Online Supplementary Material

Contents

1) Narrative for \(E(t) \) for first-order scenario NC, including the operation of the Hypergeometric Distribution (Patil & Joshi, 1968)

2) Attribute values and narrative formulation of \(E(t) \) for second-order scenario UCN

3) Threat Expectation \(E(t) \) and Unpredictability of Threatened Events \(\text{Var}(m) \)

1) Narrative for \(E(t) \) for first-order scenario NC, including the operation of the Hypergeometric Distribution (Patil & Joshi, 1968).

For Scenario NC,

\[
E(t) = \frac{1}{p} t_1 + \frac{p-1}{p} \cdot \frac{q}{pq-1} \sum_{i=2}^{pq} H(q-1; pq-2, pq-i', q-1) \cdot t_i
\]

Expected threat \(E(t) \) for NC comprises the sum of two expressions. The first again is simply the product of \(Pr(t_1) \) and \((t_1) \); that is, the bin containing \(t_1 \) is assigned with probability \(1/p \), and if assigned, \(t_1 \) is chosen. The first term of the second expression, \((p-1)/p \), represents the complement of \(Pr(t_1) \), the probability that a \(t_i \) other than \(t_1 \) will be selected. The second fraction \(q/(pq-1) \) represents the probability that for any particular \(t_i \), the latter is located in a bin other than that of \(t_1 \), that is \((p-1)q/(pq-1) \), multiplied against the probability that the bin containing \(t_i \) is assigned given that the one containing \(t_1 \) has not been assigned, or \(1/(p-1) \). Each of the summed terms in the second expression involves the hypergeometric distribution (e.g., Patil & Joshi, 1968), used to obtain the probability that \(t_i \) is the lowest threat value in its bin, given that the bin with \(t_1 \) is not assigned and that \(t_i \) is not in \(t_1 \)'s bin. The Hypergeometric distribution is used to assess the probability of a given \(t_i \) thus being selected, which is tantamount to the probability
that all other elements in its current bin have higher threat values. Paralleling bin-model
terminology, $H(q-1; pq-2, pq-i', q-1)$ is the probability that out of a random sampling of
$q-1$ (mutually independent) balls, without replacement (cf., Milenkovic, 2004) -- that is,
$q-1$ (mutually independent) threat values t_i -- from a bin containing a total of $pq-2$ balls
(both t_1 and the t_i under consideration themselves are ineligible), $pq-i'$ of which are white,
-- that is, $pq-i'$ for which t_i exceeds the particular t_i under consideration, -- all $q-1$
sampled balls are white -- that is, all sampled t_i values exceed the currently entertained t_i.
An analogous format of the hypergeometric distribution is used when the latter is called
upon in obtaining the remaining mathematical expectations of threat.

Note that $H(q-1; pq-2, pq-i', q-1)$ is equal to $1 - \sum_{j=0}^{q-2} H(j; pq-2, pq-i', q-1)$.

Moreover, obtaining $q-1$ white balls in a random sampling of size $q-1$ implies obtaining 0
black balls (i.e., obtaining no t_i values lower than the considered t_i), with the equivalent
probability now expressed as $H(0; pq-2, i'-2, q-1) = 1 - \sum_{j=1}^{q-1} H(j; pq-2, i'-2, q-1)$.

Along with the pq element encounters being mutually exclusive and exhaustive, whereby
constituent probabilities involved in $E(t)$ sum to 1.0, these relations are available as
computational checks regarding $E(t)$ for structure NC, and by extensions prescribed by
their host scenario structures, all other $E(t)$ formulae.
2) Attribute values and narrative formulation of $E(t)$ for second-order scenario UCN

Scenario UCN.

$Pr(t_1) = 1/Pq$

$RSS = p$

$$E(t) = \frac{1}{P} \left(\frac{1}{q} t_1 + \frac{q - 1}{q} \cdot \frac{p}{Ppq - 1} \sum_{i=2}^{Ppq} H(p - 1; Ppq - 2, Ppq - i, p - 1) \cdot t_i \right)$$

$$+ \frac{P - 1}{P} \cdot \frac{(P - 1)p}{Ppq - 1} \cdot \frac{1}{P - 1} \sum_{i=2}^{Ppq} H(p - 1; Ppq - 2, Ppq - i', p - 1) \cdot t_i$$

$OSS = Pp.$

The value of $Pr(t_1)$ corresponds to the inverse of the product of the set sizes (P and q) of the hierarchy levels at which free choice is not exercised (U and N). The RSS corresponds to the set size (p) of the tier with free choice. The OSS is the product of the two set sizes of the tiers at which there are multiple possibilities (P and p under U and C, respectively).

There are two larger expressions in the UCN $E(t)$ formula. The first fraction applied to the entire first expression is $1/P$, the probability that t_1's bin set is selected. Within the large bracket, the first term $1/q$, as combined with $1/P$, accounts for $Pr(t_1)$, which is scaled by t_1. The first fraction in the second term within the bracket represents the complement of $1/q$, the probability that t_1 is not assigned ($(q-1)/q$). The second fraction $p/(Ppq - 1)$ represents the probability that t_i is one of those assigned into t_1's bin set, given that t_1 itself is not assigned. The appearance of the hypergeometric distribution within this first larger expression conveys the probability that t_i is the least of the t_i's.
assigned in t_1’s bin set, given that t_1 itself is not assigned. The hypergeometric-distribution probabilities multiplying respective t_i values are summed over i' values.

The second larger expression starts with the probability that t_1’s bin set is not assigned($\frac{(P-1)}{P}$). The next fraction ($\frac{(P-1)p}{(Ppq-1)}$) represents the probability that t_i is one of the assigned t_i s located in bin sets other than t_1’s bin set. The fraction $\frac{1}{(P-1)}$ then accounts for the probability that the bin set containing t_i is assigned, given that t_1’s bin set has not been assigned. The second use of the hypergeometric distribution yields the probability that t_i is the least of the p t_i s assigned in t_i ’s bin set given that t_1’s bin set is not assigned. This second larger expression then entails the summation of these probabilities of t_i encounters combined with the respective t_i values.
3) Threat Expectation $E(t)$ and Unpredictability of Threatened Events

Implementation of decisional control conveys specific values of threat expectation $E(t)$ according to a scenario structure’s prevailing choice conditions. Decisional-control determined $E(t)$ also enters into adverse-event predictability, as follows. Level of threat identified with scenario-element i, defined as the probability of adverse-event occurrence t_i, does not directly stipulate the impact, or magnitude, of the stochastic event itself (cf., Neufeld, 1990; Paterson & Neufeld, 1987). However, implicit in the current expression of structure-wise threat level $E(t)$ are two event magnitudes (m), specifically 1 “unit of severity”, corresponding to event occurrence, and 0 units, corresponding to event non-occurrence:

$$
\sum_{i=1}^{(P, pq)} Pr(t_i)[t_i (1.0) + (1-t_i)(0)] = \sum_{i=1}^{(P, pq)} Pr(t_i) t_i = E(t). \quad (5)
$$

This dichotomous format of event magnitude nevertheless is coherent with associational-memory (“categorical memory”) accounts of probability learning (Estes, 1975; 1976; 1977), which repeatedly have been shown to extend to predictive judgments of stressor-event occurrence (Morrison, et al, 1988; Mothersill & Neufeld, 1985; Neufeld & Herzog, 1983; Lees & Neufeld, 1999). Greater variation in event magnitude m, however, can be accommodated in the present $E(t)$ computations; where the adverse event corresponding to scenario-element i is of an unique magnitude m_i, for example, its cross-product with the event’s probability of occurrence t_{m_i}, that is $t_{m_i} m_i$, can be stipulated to equal the element’s value of t_i in the present layout. $\text{Var}(m)$, in turn becomes

$$
\sum_{i=1}^{(P, pq)} Pr(t_{m_i}) t_{m_i} m_i^2 - \left[\sum_{i=1}^{(P, pq)} Pr(t_{m_i}) t_{m_i} m_i \right]^2.
$$
Exercise of available control thus affects level of stressor-event threat, as expressed in $E(t)$; however, it also impinges on stressor-event predictability in quantifiable ways directly incorporating $E(t)$. Note that stress activation is deemed to be driven upward as predictability of stressor characteristics, including event magnitude, declines (see, e.g., Denuit & Genest, 2001; Osuna, 1985; Paterson & Neufeld, 1987; Smith, 1989; Suck & Holling, 1997). Accordingly, variance in event magnitude $\text{Var}(m)$ can be shown to equal $E(t)[1-E(t)]$. Formally,

$$m \in \{0,1\}; \quad t_i \in [0,1];$$

$$\text{Var}(m) = E[E(m^2 | i)] - [E(E(m | i))]^2$$

$$= \sum_{i=1}^{(P) pq} Pr(t_i) [t_i (1^2) + (1-t_i) (0^2)] - \{ \sum_{i=1}^{(P) pq} Pr(t_i) [t_i (1.0) + (1-t_i) (0)] \}^2$$

$$= \sum_{i=1}^{(P) pq} Pr(t_i) (t_i) - \{ \sum_{i=1}^{(P) pq} Pr(t_i) t_i \}^2 = E(t) [1 - E(t)]. \quad (6)$$

Consequently, $\text{Var}(m)$ is maximized where $E(t) = 0.5$. This value turns out to be approximated by the larger values of $E(t)$ obtained in the simulation results presented in Tables 3 and 4 (see main document; further considerations surrounding $\text{Var}(m)$ are available as a .pdf document from the first author.) In this way, those scenario structures with elevated threat $E(t)$ also are accompanied by elevated unpredictability $E(t)[1-E(t)]$.

Other indexes of (un)predictability, framed within the present quantitative structure, convey additional situation properties that stand to be psychological-stress significant. One such index, which ignores event magnitude, is $\text{Var}(t_i)$,

$$\sum_{i=1}^{(P) pq} Pr(t_i) t_i^2 - \{ \sum_{i=1}^{(P) pq} Pr(t_i) t_i \}^2.$$
Another, which circumvents event magnitude, is Shannon-Weaver information entropy:

\[
- \sum_{i=1}^{(P)_{pq}} Pr(t_i) \log_2 [Pr(t_i)] = \\
- \sum_{i=1}^{(P)_{pq}} Pr(t_{m_i} m_i) \log_2 [Pr(t_{m_i} m_i)]; \\
Pr(t_i) = Pr(t_{m_i} m_i).
\]

References not listed in main document

