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SECOND-ORDER NORMAL FORMS FOR
N-DIMENSIONAL SYSTEMS WITH A

NILPOTENT POINT

Chunrui Zhang1,†, Baodong Zheng2 and Pei Yu3

Abstract Normal forms theory is one of the most powerful tools for the study
of nonlinear differential equations, in particular, for stability and bifurcation
analysis. Many works paid attention to normal forms associated with nilpotent
Jacobian where the critical eigenvalues have algebraic multiplicity k (k > 1)
and geometric multiplicity one, and in particular, the case k > 2 is more
complicated for determining unfolding. Despite a lot of theoretical results on
nilpotent normal forms have been obtained, computation developing can not
satisfy practical applications. To our knowledge, no results have been reported
on the computation of explicit formulas of the nilpotent normal forms for k > 3
with perturbation parameters. The main difficulty is how to determine the
complementary spaces of the Lie transformation. In this paper, we achieve
the following results. (1) A simple dimension formula for the complementary
space of the Lie transform; (2) a simple direct method to determine a basis
of the complementary spaces; (3) a simple direct method to determine the
projection of any vector to the complementary spaces. Using this method,
the second-order normal forms for any n-dimensional nilpotent systems can
be given easily. As an illustrative application, the normal forms for the vector
field with triple-zero or four-fold zero singularity and functional differential
equation with a triple-zero singularity are presented, and explicit formulas
for the normal form coefficients with three or four unfolding parameters are
obtained.
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1. Introduction
Studying dynamical systems with multiple zero critical singularity is not only the-
oretically significant but also important in real applications. When the Jacobian
of a dynamical system evaluated at a critical point contains one or two zero eigen-
values, the so-called simple zero or double zero bifurcation may occur. A nilpo-
tent singularity corresponding to a double-zero eigenvalue with geometric multi-
plicity one is known as codimension-2 Bogdanov-Takens (B-T) singularity, which
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can yield homoclinic orbits to saddle equilibria near the critical point. Since Bog-
danov [20] and Takens [2] obtained the normal forms of B-T bifurcation and gave
a very detailed bifurcation analysis, many works have been done in this area(e.g.
see [1, 4, 9, 13,14,19,21,24] and references therein). The triple-zero eigenvalue with
geometric multiplicity one called codimension-3 singularity has also been considered,
see Ref. [3, 7, 15,17,22,23].

There are few studies of codimension-4 or higher codimension problems with
non-semisimple nilpotent singularities, perhaps due to the relative rarity of higher
codimension singularities in ordinary differential equation (ODE) models. However,
in delay differential equations (DDEs) higher codimension singularities seem to
occur more frequently.

The method of normal forms provides a powerful tool in finding a simple form
which keeps the fundamental dynamics of the original system unchanged [6]. For a
practical system, not only the possible qualitative dynamical behavior of the system
is of concern, but also the quantitative relationship between the normal forms and
the original system needs to be established. For a general singular vector field with
non-semisimple nilpotent singularities, the computation of the normal forms is very
complicated. In particular, finding the explicit formulas of normal forms in terms of
the original systems coefficients with nilpotent singularities is very difficult. There-
fore, the crucial part in computing a normal form is the computational efficiency
in finding the normal forms coefficients. In this study, we consider the following
vector field.

ẋ = Jx+ F2(x) + F3(x) + · · ·+ Fr−1(x) +O(|x|r), x ∈ Rn, (1.1)

where J is the canonical Jordan nilpotent form, and Fi(x) represents the ith−degree
homogeneous polynomial in the Taylor expansion of F (x). Introducing the coordi-
nate transformation,

x = y + h2(y), (1.2)

where h2(y) denotes the 2nd-degree homogeneous polynomial in y, and substituting
(1.2) into (1.1) yields

ẏ = Jy + Jh2(y)−Dh2(y)Jy + F2(y) + F3(y) + · · ·+ Fr−1(y) +O(|y|r). (1.3)

The basic ideal of normal forms method is to choose a specific form for h2(y) so as
to simplify the 2nd-degree terms as much as possible.

Let H2
n be the linear space of 2nd-degree homogeneous polynomials. Further,

we introduce the following linear map of H2
n into H2

n:

h2(y) 7−→ Dh2(y)Jy − Jh2(y).

Due to its presence in Lie algebra theory, this map is often denoted as

LNn(h2(y)) = −(Dh2(y)Jy − Jh2(y)),

and is called Lie bracket operation. Assume that H2
n can be (non-uniquely) decom-

posed as
H2

n = LNn
(H2

n)⊕W,

where W is a complementary spaces of H2
n.
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The purpose of normal forms method is to choose h2(y) so that only the terms
in W are retained. We denote these terms by F r

2 (y). Thus, (1.3) can be simplified
to

ẏ = Jy + F r
2 (y) + F̃3(y) + · · ·+ F̃r−1(y) +O(|y|r), (1.4)

and so the second-order terms have been simplified.
To determine the nature of the second-order terms that cannot be eliminated

(i.e., F r
2 (y)), we must investigate the space complementary to LNn(H

2
n). Solving

this problem involves the following three main tasks:
(1) determining the dimension of the complementary space of the Lie transform;
(2) determining the basis of the complementary space of the Lie transform; and
(3) determining the projection of any vector in H2

n to the complementary space.
Using this method in this paper, the second-order normal forms for any n-

dimensional nilpotent systems can be given easily. We will present detailed steps
to show how to fulfill these tasks. Our goal is to analyze the codimension-n(n > 2)
singularity corresponding to n-zero eigenvalues with geometric multiplicity one.

In Section 2, we define Lie bracket operation (Choquet-Bruhat et al. Ref. [5]).
Using the linear transformation LNn

we determine the dimensions of the comple-
mentary space of LNn

(H2
n) and obtain the basis of the complementary space of

LNn
(H2

n), which is the key step in calculating the non-semisimple normal form and
the explicit coefficients of the normal form. More precisely, we present the following
results in this section.

(1) A simple dimension formula for the complementary spaces of the Lie trans-
form;

(2) a simple direct method to determine the basis of the complementary spaces;
and

(3) a simple direct method to determine the projection of any vector in H2
n to

the complementary spaces.
In Section 3, we obtain results for the complementary space of LNn

(H2
n+p) with

p parameters.
In Sections 4, 5 and 6, as an illustrative application, the normal forms for the

vector field and functional differential equation with triple-zero and four-fold zero
singularity are considered using the results of section 3. We derive the explicit
normal form for the triple-zero and four-fold zero singularity, which are of primary
importance in applications. On the one hand, we can determine the terms that are
inessential in determining the dynamical and bifurcation behaviors of the system.
On the other hand, as we can compute the normal form coefficients, we can identify
the parameter values for which nonlinear degeneracies take place. Near these critical
parameter values, more complicated bifurcation phenomena can occur.

2. Complementary Space of LNn
(Hn)

Let m,n be positive integers, R the real number field. We denote H2
n the following

space of 2nd degree homogeneous polynomials with n variables:

H2
n = {P (x)|Pm(X) =

∑
1≤i≤j≤n

ai,j,mxixj , ai,j,m ∈ R, 1 ≤ m ≤ n},

where X = (x1, x2, . . . , xn)
T; P (x) = (P1(x), P2(x), · · ·Pn(x))

T.
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Obviously, H2
n is a real inner product space. Let

e1 = (1, 0, . . . , 0)T, e2 = (0, 1, 0, . . . , 0)T, . . . , en = (0, . . . , 0, 1)T.

Then, fm,1 = x1x1em, fm,2 = x1x2em, . . ., f
m,

n(n+1)
2

= xnxnem, m = 1, 2, . . . , n,
consisting of a standard orthogonal basis of H2

n, called a natural basis.
Further, let

Um = {P (X)em | P (X) =
∑

1≤i≤j≤n

ai,jxixj , ai,j ∈ R}, m = 1, 2, . . . , n;

Vh = {P (X)e1 | P (X) =
∑

1≤i≤j≤n,i+j=h

ai,jxixj , ai,j ∈ R}, h = 2, . . . , 2n;

V1 = V2n+1 = {0}.

For example, when n = 3, h = 4, we have

U1 = {(a11x1x1 + a12x1x2 + a13x1x3 + a22x2x2 + a23x2x3 + a33x3x3)e1 | aij ∈ R},

V4 = {(a13x1x3 + a22x2x2)e1 | a13, a22 ∈ R}.

Then the following result is obvious :
Lemma 2.1. Um is a subspace of H2

n, Vh is a subspace of U1, and

(1) H2
n =

⊕n
m=1 Um; U1 =

⊕2n
h=2 Vh;

(2) dim(H2
n) =

n2(n+1)
2 , dim(Um) = n(n+1)

2 , m = 1, 2, . . . , n.

Let

Nn =



0 1 0 . . . 0 0

0 0 1 . . . 0 0

...
...

...
...

...

0 0 0 . . . 0 1

0 0 0 . . . 0 0


∈ Rn×n. (2.1)

Define the linear transformation LNn
on H2

n by Nn as follows:

LNn
(P (X)) = DXP (X)NnX −NnP (X),

where

DXP (X) =



∂P1

∂x1

∂P1

∂x2
. . . ∂P1

∂xn

∂P2

∂x1

∂P2

∂x2
. . . ∂P2

∂xn

...
...

...
∂Pn

∂x1

∂Pn

∂x2
. . . ∂Pn

∂xn


.

In this section, we investigate the dimensions of the complementary space of
LNn

(H2
n). It is easy to see that the following lemma is true.
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Lemma 2.2. U1 is an LNn
-invariant subspace and

(1) LNn(Vh) ⊆ Vh+1, h = 2, 3, . . . , 2n;

(2) LNn
(U1) = ⊕2n

h=2LNn
(Vh).

Now, we prove the following result.

Lemma 2.3. Suppose n ≥ 2.

(1) If 2 ≤ h ≤ n, then LNn is an injective linear mapping from Vh to Vh+1.
(2) If n+ 1 ≤ h ≤ 2n, then LNn is a surjective linear mapping from Vh to Vh+1.

Proof. (1) For 2 ≤ h ≤ n, if there exists f(x) such that f(X)e1 ∈ Vh, satisfying
LNn

(f(X)e1) = 0, then f(X) = 0.

Case 1. h = 2. In this case, f(X) = ax1x1, LNn
(f(X)e1) = 2ax1x2e1 = 0. So

a = 0, f(X) = 0.

Case 2. 3 ≤ h ≤ n, and h is an odd number. In this case, we can write

f(X) = a1x1xh−1 + a2x2xh−2 + . . .+ ah−3
2
xh−3

2
xh+3

2
+ ah−1

2
xh−1

2
xh+1

2
.

Since

LNn(f(X)e1) =[a1x1xh + (a1 + a2)x2xh−1 + (a2 + a3)x3xh−2 + . . .+

(ah−3
2

+ ah−1
2
)xh−1

2
xh+3

2
+ ah−1

2
xh+1

2
xh+1

2
]e1 = 0.

we have

a1 = 0, a1 + a2 = 0, a2 + a3 = 0, . . . , ah−3
2

+ ah−1
2

= 0, ah−1
2

= 0.

Thus, a1 = a2 = . . . = ah−1
2

= 0, and f(X) = 0 follows.
Case 3. 3 ≤ h ≤ n, and h is an even number. In this case, we can write

f(X) = a1x1xh−1 + a2x2xh−2 + . . .+ ah−2
2
xh−2

2
xh+2

2
+ ah

2
xh

2
xh

2
.

Since

LNn
(f(X)e1) =[a1x1xh + (a1 + a2)x2xh−1 + (a2 + a3)x3xh−2 + . . .+

(ah−4
2

+ ah−2
2
)xh−2

2
xh+4

2
+ (ah−2

2
+ 2ah

2
)xh

2
xh+2

2
]e1 = 0,

we obtain
a1 = 0, a1 + a2 = 0, a2 + a3 = 0, . . . , ah−2

2
+ 2ah

2
= 0,

which yields a1 = a2 = . . . = ah
2
= 0, and so f(X) = 0.

(2) For n+ 1 ≤ h ≤ 2n, we can prove that for any g(X)e1 ∈ Vh+1, there exists
f(X)e1 ∈ Vh such that LNn

(f(X)e1) = g(X)e1.

Case 4. n + 1 ≤ h ≤ 2n − 1, and h is an odd number. In this case, 2 ≤
h− n+ 1 ≤ n, we write

g(X) = bh−n+1xh−n+1xn+bh−n+2xh−n+2xn−1+. . .+bh−1
2
xh−1

2
xh+3

2
+bh+1

2
xh+1

2
xh+1

2
.
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Choose ah−n, ah−n+1, . . . , ah−1
2

as follows:

ah−1
2

= bh+1
2
,

ah−3
2

= bh−1
2

− ah−1
2
,

ah−5
2

= bh−3
2

− ah−3
2
,

. . .

ah−n+1 = bh−n+2 − ah−n+2,

ah−n = bh−n+1 − ah−n+1.

Then taking

f(X) = ah−nxh−nxn + ah−n+1xh−n+1xn−1 + . . .+ ah−1
2
xh−1

2
xh+1

2
,

yields f(X)e1 ∈ Vh and so LNn(f(X)e1) = g(X)e1.
Case 5. n + 1 ≤ h ≤ 2n − 1, and h is an even number. In this case, 2 ≤

h− n+ 1 ≤ n, we write

g(X) = bh−n+1xh−n+1xn + bh−n+2xh−n+2xn−1 + . . .+ bh−2
2
xh−2

2
xh+4

2
+ bh

2
xh

2
xh+2

2
.

We choose ah−n+1, ah−n+2, . . . , ah
2

as

ah−n+1 = bh−n+1,

ah−n+2 = bh−n+2 − ah−n+1,

ah−n+3 = bh−n+3 − ah−n+2,

. . . ,

ah−2
2

= bh−2
2

− ah−4
2
,

ah
2
= 1

2 (bh
2
− ah−2

2
),

and take

f(X) = ah−n+1xh−n+1xn−1 + ah−n+2xh−n+2xn−2 + . . .+ ah
2
xh

2
xh

2
.

Then, f(X)e1 ∈ Vh and so LNn
(f(X)e1) = g(X)e1.

Case 6. h = 2n. In this case, g(X)e1 ∈ V2n+1 = {0}, so g(X) = 0. Choose
f(X) = xnxn, then f(X)e1 ∈ V2n and so LNn(f(X)e1) = 0 = g(X)e1.

The following theorem provides a general formula for determining the dimension
of the complementary space (LNn

(H2
n))

c.

Theorem 2.4. Suppose n ≥ 2. The dimension of any complementary space LNn(H
2
n)

c

is given by

dim(LNn(H
2
n))

c =



1
8 (3n

2 + 2n), n ≡ 0 (mod4);
1
8 (3n

2 + 2n+ 3), n ≡ 1 (mod4);
1
8 (3n

2 + 2n), n ≡ 2 (mod4);
1
8 (3n

2 + 2n− 1), n ≡ 3 (mod4).
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Proof. Denote A the matrix of LNn
|U1

on the standard basis xixje1, 1 ≤ i ≤ j ≤
n. Then,

M =



A −Es 0 0 . . . 0 0

0 A −Es 0 . . . 0 0

0 0 A −Es . . . 0 0

. . . . . . . . . . . . . . . . . . . . .

0 0 0 0 . . . A −Es

0 0 0 0 . . . 0 A


is the matrix of LNn

on the standard basis of H2
n,

xixjem, 1 ≤ i ≤ j ≤ n, 1 ≤ m ≤ n,

where Es is the s × s identity matrix, s = n(n+1)
2 . Simplifying the matrix M by

elementary column transformation yields

M →



Es 0 0 . . . 0 0 0

−A Es 0 . . . 0 0 0

0 −A Es . . . 0 0 0

. . . . . . . . . . . . . . . . . . . . .

0 0 0 . . . −A Es 0

0 0 0 . . . 0 −A An


.

Thus,

dim(LNn
(H2

n))
c = dimU1 − dimLn

Nn
(U1) =

n(n+ 1)

2
−

2n∑
h=2

dimLn
Nn

(Vh).

By Lemma 2.3, we have

dimLn
Nn

(Vh) = min{dimVh,dimVh+n}.

Since
dim(Vh) = 0, h = 2n+ 1, 2n+ 2, . . . ,

we obtain
2n∑
h=2

dimLn
Nn

(Vh) =

n∑
h=2

min{dim(Vh),dim(Vh+n)}.

If n ≡ 0 (mod 4), denote n = 4k + 4. Then

n∑
h=2

min{dim(Vh),dim(Vh+n)} = 4(1 + 2 + 3 + . . .+ k) + 3(k + 1) =
n2 + 2n

8
,
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and so
dim(LNn

(H2
n))

c =
1

8
(3n2 + 2n).

If n ≡ 1 (mod 4), denote n = 4k + 1. Then, we obtain
n∑

h=2

min{dim(Vh),dim(Vh+n)} = 4(1 + 2 + 3 + . . .+ k) =
(n− 1)(n+ 3)

8
,

yielding
dim(LNn

(H2
n))

c =
1

8
(3n2 + 2n+ 3).

If n ≡ 2 (mod 4), denote n = 4k + 2. Then, we have
n∑

h=2

min{dim(Vh),dim(Vh+n)} = 4(1 + 2 + 3 + . . .+ k) + (k + 1) =
n2 + 2n

8
,

which leads to
dim(LNn

(H2
n))

c =
1

8
(3n2 + 2n).

If n ≡ 3 (mod 4), denote n = 4k + 3. Then,
n∑

h=2

min{dim(Vh),dim(Vh+n)} = 4(1 + 2 + 3 + . . .+ k) + 2(k + 1) =
n2 + 2n+ 1

8
,

and thus
dim(LNn

(H2
n))

c =
3n2 + 2n− 1

8
.

The following example illustrates Theorem 2.4.

Example 2.5. The dimensions of the complementary space (LNn(H
2
n))

c for n =
2, 3, . . . , 15, is given by

n 2 3 4 5 6 7 8 9 10 11 12 13 14 15

dim(LNn
(H2

n))
c 2 4 7 11 15 20 26 33 40 48 57 67 77 88

Corollary 2.6. Let n ≥ 2, A be the matrix of LNn |U1 on the standard basis
f1,1, . . . , f1,s. Then,

rank(An) + dim(LNn
(H2

n))
c =

n(n+ 1)

2
.

Corollary 2.7. Let n ≥ 2, s = n(n+1)
2 , t = dim(LNn(H

2
n))

c, A be the matrix of
LNn |U1 on the standard basis f1,1, . . . , f1,s. Then, there exists matrix B ∈ Rs×t

such that rankB = t and rank(An
...B) = s. Moreover, for any β ∈ Rs, there exists

Y0 ∈ Rs, Z0 ∈ Rt, such that AnY0 +BZ0 = β.

In the following, a method to construct a complementary space to LNn
(H2

n), and
a very simple algorithm to calculate the projection from H2

n to the complementary
space are presented. We have the following theorem.
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Theorem 2.8. Let n ≥ 2, s = n(n+1)
2 , t = dim(LNn(H

2
n))

c, A be the matrix of
LNn

|U1
on the standard basis f1,1, . . . , f1,s, B ∈ Rs×t satisfying rankB = t and

rank(An
...B) = s. Then,

H2
n = LNn(H

2
n)⊕W,

where

W = span{g1, g2, . . . , gt}, (g1, g2 . . . , gt) = (fn,1, fn,2, . . . , fn,s)B.

Moreover,
(g1(X), g2(X), . . . , gt(X))Z0

is the projection of f(X) =
∑n

i=1

∑s
j=1 aijfij(X) ∈ H2

n to W (along LNn
(H2

n)),
where (Y0, Z0), Y0 ∈ Rn, Z0 ∈ Rt, is a solution of the equation:

AnY0 +BZ0 = An−1


a11

a12

. . .

a1,s

+An−2


a21

a22

. . .

a2,s

+ . . .+A


an−1,1

an−1,2

. . .

an−1,s

+


an1

an2

. . .

an,s

 .

Proof. By Theorem 2.4, we obtain that

M =



A −Es 0 0 . . . 0 0

0 A −Es 0 . . . 0 0

0 0 A −Es . . . 0 0

. . . . . . . . . . . . . . . . . . . . .

0 0 0 0 . . . A −Es

0 0 0 0 . . . 0 A


is the matrix of LNn

on the standard basis

f1,1, . . . , f1,s, . . . , fn,1, . . . , fn,s.

Take

(f̃1,1, . . . , f̃1,s, . . . , f̃n,1, . . . , f̃n,s)

=(f1,1, . . . , f1,s, . . . , fn,1, . . . , fn,s)



A −Es 0 0 . . . 0 0

0 A −Es 0 . . . 0 0

0 0 A −Es . . . 0 0

. . . . . . . . . . . . . . . . . . . . .

0 0 0 0 . . . A −Es

0 0 0 0 . . . 0 A


.
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Then, LNn
(H2

n) = span(f̃1,1, . . . , f̃1,s, . . . , f̃n,1, . . . , f̃n,s).
It follows from the proof of Theorem 2.4, that

rankH2
n − rank(LNn

) = s− rank(An),

and thus

rank



A −Es 0 0 . . . 0 0 0

0 A −Es 0 . . . 0 0 0

0 0 A −Es . . . 0 0 0

. . . . . . . . . . . . . . . . . . . . . . . .

0 0 0 0 . . . A −Es 0

0 0 0 0 . . . 0 A B



= rank



Es 0 0 . . . 0 0 0 0

−A Es 0 . . . 0 0 0 0

0 −A Es . . . 0 0 0 0

. . . . . . . . . . . . . . . . . . . . . . . .

0 0 0 . . . −A Es 0 0

0 0 0 . . . 0 −A An B


= ns.

So
H2

n = LNn(H
2
n)⊕W.

Then, for any

f(X) =

n∑
i=1

s∑
j=1

aijfij(X) ∈ H2
n,

denote

α1 =


a11

a12

. . .

a1,s

 , α2 =


a21

a22

. . .

a2,s

 , . . . , αn =


an1

an2

. . .

an,s

 .

We take 

Y1 = AY0 − α1,

Y2 = AY1 − α2,

. . .

Yn−1 = AYn−2 − αn−1,

and so obtain

AYn−1 = AnY0 − (An−1α1 +An−2α2 + . . .+ αn) + αn = αn −BZ0.
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Hence,

(f̃1,1, . . . , f̃2,1, . . . , f̃n,s)



Y0

Y1

Y2
...

Yn−1



=(f1,1, . . . , f1,s, . . . , fn,1, . . . , fn,s)



A −Es . . . 0 0

0 A . . . 0 0

0 0 . . . 0 0

. . . . . . . . . . . . . . .

0 0 . . . A −Es

0 0 . . . 0 A





Y0

Y1

Y2
...

Yn−1



=(f1,1, . . . , f1,s, . . . , fn,1, . . . , fn,s)



α1

α2

...

αn−1

αn −BZ0.


=f(X)− (g1, g2, . . . , gt)Z0.

Therefore,

f(X) = (f̃1,1, . . . , f̃1,s, . . . , f̃n,1, . . . , f̃n,s)



Y0

Y1

Y2
...

Yn−1


+ (g1, g2, . . . , gt)Z0.

Remark 2.9. Let n ≥ 2, s = n(n+1)
2 , t = dim(LNn

(H2
n))

c, A be the matrix of
LNn

|U1
on the standard basis f1,1, . . . , f1,s. Take B = (ξ1, ξ2, . . . , ξt) as an orthonor-

mal basic system solution for the homogeneous linear equation, Anx = 0. Then B
satisfies

B ∈ Rs×t, rankB = t, rank(An
...B) = s, BTAn = 0, BTB = Et.

In this case, AnY0 +BZ0 = β implies Z0 = BTβ for any β ∈ Rs.
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Example 2.10. For n = 2, we have s = 3, t = 2 and

A =


0 0 0

2 0 0

0 1 0

 , A2 =


0 0 0

0 0 0

2 0 0

 .

Choose B =


1 0

0 1

0 0

 . Then

(f21, f22, f23)B = (x21e2, x1x2e2, x
2
2e2)B = (x21e2, x1x2e2),

and hence

H2
2 = LN2

(H2
2 )⊕W, W = span


 0

x21

 ,

 0

x1x2

 .

For any f(X) =
∑2

i=1

∑3
j=1 aijfij(X) ∈ H2

2 , solving the equation:

A2Y0 +BZ0 = Aα1 + α2, α1 =


a11

a12

a13

 , α2 =


a21

a22

a23

 ,

we have

Z0 = BT(Aα1 + α2) =

 a21

2a11 + a22

 .

So

ProjW f(X) =

 0

x21

 ,

 0

x1x2

Z0 =

 0

a21x
2
1 + (2a11 + a22)x1x2

 .

3. Complementary Space of LNn
(H2

n+p) with Param-
eters

Now we want to extend the normal form techniques to systems with parameters.
The goal is to transform the system into normal form near the fixed point in both
phase space and parameter space.

Let n ≥ 2, p ≥ 1, µ1, µ2, . . . , µp be independent parameters, and

H2
n+p ={P (X,µ)|Pm(X,µ) =

∑
1≤i≤j≤n

ai,jxixj +
∑

1≤i≤j≤p

bi,jµiµj
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+
∑

1≤i≤n,1≤j≤p

ci,jxiµj , ai,j , bi,j , ci,j ∈ R, 1 ≤ m ≤ n},

where

X = (x1, x2, . . . , xn)
T, µ = (µ1, µ2, . . . , µp)

T,

P (X,µ) = (P1(X,µ), P2(X,µ) . . . , Pn(X,µ))
T.

Obviously, H2
n+p is a real inner product space with

dimH2
n+p =

1

2
(n+ p)(n+ p+ 1).

Moreover, the following

fm,1 = x1x1em, fm,2 = x1x2em, . . . , fm,s−1 = xn−1xnem, fm,s = xnxnem,

fm,s+1 = x1µ1em, fm,s+2 = x1µ2em, . . . , fm,t = xnµpem,

fm,t+1 = µ1µ1em, fm,t+2 = µ1µ2em, . . . , fm,q = µpµpem,

m = 1, 2, . . . , n, s =
n(n+ 1)

2
, t =

n(n+ 1)

2
+ np, q =

(n+ p)(n+ p+ 1)

2
,

constitutes a standard orthogonal basis of H2
n+p, called a natural basis.

Define the linear transformation LNn
on H2

n+p by Nn, which is defined in (2.1),
as follows:

LNn
(P (X,µ)) = DXP (X,µ)NnX −NnP (X,µ),

where

DXP (X,µ) =



∂P1(X,µ)
∂x1

∂P1(X,µ)
∂x2

. . . ∂P1(X,µ)
∂xn

∂P2(X,µ)
∂x1

∂P2(X,µ)
∂x2

. . . ∂P2(X,µ)
∂xn

. . . . . . . . . . . .

∂Pn(X,µ)
∂x1

∂Pn(X,µ)
∂x2

. . . ∂Pn(X,µ)
∂xn

 .

In this section, we study the complementary spaces LNn(H
2
n+p)

c.

Denote Um = span{fm1, fm2, . . . , fmq},m = 1, 2, . . . , n.

Theorem 3.1. Suppose n ≥ 2, p ≥ 1. Then, the dimension of the complementary
space LNn(H

2
n+p)

c is

dim(LNn(H
2
n+p))

c =



3n2+2n
8 + p(p+1)

2 + np, n ≡ 0 (mod4);
3n2+2n+3

8 + p(p+1)
2 + np, n ≡ 1 (mod4);

3n2+2n
8 + p(p+1)

2 + np, n ≡ 2 (mod4);
3n2+2n−1

8 + p(p+1)
2 + np, n ≡ 3 (mod4).
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Proof. Let A be the matrix of LNn
|U1

on the standard basis of U1. Then,

M =



A −Eq 0 0 . . . 0 0

0 A −Eq 0 . . . 0 0

0 0 A −Eq . . . 0 0

. . . . . . . . . . . . . . . . . . . . .

0 0 0 0 . . . A −Eq

0 0 0 0 . . . 0 A


is the matrix of LNn

on the standard basis of H2
n+p, where

A =


A1 0 0

0 A2 0

0 0 0

 , A2 =



0p×p

Ep 0p×p

Ep 0p×p

. . . . . .

Ep 0p×p


np×np

,

where A1 is the matrix of LNn
|W on the standard basis of W = span{f11, f12, . . . , f1s},

andA2 is the matrix of LNn
|V on the standard basis of V=span{f1,s+1, f1,s+2, . . . , f1,t}.

Simplifying the matrix M by elementary column transformation, we have

M →



−Eq 0 0 . . . 0 0 0

A −Eq 0 . . . 0 0 0

0 A −Eq . . . 0 0 0

. . . . . . . . . . . . . . . . . . . . .

0 0 0 . . . A −Eq 0

0 0 0 . . . 0 A An


.

Because

An
2 =



0p×p

Ep 0p×p

Ep 0p×p

. . . . . .

Ep 0p×p



n

np×np

= 0,
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so we obtain

An =


An

1 0 0

0 An
2 0

0 0 0

 =

An
1 0

0 0

 .

Then, with a similar proof to that for Theorem 2.4, we can prove that

dim(LNn(H
2
n+p))

c = (n+p)(n+p+1)
2 − rankAn

1

=



3n2+2n
8 + p(p+1)

2 + np, n ≡ 0(mod4);
3n2+2n+3

8 + p(p+1)
2 + np, n ≡ 1(mod4);

3n2+2n
8 + p(p+1)

2 + np, n ≡ 2(mod4);
3n2+2n−1

8 + p(p+1)
2 + np, n ≡ 3(mod4).

Example 3.2. We list below the dimensions of the complementary spaces
(LNn

(H2
n+p))

c for n = 2, 3, 4, 5, 6; p = 1, 2, 3, 4, 5, 6.

dim(LNn(H
2
n+p))

c n = 2 n = 3 n = 4 n = 5 n = 6

p = 1 5 8 12 17 22

p = 2 9 13 18 24 30

p = 3 14 19 25 32 39

p = 4 20 26 33 41 49

p = 5 27 34 42 51 60

p = 6 35 43 52 62 72

Theorem 3.3. For any n ≥ 2, p ≥ 1, q = (n+p)(n+p+1)
2 , let A be the matrix of

LNn
|U1

on the standard basis f1,1, . . . , f1,q, t = q − rankAn, matrix B ∈ Rq×t satis-

fying rankB = t and rank(An
...B) = q. Further, if

(g1(X), g2(X) . . . , gt(X)) = (fn,1, fn,2, . . . , fn,q)B,

and W = span{g1(X), g2(X), . . . , gt(X)} ⊆ Un, then

H2
n+p = LNn

(H2
n+p)⊕W.

Moreover,

(g1(X), g2(X), . . . , gt(X))Z0, Z0 = (z1, z2, . . . , zn)
T ∈ Rt

is the projection of f(X) =
∑n

i=1

∑q
j=1 aijfij(X) ∈ H2

n+p to W (along LNn
(H2

n+p)
) if and only if there exists Y0 ∈ Rq such that

AnY0 +BZ0 = An−1α1 +An−2α2 + . . .+Aαn−1 + αn,

where
αi = (ai1, ai2, . . . , aiq)

T, i = 1, 2, . . . , n.
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Proof. The proof is similar to that for Theorem 2.8, and thus omitted.

Example 3.4. For n = p = 3, we have

A =


A1 0 0

0 A2 0

0 0 0


21×21

, A1 =



0 0 0 0 0 0

2 0 0 0 0 0

0 1 0 0 0 0

0 1 0 0 0 0

0 0 1 2 0 0

0 0 0 0 1 0


, A2 =


0 0 0

E3 0 0

0 E3 0


9×9

.

Since

A2
1 =



0 0 0 0 0 0

0 0 0 0 0 0

2 0 0 0 0 0

2 0 0 0 0 0

0 3 0 0 0 0

0 0 1 2 0 0


, A3

1 =



0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

6 0 0 0 0 0

0 3 0 0 0 0


, A2

2 =

 0 0

E3 0

 ,

A3
2 = 0, A2 =


A2

1 0 0

0 A2
2 0

0 0 0

 , A3 =


04×1 04×1 04×19

6 0 01×19

0 3 01×19

015×1 015×1 015×19

 ,

we can choose

B =


E4 04×15

02×4 02×15

015×4 E15

 .

Then,

H2
3+3 = LN3(H

2
3+3)⊕W,

W = span{g1(X), g2(X), . . . , g19(X)},

where

(g1(X), g2(X), . . . , g19(X)) = (x21e3, x1x2e3, . . . , µ
2
3e3)B

=(x21e3, x1x2e3, x1x3e3, x
2
2e3, x1µ1e3, x1µ2e3, x1µ3e3, x2µ1e3, x2µ2e3, x2µ3e3,

x3µ1e3, x3µ2e3, x3µ3e3, µ
2
1e3, µ1µ2e3, µ1µ3e3, µ

2
2e3, µ2µ3e3, µ

2
3e3).
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For any f(X) =
∑3

i=1

∑21
j=1 aijfij(X) ∈ H2

3+3, we solve the equation:

A3Y0 +BZ0 = A2α1 +Aα2 + α3,

where

α1 = (a1,1, a1,2, . . . , a1,21)
T, α2 = (a2,1, a2,2, . . . , a2,21)

T, . . . , α3

= (a3,1, a3,2, . . . , a3,21)
T.

Since BTB = E19, B
TA3 = 0, we have Z0 = BT(A2α1 +Aα2 + α3). So

ProjW f(X)

=a3,1


0

0

x21

+ (a3,2 + 2a2,1)


0

0

x1x2

+ (a3,3 + a2,2 + 2a1,1)


0

0

x1x3



+ (a3,4 + a2,2 + 2a1,1)


0

0

x22

+ a3,7


0

0

x1µ1

+ a3,8


0

0

x1µ2

+ a3,9


0

0

x1µ3



(a3,10 + a2,7)


0

0

x2µ1

+ (a3,11 + a2,8)


0

0

x2µ2

+ (a3,12 + a2,9)


0

0

x2µ3



+ (a3,13 + a2,10 + a1,7)


0

0

x3µ1

+ (a3,14 + a2,11 + a1,8)


0

0

x3µ2



+ (a3,15 + a2,12 + a1,9)


0

0

x3µ3

+ a3,16


0

0

µ2
1

+ a3,17


0

0

µ1µ2



+ a3,18


0

0

µ1µ3

+ a3,19


0

0

µ2µ2

+ a3,20


0

0

µ2µ3

+ a3,21


0

0

µ3µ3

 ,

that is

ProjW f(X)

=[a3,1x
2
1 + (a3,2 + 2a2,1)x1x2 + (a3,3 + a2,2 + 2a1,1)x1x3 + (a3,4 + a2,2 + 2a1,1)x

2
2

+ a3,7x1µ1 + a3,8x1µ2 + a3,9x1µ3 + (a3,10 + a2,7)x2µ1 + (a3,11 + a2,8)x2µ2

+ (a3,12 + a2,9)x2µ3 + (a3,13 + a2,10 + a1,7)x3µ1 + (a3,14 + a2,11 + a1,8)x3µ2
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+ (a3,15 + a2,12 + a1,9)x3µ3 + a3,16µ
2
1 + a3,17µ1µ2 + a3,18µ1µ3 + a3,19µ2µ2

+ a3,20µ2µ3 + a3,21µ3µ3](0, 0, 1)
T,

which is the projection of f(X) =
∑3

i=1

∑21
j=1 aijfij(X) ∈ H2

3+3 to W (along
LN3(H

2
3+3)).

Example 3.5. For n = p = 4, we have

A =


A1 0 0

0 A2 0

0 0 0


36×36

, A1 =



0 0 0 0 0 0 0 0 0 0

2 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0

0 0 1 0 2 0 0 0 0 0

0 0 0 1 0 1 0 0 0 0

0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 1 2 0 0

0 0 0 0 0 0 0 0 1 0



, A2 =


0 0 0 0

E3 0 0 0

0 E3 0 0

0 0 E3 0


16×16

.

Since

A2
1 =



0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

2 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0

2 0 0 0 0 0 0 0 0 0

0 3 0 0 0 0 0 0 0 0

0 0 2 0 2 0 0 0 0 0

0 0 1 0 2 0 0 0 0 0

0 0 0 1 0 3 0 0 0 0

0 0 0 0 0 0 1 2 0 0



, A3
1 =



0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

2 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

2 0 0 0 0 0 0 0 0 0

6 0 0 0 0 0 0 0 0 0

0 4 0 0 0 0 0 0 0 0

0 3 0 0 2 0 0 0 0 0

0 0 4 0 0 6 0 0 0 0

0 0 0 1 0 3 0 0 0 0



,
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A4
1 =



0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

8 0 0 0 0 0 0 0 0 0

6 0 0 0 0 0 0 0 0 0

0 10 0 0 0 0 0 0 0 0

0 0 4 0 0 6 0 0 0 0



, A2
2 =


0 0 0 0

0 0 0 0

E4 0 0 0

0 E4 0 0

 ,

A3
2 =


0 0 0 0

0 0 0 0

0 0 0 0

E4 0 0 0

 , A4
2 = 016×16, A4 =

A4
1 0

0 0

 ,

we can choose

B =



E6 06×1 06×26

01×6 3 01×26

01×6 −4 01×26

02×6 0 02×29

026×6 0 E26


36×33

.

Then,

H2
4+4 = LN4(H

2
4+4)⊕W,

W = span{g1(X), g2(X), . . . , g33(X)},

where

(g1(X), g2(X), . . . , g33(X)) = (f4,1, · · · , f4,36)B
=(f4,1, · · · , f4,6, 3f4,7,−4f4,8, f4,11, · · · , f4,36).

For any f(X) =
∑4

i=1

∑36
j=1 aijfij(X) ∈ H2

4+4, let

α1 = (a1,1, · · · , a1,36)T;
α2 = (a2,1, · · · , a2,36)T;
α3 = (a3,1, · · · , a3,36)T;
α4 = (a4,1, · · · , a4,36)T.
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we solve the equation:

A4Y0 +BZ0 = A3α1 +A2α2 +Aα3 + α4.

SinceBTB =


E6 06×1 06×26

01×6 25 1×26

026×6 026×1 E26

 , BTA4 = 0, we have Z0 = (BTB)−1BT(A3α1+

A2α2 +Aα3 + α4). So

ProjW f(X)

=(g1(x), g2(x), · · · , g33(x))Z0 = a4,1



0

0

0

x2
1


+ (a4,2 + 2a3,1)



0

0

0

x1x2



+ (a4,3 + a3,2 + 2a2,1)



0

0

0

x1x3


+ (a4,4 + a3,3 + a2,2 + 2a1,1)



0

0

0

x1x4



+ (a4,5 + a3,2 + 2a2,1)



0

0

0

x2
2


+ (6a1,1 + 3a2,2 + a3,3 + 2a3,5 + a4,6)



0

0

0

x2x3



+
1

25
(2a2,3 − 2a2,5 + 3a3,4 − a3,6 + 3a4,7 − 4a4,8)



0

0

0

3x2x4 − 4x2
3



+

4∑
j=1

a4,10+j



0

0

0

x1µj


+

4∑
j=1

(a3,10+j + a4,14+j)



0

0

0

x2µj



+

4∑
j=1

(a2,10+j + a3,14+j + a4,18+j)



0

0

0

x3µj
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+

4∑
j=1

(a1,10+j + a2,14+j + a3,18+j + a4,22+j)



0

0

0

x4µj



+

4∑
j=1

a4,26+j



0

0

0

0

µ1µj


+

4∑
j=1

a4,26+j



0

0

0

µ1µj



+
3∑

j=1

a4,30+j



0

0

0

µ2µj+1


+

2∑
j=1

a4,33+j



0

0

0

µ3µj+2


+ a4,36



0

0

0

µ2
4


.

4. Normal forms for 3-dimensional Vector Field
with a Nilpotent Point with Three Parameters

Consider the vector field

ẋ = Jx+F2(x, µ)+F3(x, µ)+ · · ·+Fr(x, µ)+O(|x|r), x ∈ R3, µ ∈ I ⊂ R3, (4.1)

where J =


0 1 0

0 0 1

0 0 0

 is the canonical Jordan nilpotent form, and Fi(x, µ) represents

the ith-degree homogeneous polynomial in the Taylor expansion of F (x, µ).
According to Theorem 3.3 and Example 3.4, we have the following normal form

of system (4.1):
ẋ1

ẋ2

ẋ3

 =


0 1 0

0 0 1

0 0 0



x1

x2

x3

+ [a3,1x
2
1 + (a3,2 + 2a2,1)x1x2

+ (a3,3 + a2,2 + 2a1,1)x1x3 + (a3,4 + a2,2 + 2a1,1)x
2
2 + a3,7x1µ1 + a3,8x1µ2

+ a3,9x1µ3 + (a3,10 + a2,7)x2µ1 + (a3,11 + a2,8)x2µ2 + (a3,12 + a2,9)x2µ3

+ (a3,13 + a2,10 + a1,7)x3µ1 + (a3,14 + a2,11 + a1,8)x3µ2

+ (a3,15 + a2,12 + a1,9)x3µ3 + a3,16µ
2
1 + a3,17µ1µ2 + a3,18µ1µ3 + a3,19µ2µ2

+ a3,20µ2µ3 + a3,21µ3µ3](0, 0, 1)
T.
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Ignoring the higher order terms µiµj(i, j = 1, 2, 3), we obtain

Theorem 4.1. If the Jacobian of vector field (4.1) evaluated at a critical point
involves a triple-zero eigenvalue with geometric multiplicity one, ignoring the higher
order terms µiµj(i, j = 1, 2, 3), we obtain the reduced normal form with unfolding
on the center manifold near (x, µ) = (0, 0) as follows:

ẋ1 = x2,

ẋ2 = x3,

ẋ3 = λ1x1 + λ2x2 + λ3x3 + η1x
2
1 + η2x

2
2 + η3x1x2 + η4x1x3,

(4.2)

where

λ1 = a3,7µ1 + a3,8µ2 + a3,9µ3,

λ2 = (a3,10 + a2,7)µ1 + (a3,11 + a2,8)µ2 + (a3,12 + a2,9µ3,

λ3 = (a3,13 + a2,10 + a1,7)µ1 + (a3,14 + a2,11 + a1,8)µ2 + (a3,15 + a2,12 + a1,9)µ3,

η1 = a3,1,

η2 = (a3,4 + a2,2 + 2a1,1),

η3 = (a3,2 + 2a2,1),

η4 = (a3,3 + a2,2 + 2a1,1).

Generically, we expect the fixed points to move as the parameters are varied.
This does not happen in (4.2); the origin always remains a fixed point. This situation
is easy to remedy. Notice from the form of (4.2) that any fixed point must have
x1 = x2 = 0. Suppose that system (4.2) satisfies η1 6= 0. We make the coordinate
transformation [18] 

x = x1 +
λ1

2η1
,

y = x2,

z = x3,

then Eq.(4.2) becomes
ẋ = y,

ẏ = z,

ż = κ1 + κ2y + κ3z + η1x
2 + η2y

2 + η3xy + η4xz,

(4.3)

where κ1 = − λ2
1

4η1
, κ2 = λ2 − λ1η3

2η1
, κ3 = λ3 − λ1η4

2η1
. Using the method developed

in Ref [8, 10, 12], we can obtain the following truncated hypernormal form up to
second order: 

ẋ = y,

ẏ = z,

ż = κ1 + κ2y + κ3z − 1
2x

2 + γ1xy + γ2xz,

(4.4)

and γ1 = η3

−2η1
,γ2 = η4

−2η1
.
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5. Normal form of a DDE system associated with
triple-zero singularity

In this section, we present the normal form of a functional differential equation
associated with a trip-zero singularity.

Let us consider an abstract retarded functional differential equation with pa-
rameters in the phase space C = C([−τ, 0];Rn), described by

u̇(t) = L(µ)ut + F (ut, µ), (5.1)

where ut ∈ C, is defined by ut(θ) = u(t+ θ),−τ ≤ θ ≤ 0, the parameter µ ∈ Rp is
a parameter vector in a neighborhood V of zero. L(µ) : V → L(C,Rn) is Ck−1 and
F : C × Rp → Rn is Ck(k ≥ 2) with F (0, µ) = 0, DF (0, µ) = 0. Define L = L(0)
and

G(ut, µ) = F (ut, µ) + (L(µ)− L(0))ut,

under which system (5.1) can be rewritten as

u̇(t) = Lut +G(ut, µ). (5.2)

Then, the linear homogeneous retard functional differential equation (5.2) can be
written as

u̇(t) = Lut, (5.3)

where L is a bounded linear operator and satisfies

Lφ =

∫ 0

−τ

dη(θ)φ(θ), ∀φ ∈ C. (5.4)

Here, η(θ)(θ ∈ [−τ, 0]) is an n×n matrix function of bounded variation. Let A0 be
the infinitesimal generator such that

A0φ = φ̇,D(A0) =
{
φ ∈ C1([−τ, 0], Rn) : φ̇(0) =

∫ 0

−τ
dη(θ)φ(θ)

}
,

and its adjoint is given by

A∗
0ψ = ψ̇,D(A∗

0) =
{
ψ ∈ C1([0, τ ], Rn∗

) : ψ̇(0) = −
∫ 0

−τ
dη(θ)ψ(−θ)

}
.

Define the bilinear form between C and C ′ = C([0, τ ], Rn∗
) by

(ψ,φ) = ψ(0)φ(0)−
∫ 0

−τ

∫ θ

0

ψ(ξ − θ)dη(θ)φ(ξ)dξ, ∀ψ ∈ C1,∀φ ∈ C.

In the following, we will consider the case for which L has a triple-zero eigenvalue
and all other eigenvalues have negative real parts.

Let Λ be the set of eigenvalues with zero real part and P be the generalized
eigenspace associated with Λ which has a triple-zero eigenvalue and P ∗ the space
adjoint with P . Then, C can be decomposed as

C = P ⊕Q, where Q =
{
φ ∈ C :< φ,ψ >= 0,∀ψ ∈ P ∗

}
,
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with dim p = 3. Choose the bases Φ and Ψ for P and P ∗ respectively such that

< Ψ,Φ >= I, Φ̇ = ΦB, Ψ̇ = −BΨ,

where I is the m×m identity matrix and B =


0 1 0

0 0 1

0 0 0

. Following the ideas in [9],

we consider the enlarged phase space BC,

BC =

{
φ : [−τ, 0] → Rn : φ continuous on [−τ, 0),∃ lim

θ→0−
φ(θ) ∈ Rn

}
.

Then, the elements of BC can be expressed as ψ = φ+ x0α, φ ∈ C,α ∈ Rn and

x0(θ) =

0, −τ ≤ θ < 0,

I, θ = 0,

where I is the identity operator on C. The space BC has the norm | φ + u0α |=
| φ |c + | α |Rn . Then, the continuous projection π : BC → P, defined by

π(φ+ u0α) = Φ[(Ψ, φ) + Ψ(0)α],

allows us to decompose the enlarged phase space BC = P ⊕Kerπ. Let u = Φx+ y.
Then, system (5.1) can be decomposed as ẋ = Bx+Ψ(0)G(Φx+ y, µ),

dy
dt = AQ1y + (I − π)u0G(Φx+ y, µ) z ∈ R3, y ∈ Q1,

(5.5)

for y ∈ Q1 = Q∩C1 ⊂ Kerπ, where AQ1 is the restriction of A0 as an operator from
Q1 to Banach space Kerπ. Employing Taylor’s theorem, system (5.5) becomes

ẋ = Bx+
∑
j≥2

1
j f

1
j (z, y, µ),

dy
dt = AQ1y +

∑
j≥2

1
j f

2
j (x, y, µ),

(5.6)

where f ij(x, y, µ) (i = 1, 2) denotes the homogeneous polynomials of degree j in
variables (x, y, µ). For J = B, as defined above, the non-resonance conditions are
naturally satisfied. According to normal form theory for DDEs in [9], system (5.6)
can be transformed into the following normal form on the center manifold,

ẋ = Bx+
1

2
g12(x, 0, µ) + h.o.t. (5.7)

For a normed space Z, denote V 6
j (Z) the linear space of homogeneous polynomials

of (x, µ) = (x1, x2, x3, µ1, µ2, µ3) with degree j and with coefficients in Z and define
Mj the operator in V 6

j (R
3 × Kerπ) with the range in the same space by

Mj(p, h) = (M1
j p,M

2
j h),
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where

M1
j p =M1

j


p1

p2

p3

 =


αp1

αx1
x2 +

αp1

αx2
x3 − p2

αp2

αx1
x2 +

αp2

αx2
x3 − p3

αp3

αx1
x2 +

αp3

αx2
x3

 ,

M2
j h =M2

j h(z, µ) = Dxh(x, µ)Bx−AQ1h(x, µ).

Using M1
j , we have the following decompositions,

V 6
j (R

3) = Im(M1
j )⊕ (Im(M1

j ))
c, V 6

j (R
3) = Ker(M1

j )⊕ (Ker(M1
j ))

c.

Then, g12(z, 0, µ) can be expressed as

g12(x, 0, µ) = Proj(Im(M1
2 ))

cf
1
2 (x, 0, µ).

From the results obtained in section 3, we know that a basis of (Im(M1
2 ))

c can be
taken as the set composed by the elements

0

0

x21

 ,


0

0

x1x2

 ,


0

0

x1x3

 ,


0

0

x22

 ,


0

0

x1µ1

 ,


0

0

x1µ2

 ,


0

0

x1µ3

 ,


0

0

x2µ1

 ,


0

0

x2µ2

 ,


0

0

x2µ3

 ,


0

0

x3µ1

 ,


0

0

x3µ2

 ,


0

0

x3µ3

 ,


0

0

µ2
1

 ,


0

0

µ1µ2

 ,


0

0

µ1µ3

 ,


0

0

µ2µ2

 ,


0

0

µ2µ3

 ,


0

0

µ3µ3

 .

Further, since
f12 (x, y, µ) = Ψ(0)F2(Φx+ y),

we let

f12 (x, 0, µ) =

n∑
i=1

q∑
j=1

aijfij(X,µ).

Example 3.4 shows that the projection of f(X) ∈ (Im(M1
2 ))

c is given by

Proj(Im(M1
2 ))

cf(X,µ)

=[a3,1x
2
1 + (a3,2 + 2a2,1)x1x2 + (a4,3 + a3,2 + 2a2,1)x1x3

+ (a3,4 + a2,2 + 2a1,1)x
2
2 + a3,7x1µ1 + a3,8x1µ2 + a3,9x1µ3 + (a3,10 + a2,7)x2µ1

+ (a3,11 + a2,8)x2µ2 + (a3,12 + a2,9)x2µ3 + (a3,13 + a2,10 + a1,7)x3µ1

+ (a3,14 + a2,11 + a1,8)x3µ2 + (a3,15 + a2,12 + a1,9)x3µ3 + a3,16µ
2
1 + a3,17µ1µ2

+ a3,18µ1µ3 + a3,19µ2µ2 + a3,20µ2µ3 + a3,21µ3µ3](0, 0, 1)
T.
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Ignoring the higher order terms µiµj(i, j = 1, 2, 3), we obtain

g12(z, 0, µ) = (λ1x1 + λ2x2 + λ3x3 + η1x
2
1 + η2x

2
2 + η3x1x2 + η4x1x3)(0, 0, 1)

T,

where λ1, λ2, λ3, η1, η2, η3 and η4 are given in (4.2).
Summarizing the above results yields the following theorem.

Theorem 5.1. If Eq.(5.1) has a triple-zero eigenvalue with geometric multiplicity
one, then on the center manifold near (ut, µ) = (0, 0), the reduced normal form with
unfolding has the following form:

ẋ1 = x2,

ẋ2 = x3,

ẋ3 = λ1x1 + λ2x2 + λ3x3 + η1x
2
1 + η2x

2
2 + η3x1x2 + η4x1x3,

where

λ1 = a3,7µ1 + a3,8µ2 + a3,9µ3,

λ2 = (a3,10 + a2,7)µ1 + (a3,11 + a2,8)µ2 + (a3,12 + a2,9µ3,

λ3 = (a3,13 + a2,10 + a1,7)µ1 + (a3,14 + a2,11 + a1,8)µ2 + (a3,15 + a2,12 + a1,9)µ3,

η1 = a3,1,

η2 = (a3,4 + a2,2 + 2a1,1),

η3 = (a3,2 + 2a2,1),

η4 = (a3,3 + a2,2 + 2a1,1).

This form is consistent with the Ref [11,16]. If necessary, we can also convert it
into (4.3) or (4.4).

6. Normal forms for 4-dimensional Vector Field
with a Nilpotent Point with Four Parameters

Consider the vector field

ẋ = Jx+F2(x, µ)+F3(x, µ)+ · · ·+Fr(x, µ)+O(|x|r), x ∈ R4, µ ∈ I ⊂ R4, (6.1)

where J =


0 1 0 0

0 0 1 0

0 0 0 1

0 0 0 0

 is the canonical Jordan nilpotent form, and Fi(x, µ) repre-

sents the ith-degree homogeneous polynomial in the Taylor expansion of F (x, µ).
According to Theorem 3.3 and Example 3.5, we have the following normal form
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of system (6.1):
ẋ1

ẋ2

ẋ3

ẋ4

 =


0 1 0 0

0 0 1 0

0 0 0 1

0 0 0 0




x1

x2

x3

x4

+ [a4,1x
2
1 + (2a3,1 + a4,2)x1x2

+ (a3,3 + a2,2 + 2a1,1)x1x3 + (a4,4 + a3,3 + a2,2 + 2a1,1)x1x4

+ (a4,5 + a3,2 + 2a2,1)x
2
2 + (6a1,1 + 3a2,2 + a3,3 + 2a3,5 + a4,6)x2x3

+
1

25
(2a2,3 − 2a2,5 + 3a3,4 − a3,6 + 3a4,7 − 4a4,8)(3x2x4 − 4x23)

+

4∑
j=1

a4,10+jx1µj +

4∑
j=1

(a3,10+j + a4,14+j)x2µj

+

4∑
j=1

(a2,10+j + a3,14+j + a4,18+j)x3µj

+

4∑
j=1

(a1,10+j + a2,14+j + a3,18+j + a4,22+j)x4µj

+

4∑
j=1

a4,26+jµ1µj +

3∑
j=1

a4,30+jµ2µj+1

+

2∑
j=1

a4,33+jµ3µj+2 + a4,36µ
2
4](0, 0, 0, 1)

T.

Ignoring the higher order terms µiµj(i, j = 1, 2, 3, 4), we obtain

Theorem 6.1. If the Jacobian of vector field (6.1) evaluated at a critical point
involves a four-zero eigenvalue with geometric multiplicity one, ignoring the higher
order terms µiµj(i, j = 1, 2, 3, 4), we obtain the reduced normal form with unfolding
on the center manifold near (x, µ) = (0, 0) as follows:

ẋ1 = x2,

ẋ2 = x3,

ẋ3 = x4,

ẋ4 = λ1x1 + λ2x2 + λ3x3 + λ4x4 + η1x
2
1 + η2x

2
2 + η3x

2
3

+ γ1x1x2 + γ2x1x3 + γ3x1x4 + γ4x2x3 + γ5x2x4,

(6.2)

where

λ1 =

4∑
j=1

a4,10+j ,

λ2 =

4∑
j=1

(a3,10+j + a4,14+j),
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λ3 =

4∑
j=1

(a2,10+j + a3,14+j + a4,18+j),

λ4 =

4∑
j=1

(a1,10+j + a2,14+j + a3,18+j + a4,22+j),

η1 = a4,1,

η2 = a4,5 + a3,2 + 2a2,1,

η3 = − 4

25
(2a2,3 − 2a2,5 + 3a3,4 − a3,6 + 3a4,7 − 4a4,8),

γ1 = 2a3,1 + a4,2,

γ2 = a3,3 + a2,2 + 2a1,1,

γ3 = a4,4 + a3,3 + a2,2 + 2a1,1,

γ4 = 6a1,1 + 3a2,2 + a3,3 + 2a3,5 + a4,6,

γ5 =
3

25
(2a2,3 − 2a2,5 + 3a3,4 − a3,6 + 3a4,7 − 4a4,8).

Generically, we expect the fixed points to move as the parameters are varied.
This does not happen in (6.2); the origin always remains a fixed point. This situation
is easy to remedy. Notice from the form of (6.2) that any fixed point must have
x1 = x2 = 0. Suppose that system (6.2) satisfies η1 6= 0. We make the coordinate
transformation [20] 

x = x1 +
λ1

2η1
,

y = x2,

z = x3,

w = x4,

then Eq. (6.2) becomes

ẋ = y,

ẏ = z,

ż = w,

ẇ = κ1 + κ2y + κ3z + κ4w + η1x
2 + η2y

2 + η3z
2

+ γ1xy + γ2xz + γ3xw + γ4yz + γ5yw,

(6.3)

where κ1 = − λ2
1

4η1
, κ2 = λ2 − λ1γ2

2η1
, κ3 = λ3 − λ1γ3

2η1
, κ4 = λ4 − λ1γ4

2η1
.

7. Conclusion
In this paper, we have derived second-order explicit formulas of the normal forms
associated with nilpotent critical points. As an application, the explicit formulas
have been obtained for normal forms with unfolding associated with a triple-zero
and a four-fold zero singularity in vector field and retarded functional differential
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equations. The formulas obtained in this paper can be easily implemented using a
computer algebra system such as Maple or Mathematica.
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