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In recent publications [Llibre, 2014; Llibre & Makhlouf, 2020], time-averaging method was
applied to studying periodic orbits bifurcating from zero-Hopf critical points of two Rössler
systems. It was shown that the averaging method is successful for a certain type of zero-Hopf
critical points, but fails for some type of such critical points. In this paper, we apply normal form
theory to reinvestigate the bifurcation and show that the method of normal forms is applicable
for all types of zero-Hopf bifurcations, revealing why the time-averaging method fails for some
type of zero-Hopf bifurcation.
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1. Introduction

Recently, Llibre and Makhlouf [2020] applied the
time-averaging method to analyze zero-Hopf bifur-
cation in a Rössler system and obtained periodic
orbits around such a critical point. However, they
also showed that the time-averaging method cannot
be used to detect periodic orbits around a certain
type of such critical points. The Rössler system con-
sidered in [Llibre & Makhlouf, 2020] is given by

ẋ = x − xy − z,

ẏ = x2 − a1y,

ż = b1(c1x − z),

(1)

where the dot denotes differentiation with respect
to time, a1, b1, and c1 are real parameters. Earlier,
Llibre [2014] also studied zero-Hopf bifurcation in
another Rössler system, described by

ẋ = −y − z,

ẏ = x + a2y,

ż = b2x − c2z + xz,

(2)

where a2, b2, and c2 are also real parameters.
The most well-known Rössler system proposed by
Rössler [1976] is given as follows (also see [Yu &
Chen, 2004] for chaos control of this system):

ẋ = −y − z,

ẏ = x + a3y,

ż = b3 + z(x − c3),

(3)

where a3, b3, and c3 are real parameters. All the
three different Rössler systems have multiple equi-
libria, and both Hopf and zero-Hopf bifurcations
can occur from these equilibria. It is noted that
systems (2) and (3) have two equilibria, while sys-
tem (1) has three equilibria. We can show that
system (3) is actually equivalent to system (2) or
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more precisely system (2) is more general than sys-
tem (3). To prove this, first, it is easy to find the
two equilibria of system (3), given by

E± = (xe, ye, ze),

where

ye =
−c3 ±

√
c2
3 − 4a3b3

2a3
, xe = −a3ye,

ze = −ye, (a3 �= 0, c2
3 ≥ 4a3b3).

When c2
3 = 4a3b3, the two equilibria E± have coin-

cided into one with ye = −2b3
c3

, c3 �= 0. Then, shift-
ing E± to the origin and letting

a3 = a2,
c3 ±

√
c2
3 − 4a3b3

2a3
= b2, a3b2 = c2,

we obtain system (2). The equivalence of sys-
tems (2) and (3) is also mentioned in [Llibre, 2014].
But the systems (1) and (2) are not equivalent since
there does not exist a linear or nonlinear trans-
formation between these two systems, by noticing
that these two systems have a different number of
equilibria. Therefore, in the following analysis, our
study is focused on systems (1) and (2).

In [Llibre & Makhlouf, 2020] the authors have
shown that system (1) can have zero-Hopf bifur-
cation at the three equilibria and they applied
time-averaging to detect possible periodic orbits.
In particular, they used the time-averaging method
to obtain the periodic solutions around the equi-
librium at the origin, but could not detect possi-
ble periodic solutions around the other two nonzero
equilibria. Similarly, Llibre [2014] considered sys-
tem (2), which has two equilibria and the dynami-
cal property around them is the same, and showed
that zero-Hopf bifurcation occurs for a certain set of
parameter values. However, Llibre again found that
the time-averaging method can be used to detect
periodic orbits for a subset of the parameter values,
but could not for the remaining subset of the param-
eter values.

In this paper, we will apply normal form the-
ory to reinvestigate the zero-Hopf bifurcations in
the two Rössler systems (1) and (2). It is well
known that center manifold theory and normal form
theory are very powerful mathematical tools in
analyzing local bifurcations of dynamical systems
such as saddle-node bifurcation, Hopf bifurcation,
zero-Hopf bifurcation, and Bogdanov–Takens bifur-
cation, etc., see [Guckenheimer & Holmes, 1993;

Kuznetsov, 2004; Han & Yu, 2012]. In the past
few decades, efficient methods for computing center
manifold and normal forms using computer alge-
bra systems such as Maple and Mathematica have
been developed, for example, see [Yu, 1998; Bi &
Yu, 1999; Han & Yu, 2012; Tian & Yu, 2014]. Espe-
cially, the symbolic programs using Maple for semi-
simple cases can be found in [Bi & Yu, 1999; Tian &
Yu, 2014], which contain zero-Hopf bifurcation. In
these symbolic programs, center manifold theory
and normal form theory are combined in a utilized
algorithm to yield one-step nonlinear transforma-
tion and normal form simultaneously. Suppose for
a general dynamical system,

ẋ = J(µ)x + f(x,µ), x ∈ Rn, µ ∈ Rk, (4)

where x and µ are n–d state vector and k–d parame-
ter vector respectively, J(µ)x and f(x,µ) represent
the linear and nonlinear parts of the system, satisfy-
ing f(0,µ) = 0. Further, assume that at the critical
point µ = 0, the Jacobian J(0) of the system con-
tains a single zero and a purely imaginary pair, put
in the Jordan canonical form,

J(0) =

⎡
⎢⎢⎢⎢⎣

0 0 0 0

0 0 ωc 0

0 −ωc 0 0

0 0 0 A

⎤
⎥⎥⎥⎥⎦,

where ωc > 0 and A is an (n − 3) × (n − 3) stable
matrix (i.e. all eigenvalues of A have the negative
real part). Then applying the Maple program [Bi &
Yu, 1999; Tian & Yu, 2014] to system (4) we obtain
the following normal form expressed in cylindrical
coordinates [Yu & Yuan, 2001]:

ẇ = a100β1 + a120w
2 + a102r

2 + a130w
3

+ a112wr2 + · · · ,
ṙ = a200β2 + a211wr + a221w

2r + a203r
3 + · · · ,

θ̇ = ωc + a300β3 + a310w + a320w
2 + a302r

2 + · · · ,
(5)

where the coefficients aijk are explicitly expressed
in terms of the original parameters evaluated at
µ = 0, and βj , j = 1, 2, 3 are given in terms of µ.
For generic zero-Hopf bifurcation, the codimension
of the unfolding is two.

In this paper, the normal form computation
method with the normal form associated with zero-
Hopf bifurcation will be used to study the zero-Hopf

2030050-2

In
t. 

J.
 B

if
ur

ca
tio

n 
C

ha
os

 2
02

0.
30

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 C
IT

Y
 U

N
IV

E
R

SI
T

Y
 O

F 
H

O
N

G
 K

O
N

G
 o

n 
12

/3
0/

20
. R

e-
us

e 
an

d 
di

st
ri

bu
tio

n 
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n 
A

cc
es

s 
ar

tic
le

s.



December 24, 2020 12:57 WSPC/S0218-1274 2030050

Zero-Hopf Bifurcation in Two Rössler Systems

bifurcations in the Rössler systems (1) and (2). It
will be shown that the periodic orbits bifurcating
from the zero-Hopf critical points, detected by the
time-averaging method [Llibre & Makhlouf, 2020]
are stable periodic orbits, while those that cannot
be detected in [Llibre, 2014; Llibre & Makhlouf,
2020] are unstable solutions or the critical zero-
Hopf bifurcation point may be a center or undeter-
minable. In the next section, the Rössler system (1)
is analyzed, and the Rössler system (2) is considered
in Sec. 3. The conclusion is given in Sec. 4.

2. Zero-Hopf Bifurcation in the
Rössler System (1)

In this section, we consider zero-Hopf bifurcation in
the Rössler system (1). First, the three equilibria
of (1) can be easily obtained as

E0 = (0, 0, 0),

E± = (±
√

a1(1 − c1), 1 − c1,

± c1

√
a1(1 − c1)), for a1(1 − c1) > 0.

(6)

Next, note that when a1(1 − c) > 0, applying the
following shifting,

x → ±(
√

a1(1 − c1) + x),

y → (1 − c1) + y,

z → ±(c1

√
a1(1 − c1) + z),

to E± yields an exactly same system. Therefore, we
shall only consider zero-Hopf bifurcation from E0

and E+, knowing that the local dynamics around
E+ must exactly occur around E−. In particular, the
(stable or unstable) periodic orbits to be obtained
around E+ must also appear around E−.

2.1. Zero-Hopf bifurcation at E0

We first consider the equilibrium E0. Evaluating
the Jacobian of (1) at E0 gives the characteristic
polynomial,

P0(λ) = (λ + a1)[λ2 + (b1 − 1)λ + b1(c1 − 1)],

which implies that a zero-Hopf bifurcation occurs
at a1 = 0 and b1 = 1 with c1 > 1. We have the
following theorem.

Theorem 1. The equilibrium E0 of system (1) is
asymptotically stable for a1 > 0, b1 > 1 and c1 > 1,

and zero-Hopf bifurcation occurs from E0 at the crit-
ical point a1 = 0, b1 = 1 (c1 > 1). In the vicinity of
this critical point, supercritical Hopf bifurcation can
occur when b1 = 1, yielding stable bifurcating limit
cycles.

Proof. Define the zero-Hopf critical point as

C0 : a1c = 0, b1c = 1 (c1 > 1), (7)

for which the eigenvalues associated with the critical
point C0 are 0,±iωc, where ωc =

√
c1 − 1. Further,

perturbing the critical point C0, we may let

a1 = a1c + μ1 = μ1,

b1 = b1c + μ2 = 1 + μ2,

0 < μ1, |μ2| � 1.

(8)

Then, introducing the linear transformation,

⎛
⎜⎝

x

y

z

⎞
⎟⎠ =

⎡
⎢⎢⎢⎢⎢⎣

1
c1

√
c1 − 1
c1

0

0 0 1

1 0 0

⎤
⎥⎥⎥⎥⎥⎦
⎛
⎜⎝

u

v

w

⎞
⎟⎠

into (1) we obtain

ẇ = −μ1w +
1
c2
1

u2 +
c1 − 1

c2
1

v2 +
2
√

c1 − 1
c2
1

uv,

u̇ =
√

c1 − 1μ2v +
√

c1 − 1v,

v̇ = −μ2v −√
c1 − 1u − 1√

c1 − 1
wu − wv,

(9)

where the perturbation parameters μ1 and μ2 are
also called unfolding. Note that higher-order terms
involving μ1 and μ2 are ignored.

Now, setting μ1 = μ2 = 0 and applying the
Maple program in [Bi & Yu, 1999] or [Tian & Yu,
2014] to system (9) we obtain the following normal
form with the unfolding added (for convenience, the
notation w is still used in the normal form),

ẇ = −μ1w +
1

2c1
r2 − 1

4c1(c1 − 1)
wr2,

ṙ = −1
2
μ2r − 1

2
wr +

1
16c1(c1 − 1)

r3,

θ̇ =
√

c1 − 1 +
1
2
√

c1 − 1μ2 +
1

2
√

c1 − 1
w

− c1

8 3
√

(c1 − 1)2
w2 +

1
16c1

√
c1 − 1

r2.

(10)
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The first two equations in the normal form (10)
can be used for bifurcation analysis, while the third
equation can be used to determine the frequency of
periodic solutions.

Letting ẇ = ṙ = 0 in (10) yields two steady-
state solutions, one of them is (w, r) = (0, 0), which
is actually the equilibrium solution E0 of system (1).
The other steady-state solution is given by (w, r) =
(ws, rs), where

ws = −μ2 +
r2
s

8c1(c1 − 1)
, (11)

and r2
s is determined from the quadratic polynomial

in r2
s ,

r4
s − 4c1(c1 − 1)[4(c1 − 1) + 2μ2 − μ1]r2

s

− 32c2
1(c1 − 1)2μ1μ2 = 0,

which gives possible solutions for r2
s :

r2
s± = 2c1(c1 − 1)[4(c1 − 1) + 2μ2 − μ1

±
√

[4(c1 − 1) + 2μ2 − μ1]2 + 8μ1μ2]. (12)

It follows from μ1 > 0 that when μ2 > 0, there
exists only one positive solution r2

s+. When μ2 < 0,
there exist either no positive solution or two posi-
tive solutions rs± if

4(c1 − 1) + 2μ2 − μ1 > 0 and

[4(c1 − 1) + 2μ2 − μ1]2 + 8μ1μ2 > 0,

which needs

4(c1 − 1) + 2μ2 − μ1

> 2
√

−2μ1μ2

⇒ √
μ1 +

√
−2μ2 < 2

√
c1 − 1. (13)

Note that a possible solution of r2
s±, for which

the corresponding component ws is given by (11),
represents a periodic orbit in the original three-
dimensional x–y–z space. In general, this type of
periodic orbits is different from that bifurcating
from a Hopf critical point, associated with a pair of
purely imaginary eigenvalues. However, in the vicin-
ity of a generic zero-Hopf bifurcation point, there
exist Hopf bifurcation and one-dimensional bifurca-
tions such as saddle-node bifurcation, and so such
periodic orbits may be limit cycles if they indeed
bifurcate from a Hopf bifurcation curve. It will be
seen that this is true for the Rössler system (1).
Therefore, the periodic orbits detected in [Llibre &
Makhlouf, 2020] are limit cycles.

The stability of the two steady-state solutions
are determined by the Jacobian of the first two
equations of (10), evaluated at (w, r) = (0, 0) result-
ing in two eigenvalues: −μ1 < 0 and −µ2

2 . So the
solution (w, r) = (0, 0) [i.e. the equilibrium E0

of (1)] is stable (unstable) if μ2 > 0 (< 0). To find
the stability of the periodic orbits (ws+, rs+), eval-
uating the Jacobian at (ws+, rs+) yields the deter-
minant, given by

det+ = −1
4
{[4(c1 − 1) + 2μ2 − μ1]2 + 8μ1μ2

+ [4(c1 − 1) + 2μ2 − μ1]

×
√

[4(c1 − 1) + 2μ2 − μ1]2 + 8μ1μ2},
which implies that det+ < 0 for the periodic solu-
tion (rs+, ws+) no matter whether μ2 > 0 or μ2 < 0.
Thus, the periodic solution (ws+, rs+) is unstable as
long as it exists.

To find the stability of (ws−, rs−), similarly, we
obtain

det− = −1
4
{[4(c1 − 1) + 2μ2 − μ1]2 + 8μ1μ2

− [4(c1 − 1) + 2μ2 − μ1]

×
√

[4(c1 − 1) + 2μ2 − μ1]2 + 8μ1μ2}

=
1
4

√
[4(c1 − 1) + 2μ2 − μ1]2 + 8μ1μ2

×{4(c1 − 1) + 2μ2 − μ1

−
√

[4(c1 − 1) + 2μ2 − μ1]2 + 8μ1μ2}
> 0 for μ1 > 0 and μ2 < 0.

Hence, the stability of the periodic orbit (ws−, rs−)
is determined by the trace, given below:

Tr− = −μ1 − 1
4
{4(c1 − 1) + 2μ2 − μ1

−
√

[4(c1 − 1) + 2μ2 − μ1]2 + 8μ1μ2}
< 0,

indicating that the periodic orbit (ws−, rs−) is sta-
ble when μ1 > 0, μ2 < 0, and the condition (13)
holds. �

It is seen from the bifurcation diagram as shown
in Fig. 1 that E0 is stable for (μ1, μ2) taking val-
ues from the first quadrant in the μ1–μ2 parame-
ter plane. Hopf bifurcation occurs from the μ1-axis
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Fig. 1. Zero-Hopf bifurcation diagrams of system (1) at E0.

(μ2 = 0, μ1 > 0), which is indicated as “Hopf bifur-
cation curve” in this figure, and the bifurcating limit
cycles are stable for the parameter values from the
shaded region, bounded by the μ1-axis, the μ2-axis,
and the curve

√
μ1 +

√−2μ2 = 2
√

c1 − 1 based on
the condition (13) (the red curve in the figure). It
is obvious that the condition (13) is always satisfied
if c1 − 1 = O(1). When μ1 = O(ε), μ2 = O(ε) and
c1 − 1 = O(ε), the condition (13) is required for the
existence and stability of the limit cycle solution
(ws−, rs−).

A numerical example was given in [Llibre &
Makhlouf, 2020] to show a stable limit cycle around
the origin. Using our notation, the parameter values
taken in [Llibre & Makhlouf, 2020] are

c1 = 2, μ1 = 0.01, μ2 = −0.005, and so

a1 = 0.01, b1 = 1 − 0.005 = 0.995.

It is easy to see that the condition (13) is satisfied
with the above parameter values since c1 = 2. Using

the above formulas, we obtain

ws− = 0.00501256, rs− = 0.01417729,

ω = 1.00000628,

where ω is the frequency of the bifurcating limit
cycle. To verify the stability of the limit cycle, we
calculate the eigenvalues of the Jacobian of the first
two equations of (10) and evaluate it at the above
solution to obtain −0.00500628±0.00499372i, which
indeed indicates that the bifurcating limit cycle is
stable.

To end this subsection, we present a numeri-
cal example for a small value of c1 − 1, with the
values of μ1 and μ2 taken close to the boundary√

μ1 +
√−2μ2 = 2

√
c1 − 1. The parameter values

we choose are

c1 = 1.0625, μ1 = 0.05, μ2 = −0.035, and so

a1 = 0.05, b1 = 1 − 0.035 = 0.965.

Again, applying the above formulas yields

ws− = 0.05403709, rs− = 0.10056567,

ω = 0.318133754.

The simulation is shown in Fig. 2, with initial con-
ditions (x, y, z) = (0.019, 0.021, 0.012) and (0.5,
0.5, 0.5) chosen for Figs. 2(a) and 2(b), respectively.
Both the simulated trajectories converge to the
same stable limit cycle. Even if the initial point is
chosen as (x, y, z) = (1, 1, 1), the trajectory still con-
verges to the stable limit cycle. This seems to sug-
gest that the limit cycle is globally asymptotically
stable, though it cannot be proved theoretically.

(a) (b)

Fig. 2. Simulations of system (1) for a1 = 0.05, b1 = 0.965, c1 = 1.0625, converging to the stable limit cycle with the initial
conditions: (a) (x0, y0, z0) = (0.019, 0.021, 0.012) and (b) (x0, y0, z0) = (0.5, 0.5, 0.5).
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It is seen from Fig. 2(a) that the simulation agrees
very well with the theoretical prediction.

2.2. Zero-Hopf bifurcation at E+

We now turn to consider the equilibrium E+ which
exists under the condition a1(1 − c1) > 0. We have
the following result.

Theorem 2. The equilibrium E+ of system (1) is
asymptotically stable for

a1 + b1 − c1 > 0,

b1 > 0,

(a1 + b1 − c1)a1(b1 − 3c1 + 2)

− 2a1b1(1 − c1) > 0,

(14)

and zero-Hopf bifurcation occurs from E+ at the
critical point b1 = 0, c1 = a1 (a1(2 − 3a1) >
0). In the vicinity of this critical point, subcritical
Hopf bifurcation occurs, yielding unstable bifurcat-
ing limit cycles.

Proof. Evaluating the Jacobian of system (1) at E+

gives

P+(λ) = λ3 + (a1 + b1 − c1)λ2

+ a1(b1 − 3c1 + 2)λ + 2a1b1(1 − c1).

Thus, the equilibrium E+, which exists for a1(1 −
c1) > 0, is stable when the conditions given in (14)
hold. Zero-Hopf bifurcation occurs at the critical
point C1, defined as

C1 : b1c = 0, c1c = a1, with

a1(2 − 3a1) > 0 or 0 < a1 <
2
3
. (15)

Perturbing the critical point C1, we let

b1 = b1c + μ1 = μ1,

c1 = c1c + μ2 = a1 + μ2, (16)

0 < a1 <
2
3
, 0 < μ1, |μ2| � 1.

Next, applying the following affine transforma-
tion,

⎛
⎜⎝

x

y

z

⎞
⎟⎠ =

⎛
⎜⎜⎝
√

a1(1 − c1)

1 − c1

c1

√
a1(1 − c1)

⎞
⎟⎟⎠+

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

√
a1(1 − a1)
2(1 − a1)

√
a1(1 − a1)(2 − 3a1)

2a1(1 − a1)
1

3a1 − 2

1 0
2
√

a1(1 − a1)
a1(3a1 − 2)

0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎛
⎜⎝

u

v

w

⎞
⎟⎠

into system (1) yields

ẇ = −2(1 − a1)
2 − 3a1

μ1w,

u̇ =
√

a1(2− 3a1)u+
(

a1

2− 3a1
μ1 − a1

2(1− a1)
μ2

)
u+

( √
a1√

2− 3a1
μ1 −

√
a1(2− 3a1)
2(1− a1)

μ2

)
v +

a1

4(1− a1)
u2

+
2 − 3a1

4(1 − a1)
v2 +

1
(2 − 3a1)2

w2 +

√
a1(2 − 3a1)
2(1 − a1)

uv −
√

a1(1 − a1)
(1 − a1)(2 − 3a1)

wu − 1
(1 − a1)(2 − 3a1)

wv,

v̇ = −
√

a1(2− 3a1)u+
(4− 3a1)

√
a

2(1− a1)
√

2− 3a1
μ2u+

2− a1

2(1− a1)
μ2v− (4− 3a1)

√
a

4(1− a1)
√

2− 3a1
u2 −

√
a1(2− 3a1)
4(1− a1)

v2

− (4− 3a1)
√

a1(2− 3a1)
a1(2− 3a1)3

w2 − 2− a1

2(1− a1)
uv +

(4− 3a1)
√

a1(2− 3a1)
(2− 3a1)2

√
a1(1− a1)

wu+
2− a1

(2− 3a1)
√

a1(1− a1)
wv,

(17)

where μ1 and μ2 are perturbation parameters (unfolding), and higher-order terms containing μ1 and μ2

are dropped. It is easy to see from the first equation of (17), which does not contain any terms except the
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linear perturbation term, that the normal form of
this system is equivalent to that of Hopf bifurca-
tion. Applying the Maple program [Yu, 1998] to
system (17) we obtain the following normal form
[including the first equation of (17)]:

ẇ = −2(1 − a1)
2 − 3a1

μ1w,

ṙ =
1
2

(
a1

2 − 3a1
μ1 + μ2

)
r +

3
16(2 − 3a1)

r3,

θ̇ =
√

a1(2 − 3a1) +
1
2

√
a1

2 − 3a1
μ1

− 3
2

√
a1

2 − 3a1
μ2 − 21a1 + 16

48(2 − 3a1)
√

2 − 3a1
r2.

(18)

The w equation is decoupled from r and θ equa-
tions. Because μ1 > 0, and 0 < a1 < 2

3 , w = 0 is
stable. Further, it is seen from the second equation
of (18) that the coefficient of r3 is positive, imply-
ing that the Hopf bifurcation is subcritical and so
the bifurcating limit cycles are unstable. That is
why the averaging method cannot be used to detect
periodic orbits around the equilibrium E1 [Llibre &
Makhlouf, 2020], since the time-averaging method
cannot detect unstable limit cycles. �

3. Zero-Hopf Bifurcation in the
Rössler System (2)

In this section, we study the second Rössler sys-
tem (2), which has been studied by Llibre [2014]
and formulas for periodic orbits were derived, which
again showed that the time-averaging method can-
not detect unstable limit cycles. System (2) has two
equilibria:

E0 = (0, 0, 0) and

E1 =
(

c2 − a2b2, b2 − c2

a2
,
c2

a2
− b2

)
, (a2 �= 0).

(19)

A direct computation shows that shifting the sys-
tem from E1 to the origin and letting a = a, c

a =
b, ab = c yield the system (2). Therefore, we only
need to consider the equilibrium E0. Evaluating the
Jacobian of (2) at E0 leads to the characteristic
polynomial,

P0(λ) = λ3 + (c2 − a2)λ2 + (1 + b2 − a2c2)λ

+ c2 − a2b2.

Zero-Hopf bifurcation occurs if c2 − a2 = 0, c2 −
a2b2 = 0 and 1 + b2 − a2c2 > 0. There are two
cases:

Case (A). −
√

2 < a2 = c2 �= 0 <
√

2, b2 = 1;

Case (B). a2 = c2 = 0, b2 > −1.
(20)

We first consider Case (A) and then Case (B).
It should be noted that the conditions for

system (2) to have zero-Hopf bifurcation at the
equilibrium E1 are exactly the same as those given
in Case (A). Thus, the analysis given in the fol-
lowing subsections can also be applied to study the
equilibrium E1.

3.1. Zero-Hopf bifurcation at E0

for Case (A)

Regarding the zero-Hopf bifurcation of system (2)
for Case (A), we have the following theorem.

Theorem 3. The equilibrium E0 of system (2)
is asymptotically stable for c2 > max{a2, a2b2},
1 + b2 − a2c2 > 0. Zero-Hopf bifurcation occurs
from E0 at the critical point b2 = 1, c2 = a2

(a2
2 < 2). Static bifurcation occurs in the vicinity

of this critical point, yielding nonzero equilibrium
solution E1. Hopf bifurcation is not possible and no
periodic solutions are found around this zero-Hopf
critical point.

Proof. Define the perturbation as

C0 : b2 = 1 + μ1, c2 = a2 + μ2,

a2
2 < 2, 0 < |μ1|, |μ2| � 1. (21)

Introducing the linear transformation,

⎛
⎜⎝

x

y

z

⎞
⎟⎠ =

⎡
⎢⎢⎣

a2

√
2 − a2

2 a2

1 − a2
2 −a2

√
2 − a2

2 −1

1 0 1

⎤
⎥⎥⎦
⎛
⎜⎝

u

v

w

⎞
⎟⎠ (22)

into system (2) we have

ẇ =
(

a2

2 − a2
2

μ1 − 1
2 − a2

2

μ2

)
w

+
a2

2 − a2
2

(u + w)2 +
1√

2 − a2
2

(u + w)v,
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u̇ =
√

2 − a2
2v +

1 − a2
2

2 − a2
2

(a2μ1 − μ2)u

+
1 − a2

2√
2 − a2

2

μ1v +
a2(1 − a2

2)
2 − a2

2

(u + w)2

+
1 − a2

2√
2 − a2

2

(u + w)v,

v̇ = −
√

2 − a2
2u − a2√

2 − a2
2

(a2μ1 + μ2)u

− a2μ1v − a2
2√

2 − a2
2

(u + w)2

− a2(u + w)v.

(23)

Now applying the Maple program [Bi & Yu,
1999; Tian & Yu, 2014] to system (23) we obtain
the following normal form,

ẇ =
1

2 − a2
2

[
(a2μ1 − μ2)w + a2w

2 +
a2

2
r2
]
,

ṙ = − 1
2(2 − a2

2)
r

[
a2μ1 + (1 − a2

2)μ2

+ a3
2w − 1 + 4a2

2

8a2
2(2 − a2

2)
r2

]
,

θ̇ =
√

2 − a2
2 +

1
2
√

2 − a2
2

(μ1 − a2μ2)

+
1 + a2

2

2
√

2 − a2
2

w +
1

48(2 − a2
2)5/2

[24(1 + a2
2)

×(2 − a2
2)

2w − 6(2 + 19a2
2 − 16a4

2)w
2

− (10 + 21a2
2 − 12a4

2)r
2].

(24)

The first two equations of (24) are used for bifur-
cation analysis. Setting ẇ = ṙ = 0 yields three
steady-state solutions:

S0 : (w0, r0) = (0, 0),

S1 : (w1, r1) =
(
−μ1 +

1
a2

μ2, 0
)

,

S2 : (w2, r2),

(25)

where

w2 =
1
a3

2

(
−a2μ1 − (1 − a2

2)μ2 +
a2(1 + 4a2

2)
8(2 − a2

2)
r2

)
,

(26)

and r2
2 is determined from the following quadratic

polynomial equation,

r4
2 + A1r

2
2 + A2 = 0, where

A1 =
32a4

2(2 − a2
2)

2

(1 + 4a2
2)2

− 8(2 − a2
2)

2

a2(1 + 4a2
2)

(a2μ1 + μ2),

A2 =
64(2 − a2

2)
2

a2
2(1 + 4a2

2)2
[a2μ1 + (1 − a2

2)μ2]

× [a2(1 − a2
2)μ1 + μ2].

(27)

It is obvious to see that S0 = E0. Further, it is easy
to use (21) and (22) to prove that S1 = E1.

Let the Jacobian of the first two equations
of (24) be J(w, r). Then, J(S0) gives

J(S0) = J(0, 0) =

⎡
⎢⎢⎢⎢⎣

1
2 − a2

2

(a2μ1 − μ2) 0

0 − 1
2(2 − a2

2)
(a2μ1 + (1 − a2

2)μ2)

⎤
⎥⎥⎥⎥⎦.

Thus, S0 (i.e. the E0) is asymptotically stable if

a2μ1 − μ2 < 0 and a2μ1 + (1 − a2
2)μ2 > 0 ⇒ −(1 − a2

2)μ2 < aμ1 < μ2,

which implies μ2 > 0 since a2
2 < 2. The above two inequalities define two critical bifurcation lines in the

μ1–μ2 plane:

L1 : a2μ1 − μ2 = 0 and L2 : a2μ1 + (1 − a2
2)μ2 = 0. (28)
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Similarly, evaluating J(S1) we obtain

J(S1) = J(w1, 0) =

⎡
⎢⎢⎢⎢⎣
− 1

2 − a2
2

(a2μ1 − μ2) 0

0 − 1
2(2 − a2

2)
(a2μ1 + (1 − a2

2)μ2)

⎤
⎥⎥⎥⎥⎦,

which indicates that S1 (i.e. the E2) is asymptoti-
cally stable if

a2μ1 − μ2 > 0 and a2μ1 + (1 − a2
2)μ2 > 0.

Comparing the stability of E1 with that of E0 we
see that there exists a static bifurcation between E0

and E1 from the critical line L1. Moreover, Hopf
bifurcations may possibly occur from the equilib-
rium solution E0 or E1 on the critical line L2. The
Hopf bifurcation from E0 is so-called incipient Hopf
bifurcation while the one from E1 is so-called sec-
ondary Hopf bifurcation [Yu & Huseyin, 1988]. How-
ever, it is noted that the conditions for the incipient
Hopf bifurcation are μ2 > 0, a2μ1 − μ2 < 0, and
a2μ1 + (1 − a2

2)μ2 = 0, which is not possible since
a2

2 < 2. Therefore, there is no Hopf bifurcation from
E0. On the other hand, the secondary Hopf bifurca-
tion from E1 may be possible because the conditions
a2μ1 − μ2 > 0 and a2μ1 + (1 − a2

2)μ2 = 0 may be
possible for μ2 < 0. The static and dynamic bifur-
cations are shown in the bifurcation diagrams in
Fig. 3, where SB and HB denote Static Bifurcation
and Hopf Bifurcation, respectively.

Next, we discuss the periodic solution (limit
cycle) (w2, r2). First consider the existence of this
solution, which requires non-negative discriminant
of Eq. (27),

Δ = A2
1 − 4A2

=
64a2

2(2 − a2
2)

2

(1 + 4a2
2)2

[(
a2μ1 − μ2 +

4a3
2(2 − a2

2)
1 + 4a2

2

)2

− 16a2(2 − a2
2)

1 + 4a2
2

(a2μ1 + (1 − a2
2)μ2)

]

≥ 0,

under which the periodic solution is

r2
2± =

1
2

[
8(2 − a2

2)
2

a2(1 + 4a2
2)

×
(

a2μ1 + μ2 − 4a5
2

1 + 4a2
2

)
±

√
Δ
]
, (29)

and w2± is then given by (26). Now, in order to
have a stable periodic solution bifurcating from E1,
it requires μ2 < 0, a2μ1 − μ2 > 0 and a2μ1 + (1 −
a2

2)μ2 < 0, which yields

a2μ1 + μ2 − 4a5
2

1 + 4a2
2

< a2
2μ2 − 4a5

2

1 + 4a2
2

< 0 for μ2 < 0.

Therefore, r2
2− < 0, yielding no real solution; while

the existence of real positive solution r2
2+ needs

A2 < 0, which in turn gives a2(1 − a2
2)μ1 + μ2 > 0.

Define the critical line,

L3 : a2(1 − a2
2)μ1 + μ2 = 0 (30)

which shows the boundary of the existence of
periodic solutions. These three critical lines Lk,
k = 1, 2, 3 are depicted in the bifurcation dia-
grams in Fig. 3. It is clearly shown that there
cannot exist the secondary Hopf bifurcation since
the equilibrium solution E1 would hit the existence
boundary L3 before crossing the secondary Hopf
bifurcation line L2. Summarizing the above results
we conclude that there are no periodic solutions
(limit cycles) around the origin due to zero-Hopf
bifurcation. Hence, both Hopf bifurcations, though
indicated in the diagrams in Fig. 3, actually do not
occur due to parameter restriction. �

The bifurcation diagrams shown in Fig. 3,
obtained based on zero-Hopf bifurcation at E0 can
also be applied for the zero-Hopf bifurcation at equi-
librium E1 as long as the two notations E0 and E1

in these diagrams are exchanged.
We have used simulation to verify the above

analytical results. For the various values of a2 cho-
sen from four categories (see Fig. 3), we can always
find that the trajectories starting from the initial
points in the stable regions of E0 and E1 converge
to E0 or E1. However, we did not find any simu-
lated stable periodic solutions around the origin in
the vicinity of the zero-Hopf critical point. In fact,
for the parameter values not chosen from the two
stable regions, all trajectories diverge to infinity.

2030050-9

In
t. 

J.
 B

if
ur

ca
tio

n 
C

ha
os

 2
02

0.
30

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 C
IT

Y
 U

N
IV

E
R

SI
T

Y
 O

F 
H

O
N

G
 K

O
N

G
 o

n 
12

/3
0/

20
. R

e-
us

e 
an

d 
di

st
ri

bu
tio

n 
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n 
A

cc
es

s 
ar

tic
le

s.



December 24, 2020 12:57 WSPC/S0218-1274 2030050

B. Zeng & P. Yu

(a) 0 < a2 ≤ 1 (b) 1 < a2 <
√

2

(c) −1 ≤< a2 < 0 (d) −√
2 < a2 < 1

Fig. 3. Zero-Hopf bifurcation diagrams of system (2) at E0 for Case (A).

To illustrate the above results, we present sim-
ulations for a2 = 1

2 , which belong to the case in
Fig. 3(a). For this value of a2, the critical lines
become

L1 : μ2 =
1
2
μ1,

L2 : μ2 = −2
3
μ1,

L3 : μ2 = −3
8
μ1.

We choose four sets of parameter values for (μ1, μ2):

(μ1, μ2) = (0, 0.01), (0.001, 0),

(−0.01, 0.005), (0.001,−0.01),

which are indicated in Fig. 3(a) as green filled cir-
cles. The initial point is taken as (x, y, z) = (0.001,
0.001, 0) for all four simulations. The simulation
results are depicted in Figs. 4(a)–4(d), respectively.
It is clearly shown in Fig. 4(a) that the trajectory
starting from the initial point located in the sta-
ble region of E0 [see Fig. 3(a)] converges to the
origin. Figure 4(b) indicates that the trajectory
starting from the initial point located in the sta-
ble region of E1 converges to the nonzero equilib-
rium (x, y, z) = (−0.0005, 0.001,−0.001), which can
be easily verified as the equilibrium of system (2).
When the two parameter values are chosen on the
left side of the critical line L2 [see Fig. 3(a)], both
trajectories diverge to infinity no matter how the
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(a) (b)

(c) (d)

Fig. 4. Simulations of Case (A) of system (2) for the parameter values: a2 = 0.5, b2 = 1 + µ1, c2 = 0.5 + µ2, with the initial
condition (x0, y0, z0) = (0.001, 0.001, 0): (a) (µ1, µ2) = (0, 0.01), converging to E0, (b) (µ1, µ2) = (0.001, 0), converging to E1,
(c) (µ1, µ2) = (0.001,−0.01), diverging to infinity and (d) (µ1, µ2) = (−0.01, 0.005), diverging to infinity.

initial points are chosen close to the origin, as seen
in Figs. 4(c) and 4(d).

Moreover, it is noted that unlike the Rössler
system (1) for which all trajectories globally con-
verge to the stable limit cycle, the equilibrium solu-
tions E0 and E1 of system (2) are only locally
asymptotically stable, and very sensitive to the ini-
tial conditions. For example, for the first set of
parameter values (μ1, μ2) = (0, 0.01), if we change
the initial point from (0.001, 0.001, 0) to (0.1, 0.1, 0),
then the trajectory no longer converges to the ori-
gin but diverges to infinity. Similarly, for the sec-
ond set of parameter values (μ1, μ2) = (0.001, 0), if
we change the initial point from (0.001, 0.001, 0) to
(0.01, 0.01, 0), then the trajectory does not converge
to the nonzero equilibrium but diverges to infinity.

We notice that in Theorem 2.1 of [Llibre,
2014] (and the proof, based on the time-averaging
method, is given in Sec. 4, see Proof 6) conditions

are given for the existence of periodic solutions from
the zero-Hopf bifurcation. Since no simulations are
provided in [Llibre, 2014], we cannot verify Theo-
rem 2.1 in [Llibre, 2014]. The discrepancy between
Theorem 2.1 in [Llibre, 2014] and our result may be
caused by the stability conditions.

3.2. Zero-Hopf bifurcation at E0

for Case (B)

We now turn to Case (B), for which we have the
following result.

Theorem 4. From the equilibrium E0 of system (2),
zero-Hopf bifurcation occurs at the critical point
a2 = c2 = 0, (b2 > −1). The static bifurcation
occurs in the vicinity of this critical point, yielding a
nonzero equilibrium solution E1. Hopf bifurcation is
not possible and no periodic solutions exist around
this zero-Hopf critical point.
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Proof. We take perturbations from the zero-Hopf
critical point as

a2 = 0 + μ1 = μ1,

c2 = 0 + μ2 = μ2,

b2 > −1, 0 < |μ1|, |μ2| � 1.

(31)

Then, we apply the following linear transformation
(b2 �= 0, when b2 = 0, the system becomes degener-
ate with a singular line z = −y on the y–z plane),

⎛
⎜⎝

x

y

z

⎞
⎟⎠ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0
√

1 + b2

b2
0

1
b2

0 1

1 0 −1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎛
⎜⎝

u

v

w

⎞
⎟⎠

to system (2) to obtain

ẇ =
1

1 + b2
(b2μ1 − μ2)w +

1
b2

√
1 + b2

(w − u)v,

u̇ =
√

1 + b2v +
1

1 + b2
(μ1 − b2μ2)u

− 1√
1 + b2

(w − u)v,

v̇ = −
√

1 + b2u.

(32)

Now applying the Maple program of computing the
normal form associated with zero-Hopf bifurcation
[Bi & Yu, 1999; Tian & Yu, 2014] to the above sys-
tem (setting μ1 = μ2 = 0), we obtain

ẇ =
1

1 + b2
(b2μ1 − μ2)w,

ṙ =
1

2(1 + b2)
(μ1 − b2μ2)r,

θ̇ =
√

1 + b2 − 1
2
√

1 + b2
w − 1

8(1 + b2)3/2
w2

− 3 + 2b2

48b2(1 + b2)3/2
r2,

(33)

which shows that ẇ = ṙ = 0 without the unfolding
terms. Hence, there does not exist periodic solu-
tions near this zero-Hopf critical point. As a mat-
ter of fact, it can be shown that at μ1 = μ2 = 0,

system (32) has an algebraic integral curve, given
by

f(w, u, v) = u − w + b2, (34)

which is called Darboux polynomial of system (32)
with μ1 = μ2 = 0. Let

P =
1

b2

√
1 + b2

(w − u)v,

Q =
√

1 + b2v − 1√
1 + b2

(w − u)v,

R = −
√

1 + b2u,

which represents the vector field of system (32)
without unfolding. Then it is easy to show that

∂f

∂w
P +

∂f

∂u
Q +

∂f

∂v
R

= (u − w + b2)
√

1 + b2

b2
v

= f(w, u, v)K(w, u, v),

where K =
√

1+b2
b2

v is called the cofactor of the sys-
tem associated with the polynomial f . �

Finally, we use simulations by taking different
parameter values to verify the above results. First
note that for a set of parameter values, there always
exist two equilibria E0 and E1. The two unfold-
ing terms in the first two equations of the normal
form (33) are associated with the zero-Hopf bifurca-
tion around E0 = (0, 0, 0). A necessary condition for
the equilibrium to be stable is μ2 − b2μ2 < 0 under
which E0 is asymptotically stable if b2μ1 − μ2 < 0.
When b2μ1−μ2 > 0, E0 becomes unstable and bifur-
cates into the stable equilibrium E1. The detailed
parameter values are given in Table 1, in which
the convergence/divergence of simulated trajecto-
ries are also listed. In particular, convergence to the
equilibria E0 and E1 are indicated by the red and
green colors, respectively, distinguishing them from
all other cases with trajectories diverging to infinity.
It is seen that the necessary condition μ2 − b2μ2 < 0
must hold for the convergence to E0 and E1, and the
sign of b2μ1 − μ2 then determines to which equilib-
rium the trajectory converges.

Simulations with the parameter values in
Table 1 are given in Fig. 5, which indeed show
an excellent agreement with the analytical predic-
tions listed in Table 1. However, it should be noted
that the asymptotic convergence to the equilibria
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Table 1. Parameter values for simulating Case (B) of system (2).

b2 a2 = µ1 c2 = µ2 b2µ1 − µ2 µ1 − b2µ2 Initial Point Convergence/Divergence

−0.5 −0.02 0.03 < 0 < 0 (0.1, 0.1,−0.1) E0

−0.5 −0.02 0.005 > 0 < 0 (0.1, 0.1,−0.04) E1

−0.5 −0.02 0.05 < 0 > 0 (0.0001, 0, 0) ∞
−0.5 0.02 −0.03 > 0 > 0 (0.0001, 0, 0) ∞

0.5 0.02 0.05 < 0 < 0 (0.1, 0.1,−0.1) E0

0.5 −0.02 −0.03 > 0 < 0 (0.0001, 0, 0) E1

0.5 0.02 0.03 < 0 > 0 (0.0001, 0, 0) ∞
0.5 0.02 0.005 > 0 > 0 (0.0001, 0, 0) ∞

(a) (b)

(c) (d)

Fig. 5. Simulations of Case (B) of system (2) for (a) (a2, b2, c2) = (−0.02,−0.5, 0.03), converging to E0 (red orbit) from
(x0, y0, z0) = (0.1, 0.1,−0.1), and (a2, b2, c2) = (−0.02,−0.5, 0.005), converging to E1 (blue orbit) from (x0, y0, z0) =
(0.1, 0.1,−0.04); (b) (a2, b2, c2) = (−0.02,−0.5, 0.05) and (a2, b2, c2) = (−0.02,−0.5,−0.03), diverging to infinity from
(x0, y0, z0) = (0.0001, 0, 0) (red and blue orbits); (c) (a2, b2, c2) = (0.02, 0.5, 0.05), converging to E0 (red orbit) from
(x0, y0, z0) = (0.1, 0.1,−0.1), and (a2, b2, c2) = (−0.02, 0.5,−0.03), converging to E1 (blue orbit) from (x0, y0, z0) =
(0.0001, 0, 0) and (d) (a2, b2, c2) = (0.02, 0.5, 0.03) and (a, b, c) = (0.02, 0.5, 0.005), diverging to infinity from (x0, y0, z0) =
(0.0001, 0, 0) (red and blue orbits).
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E0 and E1 is local. For example, for the parameter
values (a2, b2, c2) = (−0.02,−0.5, 0.03) (see the first
row in Table 1), when the initial point is changed
from (x0, y0, z0) = (0.1, 0.1,−0.1) to (1, 1,−1), the
trajectory diverges to infinity, rather than converg-
ing to E0. For the parameter values (a2, b2, c2) =
(−0.02, 0.5,−0.03) (see the sixth row in Table 1),
when the initial point is changed from (0.0001, 0, 0)
to (0.1, 0.1,−0.1), the trajectory diverges to infinity,
rather than converging to E1.

4. Conclusion

In this paper, we have applied normal form the-
ory to reinvestigate zero-Hopf bifurcations in two
Rössler systems which are not equivalent. It is
shown that the periodic orbits bifurcating from
the zero-Hopf critical point are actually from Hopf
bifurcation and the bifurcating limit cycles can be
stable or unstable, depending upon parameter val-
ues. The results obtained in this paper indicate
that unstable limit cycles cannot be detected by
the time-averaging method, but can be determined
by using the normal form method.
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