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In this paper, we apply bifurcation theory to consider four predator—prey systems which include
the Allee effect, and show that the species having a strong Allee effct may affect their predation
and hence extinction risk. It is shown that the models with the Allee effect exhibit more complex
dynamical behaviors compared with that without the Allee effect. In particular, two models
with no Allee effect do not have Hopf bifurcation, but can have Hopf bifurcation with the
Allee effect; and one model, which does not have Bogdanov—Takens bifurcation if no Allee
effect is involved, can have Bogdanov—Takens bifurcation of codimension two. Especially, for
one model with Holling type II functional response of the predator to the prey, the Allee effect
not only completely changes the stability of the equilibrium at the origin, but also changes the
supercritical Hopf bifurcation arising from an interior equilibrium to subcritical Hopf bifurcation
with very limited parameter values to yield unstable limit cycles, and further increases the
system’s stability.

Keywords: Predator—prey system; Allee effect; Hopf bifurcation; Bogdanov—Takens bifurcation;
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1. Introduction

The dynamics of a population is greatly affected
by its interaction with other populations. There
exist many kinds of interaction among popula-
tions, such as competition, predation, parasitism
and mutualism. The predator-prey interaction is
one of the most fundamental interactions and one of
the most fascinating interactions to investigate. A
lot of attention has been paid by many researchers
to model these various kinds of interactions. Since
the first predator—prey model was independently
proposed by [Lotkd | and N:IPE], the
construction of the predator—prey models and the
study on the population dynamics have remained a
dominant branch in theoretical and mathematical

fAuthor for correspondence

ecology (e.g. see [Freedman, 1980; Murray, 2002
and references therein). After this pioneering
work of Lotka and Volterra, predator—prey mod-
els with different kinds of prey-dependent func-
tional response were studied extensively [Arditi &

Ginzburg, 11989; Holling, 1959; [Huang et all, 12014;
Murray)

, ]. A well-known generalized Gause
predator-prey model [Freedman, [1980; |(Gausd, 1969]
is described by

i=rx (1 - %) —yp(),

(1)
¥ =yleq(-) —d,

where dot denotes differentiation with respect to
time ¢, x and y represent the population densities of
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prey and predator, respectively. The logistic growth
function rx(1 — %) is a typical function to describe
the specific growth rate of the prey in the absence
of predators, where the positive parameters r and
K stand respectively for the prey’s intrinsic growth
rate and the carrying capacity of the prey. The
positive parameters ¢ and d denote the conversion
rate of the prey to the predator and the predator
death rate, respectively. p(+) is a functional response
function, which reflects the capture ability of the
predator to the prey, and ¢(-) describes how preda-
tor converts the consumed prey into the growth of
predators. There are a lot of models developed using
different functions p and ¢. Functional response is
the key component in the predator—prey relation-
ship, characterizing the rate of prey consumption
by an average predator.

In prey-dependent functional response, the con-
sumption rate is the function of prey density only,
denoted by p(z). However, later a lot of observa-
tions indicate that on large temporal and spatial
scales, the predator may appear to search, compete
or share for food and thus the functional response
should depend on both the prey and predator.
For example, in the case of perfect sharing, the
predator-dependent functional response takes the
ratio-dependent form in which functional response
depends on the ratio of prey to predator, usually
represented as p(%), which is supported by many

Y . . .
field and laboratory observations, and is extensively
applied in studying predator—prey models [Arditi &
Ginzburg, [1989]. The qualitative investigation of
ratio-dependent predator—prey models has shown
that these models provide much richer and more
reasonable dynamics than their traditional coun-
terparts, and do not exhibit the paradox of enrich-
ment lL ;
Ruan,

In the past studles q(-

mamly takes three typ—

ical forms: (A) q(x) = E( : used m most predator—
prey models p( ) used

to represent more models in thelr performance to

fit observed data ﬂAMmu&c_G_zlm_Q, 1201)11 ], and

(C) q(¥) = s(1 — 4+) used to analyze the general
effect of harvesting [Xi ,[ZM] Combining
these different types of p and ¢ functions yield many
different predator—prey models to describe different
situations. Nine predator—prey models with differ-
ent,_response functions have been studied in [Jiang &

Yu, 2017; [Zeng et all, 12020; \Jiang et all, 2020],

described as
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Y = y(mex — d);

x)_ maxy

. [z ’
r mz( K a—+x

mex

- —d):
j (a+x )
, <1 :c) ma?y
t=re(l—-=)—- ——L —

K ax? +br+1’
. mer? ny
y=y axr? +bxr +1 ’

= (1)
r=rz|({l—-—=)—
% mx,
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where different types of the functional response
of the predator to the prey, including the Lotka—
Volterra type, Holling type II and generalized
Holling type III are used, while the function describ-
ing how the predator converts the consumed prey
into the growth of predator is taken either as the
same function of the predator to the prey, or that
depending upon the ratio of the prey to the preda-
tor, or the ratio of predator to the prey. All param-
eters take positive real values, except b > —2+/a.
Dynamical properties including positivity of solu-
tions, stability and bifurcation of equilibria and
Hopf bifurcation are given in [Jiang & Yul, 12017] for
models A; through Bj;, and in Mgmd, M] for
model By;. Bogdanov—Takens bifurcation for mod-
els Ajj; and By are studied in [Zeng et al], [2Q2d]

The development of the traditional predator—
prey models is based on the concept that when a
population is at a low density, the fitness of an indi-
vidual of species is high due to greater availability of
resources; but as the population increases, the com-
petition between individuals for resources increases
and individual fitness declines. Thus, in the study
of most classical predator—prey models, the effect of
cooperation is neglected and it is assumed that the
growth of prey population reaches its maximum at
low densities and declines as population increases.
However, the phenomenon called the Allee effect
was discovered ﬂm, | because there exist
many cooperative biological species that suffer a
reduction in fitness at low population size due to
lack of conspecifics. It was observed that species
crashes to extinction if its population experiences
a negative growth below a certain threshold level
when the Allee effect is strong enough. The stud-
ies of the Allee effect have shown that it induces
complex dynamics in predator—prey systems, for
example, see [Verma. & Misra, |; and references
therein. It was shown in these studies that inclusion
of the Allee effect in ratio-dependent predator—prey
models may reduce possible sustained oscillations of
species and yield richer complex dynamical behav-
iors, causing an increase for the basin of attraction
of extinction state and thus increasing the possibil-
ity of extinction of species.

An interesting phenomenon called prey refuge
may decrease the risk of extinction of species by
decreasing the predation risk. Many investigations
have paid attention to the effect of prey refuge
on the dynamics of predator—prey models with-
out the Allee effect. It has been shown in most of
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these studies that prey refuge increases the equi-
librium density of the prey and has a stabilizing
effect on the predator—prey interaction. However,
under a restricted set of conditions, refuge may have
a destabilizing effect on the system dynamics [Ma
et al., 12009; Verma. & Misra, 2018]. Tt is also found
that the refuge which protects a constant number
of prey has more stabilizing effect than the refuge
which protects a constant proportion of prey. In
[Rana. et al!, 2014] the authors studied the impact
of hiding behavior of prey and the Allee effect on
discrete-time predator—prey models, showing that
the Allee effect has a stabilizing effect on the sys-
tem’s dynamics for a moderate value of prey refuge.
Recently, the combined effect of prey refuge with
the Allee effect has been extensively studied by
Verma and Misra ]. It is found that if prey
refuge is less than the Allee threshold, the incorpo-
ration of prey refuge increases the threshold values
of the predation rate and conversion efficiency at
which unconditional extinction occurs. In addition,
it is shown that if the prey refuge is greater than
the Allee threshold, unconditional extinction may
not be possible. Moreover, the study reveals that
at a critical value of prey refuge, which is greater
than the Allee threshold but less than the carrying
capacity of prey population, the system undergoes
a cusp bifurcation and exhibits complex dynamical
behaviors.

In this paper, we will investigate the dynam-
ics of four models among the above nine models
with the Allee effect added. We want to compare
the dynamical properties between the new models
with the Allee effect and the models without the
Allee effect. In particular, we will show new dynam-
ical behavior due to the Allee effect. It will be noted
that the dynamical analysis becomes much involved
even for general stability and bifurcation analysis on
equilibria. With the Allee effect added, the logistic
growth function becomes

rT (1 - %) (x —e). (2)

We assume that the Allee threshold is far from
the carrying capacity so that the parameter e is
assumed to lie in the interval (0,%) [Verma &
Misra, [ZM} Then, applying a dimensionless pro-

cess to the resulting equations, with 7 = rKt,
x:KX,D:%,E:%andS:% (for sim-

plicity, we still use dot to indicate the differentiation
with the new time 7), we obtain the following nine
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dimensionless models:

X=X(1-X)X—-E)- XY,
System Aj: < . ( ) ) Y = @7 C = @;
Y =Y (CX — D), rK r
(. XY
X=X1-X)X-E)- 7
A+X m a mc
System Aj; : _ Y - _— (C=_"—:
y 11 - ) CX "”KQ’ K’ ’]"K,
Y=Y —DJ,
A+ X
) X2y my
X=X1-X)(X-E)- Y =—2, A=K?
( ) ) A2+ BX 71 o a,
SystemAiii:
. X2 mKec
<AX2+BX+1 )’ ’ ro
X=X(1-X)X—-E)— MX,
System B;: < . ( ) ) Y = ﬂ, M = ﬂ?
Y = X — DY, me r
X=X1-X)X-E)- MXY,
X+Y ay m mc
System By; : Y =2, =, =
. CcX D K arK rK
Y=Y -
(X+Y )
: MX?%Y y m
X=X1-X)X—-FE)- y = M=
( ) ) X2 4 BXY +Y?’ KJa’ rK\/a’
SystemBiii:
. CX?2 b mce
<X?+BXY+Y2 >’ Va’ rKa’
(X = X(1 - X)(X - E) — MXY,
Y hm
System C; : ' v Y = e M=—:
Y:SY(l——), K r
X
(. MXY
X=X1-X)X-E)- 7
A+ X Y a hm
System Cj; : Y=-"2, A=—, M=—;
. y hK K rK
Y:SY<1——>,
X
(. MX2Y
X=X(1-X)(X-E)— —y Y=Y A=K,
AX?+ BX +1 hK
SystemCiﬁ:
. Y hK
Y:SY<1——), B=Kb M=—""
X r

where 0 < FE < %, and % > —2 for systems Aj; and Cj;;, while B > —2 for system Byj;.

vz
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In this paper, we will consider the four models
A;, A, B; and Bj. It was shown in

| that without the Allee effect, all the four
models have no B-T bifurcation, and only mod-
els Aj; and By have codimension-one Hopf bifurca-
tion. In this paper, besides bifurcation and stability
analysis, we will show that with the Allee effect,
the model A; also has codimension-one Hopf bifur-
cation, and the models A;, A; and B; still do
not have B-T bifurcation, but the model B;; has
codimension-two B-T bifurcation. Moreover, it is
shown that with the Allee effect, the trivial equi-
librium solution — the origin (0,0) in the model
Bii becomes a stable node for all parameter values,
while that in the model B;; without the Allee effect
has very complex dynamics around it m,

]. Also, it is interesting to note that for the

model Bj;, the supercritical Hopf bifurcation gener-
ated under no Allee effect is changed to a subcritical
Hopf bifurcation under the Allee effect, and thus the
stable limit cycle becomes unstable, leading to the
stable domain of the trajectories being increased.

Before giving detailed discussions on the four
models one by one, we prove the positivity of the
solutions of the models. Moreover, we also show that
these solutions are bounded.

Theorem 1.1. The solutions of the systems A;j, Ay
B; and Bj; are positive provided the initial conditions
are positive. Moreover, these solutions are bounded
and eventually attracted to a trapping region.

Proof. Since the proofs for the four models are
similar, we do not repeat all of them, but only show
the proof for model Aj;.

Using the method of constant variations, we can
write the general solution of system A; with the ini-
tial values X (0) and Y (0) as

X(r) = X(0) exp{ / "0 - x(s))
< (X(s) — E) - Y(s)]ds}, 3)

Y (r) = Y(0) exp{/OT[CX(s) - D]ds},

which clearly indicates that X (7) > 0, Y(7) > 0 for
any 7 > 0, if X(0) > 0 and Y (0) > 0.

Next, we prove that these solutions are bounded
and eventually attracted to a right triangle trapping

Complex Dynamics of Predator—Prey Systems with Allee Effect

region (1,,, defined by

Qp, = {(X,Y)]X >0,Y >0,

Y < Cmax{#,l} — CX}, (4)

which is bounded by the X-axis, the Y-axis and the
straight line: Y+ CX = C max{1 ,1}. Now, con-
sider the line L, defined by

L: Y+CX=C> cmax{¥,1}, (5)

which implies that the line L is above the trapping
region {14,.

To prove that all trajectories are attracted into
the trapping region €2,,, we construct the function,

1
F==(Y +CX). (6)

Since both X-axis and Y-axis are invariant, we only
need to prove that % < 0 along the trajectories
on the line L. Simple calculation shows that the

transversality condition is given by

dF

1 ) .
— =—(CX+Y
dr D(C +Y)

C
ZEX(l—X)(X—E)—Y. (7)
Consider the planar curve on the XY plane,
defined by the equation:

S: %X(1—X)(X—E)—Y:o, (8)

which passes through the X-axis at the points:
(0,0), (F,0) and (1,0), as shown in Fig.[Il where the
red curve is S, the green line is L, and the blue curve
denotes the tangent line T to S, passing through the
point (1,0) on S.

It is easy to see tha > 0 (< 0) in the region
below (above) the curve S "and it can be shown that
the slope of the tangent line T at the point (1,0) is
—%. Thus, % < 0 on the line L. In fact, it is
easy to see from (7)) that % <0for0 < X < F
and X > 1, and the line X = 1 can serve as a
part of the boundary of Q4 [see Fig. dlb)]. But for
E < X < 1, in the region bounded by the curve
S and the X-axis, % > 0. That is why the line L
must enclose the curve S. More precisely, we may
find the line L which is just tangent to the curve S,
but its expression is more involved.

tdF
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Fig. 1. Graph of the line L with C = Cmax{%, 1}, the curve S and the tangent line T to S, passing through the point

(1,0) for (a) D >1—FE and (b) D<1—-E.

The trapping region 24, can also be used for
proving the boundedness of system Aj;. To prove the
boundedness of system Bj, one can modify the line
LasY + X = L max{1ZE 1}; and similarly the
line L can be changed to Y + %X = % max{1=£ 1}
for proving the boundedness of system B;;. W

The rest of the paper is organized as follows.
In the next four sections, we will respectively study
the models A;, Ay, B; and By on the property of
solutions, equilibrium solutions and their stability,
and bifurcations from the equilibrium solutions. At
the beginning of each section, we will summarize the
results of the model without the Allee effect, taken
from [Jiang & Y, 2017], in order to give a compar-
ison with those results obtained for the model with
the Allee effect. Simulations are presented in Sec. Bl
and finally conclusion is drawn in Sec.

2. Dynamics and Bifurcations
of System A;

Now we consider the system A;. First, we list the
existing results for the system without the Allee
effect in order to give a comparison.

2.1. The results for system A;
without the Allee effect

The system without the Allee effect is described by

X=X(1-X)-XY,

. (9)
Y =Y(CX — D),

which has three equilibrium solutions. The solutions

and their stability [Jiang & Yu, 2017] are given

below:
Eo = (0,0), Saddle,
D
E; = (1,0), GAS for = > 1,

C

D D D
By=(=2,1-= AS f ~ <1
5 <c’ C>, GAS for 0 < = < 1,

(10)

where GAS stands for Globally Asymptotically Sta-
ble. The notation on the numbers of equilibria fol-
lows that for the system with the Allee effect in
order to have an easy comparison. It is clear that
the system A; without the Allee effect does not
have complex dynamical behaviors, which has either
a GAS equilibrium E; or a GAS equilibrium Es,
depending upon the ratio g. The bifurcation dia-
gram is shown in Fig. (a), which is placed together
with the bifurcation diagram for system A; with the
Allee effect for a convenient comparison.

2.2. Stability and bifurcations of
equtlibria of system A; with the
Allee effect

Now we turn to system A; with the Allee effect,
which is given by

{X:Xﬂ—xmxfm—xx a

Y =Y(CX — D).

2250203-6
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The equilibrium solutions of this system can be
casily obtained by setting X =Y = 0, as given by

Eo . (X(),Yb) = (O, 0),
E1 . (X17Y1) = (1,0),
EQ . (X27Y2) = (E,O)7

o - (2.1-2) (2-5)

(12)

The equilibrium solutions Ey, E; and Es exist for
positive parameter values, while Eg exists for £ <
% < 1. It is seen that system A; with the Allee
effect has one more equilibrium Es than that of the
system without the Allee effect.

For A; system with the Allee effect, we have the
following theorem for the stability and bifurcations
of these equilibrium solutions.

Theorem 2.1. For system A;, Eqg is a stable node
and globally asymptotically stable for g < E; Ej s
a stable node when g > 1 and a saddle point when
g < 1; Eq is a saddle point when % > F| and an
unstable node when g < E. Ej3 exists for FE < C <
1, and it is a stable focus for 1+E < C <1 and an
unstable focus for E < C < 1+E ; Hopf bifurcation
occurs from Es at the critical pomt By = BE.
The system has no B-T bifurcation.

Proof. The stability of these equilibrium solutions
is determined from the Jacobian matrix of the sys-
tem, given by

J(X,Y)
~E-3X?+21+E)X-Y -X
cY CX -D|
(13)

Evaluating the Jacobian J on the equilibrium
Eq yields two eigenvalues: —F < 0 and —D < 0,
indicating that Eg is a stable node. In fact, the
corresponding two eigenvectors are along the X-
axis and the Y-axis since the X- and Y-axes are
invariant.

Similarly, evaluating the Jacobian J on Eq, we
obtain two eigenvalues: —(1 — F) < 0 and C' — D.
So Eq is a stable node when g > 1 and a saddle
point when % < 1. Next, evaluating the Jacobian
J on Eg, we obtain two eigenvalues: E(1 — E) > 0

Complex Dynamics of Predator—Prey Systems with Allee Effect

and CEF — D. So E» is a saddle point when g >F

and an unstable node when g < FE.
For the equilibrium Eg which exists for £ <
g < 1, we have the Jacobian matrix:

Plh+e-22) 2
C c c

o(-5)E-2) -

which yields the determinant and trace as

o(-2)(2-5)

when Ej3 exists,  (14)

Tr(Js) = Q(HE— Q).

3 =

det(J3) =

c C

Hence, E3 is stable (unstable) if Tr(J3) < 0 (> 0),
ie. if £ < B < 1 (E < £ < 4E). Since
det(J3) > 0, B-T bifurcation is not possible.

At the critical point, [g]H = %, J3 has a
purely imaginary pair. Moreover, a simple calcula-
tion shows that the transversality condition is given

by

1dTr(Js)
—— 1+ F
Tirans = 2 <D) = _—+ <0, (15)
d|l = 2
€/ iz,

implying that Hopf bifurcation occurs from Eg at
the critical point £ = [%]H

To prove that the equilibrium Eg is globally
asymptotically stable for % < FE, note that the
equilibria Ey, E1 and Es are all boundary equilib-
ria, while E3 is an interior point if it exists. Since
for g < FE, Eg does not exist, and E; and Es are
unstable, so the only stable equilibrium is Eq on the
boundary of the trapping region. Thus, all trajec-

tories would converge to Eg. W

2.3. Codimension of Hopf
bifurcation

Next, we prove that the Hopf bifurcation is super-
critical and bifurcating limit cycles are stable. More-
over, we show that the codimension of the Hopf
bifurcation is one. We have the following theorem.

Theorem 2.2. For the system A;, Hopf bifurcation

occurs from By at the critical point By = £E,

2250203-7



Int. J. Bifurcation Chaos 2022.32. Downloaded from www.worldscientific.com
by CITY UNIVERSITY OF HONG KONG on 11/03/22. Re-use and distribution is strictly not permitted, except for Open Access articles.

Y. Zeng & P. Yu

and it 1s supercritical with stable bifurcating limit
cycles. Moreover, the codimension of Hopf bifurca-
tion is one.

Proof. We apply normal form theory to find the
focus value. To achieve this, without of loss of gen-

erality, we may use the critical value g = [g]H
to let D = (HE), and then introduce the affine
transformation:
1+ F 1 2w,
X=— Y=-(1-F —
+ 21, 4( ) it E952

where w, = 2\Lf(l — E)/C(1+ E), into system (1))

2
to obtain
1+F 5 2w,

2 %+1+E
f(w1,22),

. A
T = —wer1 + Cxixe = g(21, 22).

3
T1T2 — Xq

T1 = Wl —

lI>

Then, we may either apply the Maple program
in [Yu, | or directly use the following for-
mula to get the first-order focus value, evaluated
at (.’1517.’152) = (070)

o 1 83f+ o3f g &
b ox3  0r10x3  Ox20x9 O3

1 0%f 02 o°f 0? o°f
16w, | Oz10x9 8381 8382
0%g 0%g 0%
- 922 T a2
85618562 8351 8952

P10 82fa_“’g}

895% 895% 8—9358955
6 1 2w,
= —— 1+ F
16+16wc {I—FE( + )]
1
= —— 16
47 ( )

which holds negative for any positive parameter val-
ues, indicating that the codimension of Hopf bifur-
cation is one, and it is supercritical with stable

. . .. D 1+F
bifurcating limit cycles for & € (F, +T) [ |

2.4. Bifurcation diagram and
stmulation

Based on Theorem [, we choose X as the
state variable and g as the bifurcation parameter

to obtain the bifurcation diagram, as shown in
Fig. 2I(b). It can be seen from this figure that there
exist bistable states (EO,El) for % > 1, and states

(Eo, Bg) for £ < B < 1, There is a transcritical

bifurcation between Ep and E; at 2 & = 1, and a Hopf
bifurcation from Eg at % = % T and H denote
the transcritical bifurcation and Hopf bifurcation,
respectively.

Now we present simulations for the model A;.
Since the bifurcation diagrams in Fig. Rlhave shown
the difference between the models without the Allee
effect and with the Allee effect, we shall only present
the results for the model with the Allee effect, which
display more complex dynamical behaviors. We take
the following parameter values for simulation:

D
E=04, = =0.2,0.68,0.8,1.2.

C
In simulation we take C' = 1 for simplicity. The
Hopf critical point is at # = 0.7. Hence, the

equilibrium Ej3 only exists for g € (04,1) and

it is stable for 0.7 < % < 1 and unstable for
0.4 < % < 0.7. Therefore, the bistable phenomenon
exists for % > (.7, for which two stable equilibria
Eo and E3 coexist for 0.7 < % < 1, and two stable
equilibria Eg and E; coexist for g > 1. Moreover,
since the Hopf bifurcation is supercritical, yielding
stable limit cycles, another bistable phenomenon
involving the stable equilibrium Ey and a stable
limit cycle near the Hopf critical point for 2 & < IEE
can also occur. Note that the unstable equilibrium
Es : (0.4,0) is between the two stable equilibria E
and E;. So at the bistable situations, choosing dif-
ferent initial points may converge to different equi-
libria. The simulations are given in Fig.[3], indicating
an excellent agreement with the analytical predic-
tions which are shown in the bifurcation diagram
[see Fig. 2(b)].

Remark 2.5. Comparing bifurcation diagram in
Fig. @(b) (with the Allee effect) with that in
Fig. Q(a) (without the Allee effect) we can see that
the Allee effect has a great impact on the dynami-
cal behaviors of the system. First of all, note that
the model without the Allee effect does not exhibit
complex behaviors, it either has a globally asymp-
totically stable equilibrium E; if % > 1 or a glob-
ally asymptotically stable equilibrium Eg if g < 1.
Only a transcritical bifurcation occurs between E;
and E3 at g = 1, see Fig. 2l(a). However, for the
model with the Allee effect, except for no change
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Eo
0 E 1+FE 1 g

Fig. 2. Bifurcation diagrams for system Aj;: (a) without the Allee effect and (b) with the Allee effect, where the solid pink

curve denotes the supercritical Hopf bifurcation.

on the equilibrium E;, we have the following inter-
esting observations.

(1) A new unstable equilibrium Es = (F,0) emerges
due to the Allee effect, which causes the stability
change of the equilibrium Eg from unstable to sta-
ble. In other words, due to the Allee effect, solutions
near Eg now converge to Eg, implying that a strong
Allee effect can cause species to extinct, in particu-
lar when g < E, as shown in Figs. 2 and Bl

(2) The positive (interior) equilibrium E3 now exists
only for £ < % < 1, while Eg is globally asymp-
totically stable for 0 < % < FE. Moreover, E3 is
only stable for # < g < 1. This implies that the
Allee effect destabilizes the positive equilibrium for

intermediate values of g, see Figs. 2 and B(b).

(3) Complex dynamics including bistable phenom-
ena occurs. One kind of the bistable phenomena
includes two stable equilibria: Eg and Eg for slightly
larger g IS (#,1)7 and Eg and E; for g > 1.
Solutions converge to either Eg or Eg for the for-
mer, and Ey or E; for the latter, depending upon
the initial conditions. These two bistable phenom-
ena are shown in Figs. 2] Bl(c) and Bi(d). The other
kind of bistable phenomenon, due to Hopf bifurca-
tion, involves the stable equilibrium Eg and a sta-
ble limit cycle for slightly larger g € (E, #), and
solutions converge to either the equilibrium Egy or
the stable limit cycle, depending on the initial con-
dition, see Figs. 2l and BI(b).

(4) Note that the Hopf critical point is always the
midpoint of the interval g € (E,1) for which E3
exists. As F — 0, the Hopf bifurcation exists as
long as E > 0. It shows a discontinuity (jumping)
from the case £ = 0 to the case E > 0, because
when FF = 0, the model does not have the term
(X — E) on the first equation. Thus, as £ — 0, the
unstable Es coincides with Ey which then becomes
unstable; while as F goes to its maximal value %,
E¢ becomes more stable, and the Hopf critical point
on E3 moves towards [Z]y = 2, and it becomes less

stable.

3. Dynamics and Bifurcations
of System Aj;

In this section, we consider the model Aj;. Similarly,
we first summarize the existing results on this sys-
tem without the Allee effect.

3.1. The results for the system Aj
without the Allee effect

The model A;; without the Allee effect is described
by

XY
A+ X’

. cX
Y=Y -D
<A+X >
which has three equilibrium solutions. The solutions

and their stability [Jiang & Yu, 2017] are given

X=X(1-X
(17)
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0.8+

0.6

0.24

0.3

0.2

0.1

B Es 1
0 0.2 0.4 0.6 0.8 1
5%

()

0.3-
0.2-
v ==
0.1 /
/ @ \
’,’/
/’/ =
i
04 ¢ 2/ g
0 0.2 0.4 0.6 0.8 1
X
(b)
0.3
0.2
Y 4
0.1
E Ey 1271
0 0.2 0.4 0.6 0.8 1
X

Fig. 3. Simulated phase portraits for the model A; with £ = 0.4, C = 1: (a) D = 0.2, converging to Eg, (b) D = 0.68,
converging to Eg or a stable limit cycle, (¢) D = 0.8, converging to Eg or E3 and (d) D = 1.2, converging to Eg or E;.

below:

Eo = (0,0), Saddle,

E; =(1,0), GAS for A > max{o7 % — 1},

([ AD ACIC - (A+1)D]
Eg‘(c—zf (© - Dy )

GASf0r0<A<%—1.

(18)

It is seen that like system A; without the Allee
effect, system Ay without the Allee effect does not
have complex dynamical behaviors, which has either
a GAS equilibrium E; or a GAS equilibrium Ej

depending on the value of % — 1. The bifurcation
diagram is depicted in Fig.[d|(a), where it is assumed
C' > D; otherwise, E3 does not exist and E; is glob-
ally asymptotically stable.

3.2. Stability and bifurcations of
equilibria of system Ay with
the Allee effect

The model Aj; with the Allee effect is given by

: Xy
X=X(1-X)(X-F)- 5.

Aji (19)

. cX
o (35 0)

2250203-10
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T E,

Eo Eo

0 c—‘ Cc— A
A ( DD)E AH DD

c-D
D
(a) (b)

Fig. 4. Bifurcation diagrams for system Aj;: (a) without the Allee effect and (b) with the Allee effect, where the solid pink
curve denotes the supercritical Hopf bifurcation.

The equilibrium solutions of this system can be We have the following result.
easily found by setting X =Y =0 as
Theorem 3.1. For system Aji, Eqg is a stable node;
Eo : (Xo,Y0) = (0,0), E; is either a stable node if A > max{0, % —1} ora
Ei: (X1,Y:) = (1,0), saddle point if 0 < A < %—1; Eq is unstable (either
a saddle point or an unstable node). Es exists when

Eq: (X2,Y2) = (E,0), the condition (21)) is satisfied, and is asymptotically

AD (20) stable for A < A< C_TD, where
E3 : (X37Y3), where X3 = =",
C—-D C—-D
A= ————[1+ E)(C+ D)
Vs = (1—X3)(X3— E)(A+ X3). 2D(2C + D)
The equilibrium solutions Eg, E; and Es exist for +/(1 = E)2(C + D)2 +4EC?]. (22)

positive parameter values, while E3 exists for
Hopf bifurcation occurs from Esg at the critical

C> D, (¢ _DD)E <A< c Z)D’ (21) point Ay. There does not exist B-T bifurcation.

since E < X3 < 1 due to Y3 > 0. Proof. Similarly, with the Jacobian of the system,

given by
AY X
—E+2(1+E)X —3X?%— —
FUAEX -3 - A x
J(X, Y) = bl
ACY cxX .
(A+X)? A+ X

we can determine the stability of these equilibrium |
solutions. So E; is a stable node if A > max{0,§ — 1} and

Evaluating the Jacobian J on the equilibrium ;5 gaddle point if 0 < A4 < % — 1. Next, evaluating
Eo we have two negative eigenvalues: —F and —D,

ARy tabl de. Aeai te that the Jacobian J on Eg, we obtain two eigenvalues:
implying that Ej is a stable node. Again note tha CE .
the X- and Y-axes are invariant. E(1-E)>0and e~ D Thus, By is a saddle

Similarly, evaluating the Jacobian J on E;  point if A > max{(),(% — 1)E}, and an unstable
yields two eigenvalues: —(1 — F) < 0 and ALH —D. nodeif0< A< % -1
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For the equilibrium E3 which exists for 0 <  which is a quadratic polynomial in A with the

% <A< C_TD, we evaluate the Jacobian J on  discriminant,
Es, which in turn yields the determinant and trace 5 o oo
as follows: Apy =1+ E)(C°= D7)
D3 (C—-D)E 2
det — A— —4ED(2C + D)(C — D)
et(Ja) C(C—D)[ D ]
= (C — D)*[(1 — E)*(C + D)*> + 4EC?]
C—-D A
x D > 0.
D Thus, F = 0 has t 1 positi ts:
Te(Ja) = — D(2C + D) A2 us, as two real positive roots:
Cc-D
— (14 E)(C* = D)A+ E(C — D)*}. As = 721)(20 T o) 1+ EC+D)
(23)
++/(1—-E)2(C+ D)2 +4EC?].  (25)

Obviously, det(J3) > 0 for existing E3. Therefore,

By is asymptotically stable if Tr(Js) < 0. Let Due to the existence condition (2II), it requires

Fa, = D(2C + D)A2 -1+ E)(02 - DQ)A that at least one of AL must belong to the inter-
+E(C - D), (24) val (%, C'*TD). A simple calculation shows
I that
(C-D)E _ C-D .
Ay 5 _2D(20+D)[(C+D) E(3C +D)++/(1 - E)%C + D)2 +4EC?
B 4E(1 — E)C(C — D) (26)
2D{—[(C' + D) — E(3C + D)] £ /(1 — E)2(C + D)2 + 4EC?}
We first A < CPE and so A | -
(o— D)e E E,Sf Dprove o+ and so # Next, we prove A, € (%7 CLTD). To show
(5, *p~)- Note that 3(;;[) < 3 for C > D. (C—D)E .
C b Ay > 7, we notice that (C' + D) — E(3C +
Thus, if 3577 < E, we have (C + D) — E3C +

D) > 0 for £ 30+D > E, so the first equation in (20))

D L implies A, > @; while for 3%+% < FE< %,

(C+D)—E@BC+ D) > 0, and then the second we have (C'+ D) = B(3C + D) < 0, so the second
(C— D) equation in (I?BI) again leads to Ay > Q To

D) < 0 and so the first equation in (26]) implies
A < %. If £ < 30+D < 1 we have

equation in also implies A_ <
d ©5) P prove A4 < D , we can similarly obtain that

C-D C-D (/=

A= =5 ~ 2D(2C + D)

E)2(C+ D)2 +4EC? - [(1 - E)(C + D) +2CJ}

4(1 - E)C(C - D)
= - , (27)
2D[\/(1 — E)2(C + D)2 +4EC? + (1 — E)(C + D) + 2C]

which clearly indicates that A4 < D . Hence, A, € (%, C_TD) for 0 < E' < %

Let Ay = Ay. Then, concluding the above discussions we know that the equilibrium FEj3 exists for

% <A< C_TD, and it is asymptotically stable for Ay < A < C_TD, and unstable for % <

A < Ap. Further, we can use ([23)) to find the transversality condition as follows:

~ 1.dTr(J3) B D 2 2
trans = 5~ wu  20(C D) [2D(2C + D)Ax — (1 + E)(C* — D?)]

_ _%¢(1 —E)2(C + D) 1 4ECZ < 0,
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implying that Hopf bifurcation occurs from the  system A;, we apply the method of normal forms.

equilibrium Egz at the critical point A = Ay. To have an affine transformation for system ([I9)

Note that B-T bifurcation cannot happen since  at the critical point A = Ay, since Fy, in [24) is

det(J3) > 0 when Ej exists. W a quadratic polynomial in A, we use E, instead of
A, to solve Fi,, = 0 for the convenience in normal

3.3. Codimension of the Hopf form computation. Thus, solving Fa,, = 0 for E

bifurcation yields
Now we further study the Hopf bifurcation and A[D(2C + D)A — (C? — D?)]
determine the codimension of the Hopf bifurcation. Ey = (C—D)[(C+D)A— (C —D)]’

We have the following theorem.
In order to have Ey € (0,1), the following condi-

Th 3.2. F t Ay, H b1 t1
eorem or system Aj, Hopf bifurcation tions must hold:

occurs from KEsz at the critical point A = Apy.
The Hopf bifurcation is supercritical and bifurcating C—
limit cycles are stable. Moreover, the codimension of Eu>0=4< C+ DA1 o
Hopf bifurcation is one. . o2 _ p? N
Proof. In order to determine the stability of bifur- D(2C + D) 2
cating limit cycles, similar to the analysis for theI d
an
1
By < 5 2D(2C + D)A? —3(C?* = DA+ (C—-D)?* <0
— D)] D) 2 D
@Ané(c )[3(C + D) — /8C2% + C+)]<A
4D(2C + D)
_ (C — D)[3(C + D)+ /8C2 + (C + D)?] 24
4D(2C + D) o
It is easy to prove that 0 < A, < A; < Ay < A, < €=L Moreover, it follows from the existence condition
of E3 that
(C—-D)E C-D AD C-D C-D
— <A E A .
D O~ Tp THse-pTorp "

Hence, the required constraints on A are given by
A€ (A27 Ap)a

for which 0 < By < 1.

To find the normal form (or focus value) of the system associated with the Hopf bifurcation, we multiply
the equations in (I9) by A + X (i.e. applying a time rescaling 7 — (A + X)7) for convenience, and then
apply the following transformation,

_AD B AD AD AD we(C — D)
X=c-—p ™ Y_<1_C—D><C—D_E)(A+C—D)_ AD ?

where

o \/(C_D)[A(CJrD)_(C_D)] >0, for Ac (As,A,).
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Applying the above transformation, we have the following new system:

AD[A%2(C? +CD + D?) — A(C — D)(C +2D) + (C — D)?] ,

T

1= wety = (C_DJ?[A(C + D) — (C - D)]
(C — D)w, A%2(C? +2CD +2D?) — A(C — D)(C+3D)+(C—-D)? 5,
TTap T (C — DY[A(C + D) — (C — D)]

To = —WeT1 + (C — D)xlxg.

Now, applying the Maple program [Yu, [1998] to
the above system we obtain the following first-order
focus value:
1
8(C — D)[A(C + D) — (C — D)]

v =

x [(2C? + 5CD + 5D*)A* — (C — D)
x (2C +7D)A +2(C — D)?],

where the denominator in vy is positive for A €
(A2, A,), and the term in the square bracket
is a quadratic polynomial in A, which has the
discriminant,

A = —3(C — D)*(2C +3D)(2C — D) < 0,
(C > D),

implying that the term in the square bracket is pos-
itive and so v; < 0. Therefore, the codimension of
the Hopf bifurcation is one, and it is supercritical,
yielding stable limit cycles. W

0+ L ®

i
—— . . . :
(0] 0.2 0.4 0.6 0.8 1

Fig. 5. Simulated phase portraits for model Aj; with A =
048, C = 1, D = 0.6, E = 0.4, showing bistable phe-
nomenon — either converging to the stable equilibrium Eg
or to a stable limit cycle.

)

3.4. Bifurcation diagram and
stmulation

The bifurcation diagram of system Aj; for C > D is
shown in Fig. @(b).

Because the simulations for this model A; are
similar to that of the model A; (see Fig. B]), we
only present the phase portraits near the Hopf crit-
ical point, see Fig. [ For simulation, taking C = 1,
D =0.6, E = 0.4, we have

C — D)E 2
0.2667 ~ (€-D)E < Ag = E(28 +1/394)
~ 0.4908 < ——— ~ 0.6667.

The simulation for A = 0.48 < Ay is depicted in
Fig. Bl demonstrating the bistable phenomenon: tra-
jectories either converge to the stable equilibrium
Eg or to a stable limit cycle, depending upon the ini-
tial conditions. This again shows an excellent agree-
ment with the analytical prediction.

Remark 3.3. Comparing the bifurcation diagram
in Fig. @(b) having the Allee effect with that in
Fig. @(a) without the Allee effect shows the great
impact of the Allee effect on the dynamics of system
Aj;. Since system Aj; is quite similar to system Aj,
Remark 23 on dynamics A; can be applied here, as
long as the three critical values in Fig. 2{(a), % =F,

# and 1 are changed to A = %, Ap and
Cc—-D

——, respectively. The bistable phenomenon with
one stable equilibrium and one stable limit cycle is
shown in Fig.

4. Dynamics and Bifurcations
of System B;

We first summarize the results for the model with-
out the Allee effect.
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4.1. The results for model B;
without the Allee effect

The model without the Allee effect is described by

X=X1-X)- MX,
: (28)
Y =X - DY.

which has only two equilibrium solutions, given

below with stability |Jiang & Yu, 201 d}

GAS for M > 1,
1-M

EO — (Oa 0)5

E3:<1—M, ), GASfor0 < M < 1,

(29)

which clearly shows that the system does not have
complex dynamical behaviors, but either a GAS
equilibrium Ey or a GAS equilibrium Es depend-
ing on whether M > 1 or M < 1. The bifurcation
diagram is shown in Fig. [0a).

4.2. Stability and bifurcation of
equilibria of system B; with the
Allee effect

The model B; with the Allee effect is described by
5 X=X(1-X)(X—-E)—MX 2 h(X),
" | Y =X - DY 2 hy(X,Y),
(30)

(a)

Complex Dynamics of Predator—Prey Systems with Allee Effect

which also has only two equilibrium solutions, given
below:

Eo : (Xo,Yb) = (O, 0),

(31)
E3: (X3,Y3) = <X3a %X&z)

where X3 is determined from the following
quadratic polynomial equation,

FL=(1-X3)(Xs—FE)—-M
=—[X;-(1+E)X3+E+ M]=0. (32)
The quadratic polynomial has two solutions:

1+E:l:w/ABi
3i:f7

where Ap, = (14 E)> — 4(E + M)
= (1—FE)?—4M. (33)

Ap, > 01is needed for X34 to be real positive, which
yields
(1 — E)2 A

0<M<T:Mu. (34)

It is easy to see that F < X314 < 1 under the con-
dition ([B4). When M = M,, F' = 0 has a unique
solution: X3 = # € (E, 1), which actually defines
a saddle-node bifurcation point. For M > M,, E;
does not exist. More precisely, define the equilibria:

1
Esy = <X3i7 5X3i>~ (35)
X
1 E3y
SN

f:
E|l---~ - ’E3, 3

Eo
0 (1-E)? M

1

Fig. 6. Bifurcation diagrams for system Bj: (a) without the Allee effect and (b) with the Allee effect.
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For stability and bifurcation of the equilibria,
we have the following theorem.

Theorem 4.1. For the system Bj, Eg is a stable
node; Es_ s a saddle point, while Esi is a sta-
ble focus. There is no Hopf bifurcation, nor B-T
bifurcation.

Proof. Note that equation Y is decoupled from
equation X, and that %LYQ = —D < 0, which clearly
shows that there is no Hopf bifurcation, nor B-T
bifurcation. For stability of the equilibria, we only
need to consider the equation X, i.e. the function

hi(X). It is easy to obtain
R (X)=—-E+2(1+E)X —3X? - M.

So h}(0) = —(E + M) < 0 indicates that Ej is a
stable node.
Next, evaluating b} (Xsy) yields

1

Pi(Xss) = =5 /(1= B2 — 4M

< [/(1=E)? —4M =+ (1 + E)]

and so h{(X3_) > 0, implying that Es_ is a sad-
dle point; while 2} (Xs34) < 0, indicating that Esy
is a stable node. Moreover, at the turning point
M = M,, ¢,(X3+) = 0, we know that M, is a
saddle-node bifurcation point. W

4.3. Bifurcation diagram and
stmulation

The bifurcation diagram is shown in Fig. [6(b).
The model B; does not have Hopf bifurcation,
but exhibits bistable phenomenon involving two sta-
ble equilibria, Ey and Ejz, which does not appear
in the model without the Allee effect. To show the
bistable phenomenon, we choose D = 0.5, E = 0.25

and M = 0.10 < % = 0.140625. The simu-
lation is given in Fig. [, which shows that trajec-
tories either converge to the stable equilibrium Eg
or to the equilibrium Es depending on the initial
conditions. Since the solution X3 is independent of
D (only depending upon E and M), and Y3 = %
which yields )% = %, we see that Y3 is monoton-
ically increasing as D is decreasing regardless the

value X3.

Remark 4.2. 1t is seen from Figs. [0 and [0 that
although this system does not have Hopf bifur-
cation, nor B-T bifurcation, the Allee effect does

1.5

0.5

0 0.2 0.4 0.6 0.8 1
X

Fig. 7. Simulated phase portraits for the model B; with
D = 0.5, E =0.25, M = 0.1, showing a bistable phenomenon,
either converging to the stable equilibrium Eg or to the stable
equilibrium Eg .

have an impact on the dynamics. In particular, the
transcritical bifurcation is changed to a saddle-node
bifurcation, and the unstable part of the equilib-
rium Ey without the Allee effect becomes stable
with the Allee effect, which indicates an increase
of extinction risk of species. Moreover, note that
the equilibrium Ej exists with smaller interval in
the parameter M for the system with the Allee
effect [see Fig. [Bl(b)], compared to that without the
Allee effect. Also note that the X-axis is no longer
invariant for B; system, as seen in Fig. [[l regardless
whether the system has or does not have the Allee
effect. However, the system still has the positivity

property.

5. Dynamics and Bifurcations
of System Bj;

Finally, we consider system Bj;. Again, we first list
the existing results for the system without the Allee
effect.

5.1. The results for model By
without the Allee effect

The system without the Allee effect is described by

) MXY
X=X(1-X)-
( ) X+Y’
ox (36)
Y=Y - D
<X+Y )
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which has three equilibrium solutions given below together with stability |[Jiang & Yu, 201 d]

EO - (070)7
El — (170)7

LAS for0 < M <

Supercritical Hopf bifurcation at M = My =

where X3 =1—-M(1— g) It should be noted that
unlike the previous systems, the dynamics near the
equilibrium Eg in the first quadrant is very com-
plex, and has been studied in detail by Xiao and
Ruan | using the blow-up technique. It was
shown that in a neighborhood of Eg, there can exist
various types of topological structures including the
parabolic orbits, the elliptic orbits, the hyperbolic
orbits, and any combination of them. In particular,
Eg can be asymptotically stable or unstable, or even
coexistence of stable and unstable sectors.

For a comparison, the bifurcation diagrams for
system (B@) without the Allee effect are given in
Figs. B(a) and B(b), in which only two cases C' >
D+1and D < C < D + 1 are shown, since the
equilibrium E; is globally asymptotically stable for
0<C<D.

5.2. Stability and bifurcation of
equilibria of system Bj; with
the Allee effect

The model By with the Allee effect is given by

. MXY
X=X(1-X)(X-B) - 5
Bii : (38)
. cX
Y—Y(z:?‘D)

The system Bj; has four equilibrium solutions:
Eq : (Xo,Y0) = (0,0),
E;: (X1,Y7) = (1,0),
Ey: (X2,Y2) = (E,0), (39)

C—-D
Es: (X3,Y3) = (Xs, o) X3>,

C
GAS fOI'O<M<ﬁ,

C(C + DC — D?)

Stable or unstable or coexistence of stable and unstable sectors;

GAS (a node) for 0 < C' < D, and a saddle point for C' > D;

C>D+1,

7o , D<C<D+1,

C(C + DC — D?)
02—D2 ’

|
where X3 is determined from the following
quadratic polynomial equation:

C—-D

Fp, = X3~ (1+ E)Xs + E+ ——M =0,
(40)
which has solutions:
Xor = 5|1+ B)

iw@z%(mw)]

(1+E):|:\/(1—E)2—MM].

1
2 C

(41)

It is easy to see that F < X3+ < 1. Note that
C > D (required by Y3 > 0) and X3 > 0 are needed
to guarantee that Eg is an interior (positive) equi-
librium. To have X3 > 0, we require

Am:41—Eﬁ—ég%}QU4>u
Let
_C(1- By
A@_Z@j57 (42)

Then, Fp, has two real positive solutions when
0 < M < M, (A > 0); one unique solution when
M = M,; and no real solution when M > M,.
Define

C—-D
Esy = <X3i, D X3i)- (43)

For the stability of the equilibrium solutions,
we have the following two theorems. The first one
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is for Eg. It should be noted that system (B8] is
not well defined at Eg. But since the X-axis and
. . . : XY
Y-axis are invariant, and so imy o+ y .o+ %5y =
limy o+ y o+ m = 0 provided that X > 0,

Y > 0. Thus, for system (38) we define that X =
Y = 0 when X = Y = 0. However, the stability
analysis of this equilibrium is not straightforward.
We will again apply the blow-up technique to give
a complete analysis on the stability of this equilib-
rium and show that, unlike Egy of the system with-
out the Allee effect, Eg of the system with the Allee
effect is actually a stable node. For convenience,
define the region in the first quadrant (including
the X-axis and Y-axis) in the XY plane as I and
the interior of the first quadrant as I'.

Theorem 5.1. For system By, Eg is a stable node
inIT.

Proof. First, it is easy to see from the equations in
system (B8)) that both the X-axis and the Y-axis are
invariant, and near Eg trajectories converge to Eg
along the two axes. Thus, we only need to consider
the solution trajectories in IT.

In order to apply the blow-up technique, we
introduce the time rescaling dr = (X + Y)dn
into (B8)) such that system (38) is equivalent to the
following system in I (where the dot is now used
to indicate differentiation with respect to 1),

X=X1-X)(X-E)(X+Y)—- MXY
= —MXY —EX(X +Y)

= +X3A(X+Y)1+E - X)

' 2 X,(X,Y) + ®(X,Y),

Y = CXY - DY(X +Y)
2 Ya(X,Y),

(44)

where X5 and Y5 represent second-degree homoge-
neous polynomials in X and Y, and ®(X,Y) =
X2(X +Y)(1 + E — X). It is obvious that Eg is
an isolated critical point of higher order for the
system ([44)).

It is easy to see that system ({4]) is analytic in
a neighborhood of Eg. According to Theorem 3.10
in [Zhang et all, 1991], any orbit of (@) tending
to Eg must tend it spirally or along a fixed direc-
tion, which is determined by the characteristic equa-
tion of system (@4]). Since the solution of (@) is

restricted in I, it is impossible to have the possi-
bility that the orbit of (4] tending to Eg spirally,
and the only possibility is tending to Egy along a
fixed direction.

Introduce the polar coordinates X = rcos#f,
Y = rsin6 into (44), and define

G(0) = cos 0Y(cos 0, sin #) — sin 0 X5 (cos 0, sin )
=sinfcos§[(C + E — D) cos b
+(M + E — D)sind],
H(0) = sin0Y3(cos @,sin 0) + cos 0 Xo(cos @, sin §)
= —sin?9[Dsin @ + (D — C) cos 0]

—cos?0[E cos + (M + E)sin ),
(45)

where 6 € (0, §). The characteristic equation of (44)
takes the form G(#) = 0, which clearly shows that
this equation either has a real root 6 or G() =0
in 6 € (0,%). In order to apply Theorems 3.1-3.3 in

,11991], based on G(8), we consider the
following four cases:

i)C4+E—-D=0, M+ E— D # 0, for which we
have

G(0) = sin®fcos (M + E — D) #0

for 0 € (0, g)

(il) C4+ E—D #0, M + E — D = 0, which yields
G(0) = sinfcos’d(C+E — D) #0

for 6 € (o, g)

(iii) (C+ E — D)(M + E — D) # 0, for which we
obtain
G(0) =sinfcos’(M + E — D)

C’—i—E—D}

tanf + ——————
X [ ant + MiE_D
which further gives two subcases:

(iii-a) (C'+ E — D)(M + E — D) > 0, leading to
either C > D —-FE, M >D—FE, orC <D—FE,
M < D~ E (D> E), both yield

GO) #£0 for e (o, g)
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(ili-b) (C+ E—-D)(M +FE —D) < 0 (ie. C <
D—-E<MorM<D-FE<C,D > E), for which
we have a uniqure solution #; such that

G(61) =0, where
_ .. |- (C+E-D) ( z)
01 = tan [ VM+E—D € 0,2 .
(iv) (C+FE—-D)= (M + E — D) =0 which yields
C=M=D—FE (D> E) under which
G(0) =0.
This is a singular case. Using the Briot-Bouquet
transformation ¥ = uX (and so u > 0 due to

X,Y > 0), @) can be changed to [Zhang et all,
1901

du —ud®* (X, u)

dX — Xo(1,u) + X0*(X,u)

Complex Dynamics of Predator—Prey Systems with Allee Effect

uw(l+u)(E+1-X)
wD—E)+(1+u)(1—-X)(E—-X)

2 g(u, X), (46)
where
it =2 o
o (X,u) = 28X a1 E- x).

X3

Hence, according to [Zhang et all, 1991], on the

(X,Y)-plane, there exists a direction § = 67 along
which an orbit of (44]) tends to Eg if and only if
there is a solution curve of (6] passing through the
point (0,u7]) on the (X, u)-plane, with uj = tan 6.
For 0 < X <« 1 and u > 0, we have the con-
tinuous function g(u, X) > 0 and the continuous
function,

99w, X) (14+E—-X)[E+2Eu+Du*—(1+E)(u+1)?X + (1 +u)?X? ~0
ou [u(D—E)+(1+u)(l-X)(E - X)? ’
because |
__(b-OM-CE
E+2Fu+Du?— (14 E)(u+1)>2X 4+ (14 u)’X? T T T M+E—D "%
> (14+u)?(1 - X)(FE - X) (C — D)M + CE
= M+ E-D cos 0.

>0 for0< X <1,

due to D > FE. This shows that the differential
equation (46) has a unique solution passing through
the point (0,u}), uj > 0, implying that on the
(X,Y)-plane, for any 07 € (0,%), there exists a
unique trajectory tending to Egy along the direction
0 = 07.

Next, we investigate the direction that the orbit
moves along 6 = 0 (for the case (iii-b)) and 0 = 67
(for the case (iv)). To achieve this, using the polar
coordinates, the system (B8] can be transformed to
(neglecting higher order terms)

) rH(0) . G(0)
= = —" 47
[ pp—L sin @ + cos 6 (47)
Then, for the case (iii-b), using G(6) = 0 and the

unique solution tan 6 = —A%fﬁ;:%, we obtain

H(#,) = —sin?0;[Dsin6; + (D — C) cos 0]
—cos?01[Dsin 6y + (D — C) cos 0]
= —[D —C+ Dtan6;]cos b6

Thus, for C < D—E < M, wehave M+E—D >0
and (D — C)M — CE > E(M — C) > 0; while for
M<D—-E<C(D>E),wehave M+E—-D <0
and (C —D)M +CE > E(C — M) > 0. Hence, the
orbit moves towards Eg in the direction 8 = 6 for
the case (iii-b).

For the case (iv), it is known that 67 € (0, %).
Using the condition C = M =D — E (D > E), we
obtain

H(07) = —sin®0% (D sin 0% + E cos 67)
— cos?0;(Esin 07 + D cos 6})
= —(sin 0] + cos07)[D(1 — sin 07 cos 67)

+ E'sin 07 cos 07]

™
<0 for 0 € (0, 5).
Summarizing the above discussions we have shown
that including the X-axis and the Y-axis, orbits
move towards Eg along the characteristic direction
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in the neighborhood of Ej in the first quadrant of
the (X,Y)-plane as t — +oo.
The proof of Theorem [(.1lis complete. W

Remark 5.2. The Allee effect has significant influ-
ence on the equilibrium Eg. Without the Allee
effect, it has been shown that as the parameter var-
ied, the dynamics of the system around Eg in the
first quadrant of the phase portrait can be very com-
plex [Xiao & Ruan, 2001]. Tt can be stable or unsta-
ble, and even for the same set of parameter values,
it can be stable or unstable depending upon the ini-
tial values. However, for system (B8) with the Allee
effect, Eg becomes always stable, at least locally,I

My

~ 2(C—D)(2C + D)

which again indicates an increase of extinction risk
of species.

Theorem 5.3. For system By, Eq is either a sta-
ble node if C < D, or a saddle point if C > D;
Eq is unstable (either a saddle point when C < D,
or an unstable node when C > D). Esy ewist for
0 < M < My, and Es_ is always a saddle point.

Esy is a stable focus for C > D + %, and

for D < C < D+ B2 if0 < M < My; Ess

is an unstable focus for D < C < D + —(174E)2

if My < M < My. Hopf bifurcation occurs from
Esy at the critical point M = My, where My s
given by

s{(2C + D)[2D(C — D) + C(1 — E)*] = C*(1 + E)?

+C(1+ E)\/C2(1+ E)2+ D(2C + D)[(1 — E)2 — 4(C — D)]}. (48)

Proof. To study the stability of the equilibria, we calculate the Jacobian of system (B8], given by

~E+2(1+E)X —3X? - -

J(X,Y) = e

(X +Y)?

Evaluating the J on the equilibrium E;, we have two
eigenvalues —(1 — F') < 0 and C' — D. Hence, E; is
a stable node if C' < D or a saddle point if C' > D.
For the equilibrium Es, we obtain two eigenvalues
E(1 — E) > 0 and C — D, which implies that Es
is a saddle point if C' < D or an unstable node if
C>D.

For the positive equilibria Eg4, we compute the
J on Esz4 to obtain the determinant:

det(J(Es+))

:D(C;igm\/(l—E)Q—le (1-%)

x [\/(1—E)2—4M<1—g>i(1+E)

(50)

)

yielding det(J(Es-)) < 0 and det(J(Ezy)) >
0. Thus, the equilibrium Ejz_ is a saddle point,
and the stability of Es; is determined by the
sign of Tr(J(Esy)): Esy is asymptotically stable if
Tr(J(E3+)) < 0 and unstable if Tr(J(Esy)) > 0.

MY? MX?
(X +Y)? (X +Y)?
cx? )
- D
(X +Y)?

|
A direct computation shows that

(I (Bs) = 5,
where fy is given by
fa=2D(C — D)(C — M)
+C[C(1 - E)* —4M(C — D))

+C(1+ E)\/C[C(1 - E)2—4M(C — D)],
(51)

for which 0 < M < M, = ié%ﬁg; and so the sec-
ond and third terms in fo are positive, implying
that fo 2 0 < Tr(J(Es+)) < 0. In the following, we

discuss the sign of fs, which has several cases.

(I) 0 < M < C for which fo >0« Tr(J(Es+)) <0
and so E3+ is asymptotically stable. Comparing M
with the limiting value M, we have two subcases:

(Ta) If C > My, ie. C > D+ U= then By is

asymptotically stable for 0 < M < M,.
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(Ib) If C < My, ie. D < C < D+ 9=E2 then B,
is asymptotically stable for 0 < M < C.

(I) M > C for which we consider the frist two
terms in fy and define

C[C(1 - E)*+2D(C — D))
2(C—D)(2C + D)
Then, the first two terms in fo yield a positive
value for 0 < M < M™ and a negative value for
M* < M < M,. In addition, it needs M* < My,

leading to

M* =

(52)

C[C(1— E)*>+2D(C — D))

M* — M, =

2(C —=D)(2C + D)
C(1-E)?
4(C - D)
B CD

- (C—-D)(2C + D)
)
«|loop_ U=E7| 4
which implies that D < C <D+%. Note that
(1- E)? C(1-E)?*
C <D+ 1 <:>C<4(C_D)_Mu.

(ITa) If 0 < M < M*, we have fs > 0 and so Es+ is
asymptotically stable.

(ITb) If M* < M < M, the sum of the first two
terms in fo becomes negative, so fo 2 0 & f3 2 0,
where

f3=C*1+ E)*)[C(1 - E)* - 4M(C — D))
—{2D(C — D)(M - C)
—C[C(1 - E)* —4M(C — D)]}?
= —4(C — D)*(2C + D)*M* 4 4C(C — D)
x {(20 4+ D)[2D(C — D) + C(1 — E)?|
—C%*(1+ E)*YM — 4C?*|D(C — D)
+C(1—- E)][D(C — D) - CE(1 - E),

which is a quadratic polynomial in M, having the
following discriminant:

Ap, = 16C*(C — D)*(1 + E)*{C*(1 + E)*
+D(2C + D)[(1 — E)? —4(C — D)}

> 0.

Complex Dynamics of Predator—Prey Systems with Allee Effect

So f3 = 0 has two real solutions. Moreover, we have

DC*(1+ E)?

oo (1= B ~4(C - D)

f3lv=n+ =
>0,
duetoC<D+%7 and

D2C?

Falwr=n, = ———[(1 - E)Y —4(C-D)?<0.

Since f3 is a quadratic polynomial in M with a nega-
tive coefficient of the term M? (implying that f3 has
a maximum), it must have a unique positive root
M = My € (M*, M,), where My is given in ([S),
which is the bigger one of the two real solutions.
This solution yields fo = 0 and so Tr(J(E34)) =0,
indicating that Mgy is a Hopf critical point. Note
that the other real root of f3 does not satisfy fo =0
and so it is not a Hopf critical point.

Summarizing the above discussions, we have
the following results.

(1) When C > D + (1_4E)2, Es+ is asymptotically
stable for 0 < M < M.

(2) When D < C < D+ (174E)2 , one of the following
holds:

(2-a) Es; is asymptotically stable for 0 <
M < Mpy;

(2-b) Es4 is unstable for My < M < M,; and

(2-¢) Hopf bifurcation occurs from Eg at the
critical point M = My. N

5.3. Codimension of the Hopf
bifurcation

Next, we further study the Hopf bifurcation and
determine the codimension of the bifurcation. We
have the following result.

Theorem 5.4. For system By, Hopf bifurcation
occurs from Esy at the critical point M = My, and
the bifurcation is subcritical with codimension one,
yielding a family of unstable limit cycles.

Proof. Again we apply normal form theory to find
the focus values to determine the stability of limit
cycles. To achieve this and make it simpler in nor-
mal form computation, we solve the equation in (@0)
for C, instead of solving for X3, to obtain (noticing
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that in the following X3 = X3;)
MD
C= >0
M —(1-X3)(Xs — E)

:>.Z\4>(1—)(3)()(3—E)>07

(E<X3<1)

and then solving Tr(J(Es)) for M yields the Hopf
critical point, given by

(1-X3)(X5 — E)[D+ (X3 — E)(1 — X3)]

which requires
—3X34+2(1+ E)X3— E >0,

and so

1
E<X3<§(1+E+\/1—E+E2)<1,

1
E< -
<O< <2>

Then, we multiply the vector field of [B8) by X +Y
for convenience (equivalent to using a time scaling,
7 — (X +Y)7), and apply the following transfor-
mation at the critical point M = My,

[D— (1+ E)X3 + 2X22(1 — X3)(X35 — E) " (53)

€2,

M =
" —3X2+2(1+E)X5— E
> 0,
X = X3+ 1,
y_¢-D D[(2X3 — E)(1 — X3) — X3(X3 — B)]?
=5 X;
. wc[(QXg —E)(l —Xg) —Xg(X3 —E)]
X3[D—(1+ E)X3 +2X3](1 — X3)(X3— E)
where

_ X3/DX3(2X3 — 1~ E)[D + (1~ X5)(X5 — B)|[-3X3 +2(1 + B)X; — B]

e D+ X3(2X; — 1 - B)|

In order to have w. > 0, we need X5 > (1 + E).
Since My < M, and noticing from ([I]) that X3z =
L(1+E) at M = M,, we have X3 = X3, > 3(1+E)

at M = Mpy. Therefore, we finally obtain

1 1
5(1+E)<X3<§(1+E+\/1—E+E2),

1
0<E<§. (54)

Now, substituting the transformation (53]) into

system (BY) with the time scaling, we obtain
|

|
4
L 2( el ]
T1 = Welo + Qi T2y,
i+j=2

4
To = —weT] + Z bijﬂfllxé7
i+j=2
where a;; and b;; are coefficients in terms of D,
F and Xs. Then, applying the Maple program
[Yu, [1994] to the above system yields the following
first-order focus value:

G

U1

where

T 8X3[D + X3(2X5 —1 - E)(2X3 — 1 — B)(X3 — BE)(1 — X3)

Gl - D(l + E)(l - X3)(X3 - E) + GQ,
Go=(1—E)'X3 — (1 - X3)(X3 — E)G3,
Gs=(1-E)*(10X3 —1 - E) — (1 — X3)(X3 — E)(24X3 — 3 — 3E).

In the following, we prove G5 > 0 and so v; > 0 for X3 in the interval given in (54]). First we show G5 > 0.
To simplify the analysis, we let X3 = 3(1 + E) + G and thus (54) is changed to

1 1 1
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under which G3 becomes
Gs =24G® +9(1 + E)G? + 4(1 — E)*G
7

+7(L+ E)(1 - E)? > 0.

To prove G2 > 0 in the region on the E-G
plane, bounded by 0 < G < Gy, 0 < E < 1, we first
show that the function G5 has no extreme points
inside the region and then prove that Go > 0 on
the boundaries of the region. Now, G5 is a function
of G and FE, given by

Cs(G, E) = %(1 + E)(1 - B)*

- %GQ{(l + E)(1 - E)?

+2G[2(1 — E)? — 3G(3E + 8G + 3)]}

from which we obtain

0G9 B 0G9 1
rrele Gy, Eo 16(2G+ 1 —E)g,
where

g1 =1+ E)(1-E)’+6G[(1 - E)’
—2G(3E + 10G + 3)],

g2 = (3+5E)(1 — E)? —2G[(3 +5E)
x (1—E)+2G(18G — 1+ E)).

Now with the help of Maple, eliminating G from
the two equations g; = 0 and go = 0 we obtain the

Complex Dynamics of Predator—Prey Systems with Allee Effect

solution,

(1 — E)(220 + 527E + 236 E2 — 11E®)
56 + 77E + 124E2 + 67TE3

481 1
— E —
> 938 > Gy, S (0, 2)

G =

and a resultant,
R=—(1— E)(1915E° + 677E* + 1390E3
+ 5978 E? 4 4615E + 977)

1
<0, Fel0,=],
(0:3)

which implies that % = %% = 0 do not have

solutions for 0 < F < %, 0 < G < Gy, and so the
function GG does not have extreme points in the
region bounded by 0 < F < % and 0 < G < G,.

Next, we prove that G5 > 0 on the boundaries
of the region, 0 < F < %, 0 < G < Gy, which has
three line segments and one curve:

1
LllE:O, 0<G<6,
1 3
Ly: E ==, 0<G<£(2—\/§),
2 12
1
Ly: G=0, 0<E<g,
1
Ci: G =Gy, 0<E<§.

By a direct computation, we obtain the following
results.

1
OnLi: Go(G,0) = —(2G +1)(192G* — 24G3 — 4G? — 2G +1)

16

= i(2G +1D[(1 = 6G)(1 + 4G + 20G?) + 96G> + 192G*]

16
1
>0, for()<G<6;
1 3 3 1, 27
Only: Go(G o) = — 26— 263+ 2G4 4+ 2465
n 2(’2) 52 160 20 T2 *

3 341 27
= (1 -20G)(1 + 20G + 368G?) + —G® + ——G* + 24G®
512 8 2
V3 1
f 22— —
>0, for0<G < \/§)<20,
1 1
On L3 : GQ(O,E):E(1+E)(1—E)4>O, for 0 < E < 5.
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On the curve Cq, we have

G(Gy, E) = 831(1 + E)[(2E* = TE® + 18E? —TE +2) + 2(E* —4E + 1)(1 + E)\/1 — E + E?

7. \? 95
2(1—-F —“FE?

1
= —(1+F

+2(E* —4E+1)(1+ E)V1— E + E?

2
- §E> 4 2

95 95

E* 1+ E)(1-E)*

4 8 95

2 2
2 2
{[2 <1—ZE) +—95E2<1——8E) + gt 4B+ 1)1+ EWI—E 1 B2

Thus, G(Gy, F) > 0 regardless whether E2 —4E+1
is positive or negative.

Therefore, by continuity of the function, Gy > 0
on the region defined by (B4)), and so v; > 0, indi-
cating that the codimension of the Hopf bifurcation
is one, and it is subcritical with unstable bifurcating
limit cycles. M

5.4. Bifurcation diagram and
stmulation

The bifurcation diagrams are shown in Figs. B(c)
and B(d), where only the cases for C' > D are pre-
sented, since for C < D, E; is globally asymptoti-
cally stable, and E3 does not exist.

Remark 5.5. Comparing the bifurcation diagrams in
Fig. 8 it can be seen that the model B;; with the
Allee effect and without the Allee effect has simi-
lar dynamical behaviors. Both of them have Hopf
bifurcation but the bifurcation curve changes from
linear to nonlinear. Also note that the model with
the Allee effect has less stable interval in M. The
big difference is that the Hopf bifurcation for the
model without the Allee effect is supercritical with
stable limit cycles while that for the model with
the Allee effect is subcritical with unstable limit
cycles. Thus, the model without the Allee effect
might have bistable phenomenon (containing one
stable equilibrium and one stable limit cycle) if E
happens to be stable, while the model with the Allee
effect does not have such bistable property. But the
model with the Allee effect exhibits the bistable
phenomenon with two equilibria Eg and Es4, see
Figs. B(c) and [B(d).

95

Now we present simulations for model Bj. To
have a comparison, we show simulations for both
with and without the Allee effect. For the case with-
out the Allee effect, it is seen from (B7) that a
supercritical Hopf bifurcation occurs from the crit-
ical point My = SCEPEDY) when € € (D, 1+ D)
[see Fig. B(b)]. Let D = 0.8 and C = 1. Then
My = 2 ~ 322222222, and %5 = 5. We take
three values for simulation: M = 3.224, 3.24133419,
3.24133420 > My, which implies that the equilib-
rium Es; is an unstable focus for the three val-
ues of M. The simulations given in Figs. Ql(a){9(f)
show very different behaviors though the three val-
ues are very close to My. It is seen that the sim-
ulation for M = 3.224, as depicted in Figs. [Qfa)
and [@(b), shows a regular oscillation, while that
for M = 3.24133419 shows a recurrence behavior
[Zhang et _all. 12013, [2014: [Yu et all. 2016: Yu &
Zhang, 2019], see Figs. @(c) and @(d), where the tra-
jectory does not touch the equilibrium Eg since Ejg
is unstable. However, it is noted that the sufficient
conditions given in the above mentioned articles do
not include the case as seen in Figs. [0(c) and B(d),
since here the system does not exhibit saddle-node
bifurcation or transcritical bifurcation.

It is interesting to see from the simulation, as
given in Figs. @Qe) and [Q(f), that when M has a
very small increase from 3.24133419 to 3.24133420,
the limit cycle (recurrent oscillation) disappears
and the trajectory converges to the equilibrium Ej.
According to the analysis in [Xiao & Ruan, [2001],
the above three sets of parameter values belong to
the category D < C' < 1+D < My < M < C_LD for
which the equilibrium Eg can be either asymptoti-
cally stable or unstable, as shown in Fig. It can
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Fig. 8. Bifurcation diagram for system Bj; without the Allee effect: (a) for C > 1+ D, and (b) for D < C < 1+ D; and with

(1-E)

(1-E)

the Allee effect: (c) for C > D + *=—=— and (d) for D < C' < D 4 *~5~~. The pink curves denote Hopf bifurcation, with
solid (dashed) curve for supercritical (subcritical) Hopf bifurcation.

be seen from this figure that in the vicinity of the
origin trajectories converge to the origin if § > 6*
while diverge from the origin if § < 6*. For the
numerical values chosen for this example, we have
0* = tan—' 0.555 = 29.03°. This value 0.555 agrees
with the slope of the trajectory near the origin,
092'%1 ~ 0.55, see Figs.[@(c) and[@(e). It is expected
that there exists a value of M between My and

C_LD and close to My, at which the oscillation sud-

denly ceases. But such a critical value M* cannot be
analytically determined. Here, for the system (B8]
with D = 0.8 and C = 1, M* ~ 3.24133419. So
when My < M < M*, the trajectory starting from
E; does not touch Ej (the origin), and returns fol-
lowing a route below the blue curve [see Figs. Bl(c)

and [I0] and converges to a stable limit cycle; while
when M > M*, the trajectory starting from E; con-
verges to the origin following a route above the blue
curve [see Figs.[0(e) and[I0]. The critical value of M
and the critical angle * must be inherently related,
yielding the interesting relaxation oscillation. This
needs a further study.

It is seen from the bifurcation diagrams in
Figs. Bl(c) and B(d) for model Bji with the Allee
effect that there exist two cases: either the system
has no Hopf bifurcation if C' > D + (174E)2
bifurcation occurs from Esz, at the critical point
M = My it D < C < D+ Y=EX The codimension
of the Hopf bifurcation is one and it is subcritical,
and so the bifurcating limit cycle is unstable. For

, or Hopf
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Fig. 9. Simulations for the Bj; model (B6) without the Allee effect with D = 0.8, C' = 1, starting from the initial point
(X,Y) = (1,0.00001): (a) phase portrait for M = 3.224, and (b) time history for M = 3.224, showing a regular oscillation;
(c) phase portrait for M = 3.24133419, and (d) time history for M = 3.24133419, showing a recurrent behavior (a slow-
fast motion); (e) phase portrait for M = 3.24133420, and (f) time history for M = 3.24133420, showing convergence to the

equilibrium Ejg.
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0 0.2 0.4 0.6 08  1.0x10%

X

Fig. 10. Phase portrait of system Bj; without the Allee
effect for the parameters satisfying D < C < 1+ D <
Mp < M < %, where the blue radial denotes § = 0% =

~1/_1+D-C
tan™" (=13 p=a7)-

simulations, we choose £ = 0.4 and D = 0.8. For
the case C' > D + % = 0.89, we take C' = 0.95
and M = 0.3 < M, = 0.57. The simulated trajecto-
ries either converge to the stable node Eg or to the
stable node Es, as shown in Fig. [[1(a).

For the case D < C < D + % = 0.89,
we choose C' = 0.82, yielding M, = 3.69 and

My = 3.6086. We first take M = 3.58 under which

Complex Dynamics of Predator—Prey Systems with Allee Effect

Es is a stable focus, with trajectories still either
converging to the stable node Eqy or to the stable
focus Es, as seen from Fig. [[T[(b). It seems that the
unstable limit cycle does not exist for these param-
eter values. In fact, it is very difficult to identify
the parameter values to obtain such unstable limit
cycles. We have to search the parameter values of
M very close to the Hopf critical point My from
M > My to M < Mpy. For the above chosen values
of £, D and C', we take four values of M, one of
them is greater than My and the remaining three
are less than My:

M = 3.61 > My = 3.6086, and
M = 3.606, 3.59253, 3.592 < My = 3.6086.

It is easy to show that Esy is an unstable focus
for M = 3.61, but a stable focus for M = 3.606,
3.59253, 3.592, as expected. The simulated phase
portraits for the four values of M are shown in
Figs. MIc)-II(f), respectively. It is seen that an
unstable limit cycle exists at M = 3.606, and in fact
for the above chosen values of E, D and C', unstable
limit cycles exist for 3.59253 < M < My = 3.6086.
At M = 3.59253, the unstable limit cycle coin-
cides with the unstable homoclinic loop. Then Esy
becomes a stable focus without any closed orbits
around.

0.0204

0.0154
Y

0.0104

0.005+

Fig. 11. Simulated phase portraits of system Bj; with £ = 0.4 and D = 0.8: (a) C' = 0.95 and M = 0.3, showing bistable
equilibria Eg and Esy, with two attracting regions separated by the stable manifolds connecting to the saddle point E3_; (b)
C = 0.82 and M = 3.58, also showing bistable equilibria Eg and E3,, with two attracting regions separated by the stable
manifolds connecting to the saddle point Es_; (¢) C' = 0.82 and M = 3.61, showing the unstable Esy; (d) C' = 0.82 and
M = 3.606, showing the stable E3; and an unstable limit cycle; (e) C' = 0.82 and M = 3.59253, showing the stable E3; and
the unstable homoclinic loop and (f) C' = 0.82 and M = 3.592, showing the stable Es .
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Remark 5.6. It has been shown in ﬂm,

] that the dynamics around the equilibrium Eg
of system Bj; without the Allee effect can be very
complex, which may be asymptotically stable or
unstable, or even including both stable and unstable
sectors. However, the equilibrium Eg of system By
with the Allee effect is always asymptotically stable.
This clearly indicates that species having a strong
Allee effect may affect their predation and hence
extinction risk. Moreover, the By system without
the Allee effect has supercritical Hopf bifurcation
generating stable limit cycles; while the Bj; system
with the Allee effect not only changes the super-
critical Hopf bifurcation to subcritical Hopf bifurca-
tion, resulting in that the equilibrium Es; becomes

0.020
0.019- B3y
0.018
0.017-

0.016 E3—

0.0154

0.0204

0.0194

0.0184

0.0174

0.016 Es-

0.0154

(Continued)

stable from unstable. Moreover, the unstable limit
cycles exist for a very limited parameter values.
To see why such a change in the Hopf bifurcation
increases the stability of the system, we take a com-
parison of the solution trajectories shown in Fig.
(without the Allee effect) and in Fig. [[I] (with the
Allee effect). For Fig. @ without the Allee effect,
there exist values of the parameter M in an inter-
val for which a supercritical Hopf bifurcation occurs
and all trajectories converge to the stable limit cycle
[see Fig.[@(a)]. Otherwise, the trajectories may con-
verge to Eg. However, due to the complex behavior
of Eg without the Allee effect, for most parameter
values, trajectories would not converge to Eg, but
are oscillating. For Fig. [Tl with the Allee effect, the

2250203-28



Int. J. Bifurcation Chaos 2022.32. Downloaded from www.worldscientific.com
by CITY UNIVERSITY OF HONG KONG on 11/03/22. Re-use and distribution is strictly not permitted, except for Open Access articles.

supercritical Hopf bifurcation is changed to a sub-
critical Hopf bifurcation and the bifurcating limit
cycle is unstable [see Fig. [[I(d)], and the equilib-
rium Es, becomes stable. In this case, all trajecto-
ries converge to the stable node Eq (which is always
stable due to the Allee effect), except those starting
from initial points inside the unstable limit cycle,
which converge to the stable focus Esy. Since the
parameter values for generating the unstable limit
cycle is very limited, it clearly implies that the sys-
tem becomes more stable, compared to the system
without the Allee effect.

5.5. B-T bifurcation

The conditions for the model Bj; to have a B-T
bifurcation are det(J(Es4)) = Tr(J(Es4)) = 0. It
follows from (B0) and (B]]) that the B-T bifurcation

occurs when

C(1-E)?-4M(C-D)=C—-M=0

1 1
:>C:M:D+Z(1—E)2, X3:§(1+E).

(56)

Obviously, it is as expected that the B-T bifurca-
tion occurs at the turning point M = M, at which

Esi =E;_ =Es

- (3u+B. g+ Ba-B2). 6D

where the saddle-node bifurcation coincides with
the Hopf bifurcation.

To analyze the BT bifurcation, we need to find
the normal form of the B—T bifurcation with unfold-
ing. First, we want to determine the codimension of
the B-T bifurcation and then to obtain the normal
form with unfolding. In the following two sections,
we will apply the simplest normal form (SNF) the-

ory (e.g. see [Yil, [1999; [Gazor & Yu, 2010, 2012])

to determine the codimension of the B-T bifurca-

tion of the system (B8) and the parametric simplest
normal form (PSNF) theory (e.g. see m,

2003; |Gazor & Moazeni, 2015]) to obtain the normal

form of system (38]) with unfolding terms.

5.5.1. The SNF and the codimension for
the B=T bifurcation

In order to obtain the normal form for the B-T
bifurcation, we first need to determine the codi-
mention of the system (B8]). We have the following
theorem.

Complex Dynamics of Predator—Prey Systems with Allee Effect

Theorem 5.7. For system (38), when C = M =
D+Y(1-FE)2, B-T bifurcation occurs from the equi-
librium solution Eg : (X,Y) = (&£, (1+EE);(+E)2).
The codimension of the B—T bifurcation is two and
no codimension higher than two can happen for the

B-T bifurcation.
Proof. Let

1
C=D+ (1= E)*+pm,

X (58)
M =D+ (1= E)* + s,

where 1 and po are perturbation parameters. Thus,
(1, p2) = (0,0) defines the B-T bifurcation point.
Now, we assume (pg,p2) = (0,0), and apply the
simplest normal form theory 1999; Gazor &
Yu, 2010, 2012] to determine the codimension of
system (B8). To achieve this, introducing the fol-
lowing transformation,

1 D(1 — E)?

1 (1-E)*
Y = 8—D(1+E)(1—E)2+ LT

(59)
into (B8]), we obtain the following system:
= fi(u,v,D,E), 0= fa(u,v,D,E), (60)

where fi; and fy are rational functions in v and v
with coefficients given in terms of D and E. Then,
we expand the above system around (u,v) = (0,0)
and apply the SNF theory , 11999; [Gazor & Y,
] to the expended system, with the following
nonlinear transformation truncated up to second
order:

(1-E*»?+16DE

T T AT B - B2+ 4D
B (1- E?)?+16DE (61)
B Y R o) 1§ ) PN >
8D
+

(1+ E)[(1— E)? + 4D] 73

introduced into (@0) to obtain the SNF up to
second-order terms:

1 = w9 + O(|(x1,22)[%),
i‘g = 0201‘% + Cnxlxg + O(](xl,xg)\B),
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where
D*(1+E)(1-E
e R
2[(1 - E)?+4D]
: (62
D1+ E)(1-E)
Ci = 0.
WS TACEZt+4aD
Further, introducing the transformation,
w1 — w1, w2+ O(|(21,22)%) — 22,
into the above equations, we obtain
{tl = T2,
(63)

9 = Oy + Crimias + O(| (21, 22)[?).

Since C9C11 # 0, the codimension of the B-T
bifurcation is two. W

5.5.2. The PSNF of the B-T bifurcation
and bifurcation analysis

In this section, we use the PSNF theory to obtain

the normal forms with unfolding up to secomd—orderI

2[(1 — E)? + 4D)?
D21+ E)(1-E)*

x7

terms for the codimension-two B-T bifurcation,
and give a summary on the bifurcation analysis.
Here, we will obtain the normal form with the
unfolding terms expressed in the original system
parameters.

To obtain the normal form with unfolding, we
introduce the parametric transformation,

1 2
C:D+Z(1—E) +/Jal,

) (64)
M:D+Z(1—E)2+M27
together with the change of state variables (59),
into (BY) to obtain

u:Fl(u’v7M1’M27D7E)’ (65)
U= FQ(U,’U7,U,1,/L27D7E).

Then, we expand the above system around the
point (u,v,p1,p2) = (0,0,0,0) and apply the
PSNF theory, with another change of state
variables:

[(1 - E)?+4+4DP[(1 + E)* (1 — E)* —4(1 — E)?(1 — 10E + E?)D + 16(1 + E)2D?|
* D5(1 + E)(1 — E)10 b
(1+E)[(1 - E)? 4 4D)? 2[(1 — E)2 +8D][(1 — E)? +4D)?
- 2(1 — E)4D? Bz + D31+ E)(1— E)S ba1
[(1 - E?)? +16DE|[(1 — E)? 4+ 4D}® ,
- D1+ EP(1— E)B =
(14 E)2(1 - E) +4(1 — E)*(1 +6FE + E*)D 4 16(3 — 2E + 3E?)D?][(1 — E)? + 4D)?
N D51+ EY(1— B)10 T
[(1—E)?+8D][(1 - E) +4DP[(1 + E)>(1 — E)* + 4(1 — E)>(1+6FE + E?)D]
B { 4(1 — E)2(1 + E)3DS
16D2[(1 — E)2 4+ 8D][(1 — E)? +4D]3(3 — 2E + 3E?) } )
i A(1— E)2(1 + E)3DS o
2[(1 — E)? + 4D)?
TDX(1+ E)1-E)?
[(1+ E)2(1 - E) +4(1 — E)* (1 +6E + E*)D 4 16(3 — 2E + 3E?)D?][(1 — E)? + 4D)?
B 8D(1+ E)(1 — E)® b
(1+ E)[(1 — E)? 4+ 4D] 2[(1 — E)? 4+ 4D)?
2D(1 - E)? T DT B = B
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2[(1 — E?)2 +16DE][(1 — E)? + 4D)?
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— X192

D1+ E)P3(1 - E)B

[(1+E)*(1—-E)*+4(1 - E)’(1+6E + E?)D —16(E? — 6E 4+ 1)D?][(1 — E)? 4 4D)]

2D5(1+ E)3(1 — B)10

as well as the parametric transformation:

[(14+ E)2?(1—-E)*4+4(1—-E)*>(1+6FE + E?)D 4 16(3 — 2E + 3E%)D?|[(1 — E)? + 4D)?

3
Lo,

16D (1 + E)2(1 — E)5

(1—E)?>+4D

- 1D B2 +

(1 - E)?+4D]*
2D4(1+ E)2(1 — E)S

152

IS

N (14 E)2(1 - E) +4(1 — E)2 (1 + 6E + E?)D + 16(3 — 2E + 3E?)D?][(1 — E)? + 4D)°> ,
8D7(1 + E)4(1 — E)12 D

[(1+ E)?(1 - E)* —4(1 — E)%(3 - 14lE + 3E?)D — 16(E? — 6E + 1)D?|[(1 — E)? +4D)?

po = —

AD3(1— E)B(1 + E)2

b

(1—E)?>+4D { [(1+ E)*(1 - E)® —16(E? —6E +1)(1+ E)?(1 — E)SD][(1 — E)? + 4D}*

(1 - E)2 ﬂ? +

16D7(1 + B)*(1 — E)I6

[(BE* + 20E3 — 146 E? + 20E + 5)(1 — E)? + 8D(E* + 20E3 — 7T4E? 4+ 20E + 1)][(1 — E)? + 4D}*

D5(1+ BYi(1— B)1

D3(1+ E)'(1 - E)I6

(14 E)*(1 — E)* +32E(1 — E)?>D + 64ED?|[(1 — E)? + 4D]?

16(5E% — 14E +5)(1 + E)?[(1 — E)? + 4D]* }

e

[(1—E)?+4D]? ,

9DI(1 + E)2(1 — B)10

to obtain the standard normal form with unfolding;:
i1 = w9 + O(|(21, w2, p1, p2) °),

[(1— E)? +4D]

2
. 2
Ty = P1 + faxo + 27 + D(—-E)?

122

+ O(‘(xlv X2, U1, :U’2)|3)
Finally, introducing the transformation
x1 — x1, @2+ O((21, 22, 1, p2)|*) — 2,

into the above system yields the normal form with
unfolding up to second-order terms:

T1 = T2,
2[(1 — E)? + 4D]
D(1—E)?

+O(|(z1, 2, 1, B2)]?),

i9 = B1 + Bowg + 2% + T1T2

(68)

B152 +

D(1—-FE)Y 2
(67)

where we keep the parameters D and F in the coeffi-
cient in order to see how the original system param-
eters affect the bifurcation behavior of the system.
Now, we use the normal form (G8) to analyze
the codimension-two B-T bifurcation. Note that the
normal form (G8) is in the standard form given
in [Guckenheimer & Holmes, 1993]. Thus, we fol-
low the approach described in [Guckenheimer &
Holmes, [1993] to obtain the following result.

Theorem 5.8. For the By system (38), codimen-
sion-two  B-T  bifurcation occurs from the
equilibrium

Byt (X.7) = <1;E’(1+E;%_E) )

when

C:M:D+i(1—E)2.
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Moreover, three local bifurcations with the representations of the bifurcation curves are given below.

(1) Saddle-node bifurcation occurs from the bifurcation curve:

SN = {(51,02) | B1 = 0}.

(2) Hopf bifurcations occur from the bifurcation curve:

D(1 - E)?

H= {(ﬂl,@) pr=— [

2((1— E)2+4D

2
)} ﬂ;ﬂz > O} . subcritical.

(3) Homoclinic orbits occur from the bifurcation curve:

b =

HL = {(51,@) 3

The bifurcation diagram for the B-T bifurca-
tion is shown in Fig. [[2l Note that the Hopf bifur-
cation is subcritical, which agrees with the Hopf
bifurcation analysis given in the previous section. In
addition, it is seen that variations on the parameters
do not change the qualitative property of bifurca-
tions since the coefficient [2((3%7%]2 keeps its
sign unchanged. Moreover, it is easy to see that

| po-rpp [ LT
2((1 = E)2+4D) m + 5
_u-ny

64

indicating that the Allee effect has a great impact
on the quantitative bifurcation property when D is
not too small.

B2
SN
I :,[ D(-FE)? ]2ﬁ2
! 24D+ (1-B)2)] 72
| 5 __49 DA-E)2 2.2
\ 6177275{2(4D+(1—E)2)} B3
0 Bi

Fig. 12. B-T bifurcation sets and phase portraits of

system (G3).

49 D(1 - E)?
[2((1 — E)2+44D)

2
] 53,52 > 0} , unstable.

The formulas for bifurcation curves, given in
Theorem 5.8 can be expressed in terms of the orig-
inal perturbation parameters py and po via (G1).
In the following, we discuss how to simulate the
dynamical phenomena in the above B-T Bifurca-
tion using the original system (B8], in particular for
the Hopf bifurcation and the homoclinic loop bifur-
cation. With (B8],

1
C:D+Z(1—E)2+M17

1
M:D+Z(1—E)2+M2,

the condition D < C < D + i(l — E)? yields
1 2

Further, to have solutions E34, we need

C(1 - E)? D[-4+(1-E)?
4(C - D) A5 + (1 — B)?

M< M, = 2
For simulation, we again take £ = 0.4, D = 0.8
and thus obtain the critical value C' = M = 0.89
at which the positive equilibrium becomes Es; =
(0.7,0.07875). Thus, pu; > —0.09. For simplicity,
choose p; = —0.04. Then, ps < _u?fgloﬁ) = 0.64.
We vary us as

112 = 0.63,0.628, 0.62255, 0.62.

It is easy to show that for ps = 0.63, E3; is
an unstable focus, while a stable focus for pus =
0.628,0.62255 and 0.62. Moreover, an unstable limit
cycle exists for uo = 0.628, the unstable limit cycle
coincides with the homoclinic loop at ps = 0.62255.
When po < 0.62255, the homoclinic loop is bro-
ken and Esy is a stable focus. The simulated phase
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Fig. 13. Simulated phase portraits of system Bj; for B-T bifurcation with £ = 0.4, D = 0.8 and u1 = —0.04: (a) uo = 0.63,
showing the unstable focus E3y; (b) po = 0.628, showing the stable focus Ez; and an unstable limit cycle; (c) po = 0.62255,
showing the stable focus E3y and the unstable homoclinic loop and (d) p2 = 0.62, showing the stable focus Es .

portraits for the four cases are shown in Figs. [[3|(a)—-
13(d), respectively, which correspond to the four
phase portraits in the B-T bifurcation diagram (see
Fig. I2) from the top to the bottom. However, it
should be noted that due to the transformation
([66]), the simulated phase portraits in the original
X- and Y-axes have the saddle point E3_ on the
left side of the focus Es (see Fig. [[3)), while the B—
T bifurcation diagram (see Fig. [[2]) has the saddle
point on the right side of the focus point.

It should be pointed out that although the four
phase portraits in Figs. [3l(a){I3[(d) are similar to
those four phase portraits in Figs. [Tl(c){II(f), they
are quite different since the former can be only

obtained near the B—T bifurcation point, while the
later can be found near any Hopf bifurcation point.

6. Conclusion

In this paper, we have studied four predator—prey
models and paid particular attention on the Allee
effect. It has been shown that strong Allee effect has
great influence on the dynamics of the system, in
particular on stability and bifurcations. Compared
to the systems without the Allee effect, when the
density of prey population is low, the species having
a strong Allee effect are vulnerable to extinction due
to predation. In general, the Allee effect makes the
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dynamics of the systems more complicated. Espe-
cially, for the By model, the Allee effect not only
completely changes the stability of the equilibrium
at the origin, but also changes the supercritical Hopf
bifurcation to subcritical Hopf bifurcation with very
limited parameter values for the bifurcating unsta-
ble limit cycles. Also this model with the Allee effect
yields Bogdanov—Takens bifurcation, inducing more
complex bifurcation behaviors. This study shows
that including the Allee effect in predator—prey sys-
tems is necessary in order to have a more realistic
analysis. Future works will focus on more complex
systems Aji, Bii, Ci, Cii and Cyj.
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