Evidence for electronic gap-driven metal-semiconductor transition in phase-change materials

Dmitry Shakhvorostova, Razvan A. Nistora, Lia Krusin-Elbaumba,1, Glenn J. Martynab, Dennis M. Newnsb, Bruce G. Elmegreenb, Xiao-hu Liub, Zak E. Hughesc, Suzujata Paulb, Cyril Cabralb, Simone Raouxc, David B. Shrekenhamerd, Dimitri N. Basovd, Yang Songe, and Martin H. Mûsera

aDepartment of Applied Mathematics, University of Western Ontario, London, ON, Canada N6A5B7; bIBM T. J. Watson Research Center, Yorktown Heights, NY 10598; cIBM Almaden Research Center, San Jose, CA 95120; dPhysics Department, University of California at San Diego, La Jolla, CA 92093; and eDepartment of Chemistry, University of Western Ontario, London, ON, Canada N6A5B7

Edited by Milind S. Dresselhaus, Massachusetts Institute of Technology, Cambridge, MA, and approved May 12, 2009 (received for review December 19, 2008)

Phase-change materials are functionally important materials that can be thermally interconverted between metallic (crystalline) and semiconducting (amorphous) phases on a very short time scale. Although the interconversion appears to involve a change in local atomic coordination numbers, the electronic basis for this process is still unclear. Here, we demonstrate that in a nearly vacancy-free binary GeSb system where we can drive the phase change both thermally and, as we discover, by pressure, the transformation into the amorphous phase is electronic in origin. Correlations between conductivity, total system energy, and local atomic coordination revealed by experiments and long time ab initio simulations show that the structural reorganization into the amorphous state is driven by opening of an energy gap in the electronic density of states. The electronic driving force behind the phase change has the potential to change the interconversion paradigm in this material class.

ab initio simulations | structural phase change | electronic phase transitions | ac conductivity

Metal–semiconductor transitions in condensed matter often occur concurrently with structural transformations. There is a longstanding and much debated issue as to whether the driving force in these transitions is fundamentally electronic or structural in origin (1). This problem is particularly challenging in cases where the semiconducting phase is a glassy one, as in the class of the technologically important phase-change materials (2–4). These are typically alloys of Ge, Sb, and Te, which in certain composition ranges, such as a canonical compound Ge$_2$Sb$_2$Te$_5$ (225), can be converted between the conducting crystalline phase and a semiconducting amorphous phase. The considerable body of work on these materials (5) has made it clear that conversion to the amorphous state involves a change in local coordination number resembling an “umbrella flip” (4) in some members of the class. But, the 2 key fundamental questions, why the system would turn semiconducting on executing this local structural rearrangement and what is the driving force behind this process, still remain unanswered.

The difficulty in following the causal linkage between electronic and atomic configurations during the phase transition (6, 7) lies in part in the short time scales of the process (4, 8), in part, in the nonequilibrium (nonergodic) nature of the glassy amorphous states (9), and, in part, in the global nature of the usual experimental techniques, such as charge transport or optical reflectivity (3). Electronic driving mechanisms for the phase-change considered early on (2, 10) were never satisfactorily proved (11), whereas numerous ab initio molecular dynamics (MD) studies (12–15) tended to emphasize local atomic rearrangements (16) while sideling the relationship to electronic structure.

Here, we demonstrate the causal link between the atomic and electronic structure during the phase change by choosing a very simple binary compound GeSb, having 2 critically important advantages. First, it is nearly vacancy free. Unlike the complex ternary Ge$_2$Sb$_2$Te$_5$ (225) that has a large number of vacancies (17) (the 225 lattice is a 2-site NaCl type, with Te on the Cl sublattice and Ge + Sb + vacancy on the Na sublattice), GeSb has only 1 (Sb) lattice with Ge substituting on the Sb sites. This is critical because during the phase-change process, along with the (orders of magnitude) jump in resistivity (3), there is a volume (density) change. The GeSb amorphous state is ~8% less dense than the crystalline form (18), so, by Le Chatelier’s principle, applying pressure (decreasing volume) should induce a change from the amorphous to the crystalline form. This will give us an isothermal path to induce the phase change.

We note that pressure-induced crystallization of GeSb has no analog in the 225 material. Instead, under pressure, there is the contrary phenomenon of amorphization (19). This process is clearly controlled by the high vacancy concentration intrinsic to the 225 crystal structure, where pressure then acts to “squeeze out” these vacancies, irreversibly denaturing the crystalline 225.

Second, the crystallization velocity in GeSb is very high (8). This—in addition to the isothermal means of reaching the amorphous state being simpler—significantly reduces the demand on computational resources (12, 14) required to track the process by using ab initio MD (AIMD) and to test the MD results against our experimental data.

Our principal finding is that the process of structural reorganization is driven by opening of the electronic gap, so that the end stage of the amorphization process is a fully gapped system, i.e., a semiconductor. The existence of an electronic driving force behind the phase change has a potential to alter future technological embodiments of this material class.

Results and Discussion

We focus on the eutectic composition (15 atm % Ge), which has a robust amorphous phase (20) and large amorphous/crystalline resistance ratio (see Fig. L4). It crystallizes exothermally at...
transition to a new intertwined tetragonal “host–guest” structure, also found in pure Sb (22), is observed. On decompression, the sequence of structures is reversed with some hysteresis, except that there is no return to the amorphous state. The amorphous sample has been irreversibly crystallized by cycling to above 2 GPa pressure—the hysteretic pressure—crystallization sequence being clearly confirmed by Raman spectroscopy (23); see Fig. S2.

We know that pure Sb (25) is a semimetal. So is GeSb, as witnessed by its relatively high resistivity in the metallic state, see Fig. 1. Indeed, it can be viewed as a Ge-doped Sb. This semimetallicity is the consequence of a Peierls distortion (1, 21, 26), driven by Fermi surface nesting in the nearly half-filled p-band, which underlies the simple cubic to A7 structural distortion. The distortion opens an incomplete energy gap—a “pseudogap”—at the Fermi level, lowering the total energy of the occupied electronic states and, hence, lowering the total electronic energy of the system (which “pays for” the elastic energy of the lattice distortion). Accordingly, in the crystalline phase, the measured metallic (Drude) conductivity (21) at low frequencies ($\omega \rightarrow 0$) is relatively high as clearly observed in the infrared (IR) conductivity data shown in Fig. 24. In the crystalline phase, a partial gap in IR conductivity $\sigma(\omega)$—expected in the Peierls picture—at ~ 0.5 eV is evident. In the amorphous phase, $\sigma(\omega)$ shows a full semiconducting gap of ~ 1 eV.

Clearly, the (Peierls) band-gap mechanism with Fermi surface nesting no longer applies in the amorphous state (21) where long-range translational order is absent nor is there, at present, an analytically tractable theoretical model that can describe the phenomena. We handle this situation by means of AIMD, a technique that implements MD on a potential energy surface derived from solving the many-particle Schrödinger equation in the density functional approximation (12). AIMD (27) is used to closely examine the amorphous state reached in 2 ways. In one, the ensemble will be melted, followed by a rapid reduction in temperature (tens of picoseconds) (12). In the other, we will apply Le Chatelier’s principle in reverse: Our new AIMD protocol will be used to amorphize GeSb by increasing the volume, equivalent to applying a tensile load.

Fig. 2B shows the AIMD-calculated optical conductivity $\sigma(\omega)$ of crystalline GeSb and of GeSb in the amorphous state, reached by both the thermal and volume methods. It is apparent that all basic experimental features of $\sigma(\omega)$ in both the amorphous and crystalline phase are reproduced. Note that the technique has the precision to correctly obtain both the frequency and conductivity scales to be in close correspondence with experiment [the density functional approach is known to underestimate energy gaps (14)]. We also note that optical conductivities of the amorphous state obtained under thermal- and under volume-quench conditions are essentially identical.

The correspondence of amorphous phases reached either by thermal or by nonthermal means is clearly evident in structural and bonding changes on the local level. Figs. 2C–E compare the Ge coordination number and bond angle, for crystalline GeSb and for the 2 kinds of amorphized systems. In the crystalline phase (Fig. 2C), Ge tends to be 3-coordinated with nearly simple-cubic bond angles (i.e., it is substitutional in the A7 structure). In contrast, in both thermally (Fig. 2D) and volume-quenched (Fig. 2E) amorphous phases Ge is predominately 4-coordinated with tetrahedral bond angles. We also find 4-coordinated Sb in the amorphous phases, but, instead of tetrahedral, they have incomplete trigonal-bipyramidal coordination. Our finding highlights the generality of 4-coordination in the amorphous state, the presence of which was previously found in the 225 compound (4). Indeed, this is unambiguously confirmed in the bond transformation calculations (28) represented by Wannier functions in Fig. 2F for a 4-coordinated Ge site in the amorphous state. They show 4 equally strong, approximately...
tetrahedral, chemical bonds, unlike the 3 strong and 3 weak bonds characteristic of the A7 structure.

Now we ask what drives the development of 4-coordination during the amorphization process (see Movie S1) and whether and how it connects with global order. We use the number of 4-coordinated sites as a metric of local order. We find that this local order parameter correlates closely with a global parameter, the total electronic energy E_{el}^{tot}. This is shown in Fig. 3A for volume amorphization, where a drop in E_{el}^{tot} and the drop in the number of 3-coordinated Ge atoms (P_3) coincide. In Fig. 3B, the opening of a gap, as shown by the decreasing curvature $\frac{d^2N(E)}{dE^2}$ of the electronic density of states $N(E)$, and by the drop in (bulk) dc conductivity $\sigma(\omega = 0)$, develops in time along with the decrease in P_3. From the observed correlation between these 4 quantities, we conclude that amorphization is driven by a lowering of the electronic energy accompanying the opening of an energy gap in the electronic spectrum. Future simulations of the amorphization process, on much longer time scales, should access further details of gap opening by formation of interlayer bonds.

We arrive at the same conclusion by analyzing amorphization by quench from the melt. Fig. 3C shows 2 such amorphization runs at different cooling rates plotted as dc conductivity $\sigma(\omega)$ vs. total electronic energy $E_{el}^{tot} = E_{el}^{cryst} + E_{el}^{am}$, where E_{el} represents lattice and electron–lattice interaction terms. In quenching from the melt, the system is lowering its global energy as it drops into a (metastable) locally accessible valley in the glassy energy landscape (9). Points of decreasing E_{el}^{tot} represent points further along in the quench. What is remarkable is that for both quench rates (and also for a single volume quench point) there is a seemingly “universal” relationship between $\sigma(\omega)$ and E_{el}^{tot}. We take decreasing $\sigma(\omega)$ as a measure of increasing semiconducting energy gap. Thus, E_{el}^{tot} is lowered (becomes increasingly negative) as the energy gap increases. This is indeed expected and is consistent with the gap-driven picture, and it confirms our results for the volume amorphization in Fig. 3 A and B.

The electronic states in the neighborhood of the gap—as determined from their participation ratio (see Fig. S3)—are found to be poorly localized like typical band states, i.e., they cannot be associated with particular local-molecular rehybridization states. This supports the concept that phase change material amorphization follows a general scenario (exemplified in ref. 26) for structurally periodic systems), wherein a typically half-filled system can lower its electronic energy by any structural change, induced by electron–lattice coupling, which opens a gap between filled and empty states. The Peierls distortion mechanism, involving Fermi surface nesting, is just one example of this effect.

Now that we have established that the end state of the amorphization process is independent of the way it is reached, we note one unique and unusual feature of the volume-quench/volume expansion cycle: it is hysteretic. Fig. 4A summarizes the results of compressive (experiment) and tensile (simulation) stress applied to GeSb. Under compressive stress, at a threshold pressure ~2 GPa, GeSb undergoes the amorphous-to-crystalline transformation (see Fig. 1C), whereas the reverse (crystalline-to-amorphous) transformation is found in AIMD to take place at a different threshold, approximately ~2.5 GPa tensile load. The kinetics of this hysteretic process can be illustrated in a simple activation-energy picture of a free-energy diagram sketched in Fig. 4B. Upon applying positive pressure, the activation energy for crystallization is pulled down, so that the process can occur at room temperature. Conversely, the activation energy for amorphization is pulled down by expanding volume equivalent to applying negative pressure.

Our studies of amorphization demonstrate the presence of local structural changes—appearance of tetrahedrally bonded Ge and incomplete trigonal–bipyramidal bonded Sb (4)—distinguishing amorphization from crystallization. The absence of localization in near-gap states supports a gap-driven mechanism associated with the nearly half-filled p-band, where a gap separating filled and empty states forms by electron–lattice interaction, thus lowering the total electronic energy. The gap-driven mechanism suggests that similar amorphous states, characterized, e.g., by conductivity, reached by different paths (thermal or volume quench) should have similar energies, leading to
of the scaling properties in Fig. 3 classifying the phase change material glassy state. Further details requiring very low input power.

Materials and Methods

Experimental. In this study, eutectic GeSb films (typically 100 nm thick) were deposited at room temperature, by using dc magnetron sputtering from a nominally Ge(15%):Sb(85%) target, onto either thermally oxidized (100) Si wafers, with subsequent lift-off to obtain free-standing films for calorimetry and IBM Watson’s Blue Gene/L supercomputer; the referees whose thoughtful comments helped improve the article; and the National Synchrotron Light Source (X17C), J. Hu and Z. Dong, for technical support and useful discussions. This work was supported by the National Sciences and Engineering Research Council (M.H.M.) and National Science Foundation Grant 0229959 (to G.J.M.).

ACKNOWLEDGMENTS. We acknowledge discussions with C. Lam, J. Crain, L. Kale, and their research groups, especially E. Bohm; computer time on Sharcknet and IBM Watson’s Blue Gene/L supercomputer; the referees whose thoughtful comments helped improve the article; and the National Synchrotron Light Source (X17C), J. Hu and Z. Dong, for technical support and useful discussions. This work was supported by the Natural Sciences and Engineering Research Council (M.H.M.) and National Science Foundation Grant 0229959 (to G.J.M.).