
Copyedited by: 

Page 1 of 10

Schizophrenia Bulletin 
https://doi.org/10.1093/schbul/sbac125

1.5

1.10

1.15

1.20

1.25

1.30

1.35

1.40

1.45

1.50

1.54

1.55

1.60

1.65

1.70

1.75

1.80

1.85

1.90

1.95

1.100

1.105

1.108

© The Author(s) 2022. Published by Oxford University Press on behalf  of the Maryland Psychiatric Research Center. All rights reserved. For 
permissions, please email: journals.permissions@oup.com

Active Inference, Epistemic Value, and Uncertainty in Conceptual Disorganization 
in First-Episode Schizophrenia

Roberto Limongi1,2,*, , Angelica M. Silva2, , Michael Mackinley2,3,4, Sabrina D. Ford2, and Lena Palaniyappan2,3,4,5,6,7,

1Department of Psychology, University of Western Ontario, London, ON, Canada; 2Robarts Research Institute, London, ON, Canada; 
3Department of Psychiatry, University of Western Ontario, London, ON, Canada; 4Lawson Health Research Institute, London, ON, 
Canada; 5Department of Medical Biophysics, University of Western Ontario, London, ON, Canada; 6The Brain and Mind Institute, 
University of Western Ontario, London, ON, Canada; 7Department of Psychiatry, Douglas Mental Health University Institute, McGill 
University, Montreal, QC, Canada 

*To whom correspondence should be addressed; Robarts Research Institute, 1151 Richmond Street N, London, ON N6A 5B7, Canada; 
tel: +1 519 931 5777, e-mail: rlimongi@uwo.ca

Background and Hypothesis:  Active inference has be-
come an influential concept in psychopathology. We apply 
active inference to investigate conceptual disorganization 
in first-episode schizophrenia. We conceptualize speech 
production as a decision-making process affected by the 
latent “conceptual organization”—as a special case of 
uncertainty about the causes of sensory information. 
Uncertainty is both minimized via speech production—in 
which function words index conceptual organization in 
terms of analytic thinking—and tracked by a domain-
general salience network. We hypothesize that analytic 
thinking depends on conceptual organization. Therefore, 
conceptual disorganization in schizophrenia would be 
both indexed by low conceptual organization and reflected 
in the effective connectivity within the salience network.  
Study Design:  With 1-minute speech samples from a 
picture description task and resting state fMRI from 30 
patients and 30 healthy subjects, we employed dynamic 
causal and probabilistic graphical models to investigate if 
the effective connectivity of the salience network under-
writes conceptual organization.  Study Results:  Low 
analytic thinking scores index low conceptual organiza-
tion which affects diagnostic status. The influence of the 
anterior insula on the anterior cingulate cortex and the 
self-inhibition within the anterior cingulate cortex are el-
evated given low conceptual organization (ie, conceptual 
disorganization).  Conclusions:  Conceptual organization, 
a construct that explains formal thought disorder, can be 
modeled in an active inference framework and studied in 
relation to putative neural substrates of disrupted lan-
guage in schizophrenia. This provides a critical advance to 
move away from rating-scale scores to deeper constructs 
in the pursuit of the pathophysiology of formal thought 
disorder. 

Key words: thought disorder/bayes network/conceptual 
organization/free energy principle/dynamic causal models

Introduction

As clinicians and basic scientists work towards the age of 
precision psychiatry—broadly conceived as individualized 
biometrics1 as well as estimates of computational param-
eters of behaviour2–4—we need tools to study hidden con-
structs of psychopathology. Such tools are essential for 
relating clinical symptoms and biological mechanisms. 
Active inference,5 a formal theory of brain function, has 
moved us in this direction, contributing testable models of 
schizophrenia symptoms.6–8 However, similar approaches 
are yet to be developed for features that some consider as 
more central to the construct of schizophrenia—Thought 
and Language Disorders (TLD)—which emerge as a dis-
tinct syndrome in factor analytical studies of symptoms 
with both positive and negative dimensions.9,10

In this work, we employ probabilistic modeling and ac-
tive inference to (1) develop a computational approach to 
infer the elusive construct of conceptual organization that 
is said to underlie aberrant speech production and TLD 
in schizophrenia and (2) test the hypothesis that the sali-
ence network in the brain tracks conceptual (dis)organi-
zation seen in patients.

Previous literature on formal thought disorder has 
described the psychopathology of the aberrant mental 
state11 or the linguistic elements expressed in this state.12,13 
Disrupted language is increasingly viewed as a biomarker 
that captures formal thought disorder.14–19 We test a hy-
pothesis about the mechanism underlying this disorder. 
Currently, conceptual disorganization refers to an ob-
served symptom or sign. Here, it is used as a latent state. 
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Therefore, we focus on conceptual organization itself  as 
a conditioning factor of disorganized speech in schizo-
phrenia, being more consistent with the negative impact 
that such disorganization has on the real-world func-
tioning of people with schizophrenia.20

Conceptual disorganization is indirectly measured via, 
for example, the P2 item of the Positive and Negative 
Syndrome Scale (PANSS)21 and the thought language 
index (TLI)22.20 Thus, it is a disturbance in the process of 
thinking21–23 inferred from verbal behavior. For example, 
in the TLI (figure 1) patients describe pictures in 1-minute 
speech trials, and raters score the productions looking for 
evidence of disordered thought.

Recently, we applied a computational linguistic tool 
to speech samples collected using the TLI and reported 
that global impoverishment of  thinking and PANSS P2 
scores negatively correlated with a psychological dimen-
sion referred to as analytic thinking.14 Analytic thinking 
scores track knowledge organization; it is computed 
from the proportional use of  function words (eg, pre-
positions, articles, and pronouns).24 Although the score 
indexes knowledge organization, its association with 
conceptual organization has not been investigated and 
continues to be an indirect measure of  an unobserv-
able psychological state. In this work, we furnish this 
psychological dimension with a formal model of  con-
ceptual organization. Briefly, conceptual organization 
(and by extension conceptual disorganization) can be 
expressed as epistemic value: A quantity that indicates 

the decreased uncertainty expected given a speech 
production.

Our theory leads to predict where in the brain the 
between-groups variability in conceptual organization 
(estimated from analytic thinking scores) can be tracked. 
Subsequently, we hypothesize that conceptual disorgani-
zation in schizophrenia patients affects the effective con-
nectivity between the anterior cingulate cortex (ACC) 
and the anterior insula (AI) within the salience network—
functionally specialized in encoding uncertainty. Because 
we focus on conceptual organization as a latent factor,25 
an introduction of active inference contextualized in lan-
guage production is required to conceive this factor.

A Primer on Active Inference in Conceptual 
Organization

In active inference, the brain embodies a generative model 
encoding beliefs about the (hidden) environmental causes 
of sensory information. The organism has uncertainty 
about the reliability of its beliefs and reduces this uncer-
tainty by updating the model via perception and action. 
Formally, uncertainty reduction takes the form of free en-
ergy minimization.26–28 In this section, we describe a toy 
example about how active inference explains the way lan-
guage production, as a special case of action, minimizes 
free energy. The example is highly idealized, yet it shows 
the underlying mathematical principles required for the 
formal operationalization.29

Fig. 1.  A cartoon summary of the generative model of speech production during the TLI interview. Although there is a degree of 
communication with another person, the interview used in this study focuses on the ideational function of language, to make sense of 
our external world, actualizing its epistemic property. Figure created with Toonytools (classic.toonytools.com).

classic.toonytools.com
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The simplest generative model comprises a joint dis-
tribution over prior beliefs (x) and sensory data (y) that 
factorizes as P(x,y) = P(y|x) P(x). A graph encoding this 
representation (figure 2) indicates that the sensory in-
formation depends on the agent’s beliefs about the world. 
The agent updates their prior into posterior beliefs given 
the sensory data. This happens via free energy minimi-
zation which, mathematically, plays the same role as any 
other quantity minimization (eg, minimization of least 
squared errors in regression analysis) but using approx-
imate posterior distributions, q(x). During speech pro-
duction, the set of sound waves constitutes one source 
of sensory data which an agent leverages to update their 
prior beliefs. In other words, we update our beliefs—and 
decrease the uncertainty about the world—by perceiving 
the results of our own actions (eg, hearing our own speech 
when talking about our environment).

To grasp how language production minimizes uncer-
tainty, consider an agent describing a picture of pots 
and flowers (figure 2). In scenario “A,” it is highly likely 
(eg, P = .85) that the agent holds a visual representation 
(Supplementary Materials) of flowers inside the pot, their 
prior conceptual organization about the scene. There is 
some uncertainty (the variance of the distribution) in this 
conceptual organization, σ2 = P(1−P) = 0.85 × 0.15 = 0.

13. However, by verbally describing the scene the agent 
updates their conceptual organization, changing the un-
certainty. For example, the agent can be lowly analytical 
and say that “there is a flower-pot and some flowers there” 
(analytic thinking score ≈ 50), leading to an increase in 
the uncertainty (44.7 vs 55.3, σ2 = 0.25). Conversely, they 
can be highly analytical by saying that “there is a flower-
pot with flowers inside” (analytic thinking score = 100), 
leading to a decrease in uncertainty (0.94 vs 0.06, 
σ2 = 0.06). Now consider the scenario “B” in which the 
prior conceptual organization about the scene is highly 
uncertain (eg, 50 % vs 50%, σ2 = 0.25), the verbal descrip-
tion with the highest analytic thinking score would yield 
a smaller decrease in uncertainty (75% vs 25%, σ2 = 0.19). 
This example indicates that how much uncertainty de-
creases via language production depends on both the se-
quence of words we select and the level of uncertainty 
embodied as our prior conceptual organization.

The Active Inference of Conceptual Organization in the 
TLI Interview

We mentioned that to decrease uncertainty the speaker 
selects a sequence of words. However, the selection of 
words itself  is not what matters to minimize free energy. 

Fig. 2.  Toy example of variational free energy minimization during language production. The agent intents to make sense of a picture 
via their embodied generative model (equation 1). In 2 scenarios (high, A, and low, B, uncertainty), the agent brings to the table the same 
pair of possible (prior) representations (3D images) of the world with relevant prior probabilities, P(x), and prior uncertainty (σ2). To 
reduce the uncertainty, the agent speaks aloud and hears their own utterances. Hearing 2 different productions (with different analytic 
thinking scores, At) would differentially minimize the uncertainty (ie, VFE). However, hearing the same utterance with high At (y1) 
would lead to a more substantial minimization (σ2 = 0.06) in the scenario with a low prior uncertainty, σ2 = 0.13 (ie, high prior conceptual 
organization). In this example, the posterior beliefs (uncertainty or conceptual organization) can be computed directly from equation 
2. However, p(y) is intractable in real situations. Instead, posteriors are found via VFE minimization (equation 3)—testing different 
approximate posteriors, q, until converging with the true posterior. Figure created with Toonytools (classic.toonytools.com).

http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sbac125#supplementary-data
classic.toonytools.com
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It is the actual production of the words the important 
factor because in doing so the agent changes their per-
ceptions. This entails that we ascribe not only a commu-
nicative but also a representational (ideational) function 
to language.30 Previous active inference works have tar-
geted the communicative function—in which variational 
free energy is reduced when the agent perceives a mes-
sage (eg, the answer to a question from a conversational 
partner31–34). However, the agent can also engage in the 
ideational function (to represent their external world30), 
variational free energy would decrease by perceiving their 
own speech. In this context, because the agent can select 
many different combinations of words to “organize their 
representation of the world” they estimate beforehand 
(during the selection process) the expected free energy 
that would be minimized, calling in a decision-making 
process.35

Decision-making implies estimating the free energy 
that would be minimized if  a sequence of actions—a 
policy—were deployed. In the TLI interview, the agent ex-
plores which combination of function and content words 
would minimize the uncertainty in their prior conceptual 
organization. While the generative model we introduced 
in the toy example included the effect of perceiving our 
own speech after it has been produced, a generative model 
of language production as a decision-making process 
like in the TLI interview entails a joint distribution over 
(policies, π; states, eg, conceptual organization (Co); and 
observations, o) factorized as: P(o, Co, π) = p(o| Co, 
π) P(Co| π) p(π) and upon which the agent estimates 
the amount of uncertainty (epistemic quantity) that a 
given policy would decrease if  deployed (Supplementary 
Materials). In what follows, we will focus on policies as-
sociated with producing the speech that minimizes uncer-
tainty and how it relates to analytic thinking.

Minimizing Uncertainty for Analytic Thinking During 
Speech Production

We regard speech production as a partially observable 
Markov decision process (POMDP,36 figure 3) that yields 
a stream of words produced one after another. At each 
timestep, the agent can, for example, choose either a con-
tent word from a pool (eg, their lexicon) or a function 
word. The produced word at time t depends on the concep-
tual organization at time t-1. We assume that these states 
represent the current and previous states of conceptual 
organization, a state factor that can take 2 values: high 
organization and low organization (ie, disorganization).

The outcome of the decision process would be a chosen 
discourse that would maximize the epistemic value, min-
imizing the uncertainty. However, in the decision process, 
the conceptual-organization state at t = 0 should be de-
fined a priori which in the TLI interview would corre-
spond to the prior conceptual organization state with 
which the patient begins a trial.

Hypotheses

We evaluate 2 hypotheses that follow on the formal prin-
ciples presented above. First, because a produced word 
in a speech sample at time = t depends on the conceptual 
organization state at time = t−1, and this state is an index 
of reduced uncertainty, then the analytic thinking scores 
must depend on the conceptual organization state—being 
lower in first-episode schizophrenia (FES) than in healthy 
control (HC) subjects.

Second, cognitive tasks under uncertainty elicit activity 
in (at least) ACC and AI nodes of the salience network—
which appears to track uncertainty in a supramodal and 
task-independent manner37–41 thus being congruent with 
the proposal that uncertainty is an internal state that af-
fects all aspects of cognition and decision making26,27 (ie, 
a domain-general factor). Interestingly, different perspec-
tives have shown a role of the salience network in the gen-
eration of disorganized speech and behavior in psychosis 
despite not establishing a formal link between conceptual 
organization and uncertainty.42–49 Therefore, the prior 
level of conceptual organization—as a special case of un-
certainty—of schizophrenia patients and healthy controls 
would differentially affect the effective connectivity be-
tween the ACC and the AI. This approach shifts the focus 
of the neural basis of ‘thought disorder” from language 
networks to the general domain of social decisions.50

Methods

Subjects

This study pursues one of the pre-registered objectives of 
the observational study TOPSY (NCT02882204). Data 
from 30 FES (6 females) and 30 HC (12 females) subjects 
were analyzed (Supplementary Materials). Participants 
provided written informed consent conforming to the 
regulations of the Western University Health Sciences 
Research Ethics Board, London, Ontario, Canada. 

Fig. 3.  Active inference and probabilistic graphical model of 
the POMDP of speech production in the TLI interview. The 
subgraph (dashed rectangle) allows us to estimate the distribution 
of Co over groups at t = 0. At (analytic thinking score), Co 
(conceptual organization), rsDCM (DCM set of parameters of 
resting state fMRI), FW (function word), π (Policy -ie, a stream 
of words), TLI (Thought Language Index scores), P2 (Item P2 
representing clinician-rated Conceptual Disorganization score from 
the Positive and Negative Syndrome Scale PANSS), both providing 
clinical symptoms scores, Gr (group).

http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sbac125#supplementary-data
http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sbac125#supplementary-data
http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sbac125#supplementary-data
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Patients were in the acute phase of illness and recruited 
upon referral (irrespective of hospitalization status and 
before antipsychotic treatment was established) from the 
Prevention and Early Intervention for Psychosis Program 
(PEPP) at London Health Sciences Center, London, 
Ontario, Canada between April 2017 and July 2019. 
Based on the best estimate procedure51 and the Structured 
Clinical Interview for DSM-5,52 they received a 6-month 
consensus diagnosis from a minimum of 3 psychiatrists, 
confirming that patients did not meet the criteria for bi-
polar disorder with psychotic features, a major depressive 
disorder with psychotic features, or drug-induced psych-
oses. HC subjects were recruited from the community 
through posters. They had neither personal history of 
mental illness nor a family history of psychotic disorders. 
None of the participants met the criteria for substance-
use disorder in the past year according to DSM-5 cri-
teria,52 had a history of a major head injury. Participants 
did not report a history of uncontrolled medical illness, 
the presence of intellectual/developmental disorder, or 
lifetime antipsychotic exposure longer than 2 weeks of 
lifetime antipsychotic exposure.

Resting-State fMRI and Dynamic Causal Model

Participants underwent a resting-state fMRI inside a 
MAGNETOM Plus 7T MRI scanner (Siemens Corp., 
Erlangen, Germany) located at the Center for Functional 
and Metabolic Mapping of Wester University. We es-
timated the effective connectivity within the ACC-AI 
network (Supplementary Materials). At a subject level, 
we inferred the unobserved neural activity of coupled 
neuronal populations between the 2 regions fitting a dy-
namic causal model53 to the fMRI time-series (rsDCM). 
Our DCM represented both intrinsic or within-
region (GABAergic) and extrinsic (between-region) 
glutamatergic connections.53–55

Probabilistic Graphical Models

At a group level, we estimated the conditioning ef-
fect of a prior conceptual organization (Co, at t = 0) 
on the connectivity within the ACC-AI encoded in a 
subgraph representing the joint distribution of (Co, ana-
lytic thinking, symptoms of disorganization, group, and 
rsDCM parameters). We first estimated the marginal dis-
tribution of Co, the probability of group membership 
given Co, and the probability of analytic thinking given 
Co (M1). To demonstrate the dependency between Co 
and analytic thinking, we compared this graph against a 
graph (M2) with unconnected nodes (figure 4). The esti-
mated marginal distribution of Co was set as the prior 
of a model leading to inferring the posteriors of the ef-
fective connectivity parameters given Co (figure 5). The 
model included clinically rated TLD metrics (PANSS-P2, 
global disorganization of thinking, GDIT, and global 

impoverishment of thinking, GIOT) conditional upon 
group. These metrics were included to test two alternative 
hypotheses.

To test whether the 2-node network encodes Co, 
we compared this model (M1) against two competing 
models (M2 and M3). In M2, Co would influence nei-
ther the connectivity of the salience network nor the 
observed TLD. In M3, analytic thinking would explain 
the connectivity of the salience network as well as the 
clinical ratings, without a necessity to invoke the latent 
Co. Bayesian information criterion numbers were used 
to select the winning model. Parameters estimates were 
subjected to independent sample t-tests (Bonferroni cor-
rection P < .0125) for between-groups comparison. 

Results

The Analytic Thinking Score Causally Depends on 
Unobserved Prior Co

The two competing networks shown in figure 4 repre-
sent analytic thinking, Co, and group. However, the net-
work in which Co affects both analytic thinking score 
and group outperformed the alternative network. The 
estimated marginal distribution of Co was P = .58 (low 
Co) and P = .42 (high Co). The distribution of Co given 
group indicates that FES explains low Co (P = .9). High 
Co is more likely in HC subjects (P = .74).

High and low Co cause high and low analytic thinking 
(M = 79.3, Sd = 9.02; M = 50.6, Sd = 15.8, respec-
tively; means difference = −28.7; 95% CI [−35.3, −22.1]; 
t(58) = 8.64; P < .0001). Lower analytic thinking were seen 
in schizophrenia compared to healthy subjects (means 
difference = −18.5; 95% CI [−27.4, −9.6]; t(58) = 4.18; 
P < .0001)—reproducing our previous results.14

The Effective Connectivity Between the ACC and 
the AI Encodes the Probability Distribution of Prior 
Conceptual Organization

Figure 5 shows that the Bayesian network in which the 
rsDCM parameters depend on conceptual organization 
outperformed the competing models. Figure 6 shows 
that if  a subject had low Co (at t = 0) the influence of 
the AI on the ACC would be stronger than if  they had 
high Co (means difference = 0.09, [0.08, 0.1], t(58) = 15.69, 
P < .0001). Furthermore, if  a subject had low Co self-
inhibition within the ACC would be stronger than if  
they had high Co (means difference = 3.8, [3.34, 4.26], 
t(58) = 16.54, P < .0001). The influence of the ACC on 
the AI did not vary between conceptual organization 
states (means difference = 0, [0.0, 0.0], t(58) < 0.001 0, 
P < .99). Finally, if  a subject had high Co self-inhibitory 
connections within the insula would be stronger than 
if  they had low Co (means difference = 1.16, [0.1, 2.2], 
t(58) = 2.22, P = .03). However, this difference did not sur-
vive correction.

http://academic.oup.com/schizophreniabulletin/article-lookup/doi/10.1093/schbul/sbac125#supplementary-data
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Discussion
We report 2 major findings. First, in FES, prior concep-
tual disorganization (ie, low conceptual organization) 
causes low analytic thinking in speech samples produced 
during a TLI interview. Second, effective connectivity 
within the salience network (ACC and AI) encodes con-
ceptual organization states. We suggest that conceptual 
organization influences both the diagnostic status and 
analytical thinking in psychosis, with reduced conceptual 

organization binding clinical measures of thought dis-
order to the network’s effective connectivity. Reduced 
conceptual organization causing a low analytic thinking 
score in the FES group speaks to a low epistemic value 
that patients assigned to the expected free energy minimi-
zation when deciding for the deploy speech.

We collected fMRI data at rest and not during speech 
production to test the hypothesis that the salience 
network’s connectivity is associated with the conceptual 

Fig. 4.  Bayes networks testing the hypothesis that the analytic thinking score is causally associated with the unobserved Co. The bar 
graph shows the Co posteriors given group. The middle and right line graphs show the posteriors (mu and standard deviation—error 
bars) of analytic thinking given Co and group (Gr) respectively. Estimated distribution of Co in M1 (low = 0.58, high = 0.42) were set as 
priors in the generative model of figure 5. Probability values inside nodes are priors.

Fig. 5.  Bayes networks testing the hypothesis that the effective connectivity parameters of resting state fMRI of the salience networks 
encode Co. M2 explaining group differences and rsDCM parameters in terms of differences in rating scales underperformed M1 
explaining those differences in terms of conceptual organization. Tail-to-tail edges in the Co (conceptual organization) node indicate that 
after knowing the Co state rating-scale scores or group membership does not add anything about the effective connectivity of the salience 
network.
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organization. This design is viable as we assume, under 
POMDP, that conceptual organization represents the 
current state into which past states are implicit. Analytic 
thinking relates to conceptual organization at t = 0 which 
in turn relates to effective connectivity. Once the distri-
bution is estimated, the POMDP comes to play, wherein 
the subject’s preferred observations (perceived speech) 
are those that maintain the high-probability states of the 
continuously existing conceptual organization.

Based on the semantics of Bayesian networks, given a 
particular conceptual organization state group member-
ship becomes independent of the analytic thinking score, 
and vice versa. This fact allows us to constrain the condi-
tional distribution of group membership while ignoring 
the marginal distribution of analytic thinking when spe-
cifying the model comprising connectivity parameters. 
Furthermore, when the formalisms are applied to psy-
chopathology, we can realize that diagnostic probability, 
as well as symptom/sign ratings, are consequences of a 
latent psychopathology which in turn is a consequence of 
latent pathophysiological processes.

Symptom scores are obtained from rating-scale met-
rics, but more objective measures from computational 
linguistics such as analytic thinking scores can be treated 
similarly in generative models of psychopathology. By 
demonstrating that the winning model linking diag-
nostic probability with observed ratings involves the la-
tent construct of conceptual disorganization (figure 4) 
and this construct links the pathophysiology of a brain 

network-level dysconnectivity with the clinical expression 
(ie, diagnostic and symptom rating probability; figure 5), 
we provide a generative nosological model for TLD that 
typify schizophrenia.

Mapping the Marginal Posterior Distribution of 
Hidden Conceptual Organization on the Brain

Despite being correlated with positive and negative symp-
toms,56 speech disorders have been treated in previous 
works as a domain-specific set of symptoms.17,19,57 Here, 
conceptual disorganization is a special case of domain-
general uncertainty that also influences the overall di-
agnostic probability, ie, binding together positive and 
negative symptoms as per the prevailing construct.7 
Based on this role of uncertainty in brain function and 
dysfunction, we mapped conceptual organization onto 
the salience network. This does not mean that this net-
work is isolated from the rest of the brain in its influence 
on the conceptual organization.

The effective connectivity between the ACC and AI 
summarizes outer messages conditional on specific de-
pendencies.58–60 Nodes are functionally specialized to rep-
resent states, observations, and policies. Furthermore, 
nodes are functionally integrated to compute the poster-
iors. In terms of a probabilistic graph, the communica-
tion between ACC and AI is represented by the precision 
of the posterior probability of the conceptual organi-
zation state given a policy. This precision seems to be 

Fig. 6.  Probability distributions of effective connectivity parameters conditional upon conceptual organization (Co) level. *** P < .0001.
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affected by an increase in self-inhibitory activity in the 
ACC and an increase in excitatory activity from the AI 
to the ACC—given a low conceptual organization state 
in FES. Applying previous interpretations of DCM 
models,61 one can infer affected “synaptic gain control” 
within the ACC with an increased excitatory drive from 
the AI to ACC in low conceptual organization state. In 
other words, the message passed from the AI to the ACC 
and the increased self-inhibitory activity within the ACC 
“would conspire” against the decision-making process 
during word selection.

Strengths, Limitations, and Future Work

The current work has 2 additional strengths. First, FES 
data were collected from subjects with minimal anti-
psychotic use and that experienced a first episode of 
psychosis. Therefore, the effect of chronicity and psycho-
pharmacological treatment were minimized. Second, to 
quantify the same latent construct we used not only an 
objective score (analytic thinking) but also 2 symptom 
ratings (TLI and PANSS-P2 scores) obtained from 2-time 
points.

Our prior work oriented the selection of the NLP var-
iable related to Thought and Language Disorder of psy-
chosis; other alternatives may better reflect conceptual 
organization. But our modeling goal required the use of 
a quantifiable variable reflecting language disorder, ana-
lytic thinking scores served this purpose.

We estimated conceptual organization states at t = 0. 
In future work, we will fit the PODMP to speech sam-
ples which will allow us to quantify the epistemic value 
in terms of expected free energy. In this pursuit, a limita-
tion of the current work should be addressed. The ana-
lytic thinking score neglects the effect of content words. A 
complete approach should include syntax and semantics. 
Furthermore, “resting state” is in essence an unconstrained 
mental state. Thus, a systematic bias due to across-group 
differential mental processes cannot be ruled out, though 
this was minimized by a consistent set of instructions and 
limiting the overall duration of the rest.

Supplementary Material

Supplementary material is available at https://academic.
oup.com/schizophreniabulletin/.
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