd) acts on pAPC (A), not on effector T cells
(E), is considered, resulting in σ3 = 0.

(ii) Except for E, the IL-2 sources are not consid-
ered, yielding β = 0.

(iii) Quasi-steady state assumption is applied to
the last equation of model (1), leading to
Ė ≈ 0, and thus the state variable E can be
eliminated from the system.

Under the above assumptions, system (1) becomes

Ȧ =
αλE

b3 + µE
A − σ1(Rn + dRd)A

− (b1 + µA)A,

Ṙn =
π3λE

b3 + µE
A2 − (µn + ξ)Rn,

Ṙd = cξRn − µdRd.

(33)

To further simplify the analysis, introducing the fol-
lowing transformation,

A = µ1X, Rn = µ2Y, Rd = µ3Z, τ = µ4t,

(34)

where

µ1 = µd

√
b3 + µE

σ1π3λE
, µ2 =

µd

σ1
,

µ3 =
cξ

σ1
, µ4 = µd,

into (33) we obtain the dimensionless system:

dX

dτ
= (m1 − m2 − Y − DZ )X,

dY

dτ
= X2 − m3Y,

dZ

dτ
= Y − Z,

(35)

where the new parameters are given by

m1 =
αλE

µd(b3 + µE)
, m2 =

b1 + µA

µd
,

m3 =
µn + ξ

µd
, D =

dcξ

µd
.

Here, note that only m1 contains α which is usu-
ally treated as a bifurcation parameter. Using the
parameter values given in Table 1 we have
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µ1 =
25
√

6
4

[A], µ2 =
2 × 105

3
[Rn],

µ3 =
2 × 105

3
[Rd], µ4 =

1
5

/
day,

which agree with the units of the state variables and
time. Moreover, assuming α = 1

2000 = 0.0005, we
have the new parameters which are indeed dimen-
sionless, given by

m1 =
50
9

≈ 5.555556, m2 =
9
4

= 2.25,

m3 =
5
8

= 0.625, D = 2.
(36)

It is easy to obtain two equilibrium solutions
from (35) as follows:

E0 : (0, 0, 0),

E1 :

(√
m3(m1 − m2)

1 + D
,
m1 − m2

1 + D
,
m1 − m2

1 + D

)
,

(m1 ≥ m2).
(37)

A simple linear analysis based on the Jacobian
of (35) shows that when m1 < m2, the disease-free
equilibrium E0 is stable while the disease equilib-
rium E1 does not exist; when m1 > m2, E0 becomes
unstable and E1 emerges. The characteristic poly-
nomial for E1 is given by

P1(λ) = λ3 + (1 + m3)λ2

+
m3[1 + D + 2(m1 − m2)]

1 + D
λ

+ 2m3(m1 − m2), (38)

indicating that m1 = m2 defines a transcritical
bifurcation point between E0 and E1, and there
is no static bifurcation from E1 when m1 > m2.

As a matter of fact, we can treat m1 − m2 as a
single parameter and thus the transcritical bifurca-
tion point becomes m1 − m2 = 0, and in fact the
formulas given below on the analysis of Hopf bifur-
cation indeed does not involve the parameter m2 if
we choose m1 as the perturbation parameter for the
Hopf bifurcation.

Therefore, the only possible bifurcation from
E1 is Hopf bifurcation. The critical Hopf bifurca-
tion point is determined by the condition, ∆2 = 0,
where

∆2 = (1 + m3)
m3[1 + D + 2(m1 − m2)]

1 + D

− 2m3(m1 − m2)

=
m3

1 + D
[2(m1 − m2)(m3 − D)

+ (1 + D)(1 + m3)].

It is easy to see that when m1 > m2 and m3−D > 0,
E1 is always stable, and a Hopf bifurcation occurs
from E1 only if m3 < D. Hence, the Hopf critical
point is defined by

m1H = m2 +
(1 + D)(1 + m3)

2(D − m3)
, (D > m3), (39)

where the subcritical H denotes Hopf bifurca-
tion. Further, suppose the characteristic polynomial
equation P1(λ) = 0 has one real eigenvalue λ1(m1)
and a complex conjugate, λ2,3(m1) = α(m1) ±
iω(m1). It should be noted that λ(m1), α(m1) and
ω(m1) contain other parameters m2, m3 and D.
Then, at this critical point m1 = m1H, we have

λ1(m1H) = −(1 + m3) < 0, α(m1H) = 0 and

ω(m1H) = ωc =

√
m3(1 + D)
D − m3

> 0, (D > m3).

Moreover, we can show that the transversal condi-
tion is satisfied:

∂α

∂m1
(m1H) =

m3(D − m3)2

(1 + D)[D(1 + m3) + m3(m3 + 2)(D − m3)]
> 0.

Next, introducing the following affine transformation




X

Y

Z


 =




√
m3(m1 − m2)

1 + D

m1 − m2

1 + D

m1 − m2

1 + D




+ P




x1

x2

x3


, (40)
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where

P =



−ωc

√
1 + m3

2(1 + D)

√
(1 + D)(1 + m3)

2
m3

ωc

√
1 + D

2(1 + m3)

1 ωc −m3

1 0 1




,

into system (35) we obtain

dx1

dτ
= ωcx2 +

1
2C1

[−m3(1 + m3)C9x
2
1 + (1 + D)(1 + m3)C6x

2
2 + 3m3(D − m3)2x2

3

+ 2ωc(1 + m3)C4x1x2 + 2m3(D − m3)x1x3 + 2ωc(D − m3)C5x2x3],

dx2

dτ
= −ωcx1 +

1
2C1

[
ωc(1 + m3)C5x

2
1 + ωc(1 + m3)(D − m3)C8x

2
2 −

ωc(D − m3)2C2

(1 + D)(1 + m3)
x2

3

− 2(1 + m3)(D − m3)C7x1x2 − 2m3C3

ωc
x1x3 − 2(D − m3)2C10x2x3

]
,

dx3

dτ
= −(1 + m3)x3 +

1
2C1

[m3(1 + m3)C9x
2
1 − (1 + D)(1 + m3)C6x

2
2 − 3m3(D − m3)2x2

3

− 2ωc(1 + m3)C4x1x2 − 2m3(D − m3)C8x1x3 − 2ωc(D − m3)C5x2x3],

(41)

where

C1 = D(1 + m3) + m3(m3 + 2)(D − m3), C2 = (2m2
3 + 3m3 + 2)(D − m3) − m3(1 + m3),

C3 = 2(Dm3 − m2
3 + D)(D − m3) + m3(1 + m3), C4 = (D − m3)2 − m3,

C5 = (1 + 2m3)(D − m3) + D, C6 = m3(D − m3) + D + m3,

C7 = D(1 + m3) + 1 + 2m3, C8 = D − 1 − 2m3,

C9 = 2D + 1 − m3, C10 = 1 + m3 + m2
3.

(42)

Indeed the system (41) does not involve the param-
eter m2, as expected.

Next, we briefly explain how to use the method
of normal forms to study bifurcation of multiple
limit cycles. Suppose the general nonlinear differ-
ential system we are considering is given by ẋ =
Jx + f(x), where Jx and f(x) represent the linear
and nonlinear parts of the system, respectively. We
assume f is analytic and f(0) = 0, implying that
x = 0 is an equilibrium point of the system, and J
is the Jacobian of the system evaluated at the equi-
librium point x = 0. Further suppose J contains
a purely imaginary pair and its other eigenvalues
have negative real part. Then, by applying normal
form theory, we can obtain the normal form (17),
where vk and τk are explicitly expressed in terms

of the original system’s coefficients. vk is called the
kth-order focus value of the Hopf-type critical point
(the origin).

The basic idea of finding k small-amplitude
limit cycles of the system ẋ = Jx+ f(x) around the
origin is as follows: First, find the conditions such
that v0 = v1 = · · · = vk−1 = 0 (note that v0 = 0
is automatically satisfied at the critical point), but
vk �= 0, and then perform appropriate small per-
turbations to prove the existence of k limit cycles.
The following lemma gives sufficient conditions for
the existence of small-amplitude limit cycles. (The
proof can be found in [Yu & Han, 2005].)

Lemma 2. Suppose that the focus values of a dy-
namical system depend on k parameters, expressed
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as

vj = vj(ε1, ε2, . . . , εk), j = 0, 1, . . . , k, (43)

satisfying

vj(0, . . . , 0) = 0, j = 0, 1, . . . , k − 1,

vk(0, . . . , 0) �= 0
(44)

and

det
[
∂(v0, v1, . . . , vk−1)
∂(ε1, ε2, . . . , εk)

(0, . . . , 0)
]
�= 0.

Then, for any given ε0 > 0, there exist ε1, ε2, . . . , εk

and δ > 0 with |εj| < ε0, j = 1, 2, . . . , k such
that the equation ṙ = 0 has exactly k real positive
roots for r (i.e. the dynamical system has exactly
k limit cycles) in a δ-ball with the center at the
origin.

Now we apply the Maple program developed in
[Yu, 1998] for computing the normal forms of Hopf
and generalized Hopf bifurcation to system (41) to
obtain

v1 = − Dm3(1 + m3)2(D − m3)(1 + D − m3)
C2

1[D(m2
3 + 6m3 + 1) + m3(1 − m3)(3 + m3)]

× [3(1 + m3)D2 − (7m2
3 + 6m3 + 1)D + m3(4m2

3 + 5m3 + 3)],

v2 = v2(D,m3) = · · · ,
v3 = v3(D,m3) = · · · ,

where C1 is given in (42), and the lengthy expressions of v2 and v3 are omitted here for brevity. It is seen
that the focus values only contain two parameters D and m3, and so in general, we may obtain three
limit cycles by using D and m3 to solve v1 = v2 = 0 but v3 �= 0. To achieve this, eliminating D from the
equations v1 = v2 = 0 yields a solution D = D(m3) and one resultant R12, given by

R12 = m3(m3 + 1)(m2
3 + 4m3 + 1)(m2

3 + 14m3 + 1)

× (64260m16
3 + 11622021m15

3 + 145525211m14
3 + 938104849m13

3 + 4533531166m12
3

+ 16130725479m11
3 + 40116273317m10

3 + 69028372739m9
3 + 82632778940m8

3

+ 69028372739m7
3 + 40116273317m6

3 + 16130725479m5
3 + 4533531166m4

3

+ 938104849m3
3 + 145525211m2

3 + 11622021m3 + 64260).

It is obvious that R12 = 0 has no positive solu-
tion for m3, implying that we cannot have solutions
for v1 = v2 = 0, and thus three limit cycles are
not possible. The next best possibility is to have
v1 = 0, but v2 �= 0, yielding two small-amplitude
limit cycles. Note that using the values of m2, m3

and D given in (36) we have m1H = 177
44 ≈ 4.022727,

and v1 ≈ −0.149119. In order to have solutions for
v1 = 0, we solve the factor in the square bracket in
the expression of v1 for D to obtain

D± =
1

6(1 + m3)
[1 + 6m3 + 7m2

3

±
√

m4
3 − 24m3

3 − 46m2
3 − 24m3 + 1].

(45)

It is easy to see that D± > 0 provided the following
condition is satisfied:

m4
3 − 24m3

3 − 46m2
3 − 24m3 + 1 ≥ 0

⇔ m3 ≤ 0.038733 · · · or m3 ≥ 25.817673 · · · .
We take m3 = 0.035, m2 = 2.25, and D =
D+ = 0.247813 · · ·, for which v1 = 0 and v2 ≈
−0.019355. Thus, by Lemma 2 we can conclude
that system (35) can have two small-amplitude limit
cycles near the equilibrium solution E1 due to Hopf
bifurcation.

Summarizing the above results we have the fol-
lowing theorem.

Theorem 3. The system (35) has two equilibrium
solutions E0 and E1. E0 is a stable node for m1 <
m2 and becomes a saddle for m1 > m2. E0 loses its
stability at the transcritical point m1 = m2, at which
the equilibrium E1 emerges and exist for m1 > m2.
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E1 is asymptotically stable for m1 ∈ (m2,m1H),
where m1H is a Hopf critical point. There does not
exist conditions such that both the first and sec-
ond focus values vanish, and at the critical value
D = D+, v1 = 0 and v2 �= 0, for which proper per-
turbations can be chosen for system (35) to exhibit
two small-amplitude limit cycles.

Note in Theorem 3 that in order to obtain two
small-amplitude limit cycles, the values of D and
m3 are chosen much smaller than that given in (30).
To realize the two limit cycles, with m2 = 2.25 and
m3 = 0.035, we take perturbations on D and m1 as
D = D+ − 0.05, where m1 = m1H − 0.0001, and so
the focus values become

v0 ≈ −0.181712 × 10−6, v1 ≈ 0.361977 × 10−3,

v2 ≈ −0.018333.

Thus, the truncated normal form equation ṙ =
v0 + v1r

2 + v2r
4 = 0 yields the approximations

for the amplitudes of the two limit cycles: r1 ≈
0.022704 and r2 ≈ 0.138669. Since v0 < 0 and
v2 < 0, the equilibrium point E1 : (X,Y,Z) =
(0.333532, 3.178398, 3.178398) and the outer limit
cycle are stable, while the inner limit cycle is unsta-
ble due to v1 > 0. This is indeed a bistable phe-
nomenon consisting of a stable equilibrium and a
stable limit cycle. If restricted to the center man-
ifold, the unstable limit cycle is a separatrix for
the two attracting regions. In the three-dimensional
space, trajectories converge to either the stable
equilibrium or the stable limit cycle.

However, it should be noted that here we are
looking for only two limit cycles, and hence, we do
not necessarily follow Lemma 2, which gives a suffi-
cient condition for the existence of small-amplitude
limit cycles. As long as under proper perturbation,
we can find two positive roots from the equation:
v0 + v1r

2 + v2r
4 = 0, and higher-order focus values

are small, then two small-amplitude limit cycles are
obtained. Thus, we may take certain perturbations
such that v2 changes from negative to positive. For
example, since D is allowed to take larger values,
we choose D = 0.747814 and m1 ≈ 3.528906, for
which the focus values become

v0 ≈ 0.000036, v1 ≈ −0.023369, v2 ≈ 0.219378.

Thus solving the equation v0 + v1r
2 + v2r

4 = 0
yields two positive roots: r1 ≈ 0.039603 and r2 ≈
0.323967, which approximate the amplitudes of the
bifurcating limit cycles. Moreover, the inner limit

cycle is stable and the outer one is unstable. For this
case, v0 > 0 and v2 > 0, so the equilibrium point
E1 : (X,Y,Z) = (0.160032, 0.731718, 0.731718) and
the outer limit cycle are unstable, while the inner
limit cycle is stable because of v1 < 0. Hence, for
this case the system does not exhibit bistable phe-
nomenon, and all solution trajectories converge to
the stable limit cycle.

Numerical simulation for one of the above two
cases will be given in the next section.

5. Numerical Simulations

In this section, numerical simulations are presented
to compare with the analytical predictions obtained
in the previous sections. In particular, the compar-
ison between the analytical and numerical results
obtained for the Hopf and generalized Hopf bifur-
cations is given. In order to give a good comparison,
for Hopf bifurcation we fix all parameter values, but
α (or µ), which is treated as a bifurcation param-
eter. The parameter α is varied to show the stable
equilibrium solutions E0 and E1, and stable limit
cycles. Moreover, we will choose a large positive
value of µ, which means that this value is far away
from the Hopf critical point αH , to demonstrate the
blips phenomenon. While for the generalized Hopf
bifurcation, we use the dimensionless system (35)
and, besides the parameter m1 treated as a bifurca-
tion parameter (which is a function of α), we take
D as the second perturbation parameter.

Having taken all parameter values, except for
α, from Table 1, it follows from Lemma 1 that the
disease-free equilibrium E0 is asymptotically stable
for 0 < α < αt = 0.2025 × 10−3. Then, as α is
increased to pass through αt, E0 becomes unsta-
ble and bifurcates into the disease equilibrium E1,
which is asymptotically stable for αt < α < αH =
0.7867×10−3 . As α is further increased, E1 becomes
unstable at the Hopf critical point α = αH , lead-
ing to a family of limit cycles. The normal form
obtained for the Hopf bifurcation is given in (27).
Since υ1 = −0.2016072570 × 10−11 < 0, the Hopf
bifurcation is supercritical, and the bifurcating limit
cycles are stable.

To show the series of bifurcations, we vary
the bifurcation parameter α and increase its value
from a small one less than αt. We first choose
α = 0.15 × 10−3 < αt, with the simulation result
shown in Fig. 2, indicating that E0 is asymptotically
stable, which agrees with the analytical prediction.
Next, choose αt < α = 0.4 × 10−3 < αH , with the

1650079-16

In
t. 

J.
 B

if
ur

ca
tio

n 
C

ha
os

 2
01

6.
26

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 T
H

E
 U

N
IV

E
R

SI
T

Y
 O

F 
W

E
ST

E
R

N
 O

N
T

A
R

IO
 o

n 
11

/1
3/

16
. F

or
 p

er
so

na
l u

se
 o

nl
y.



May 24, 2016 7:36 WSPC/S0218-1274 1650079

Hopf and Generalized Hopf Bifurcations on Recurrent Autoimmune Diseases

0 20 40 60 80
0

5

10

15

20

Days

A

0 20 40 60 80
0

1

2

3

4

5

6
x 10

4

Days

R
n

0 20 40 60 80
0

1

2

3

4

5
x 10

4

Days

R
d

0 20 40 60 80
0

5000

10000

15000

Days

E

Fig. 2. Simulated time history for system (1) when α = 0.15 × 10−3 < αt, with the initial condition A(0) = 17,
Rn(0) = Rd(0) = 48 000, E(0) = 12 700, converging to E0.
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Fig. 3. Simulated time history for system (1) when α = 0.4 × 10−3, with the initial condition, A(0) = 17, Rn(0) = Rd(0) =
48 000, E(0) = 12 700, converging to E1.
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simulation result depicted in Fig. 3, showing that
E1 is asymptotically stable, which again agrees with
the analytical prediction. For α > αH , we select
two values of µ = 0.3 × 10−11 and µ = 0.1 × 10−10,
both of which are near the Hopf bifurcation point,
implying two perfect Hopf bifurcations. In order to
compare the simulation results with the analytical

predictions for the two Hopf bifurcations, we use
the sliding and parameter transformation (23), then
apply the normal form (27), the limit cycle solu-
tions (29) and (30), and the output (32) from exe-
cuting the Maple program [Yu, 1998] to obtain the
following analytical approximations:

For µ = 0.3 × 10−11,

A(t) = 11.44368258 + 0.46972 × 10−11 cos(0.70065t) + 0.51885 × 10−12 sin(0.70065t)

− 0.83409 × 10−3 cos(0.23355t) + 0.15584 × 10−2 sin(0.23355t)

− 0.46083 × 10−7 cos(0.46710t) − 0.84711 × 10−7 sin(0.46710t),

Rn(t) = 48548.88564 + 0.16404 × 10−8 cos(0.70065t) + 0.12499 × 10−7 sin(0.70065t)

− 5.7426 cos(0.23355t) + 0.34563 × 10−8 sin(0.23355t)

+ 0.18602 × 10−3 cos(0.46710t) − 0.18823 × 10−3 sin(0.46710t),

Rd(t) = 48548.88564 − 0.31754 × 10−8 cos(0.70065t) + 0.13747 × 10−8 sin(0.70065t)

− 2.4296 cos(0.23355t) − 2.8372 sin(0.23355t)

+ 0.96927 × 10−4 cos(0.46710t) + 0.38148 × 10−4 sin(0.46710t),

E(t) = 12902.43192 + 0.52959 × 10−8 cos(0.70065t) + 0.58498 × 10−9 sin(0.70065t)

− 0.94041 cos(0.23355t) + 1.7570 sin(0.23355t)

− 0.51957 × 10−4 cos(0.46710t) − 0.95508 × 10−4 sin(0.46710t).

(46)

For µ = 0.1 × 10−10,

A(t) = 11.44368267 + 0.28584 × 10−10 cos(0.70065t) + 0.31574 × 10−11 sin(0.70065t)

− 0.15228 × 10−2 cos(0.23355t) + 0.28452 × 10−2 sin(0.23355t)

− 0.15361 × 10−6 cos(0.46710t) − 0.28237 × 10−6 sin(0.46710t),

Rn(t) = 48548.88610 + 0.99821 × 10−8 cos(0.70065t) + 0.76060 × 10−7 sin(0.70065t)

− 10.484 cos(0.23355t) + 0.21032 × 10−7 sin(0.23355t)

+ 0.62007 × 10−3 cos(0.46710t) − 0.62742 × 10−3 sin(0.46710t),

Rd(t) = 48548.88610 − 0.19324 × 10−7 cos(0.70065t) + 0.83652 × 10−8 sin(0.70065t)

− 4.4358 cos(0.23355t) − 5.1798 sin(0.23355t)

+ 0.32309 × 10−3 cos(0.46710t) + 0.12716 × 10−3 sin(0.46710t),

E(t) = 12902.43196 + 0.32227 × 10−7 cos(0.70065t) + 0.35598 × 10−8 sin(0.70065t)

− 1.7169 cos(0.23355t) + 3.2078 sin(0.23355t)

− 0.17319 × 10−3 cos(0.46710t) − 0.31836 × 10−3 sin(0.46710t).

(47)
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Fig. 4. Comparison between the simulated time history and analytical approximations for system (1), the red solid line
denoting the simulation results, while the black dash–dot line indicating the analytical predictions. The bifurcation parameter
values of µ are taken for two cases: (a) µ = 0.3 × 10−11 and (b) µ = 0.1 × 10−10, both converging to stable limit cycles.
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The two sets of simulation results compared
with the above two sets of analytical solutions
are shown in Fig. 4. It clearly shows a very good
agreement between the simulation results and the
analytical predictions, particularly for the smaller
value of µ, as expected. The comparison result for
µ = 0.3 × 10−11 has been given in [Zhang et al.,
2014], but the detailed analytical formulas are not
given there. To demonstrate the blips phenomenon,
we choose a value of α = 0.3× 10−2 > αH , which is
not close to αH , and so the normal form theory is
not applicable for this value. The simulation result
for this case is given in Fig. 5, indeed showing the
blips phenomenon. Since the solutions of the system
are positive and bounded, and the Hopf bifurcation
induces oscillations, we expect that the system can
have large-amplitude oscillating solutions (a per-
sistent motion), and choosing appropriate param-
eter values can tune the frequency of the motion to
become blips. The biological reason for the model
to exhibit blips is as follows (see Fig. 5): the vari-
able E grows very quickly in the absence of the vari-
ables Rn and Rd, and then Rn responds very quickly
(due to the EA term) and suppresses the E, but
the Rn does not last long. This explains how the

adaptive and innate immune responses work too,
against pathogens. But why is the E not eliminated
like a pathogen would be? Maybe because the sys-
tem is now “torn between two equilibria”.

Finally, we present simulations for the bifur-
cation of two limit cycles obtained in the previous
section. We consider the case with v2 > 0, for which
the parameter values are given by

m2 = 2.25, m3 = 0.035,

m1 = 3.52890612, D = 0.74781360.
(48)

We use the normalized system (35) to perform the
simulation. The simulations are shown in Fig. 6,
with the equilibrium E1 given at (X,Y,Z) =
(0.1600, 0.7317, 0.7317). Figures 6(a)–6(d) show the
convergence to the small limit cycle from different
initial points, and in particular, a different scale is
used in Fig. 6(a) to show a zoomed region where a
trajectory (with dots plotting) starting from an ini-
tial point close to the equilibrium E1 converges to
the limit cycle. Note that at the equilibrium point
E1, the eigenvalues have a negative eigenvalue and a
pair of complex conjugate with very small positive
real part. Thus E1 becomes a focus-saddle. Because
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Fig. 5. Simulated time history for system (1) when α = −0.3 × 10−2, showing blips.
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Fig. 6. Simulated trajectories of system (35) for m1 = 3.52890612, m2 = 2.25, m3 = 0.035, D = 0.74781360, all of them
converging to the small limit cycle, with the initial points taken at (a) (X, Y, Z) = (0.16, 0.73, 0.73), (b) (X, Y, Z) = (1.5, 2.4, 1),
(c) (X, Y, Z) = (0.5, 0, 0) and (d) (X, Y, Z) = (0.000001, 0, 0).

E0 is a saddle, there must exist a separatrix con-
necting E0 and E1, and the trajectory starting from
E0 on the unstable part converges to E1 as t → +∞.

The two limit cycles are located on a center
manifold which passes through the equilibrium E1.
In order to show the unstable limit cycle, we restrict
the system to the center manifold, which is obtained

by assuming the center manifold expanded in the
form of x3 = x3(x1, x2) = a20x

2
1 + a11x1x2 +

a02x
2
2 + · · · (up to fifth-order) and then using sys-

tem (35) to determine the undetermined coeffi-
cients aij . Then, transferring the form back to the
original variables X,Y,Z we obtain the following
equation:

CM = −0.0683915894 + 0.2016906273X − 0.8793688885Y + 0.9470797978Z + 0.0622322204X2

− 0.0664272886Y 2 + 0.0004776377Z2 + 0.0497178205XY − 0.0119240109XZ

− 0.0101081034YZ + 0.0733485001X3 + 0.0425268638Y 3 − 0.0001740782Z3

− 0.1622094496X2Y − 0.0298346829X2Z + 0.0775152987XY 2 − 0.0040445755Y 2Z

+ 0.0039935873XZ 2 − 0.0023944203YZ 2 + 0.0410418940XYZ + · · ·
= 0. (49)

The graph of the center manifold is depicted in Fig. 7(a), which seems very close to a plane near the
equilibrium E1. For the given parameter values in (48), we obtain the following differential equations up
to fifth-order, describing the dynamics on the center manifold:

dx1

dτ
= 0.000036x1 + 0.292950x2 − 0.054038x2

1 + 0.173926x1x2 + 0.054038x2
2 − 0.000034x3

1

+ 0.003022x2
1x2 − 0.065757x1x

2
2 − 0.001346x3

2 + 0.000110x4
1 − 0.002335x3

1x2 − 0.078314x2
1x

2
2
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Fig. 7. (a) Center manifold (49), (b) simulated small limit cycle restricted to the center manifold based on the reduced sys-
tem (50), (c) simulated large and small limit cycles near the manifold based on the reduced system (50) and (d) the simulation
given in (c) transformed back to the original coordinate system.

+ 0.048821x1x
3
2 − 0.010521x4

2 − 0.000061x5
1 + 0.003994x4

1x2 − 0.065173x3
1x

2
2 + 0.167741x2

1x
3
2

− 0.112675x1x
4
2 + 0.024607x5

2,

dx2

dτ
= −0.292950x1 + 0.000036x2 + 0.277655x2

1 − 1.649484x1x2 − 0.277655x2
2 − 0.000299x3

1

+ 0.012383x2
1x2 + 0.110119x1x

2
2 + 0.002246x3

2 + 0.000952x4
1 + 0.024591x3

1x2 + 0.117304x2
1x

2
2

− 0.078729x1x
3
2 + 0.017561x4

2 − 0.000507x5
1 + 0.010039x4

1x2 + 0.063385x3
1x

2
2 − 0.249426x2

1x
3
2

+ 0.181397x1x
4
2 − 0.041077x5

2.

(50)

The dynamics, in particular, the two limit
cycles of the above reduced system are shown in
Figs. 7(b) and 7(c). Note that now the origin of the
reduced system is an unstable focus, correspond-
ing to the original equilibrium E0. The small stable
limit cycle shown in Fig. 7(b) is obtained by using

the initial condition (x1, x2) = (0.0001,−0.0001),
converging to the limit cycle very slowly. Figure 7(c)
shows both large and small limit cycles, and the
outer unstable limit cycle is obtained by using
the so-called “reversing time” simulation, that is,
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simply take negative time step in a regular numeri-
cal integration scheme. Thus, trajectories diverging
from the unstable limit cycles become converging
to the limit cycle. But this approach is not appli-
cable for dynamical systems which have dimension
higher than two. The simulation given in Fig. 7(c)
can be transformed back to the original coordinates
(X,Y,Z) by using the center manifold transforma-
tion x3 = x3(x1, x2) as well as (47), as shown in
Fig. 7(d).

The advantage of using the two-dimensional
reduced dynamical system on the center manifold
allows us to simulate the unstable limit cycle, which
is difficult to do using the original three-dimensional
system. A small drawback of this approach is that
the center manifold (49) is not an exact or global
expression, but an approximation. Hence, the tra-
jectories not near the equilibrium E1 may have devi-
ation from real solutions, and the deviation becomes
large for the trajectories being far from the equi-
librium. It can be seen from Fig. 7(b) that the
small limit cycle has a very good approximation,
compared with the analytical prediction r1 ≈ 0.04.
However, it can be observed from Fig. 7(d) that
the large limit cycle slightly reaches negative val-
ues, which are not allowed since the solutions of the
original system (35) are positive provided the initial
conditions are positive. But it is still good enough
to confirm the analytic prediction, in particular for
the unstable limit cycle, at least qualitatively.

6. Conclusion

In this paper, we have given a detailed study on an
autoimmune model, particularly for bifurcation and
stability properties. The main attention is focused
on the dynamical oscillating behavior of the model,
which may lead to the interesting and important
phenomenon — blips. After finding two equilib-
rium solutions and their stability conditions, we
have paid particular attention to Hopf bifurcation
which may occur from the disease equilibrium, since
Hopf bifurcation is a necessary condition to gener-
ate blips. We have applied center manifold theory
and the method of normal forms to give a detailed
analysis on the Hopf bifurcation. We have obtained
the exact analytical formulas for the approximate
solutions of limit cycles, which are compared with
numerical simulations to show a very good agree-
ment between the simulations and the analytical
predictions.

Moreover, we have also investigated the bifur-
cation of multiple limit cycles, which can cause com-
plex dynamics in biological systems such as bistable
phenomenon which may involve stable equilibria
and stable oscillating motions. We have particu-
larly shown that the autoimmune model considered
in this paper can indeed exhibit at least two limit
cycles due to Hopf bifurcation. The results show
that it is possible to have bistable phenomenon
consisting of a stable equilibrium and an (outer)
stable limit cycle, and the unstable small limit
cycle, restricted to the center manifold, separates
the attracting regions between the stable equilib-
rium and the stable limit cycle. Also, it is possible
to have an (outer) unstable limit cycle and an inner
stable limit cycle, both of them enclose an unsta-
ble limit cycle. In this case, there does not exist
bistable phenomenon and all trajectories converge
to the stable limit cycle.

The bifurcation of multiple cycles studied in
this paper for an autoimmune model reveals that
multiple limit cycle bifurcation may be one of the
sources to yield complex dynamics in biological sys-
tems and can be used to realistically explain com-
plex dynamics in real physical systems. The method
developed in this paper can be easily extended
to study other nonlinear dynamical systems. It is
anticipated that this study may promote further
researches in this field.
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