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ABSTRACT

Boundedness of an abstract formulation of Hardy operators between Lebesgue spaces over general
measure spaces is studied and, when the domain is L1, shown to be equivalent to the existence of a
Hardy inequality on the half line with general Borel measures. This is done by extending the greatest
decreasing minorant construction to general measure spaces depending on a totally ordered collection
of measurable sets, called an ordered core. A functional description of the greatest decreasing
minorant is given, and for a large class of ordered cores, a pointwise description is provided. As an
application, characterizations of Hardy inequalities for metric measure spaces are given, we note that
the metric measure space is not required to admit a polar decomposition.

1 Introduction: Abstract Hardy inequalities

Given three Borel measures on [0, o0), simple necessary and sufficient conditions for which the inequality

</ </fd)\>qdy(x)>l/q§c( / fpdn)l/p (1)

[0,00)  [0,2] [0,00)

holds for all positive measurable functions have been given by several authors. Letting p = g > 1, A and ) as the
Lebesgue measure and dv = 1/x d\ yields the classical Hardy inequality proved in the 1925 paper [4], which holds
with best constant p/(p — 1). Muckenhoupt, in [8], showed that letting v and 7 be absolutely continuous with respect to
the Lebesgue measure, the inequality holds if and only if a one-parameter supremum is finite. Bradley, in [3]], extended
the result for indices 1 < p < ¢ < co. Maz’ya, in [7|] and Sinnamon, in [17]], showed that for 0 < ¢ < p and

1 < p < o0, the characterization is given by the finiteness of a single integral. In the case p > 1, simple
characterizations for inequality (I]) can be found in [14].

Extensions have been made in several directions; results for more general measures, higher dimensions, restrictions on
the domain are available, see [6].

The case p = 1 must be treated differently. In [5, Theorem 3.1] the following characterization is shown:
Theorem 1.1. If0 < ¢ < 1 = p, then the inequality (1)) holds if and only if
1/q

( [(/ ;Udy)l“d,,@) . o

[0,00) [0,x]
with w(x) = ess infy{w(t) : t € [0, ]}, where dn = d\* + wd\ and \* 1 \.

In this paper we are concerned with a large class of Hardy inequalities introduced in [[13]], which require the following
definition.
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Definition 1.2. Let (U, %, p) and (Y, T, 7) be two o—finite measure spaces, a map B : Y — X is called a core map
provided it satisfies:

1. (Total order) The range of B is totally ordered by inclusion.
2. (Measurability) For each E € ¥. the map y — p(E N B(y)) is T —measurable.
3. (o-boundedness) There is a countable subset Yo C'Y such that\J,cy B(y) = U, ey, B(v)-

4. (Finite measure) Forally € Y, u(B(y)) < oc.

Given a core map, an inequality of the form

(/( / fdu)da(y)>1/qgC’(U/den>1/p, 3)

Y  B(y)

for all positive measurable functions f is called an Abstract Hardy inequality. Notice that setting Y = U = [0, o0) and
B(y) = [0, y] recovers inequality . In the case that ;o = 7, [[13} Theorem 2.4] shows that the best constant C in (3)) is
the same as the best constant in the inequality

(£ (e

for an appropriate non-increasing function b : (0, 00) — [0, oo]. For p > 1, any abstract Hardy inequality (3)) can be
reduced to the case where 7 and p coincide (see |13, Theorem 5.1]), however the reduction is not available for the case
p = 1, as the formula involves a power of the form 5 L Our main result is the following extension of Theorem to

-1
the abstract setting.

1/q o0
v
§C(/f(t)pdt) " forall f € L,
0

Theorem. For o —finite measure spaces (Y, T, 7), (U, X, u), (U, X, v) andacore map B : Y — X, letn = 14 + 15,
where dn, = udp and s L u. Then the best constant C' in the inequality

(/( / fdu>qd7(y)>l/q§CU/fdn,

Y B(y)

satisfies
1—gq

cx </ ( / R(i) °ﬂ°B<y>dT<y>) - dT<z>> forg € (0,1),
Y pu(B(2)<u(B(y)) B
and

C = sup (1(s)> r({yeY:seByH, forqe[l,00).
seU \U

The map R is introduced in Section 2.1 and the proof of the main Theorem will be provided in Chapter 3.

Our approach is to show that, for p = 1, an abstract Hardy inequality is equivalent to a Hardy inequality with measures
and give necessary and sufficient conditions for such an inequality to hold.

In Section 2 we introduce the tools necessary to state our main result. The key construction is the greatest core
decreasing minorant of a function, which extends the construction w of Theorem [I.1|to general measure spaces. This
construction allows us to reduce inequality (3) to a suitable inequality of the form (1. This is done in Section 3. In
Section 4 we give explicit examples of the greatest core decreasing minorant and apply the main result in Section 3 for
Hardy inequalities in metric measure spaces. We leave Section 5 for a proof of a functional description of the least core
decreasing minorant, which is the key step in proving our main result.

We finish this introduction by setting up notation and some basic results. For a o—finite measure space (U, %, ;1) and a
set A C 3 we denote the o —ring generated by A by o(.A). By L(A) we mean the collection of all (equivalence classes
of) [— o0, oco]—valued o (A)—measurable functions on U. The collection of non-negative functions in L(.A) is written
as Lt (A). We reserve the notation Lg for the collection of X —measurable functions and Lf[ for the non-negative ones.
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We write 0 < av, T « to indicate the limit of a non-decreasing sequence in [0, o] and use a, | o when the limit is

non-increasing. In the case of sets, we write A,, T A or A,, | A if their characteristic functions converge increasingly
or decreasingly almost everywhere. We adopt the convention that expressions that evaluate to 0/0 will be taken to be
zero. For p € (0, co] the expression LP, denotes the usual Lebesgue space of ;i—measurable functions. For two positive

14

constants C' and D we write C' =~ D if dy D < C < dy D for positive numbers d1, ds.
For a function f € L(X), its distribution function, y is given by p1(a) = p({s € U : |f(s)| > a}). Following [1], if
pf = g then for any p € (0, 00) we have [ |f|” du = [|g|” dr.

U Y

We consider a metric measure space to be the triple (X, d, 1) where d is a distance function and p is a Borel measure
with respect to the topology induced by the metric d and for every a € X and r > 0, the closed ball of radius r centered
at a has finite measure.

2 Ordered cores

In this section, we set up our tools and notation to work with monotone functions in general measure spaces without an
order relation on the elements. First, we recall some key definitions in [[12, Definition 1.1]:

Definition 2.1. Let (U, X, ) be a o—finite measure space. A family of sets A C 3 is a full o-bounded ordered core
provided:

1. The family A is totally ordered by inclusion.
2. Every set E' € A has finite py—measure.

3. The space U can be realized as the union U = | J A, & for some countable subfamily Ay of A.
We will also need following related concepts

* For a full ordered core A the relation < 4 on U is defined by u < 4 vifforall A € A, v € A implies u € A.
When there is no ambiguity on the core, we omit the subscript 4. We will write u < 4 v whenever u <4 v
holds but v < 4 u fails.

* For a full ordered core A there exists an extension M that does not modify the order relation and is closed
under arbitrary unions and intersections, provided the result has finite measure and o(A) = o (M) (see [[12}
Lemma 4.1]). We will refer to this extension as the maximal core induced by A.

* For a maximal core M and E € o(A), then E € M is equivalent to: For all u,v € U, if v € E and u <4 v,
then u € E. (see |12, Lemma 4.1 (¢)])

* A function f : U — [0, o0] is called core-decreasing relative to A if it is o (.A)-measurable and if for all
u,v € U, u <4 vimplies f(u) > f(v). The collection of core-decreasing functions is denoted by L*(A).

We define the collection of (equivalence classes of) functions
Live sy = {fe L(%): /Am dp < oo forall A € A}.

Let B be the Borel o —algebra on [0, 00), then by virtue of [[12, Theorem 6.4], for every ordered core A there exists a
Borel measure A induced by the core A and linear transition maps R : L] o Lfoc, yand Q : Lfoc’ \ — L
satisfying:

1. If o € Lt (B) U Ly ., then RQy = ¢ up to a set of A—measure zero.

2. If f € LY (A) U (L}

loc.a, 11

N L(A)), then QRf = f up to a set of —measure zero.

3.1 fe LT (X),p € LT(B)and A € Athen
[rawin= [ Rpeir wmd [re@rd= [ R)ear
A ] U

(0,1(4) [0,00)

4. 1f f,g € L} N Ly N L(A), then R(fg) = R(f)R(g).

loca,p
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5.0 f,ge L N L., , O L(A) satisfy [, fdu= [, gduforall A€ A, then f = g up to a set of zero
Ji—measure.

Notice that condition (v) follows from (ii) and the fact that the equality [ RfdA = [ RgdX holding for all z > 0
[0,2] [0,2]

forces that the functions R f and Rg to be equal A—almost everywhere.

We introduce our main technical tool, which extends the greatest non-increasing minorant (see [[16 Section 2]).

Definition 2.2. For a X—measurable function g, we call h € L*(A) a greatest core decreasing minorant of g if
0 < h < |g| p—a.e and for any w € L*(A) satisfying 0 < w < |g|, thenw < h p—a.e.

Note that a greatest core decreasing minorant is unique almost everywhere, provided it exists. The next lemma shows
that such a greatest core decreasing minorant always exists.

Lemma 2.3. Every YX—measurable function g admits a greatest core-decreasing minorant denoted g, which is unique
p—almost everywhere.

Proof: Suppose that |g| < C' < oo and let { A, }en € A such that A,, T U. Set

an :sup{/ hdp: h € L¥*(A) and h < |g|}
A'n.

The collection defining the supremum is not empty as h = 0 is a core-decreasing function, moreover, the supremum is
finite since [ hdp < Cu(4,) < .
An

Let by, = 0 if o, = 0, otherwise there exists h,, € L¥(A) such that h,, < |g| and o, — 1/n < f hy, dpi. Since the

pointwise maximum of core decreasing functions is core decreasing, we may assume that {h,, } is an increasing
sequence. Let h = sup,, h,,, which is clearly a core decreasing minorant of g.

To show that h is the greatest core decreasing minorant of g, let w be another core decreasing minorant, then so is
max{h,w}, thus

oo > /hdu > /hndu >ap —1/n> /Inax{w,h}duf 1/n.
An An An
Then 1/n > j (max{w, h} —h) dp > 0. Let n — oo to get max{w, h} = h almost everywhere. This completes the

proof in the case that g is bounded.

For the unbounded case, define g, = min{m, |g|} and let g,,, be its greatest core decreasing minorant which exists
since gy, is bounded. Since g,,—1 < min{m — 1, [g|} < min{m, [g|} = gm. then g,,_1 < gy,,. Therefore { g }men
is an increasing sequence.

Let h = sup,,,cy gm- Since each g, is bounded above by |g|, then h < |g], thus  is a core decreasing minorant of |g|.

If w is another core decreasing minorant of |g|, then min(m, w) is a core decreasing minorant of |g,,|, thus
min(m, w) < gm. Let m — oo to get w < h and complete the proof.

O

The next theorem gives a functional description of the greatest core decreasing minorant; it extends the corresponding
statement in [[16, Theorem 2.1] to a very large class of functions. The proof follows a different argument than its real
line counterpart and is left for Section 5.

Theorem 2.4. Let u and f be non-negative measurable functions, finite u—almost everywhere, such that
fU ufdy < ooand f € L}OCA’H. Then

/fgd,u:inf /gudﬂ:/gduZ/fdﬂforallAé.A
U A

U A

As the necessary and sufficient conditions for the existence of a finite constant C' in the abstract Hardy inequality
depend on the computation of this greatest core decreasing minorant, the next result gives an explicit pointwise formula
of this minorant, in the case that the ordered core satisfies a mild condition. It is worth mentioning that for the ordered
core constructed in [[12| Example 5.4], the following formula does not hold. Hence, some condition on the core must be
required.
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Theorem 2.5. Let (U, %, 1) be a measure space with a full o —bounded ordered core A such that arbitrary unions and
intersections in A are o(A)—measurable. Then for any X —measurable function g the formula
g(s) = ess inf,, {|g(v)] : v <4 s}
holds.
Proof: Let h(s) = ess inf,, {|g(v)| : v <4 s}. Since the order relation A is unchanged if we replace A by its maximal

core, we may assume that 4 is maximal and that arbitrary unions and intersections of core sets are in the core, provided
the result has finite 4—measure. It follows from the definition of the order relation that

{tEU:t<As}:U{A€A:s€A} and {tEU:tSAS}zﬂ{AEA:SQA}.
By hypothesis, all of these sets are o (.A)—measurable for all s € U. Define [s] = {t € U : t <4 sand s <4 t}, which

is the difference of the sets above, so it is o(.A4)—measurable as well.

To show that g is a o(A)-measurable function: Let o € R and define O = h™! (a, 00), we proceed to show that O is
o(A)—measurable.

Clearly O C |J,co{t € U : t <4 x}. Conversely, if z € O and y <, =, then

hMy) =essinf, {t e U :t <ay}>essinf, {t cU:t <4z} =h(z)>q
hence {t € U : t <4 x} C O, this proves that O = |J ., {t € U : t <4 z}, which by hypothesis, is a
o(A)—measurable set. As « was arbitrary, then & is o(A)—measurable.

Since h satisfies y <4 x implies h(y) > h(z) and is 0(A)—measuable, then it only remains to show that h is a
minorant of |g| and that it is optimal.

We show the inequality h(z) < |g(z)| by cases, depending on the measure of the set [z]. If z € U satisfies u([z]) > 0,
notice that if 2’ € [z] then h(z") = h(z). Hence, by definition of essential infimum we have that

w({7 €[z] : lg(z")] < h(2)}) = 0. Therefore h < |g| on [z] up to a set of u—measure zero. Since A is a o —finite
measure, the collection of sets Up = {[#] : u([2]) > 0} must be countable. Hence, we have h < |g| on its union up to
a set of y—measure zero.

We must show the same inequality holds for the set Uy = {z € U : u([z]) = 0}. For this purpose: Fix
e>0,n,meN, {A4,} € Asatisfy U C U, A,, and define

S ={2€UsN Ay : h(z) —|g(z)| > eand ne < |g(z)| < (n+ 1)e}.

By the previous estimate, we have that

p({z €U :[g(2)] < h(2)} \ UnnSmn) = 0.

Since Up € o(.A), is obtained by countably many unions of set differences of core sets, then Ry, is a characteristic
function by [12, Proposition 6.2(1)]. Since U = Uy U Up, we have that Rxy, is also a characteristic function, and
[0, 00) is a disjoint union of some Borel sets Lo, Lp such that x1, = Rxv, and x1, = Rxuv,,-

We claim that any ¢ € [0, co) satisfying A({¢t}) > 0 must be contained in L. To see this, let E1, F satisfy
w(E1) = A(0,t) and p(F2) = A(0, ], Observe that any A € A must satisfy u(A) < p(E7) or u(Es) < u(A). Define
M=U{AceA: u(A) <u(Ey)} and N=n{Aec A:pu(E;) < A}.

By hypothesis M, N € A, by the choice of E7, F5 we must have that ;1(A) < pu(FEs) implies u(A) < p(Ey) and the
monotone convergence theorem shows that p(M) = p(E7). Similarly, the dominated convergence theorem shows that
u(N) = pu(Es). Let z € M \ N, then p([z]) = A(t) > 0, s0 M \ N is contained in Up. An application of R yields
te Lp.

Since the support of Rx g is contained in L, then there are no atoms, thus the function

m,n

e(y) = / Rxs,, . dA
[y,00]

is continuous. Moreover, ¢(0) = p(Sy, ) and lim ¢(y) = 0.
Yy—00
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Suppose that (S, ) > 0 seeking a contradiction. Pick 71,72 > 0 such that ¢(ry) = @ p(ry) = “(Sé"’") and

let E € Asatisfy r1 < u(E) < ro. Then pu(Sy,, N E) > 0and u(Syn \ E) > 0. Letz € Sy, \ E, thenany t € E
satisfies ¢t <4 z, thus

h(z) = essinf, {|g(t)| : t <4 2z} <essinf, {|g(t)|:t € E} <essinf, {|g(t)]:t € ENSpn} <e(n+1).

But since z € Sy, ,, we have h(z) > ¢ + |g(t)| > € + ne = (n + 1)¢, which is a contradiction, therefore 1(Sy, ) =0
for all m,n € N. This shows that h(z) < |g(z)| almost everywhere.

We have shown that / is a core-decreasing minorant of g, thus i < g- To show the converse, let z € U, and note that if
t <4 z then g(z) < g(t) < |g(t)|, therefore taking essential infimum yields g(z) < h(z) completing the proof.

O

As a consequence of this result we have the following examples where the ordered core satisfies that any arbitrary union
or intersection of core sets can be reduced to a countable one, therefore it is measurable. These examples show that the
terms appearing in formula (T.T) and [9, Theorem 3.1] are a particular case of the greatest core decreasing majorant.

Example 2.6. Let U = [0,00), A= {0} U{[0,z] : = > 0} and p be a Borel measure, then

g(x) = ess infio ) lg(t)].

Example 2.7. Let U = X be a metric measure space with distance function d, a € X be any element, u be any Borel
measure and the core

A={0}U{B,, :r >0}
where B, , = {x € X : d(a,z) <r}. Then

g(x) = ess inf,, {|g(t)| ite Ba’\wla} ,

where |x|, = d(a, ).

3 Abstract Hardy inequalities with p=1

Our approach to finding necessary and sufficient conditions on the measures for inequality (3) is to find an equivalent
inequality involving only two measures and a weight function, then to use Theorem [2.4]to replace the weight function
with a core decreasing function. Finally we find an equivalent Hardy inequality on the half line.

Proposition 3.1. Let ) and p be o-finite measures over (U, X) and let T be a o-finite measure over (Y, T). Suppose
B:Y — Y isacore map and p = 1. Then there exists a positive Y —measurable function u such that the best constant
in inequality ([B)) is the same as the best constant in the inequality

1/q

(/( / fdu) dT(y)> SCqudu, VfeLf @

Y B(y)

Proof: An application of the Lesbesgue decomposition theorem shows that © = g + ps, with e << nand p; L 7.
Also U = Uy U U, with Uy N Uy = ( and po(Ur) = 0 = 1(Us). The Radon-Nikodym theorem provides a

¥ —measurable non-negative function h such that dus = hdn. If E = {s € U : h(s) = 0} we can define the function
g = hxw\g) and the sets V; = U; \ E'and V3 = Uy U E to get a decomposition dy = g dn + dyu1 supported on Vi
and V5 respectively, moreover g is never zero on V7. Thus the inequality (3)) becomes

(/(/

Y B(y)

fgdn+ (/)fdul) dr(y)) sc/den, Vel
B(y

Fix z € Y and set f = X (B(z)nv,), then if C'is finite, we have

(}/ (Ml (B(y) ﬁB(z))) dT(y)) = (Y/( / d/u) dT(y)) < Cn(B(2)NVa) = 0.

B(y)NB(z)

Therefore p1 (B(y) N B(z)) = 0 for almost every v, since this holds for all z € Y, then letting B(y) T U we get
pr (U) = 0.
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Hence the inequality becomes

(/( / fgdn)da(y)ng/den, vfe Lt

Y B(y)

Since g is non-zero n—almost everywhere, then we can define u = é, so dn = u dy and yields inequality (4). This
shows that if the best constant in the inequality (3] is finite, then it is also the best constant in the inequality (). For the
remaining case, notice that we can decompose dn = udu + dny for some measure 7 satisfying 17 L 72. Therefore

sup <J (B(fy) fdu)(IdT(y)); < sup <3[ (B(fy) fd/v‘)da(y)>;

feLf Ju fdn - ferf Ju fudp ’

thus if the best constant in inequality (3) is infinite, then it is also the best constant in the inequality (@) and completes
the proof.

O

Now we replace the weight function u with its greatest core decreasing minorant.

Proposition 3.2. Given a o-finite measure i over (U, ¥), a o-finite measure T over (Y, T), and a core map
B :Y — %, the best constant in inequality () is the same as the best constant in the inequality

(/( / fdu)da(y)>l/q < C/fgdm ®)
U

Y  B(y)

where u is the greatest core-decreasing minorant of u with respect to the ordered core A = {0} U{B(y) : y € Y}.
Proof: Our goal is to show that

(g (Bi) fdu)qdf(y)> < J (B(f) fdu>qd7(y)>
sup ‘ = sup Y

£20 J fudp #>0 [ fudu
U U

1/q 1/q

Since u < u, then *<’ is clear, hence we focus on the converse. If the left hand side of the inequality above is infinite,
then the result is trivial. Thus, we focus only on functions for which fU fudyis finite and [}, f dy is also finite for any
core set E € A, so Theorem [2.4] applies and we get

q 1/q q 1/q
( J <B(fy) fdu> dr<y>> ( J (B({/) fdu) d7<y>)
p up

720 ({f@du f=0 inf{fgudu:f#g}
U
q 1/q
(f( [ gan) m))
Y \B(y)
= supsu S
70 T J gudp =9
U
g 1/q
<f( / gdu> dT(@/))
< supsup Y B =<y
>0 ngdH
U
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Where the symbol f < g means that [, f du < [}, gdp forevery E € A.

<f( S f@) dr(y)
Y \ B(y)

J fudp

U

1/q

The right hand side is bounded above by sup , this completes the proof.

O

We now reduce the problem to a Hardy inequality with measures over the half line.

Lemma 3.3. Given B, T, i1 as in the previous propositions, then there exist Borel measures v, X on [0,00) and a
non-increasing function w finite \—almost everywhere, such that the best constant in inequality (B) is the best constant

in
q 1/q
( / /fd)\) du(m)) <C / fwdA, erLj{ 6)
[0,00)

[0,00)  [0,z]

Proof: Since B is a core map, then the function ¢ : Y — [0, 00) defined by ¢(y) = u(B(y)) is measurable. Let v be
the push-forward Borel measure associated to ¢, that is

v(E) =7(p '(E)),VE Borel.
Let X be the Borel measure associated to the ordered core .A with enriched core M, and R, @ the transition operators.
Fix a positive X —measurable function f integrable over every core set A € A and define the functions
Hf(z) = / R(f)dA, and Tf(y)= / fa.
[0,2] B(y)

We will show that H f and T'f are equimeasurable with respect to the measures v and 7 by computing their distribution
functions. First notice that for all y € Y we have

Hfoo) =1 (u(Bw)) = [ ROd= [ far=150)
(0,u(B(y))] B(y)
Fix o > 0 and define the sets
E,={zr€0,00): Hf(z) >a} and F, ={y €Y : T(y) > a}.
Let

v =sup z € [0,00) : / Rfd\< «
[0,z]
Notice that by the monotone convergence theorem H f(y) < .. We claim that E,, = (v, 00) and that F,, = ¢~ (E,).

Let x € E,, then since H f is increasing, we must have that > ~, thus E, C (v, c0). Conversely, let z > ~, then
Hf(x) > a, thus z € E,, this shows the first equation.

For the second equation, notice that

Fo={yeY :T(y)>at={yeY :Hfop(y) >a}.
Soify € F,, then p(y) € E,, this shows F,, C ¢~ (E,). Conversely, if y € ¢~ (E,), then T'(y) > «, hence
y € Fy,.

Computation of the distribution functions yields
V(Ey) = 1(¢ " (Ea)) = 7(Fa).
Therefore H f and T f are equimeasurable, hence

(mé | ({04 R dy>‘3 _ <[0 Z@) (Hf>qdy>; ) (Y/(Tf)qu
- (/( / fdu)da>

Y B(y)

1
q
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Since u is core-decreasing, then we have

/fyd,u: / RfRudA.

U [0,00)

Therefore if inequality (5) holds, so does

</ /Rf‘“yd”(f))(llic / RfRud\, VRf € L}.

[0,00)  [0,2] [0,00)

Note that Ru must be finite almost everywhere, otherwise the original measures are not o —finite. The result follows
from letting w = Ru and noting that R is surjective.

O

We are ready to prove the main result.

Theorem 3.4. For o—finite measure spaces (Y, T,7),(U, X, u), (U, X, v) and a core map B : Y — X. Let
1N = Nq + ns, where dn, = udp and ns L p. Then the best constant C' in the inequality

</< / fdu>qd7(y)>1/q < C/fdn, (7

Y B(y)

satisfies

1—
q q

/ ( / R (i) oo B(y) dT(@/)) w dT(z)] T, forq € (0,1),

Y w(B(2)<u(B(y))

and

C = sup <1(5)> T{yeY:se B(y)})l/q , for q € [1,00).
seU \U

Where the least core decreasing majorant is taken with respect to the core A = {0} U{B(y) : y € Y} and R is the
linear map mentioned in Section 2.

Proof: Suppose that ¢ € (0,1), then by Lemma [3.3|and Theorem|1.1](Theorem 3.1 of [5])) the best constant is

equivalent to
_a_ 1/q
([ gw) ave
o v v(x ,

[0,00)  [0,2]
where w = R(u) and v is the push-forward measure (see [2]) for the map ¢(y) = p o B(y). Notice that w = w, and it
follows from Definition 2.2 (iv) that % =R (%) , then

/ idu _ /[O N R (i) o] dv = /YR (i) o 0(¥)X[0,4) © P(y) dr(y)
(0,2] ’ B -
_ / R (i) o p(y) dr(y).

p(y)<z

Thus
/ zlud'/)qu dv(z) :/ < / R (i) o o(y) dT(y))qu dr(2)

w Y
[0,00)  [0,2] P(y)<ep(z)
and completes the proof for the case ¢ € (0,1).

The case ¢ € [1, c0) follows directly from duality and we include it for the sake of completeness.
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By Proposmon @] the best constant in inequality (7)) is the norm of the integral operator
= [ k( s) df(s) acting from L — L where df = udy and k(y, s) = u(s) XB(y)(8). By duality, it is

the best constant in the mequahty

Y/k:(y, () dr(y)|| <cC (/Y he dT) ’ \Vhe Lt

Ly
Define 15(y) = 1if s € B(y) and ¢5(y) = 0 otherwise. Divide both sides of the equation by [|h]|, .~ to get

Y VLI R
P u(S)/ws(y)Hng/d(y% eU, <C.

Taking supremum over non-zero positive functions i yields

bup Vsl s < C,

()

which is the same as

C > sup (i@)) F(fyeY:se B,

seU
For the reverse inequality, an application of Minkowski’s integral inequality yields

Y/ (f k<s,y>f<s>do<s>)qd7<y> 1/q§ U/ (f ws@)dT(y))” q oy

SSup(i(s)> ({yeY:scBy 1/q/f ) do(s

seU
hence C' < sup,¢yy (%(s)) T{yeY:se B(y)})l/q and proves the statement for g € (1, 00).
O

4 Applications to metric measure spaces

In this section we show that the framework of abstract Hardy inequalities can be used to give different proofs to [[10,
Theorem 2.1 Condition D1 ], [11, Theorem 2.1] and [9, Theorem 3.1]. These theorems give necessary and sufficient
conditions for Hardy inequalities to hold in metric measure spaces; they cover three cases depending on the indices p
and ¢, provided the existence of a locally integrable function A € L{. . such that for all f € L'(X) the following polar

decomposition at a € X holds:
/fdp / / flr,w)A(r,w) dw,dr,

for a family of measures dw,., where ¥, = {x € X : d(z,a) = r}.

Our new proofs show that the polar decomposition hypothesis is not required so the results hold in all metric measure
spaces.

We also give the corresponding results regarding the conjugate Hardy inequality discussed in [[10}
Theorem 2.2 Condition D7] and [9}, Theorem 3.2].

We begin with the case p > 1, extending [10, Theorem 2.1 Condition D, ], [[11, Theorem 2.1] to all metric measure
spaces.

Theorem 4.1. Let i1 be a o—finite measure on a metric measure space X. Fix a € X and let p € (1,00), ¢ € (0,00)

and w,v be measurable functions, positive p—almost everywhere satisfying w € L, (X \ {a}), v'=? e L} (X). Then
the Hardy inequality

(( ] v i) e frommi) e

Ba, |z,

10
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holds if and only if p < q and:

X\Bq, ||, Bz,
0<g<l<pand
/ ( / wdu) ’ ( / T du) ’ u(s) du(s) < oo,
X X\Bg,a|, Ba,|al,
1< qg<pand
/ ( / wdu) ’ < / v!P d,u) Tylor (s)du(s) < oo,
X X\Ba,|m|a Ba,|z|a
where L =1 1
T g P

Proof: The Lebesgue decomposition theorem applied to the measures dy and vdp provides measures (i1, o such that
W= 1 + po, p1 L vdu and ps << vdp. Since v > 0 p—almost everywhere we can take 117 to be zero and write

1
dp = —d(vdp).
v
Let dr = v ? d(vdy) andset Y = {s € X : I " v'~?" dy < oo} Define the map B : X — ¥ by
B(y) = Ba,\y\a-
The image of B is an ordered core with respect to the measure .

By hypothesis Y = X and since 1 = 0, [[13, Theorem 5.1] provides the equivalent abstract Hardy inequality

1

(/( / de) w(y)d/t(y)) SO(!fpdT)preL;.

X Bnuly\a

By definition of 7 this is equivalent to

( J( ] o an) o) du(.u))

X Ba,jyl,

Q=

< C(/fpyl—l/ du)p, Vfe L:. (8)
X

Let A be the measure on [0, co) induced by the core, so that for every M in the core

/ Rfd\ = /fvl_p/ du, where x = /01—;7/ dp.
M

[0,z] M

We claim that inequality (§) is equivalent to the Hardy inequality
q a L
w P P +
( / (/gdA) R(ﬁ) dA(y)) gc( / gd/\> , VgelLf. )
[0,00) [0,y] [0,00)

By [13| Theorem 2.4], it suffices to show that the normal form parameters of inequalities (8) and (9) coincide. Hence, it
suffices to show that the maps

by(s) = / v dp and  by(z) = A([0, 7))
Ba,jsl,

have the same distribution functions with respect to the measures w dy and R (vlf — ) d ) respectively.

11
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Fix ¢ > 0 and consider the sets F; = b ' (¢, 00) and Fy = b, ' (¢, 00), we give a characterization for these sets.

Define the set W as follows

W:U Ba,\s| . / Ulip/ d,LLSt

B,,s

la

If z € Fy, then by (z) > t, thus z € W, conversely if z € W then b (z) < t, therefore z ¢ F1. Hence W€ = Ej.
Since W is a union of closed balls centered at a, then there exists a sequence s,, such that B(a, s,) T W. Let

th= [ o"Pdpu
B(a,sy)

Let ¢ be defined as

t=supqz<t:z= / v " dy for some s € X b
Ba,isl,
hence £ = \[0, t].
Therefore,
/ wdp = sup / w dy by the Monotone convergence theorem

neN
By B(a,sn)

— sup / R (=) dA by the action of R

neN
(0,tn]

= / R (%p,) dX by Monotone convergence theorem
v

[0,t]

E3
Since by hypothesis f wdp < 0o, then we have that

B
/ wdy = / R(Uﬁp,)d)\.

by (t,00) by (t,00)

It follows that the distribution functions coincide and proves that the Hardy inequalities () and () have the same
normal form parameter, therefore they are equivalent.

For all the index cases, we can apply [I5, Theorem 7.1] to get that in the case 1 < p < ¢ < oo, the inequality (9) holds
if and only if

1

Sl;p( / R(ﬁ) dA(t))é(/ d)\>p/<oo

[x,00 [0,z]

which is equivalent to
1 1

sup( / wdu)q( / o d,u)p < o0
s#a
X

a,lslq a,|s|g

Andin the case 0 < ¢ < 1 < p < oo, the inequality (9) holds if and only if

/ </R(vl{ﬁp) dA>;</ dA>;}R(Uf‘J_p,) dA(x) < o0

[0,00)  [z,00) 0,z

12
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which is equivalent to

/< / Wd”>;< / vl_p/dlﬁ)&UJ(S)dﬂ(skoo.
X X\B,, .., B

In the case 1 < ¢ < p we have that inequality (9) holds if and only if

w ] 7
/ ( / R(W) d>\> (/ dA) d\(z) < o0
0,00) [z,00 [0,2]

which is equivalent to

wdu) ' ( / o d,u> ! T du(s) < oo
X X\Ba|sl, Ba,s
completing the proof.
O
We also have a corresponding result to the conjugate Hardy inequality, extending [[10, Theorem 2.1 Condition D; ]

Theorem 4.2. Let i be a o—finite measure on a metric measure space X. Fix a € X and let p € (1,00), g € (0, 00)

and w, v be measurable functions, positive ji—almost everywhere satisfying v* =" € Li (X\ {a}), w € L},.(X). Then

the Hardy inequality

(/( / ) du(y)>qw(x) du(x)>é < C(/f(x)pv(x) du(x)f, VfeL}

X X\Ba s,
holds if and only if p < q and:

e

( / i du) ’ < 00,

1
sup < / wdp
T#a
Ba,z|, X\Bq, 2|,
0<g<l<pand , )
/ ( / wdu) ’ ( / T du) ’ u(s) du(s) < oo,
X Bajel, X\Ba,jzl,
l1<qg<pand ,
/ < / wdu) ’ < / o du) ’ 0P () dp(s) < oo,
X Bajal, A\Baz|,
where £ =1 — 1
T q p

Proof: We only sketch the proof as most details follow the same argument as Theorem 4.1

Let dr = v' =7 dp. Observe that the hypothesis on v guarantees that, for each y € Xthe sets X \ B,y have finite 7
measure. Thus the map B(y) = X\ B, ||, is a core map.

Then the Lebesgue decomposition Theorem and [[13, Theorem 5.1] provides the equivalent abstract Hardy inequality

(/( / de) w(y)du(y)> <C<X/deT>p7erL:,

X X\B,,

lvla

By definition of 7 this is equivalent to

</ ( / f”“’"du)qudu(y))

X  X\B

1

< C(/fpvl—f’/ du) " VfelLl. (10)

X

Q=

a,lylq

13
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Let A be the measure on [0, c0) induced by the core, so that for every y € Y
/ Rfd\= / Fo'™P dp, where z = / 07 dp.
[0,z] X\Ba,\y\a X\Ba,\yla
The maps
b = [ o dn and (o) = X(0.9])

X\Ba,|s|,

have the same distribution functions with respect to the measures w dy and R ( ) d) respectively. Then, by [13|

w
vl-p’

Theorem 2.4], we get that the inequality is equivalent to the Hardy inequality

R(Y % <C N X
/ / gdr R(W) d\y) | < / gPd\) ", VgeLf. (11)
[0.50)

[0,00)  [0,y]

For all the index cases, we can apply [[15, Theorem 7.1] to get that in the case 1 < p < ¢ < o0, the inequality
holds if and only if

1

sgp( / R(ﬁ) dA(t))é(/ d)x)z/<oo

[z,00) [0,2]
which is equivalent to
1 L
a , 7
sup( / wdu) ( / vtP du) "<
s#a
alslg X\Ba,|s|,

And in the case 0 < ¢ < 1 < p < oo, the inequality holds if and only if

[ (] =G) dA>;</ dAYR(Uf"_p,) AA(z) < o0

[0,00)  [z,00) 0,z

which is equivalent to

T
7

3!< / wdﬂy(x / vl_p/d“>pw(s)dﬂ(8)<oo,

Ba, s,

alslg

In the case 1 < ¢ < p we have that inequality (IT)) holds if and only if

x
7

[ (] oG o) ([ o) e

0,00) [z,00 [0,z]

/( / Wd“);( / “1_pldu>qv1‘p’du(8)<oo

X B, X\B

which is equivalent to

a,ls|g

completing the proof.
O

For the case p = 1, our main result implies the following characterization
Corollary 4.3. Let i be a o—finite measure on a metric measure space X. Fix a € X, let g € (0,00) and w, v be

measurable functions, positive —almost everywhere satisfying w € L}, (X \ {a}), v e L}, (X). Then the best
constant in the Hardy inequality

(/ (] f@)d“(y))qw(@d/z(x))ésc [ f@w@ duto), s < L

X Ba,\z\a

14
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satisfies .
0= ( J( [ Lewwae) e du(2)>q,forq £ 0.1)
X z<aw
and
C= wsgg <i(m)) < / w(t) d,u(t)) 1/‘1’ forq e [1,00).

< gt
Where v(x) = ess inf, {v(t) : t € By |z, }, @ <a t means B, |, C Bla, [t|) and
Bz, = {2 €X: a’zst(a z) < dist(a,x)}.
Proof: Let A = {0} U {Ba,|z|, }zex. it is the full ordered core induced by the core map x — B, |, . Let dT = wdp,

dn = vdp and X be the measure on [0, co) induced by the ordered core.

Consider the function ¢ : X — [0, 0c) defined by ¢(z) = u(By,|.|, ) and let v be the pushforward measure. Then, if
y = p(z) we have

v(10,9]) = (™ = [ = [ du=xop@) = A(0.0).
p(t)<y B |z

It follows that the Borel measures v and A coincide and are finite over [0, y] for all y > 0, therefore A is the
pushforward measure of (.

We now show that R( 1) = 1 o ¢ up to a set of y—measure zero.
v v

Indeed
/ id“: i(t)du(t)z / R<i>(t)dk(t)= / R<i>(t)xwvw<x>1(ﬂdk(ﬂ
B, () Z0(@) [0.5() [0:5¢)
_ [r(L), » _ I
_ / R ) o 9Ot (0 y / (z)RQ) ot) i)
_ / R(Dw(t)du(t).

B

a,|z|,

Since the equality holds for all core sets, then R( ) = % o  almost everywhere.

|2 =

Then for ¢ € (0, 1), Theoremyields

1—g

O~ ( / ( / R(i)Otp(w)w(m)d/L)quw(Z)du(Z)) q

X p(2)<e(=)

1—g

~ ( J(] i(x)W(w)du>quw(Z)du(Z)> "

X z<ax

The statement for g € [1, co) follows directly from Theorem The description of v follows from Example 2.2 and
completes the proof.

O

Our result regarding the conjugate Hardy inequality to Corollary 4.T|needs a small adjustment. Since for a metric
measure space X, the sets (X'\ B, |, ) may have infinite measure, then the collection {X\ B, |z| }zex may fail
condition (ii) in Deﬁnltlonn ThlS obstruction is addressed in the following lemma.

15
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Lemma 4.4. Let ;1 be a o—finite measure on a metric measure space X. Fix a € X. Let {X,,} be a sequence of sets
with finite p-measure such that a € X,, 1 X, ¢ € (0,00) and w, v be measurable functions, positive y1—almost

everywhere satisfying v'* € L L(XN\ {a}), w € L, (X).
For eachn € N. Let C,, be the best constant in the inequality

(/( / f(y) du(y))qw(x) d,u(x)); . C’n/f(ir)v(x) u(x), Vf e L (12)

Xn  Xn\Ba,ja|, Ko

and C' be the best constant in the inequality

( / ( / f(y)du<y>>qw<x> x> < [ @) dute). V1 € L}, (13)
X X\Bq,.|,

X
where B, |, = {2z € X : dist(a, z) < dist(a, r)}.

Then,

C =supC),.
neN

Proof:

Fix f € L, then an application of inequality yields

1

q

q

( F)xe, ) du(y)> w(z) dum)
X\B Jzlg

/ W)xx, () v(y)duly) = C / £ () v()dp(y).

(/ (X"\B/ F)duts) ) (o) du<z>>

X

Division by | f(y)v(y)du(y) and taking supremum over f yields C,, < C. Thus sup,,cy Cp, < C.
X,

Conversely, the monotone convergence theorem together with equation (12)) yields

e >></< [

X X\Bqg,a|, n X\Bag, |z,

— ( J( ] twaw) e du(on)é

Xn Xn\Ba,h;\a

Sstllpcn/f(x)v(x)d (z) < SUPC /f (2)-

Division by [ f(z)v(z) dp(z) and taking supremum over f yields C' < sup,,cy C,, and completes the proof.
X

O

We are ready to state our result for the conjugate Hardy inequality with p = 1.
Corollary 4.5. Let i be a o —finite measure on a metric measure space X. Fix a € X let g € (0, 00) and w, v be

measurable functions, positive i—almost everywhere satisfying v' "' € L} (X\ {a}), w € L},.(X). Then the best
constant in the Hardy inequality

(/( [ i) wlo)ante ) <c/f ), v € It

X X\Bg,

z|g

16



arXiv Template A PREPRINT

satisfies -
O~ ( J( [ s du(m))quwu) du(2)>q,f0rq €0.1),
X z<az
and
C= Isgg <i(m)> ( / w(t) d,u(t)) 1/‘1’ forq € [1,00).

t<ax
Where v(z) = essinf, {v(t) 1t € By |z|, }, © <a t means By |y C By, and
Bz, ={z €X: dlst(a z) < dist(a,x)}.

Proof: For each n € N* define X,, = {z € X : dist(a,z) < n}. Let C,, be the best constant in the inequality . Let
A, = {0} U {XnBa,|x|a}z€X’ it is the full ordered core over X,, induced by the core map x — (X, \ By |z, )- Let
dr = wdp, dn = vdy and A, be the measure on [0, o) induced by the ordered core. Notice that \,, is supported on the
compact interval [0, (X, )].

Consider the function ¢,, : X — [0, 00) defined by ¢, (z) = (X, \ Bay\r\a) and let v,, be the pushforward measure.
Then, if y = ¢, () we have
va(0al) =o' O0)) = [ du) = [ du=(0.p(@)) = A(0.0).
Pn(t)<y Xn\Ba,\z\a

It follows that the Borel measures v, and \,, coincide and are finite over [0, y] for all y > 0, therefore \,, is the
pushforward measure of ,,.

‘We now show that R,, (vi) = Ui o up to a set of y—measure zero, here R,, is the transition map between p and A,
and v,, is the greatest core decreasing minorant of v relative to the core A,,.

Indeed
/ L= / L) dut) = / R )@ axe)
T v “\vn
Xn\Ba,|z|a gpn(t)§@n(x) [van(x)]
1
— [ 2 L) Orpenar
[0700) T

= (L) ottt o on01t) () o
_X/R"<vn> @n(D)X[0.0(2)] © P (t) dus(t) / R (Un> en(t) du(t)

en(t)<on ()
1
= [ R ewtan,

X'n\Ba,\zhl

Since the equality holds for all core sets, then R,, (vi) = 7% o ¢, almost everywhere.

Then for ¢ € (0, 1), Theorem [3.4] yields

cnw< /(] Rn(jn)o¢n<x>w<x>du)quw<z>du<z>>q

Xn Pn (Z)§<ﬁn(z)
1—q

~ ( /(] L($)w($)dﬂ)quw(2)dﬂ(z)> C

X, x<az =

Notice that
1 1

1
- — = te X, \ By |z
" (z) = ess inf,, {o(f) £ € X \ Ba,\mla} ess sup,, { (t) \ Ba[al, }

17
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therefore

().

S| =

1 1
sup 7(‘1;) = €8S Supu {'U(t) it € X\Baslxa} =

n Un

An application of Lemma[4.4]and the monotone convergence theorem yields

1—g

o (J (] somens) “etranc)

For ¢ > 1 we get

6= s (L@) ([ woamn)” = (Lw)( [ wwmn) e

t<az t<az
By Lemma.4] we get
1 1/‘1
C =sup C,, = supsup <U(ac)) ( / w(t) du(t)) xx, (z)

n n zeX \Un < a

1 1/‘1

s (1) ([ wrmo)

zeX \U
t<azx

This completes the proof.
O

5 Proof of Theorem 2.4

Before proving the functional description of the greatest core decreasing majorant, we need some preparation. The use
of infimum instead of supremum makes the use of approximating simple functions difficult. We need a technical lemma
first, which will be the key in the ’pushing mass’ technique needed to prove Theorem 2.4}

Lemma 5.1. Let u be a non-negative measurable function, a > 0 and A = {s € U : u(s) > a} such that 0 < u(A).
Then, for all § > 0 and B € M such that u(A) < p(B), the set

{se B\ A:u(s)+d>u(s)}
has positive u—measure.

Proof: Since u is core-decreasing, then, up to a set of y—measure zero, if s € A andt <4 s thent € A. Therefore A
coincides with a set in M up to measure zero. Suppose that the statement does not hold, then there exist some § > 0
and B € M such that y(A) < p(B) and u(s) + d < u(s) for p-almost all s € B\ A.

Let b = ess infp\ 4u(s), since u is core-decreasing, then a > b, equality does not hold, otherwise x(5B \ A) = 0.
Without loss of generality, we may assume that 6 < a — b, pick n big enough, such that aT_b < ¢ and define the function

- a—2b
h=ux@\m\ay + Y (b + kn) X(Ex—1\Ex)»
k=1

where B, = {s € U : u(s) > b+ k“T_b} Notice that & is core-decreasing by construction and i > u but
h(s) — u(s) < ¢, hence h is also a minorant of u, by maximality we get h = w. Since u(B \ A) > 0, there exists some
k such that u(Ex_1 \ Ex) > 0, and notice that k& # n, now define

a—1b
ha = ux\(Bx_,\Ex) T (b + (k + 1)71) X(Er-1\Ex)-

18
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By the same argument as before, hs is a core-decreasing minorant of u, but ho is strictly greater than u, a contradiction.
O

We now ’push the mass to the left’ of f to an appropriate function g to achieve the desired infimum.

Lemma 5.2. Let u and f be non-negative measurable finite u—almost everywhere functions, such that |, g ufdp < oo
and | v fdp < oo forall M € M. Then, for any € > 0, there exists a measurable non-negative function g such that

Jp9du> [, fduforany E € Aand

/gud,u—e</fgd,u.
U U

Proof: Fix € > 0. By hypothesis, there exists M € M such that

€
/ fudp < 1

U\M

Let a = ess infyu(s), if we set N = {s € U : u(s) > a}, then, up to a set of measure zero, M C N and the previous
inequality still holds for NV, therefore, without loss of generality we may assume that M = {s € U : u(s) > a} for
some a > 0.

Let B, = {s € U : u(s) Za+nﬁ}and
M

J={neN:u(E,—1\ E,)) >0}.

Notice that M = Ujcs (Ej—1 \ E;) up to a set of yu—measure zero.

Fix j € J,leta; = inf{u(F) : E € M and p(E) > pu(E;)}. If a; > p(E;), let C; be an element in M such that
w(Cj) = a;. If oy = p(E;), then pick C; € M such that u(E;) < p(C;) and

€
/ fudp < PR

Ci\E;
In either case, by Lemma[5.1} the set

€

Hj:{SECj\EJ‘ZQ(S)-’-m>
M

u(s)}

has positive measure.

If a; > p(E;), define the function

X(H;N(C;\E;))
L d J J\Zi .
9 ( / f”)mﬂmcj\@))

Bj-1\E;
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This function is supported on E;_; \ E; and for any E € A we have [}, g; du = 0if u(E) < u(E;) or
Jpg9idp= [  fduotherwise. Moreover,

E;j1\E;
Ik wdp
H;N(C;\Ej)
ug; dy — / fudu = ( / fdu) : - / fudu
/U ! w(H; N (Cj\ Ej))
E;_1\E; Ej1\E; Ej_1\E,
f (@ + SfMef d“) d'u
< ( / fdu)Hjﬁ(Cj\Ej) _ / Fudu
1 (H; N (Cj\ Ej)) a
Ej_l\E]‘ Ej—l\Ej
€
= fdp
8 [ fdu /
Ej1\E;
[ udu
H;N(C;\Ej)
o[ s - [ ruau
( w(H; 0 (C5\ Ej))
Ej 1 \E; Ej_1\E;
<__° fdu+<a+j€> / Fdu
_8fodﬂ“ Sfod,u
E;_1\E; Ej1\E;
€
—|(a+ (G -1 ) / fdu
( ( )SIJVIfdM
Ej71 E]‘
€
4 [y fdu /
Ej1\E;

In the case that o; = p(F;), define g; as follows

X(H;N(C;\E;))
95 = / fdu> + fX(c\E))-
7 ( p(H; 0 (C5\ By)) N
Ej—1\Cj

This function satisfies [}, g; du = 0if w(E) = u(E;), also [, g;dp > [ fdpif p(E;) < p(E) < p(C;) and
E\E;
Jpgidp= [ fduif u(E) > u(Cj). A similar computation as before, shows that
Ej1\E;

€

€
Sy — dp < ———— d —
/ngyu / fu u<4fodﬂ / Fdn+ 50

Bj1\Ej Bj-1\E;

Now define the function

9= fxo\wm) + Zng(Ej—l\Ej)'
jeJ

Let E € M, if u(E) > p(M), by construction we have
[oau= [ tas [ sau= [ saws [ fan= [ i
E i< M E
E\M Eji\E; E\M

If 1(E) < (M), then there exists k € J such that u(Er_1) < p(E) < p(Ey) and

[oan=> [ saus [ gdnz [ raus [ g [ ran
E E\Ej_, . E\Ep_, E
k—1

e j<k
ISHISEE; \E;
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Therefore [, gdp > [ fduforall E € A.

Finally,
/gudu—/f@d,u:/ gudu—/ Judp + / gudp — / Judp
U U M M

U\M U\M
=/ gudu—/ Judp + / Judp — / fudp
M M
U\M U\M

</ gudu—/ fudu + =
M M 2

%"'Z / gjudp — / Judp

i€) \g, 1\, Ej_1\E;

€

€ €
RO Pre I
2 i 4fodqu,1\Ej 2
€ € €
=§+17f5@23 / fdn+3 5
M i€g, \E, jeJ

€ € €
*-i-i/fdu—i-*:e.
2" Ay fan ) 4

This completes the proof.
O
With this we finish the functional description of the greatest core decreasing minorant

Proof of Theorem If g satisfies [, gdp > [, f dpforall E € A then
/ gudy > / gudy sinceu > u
U U

> / fudy since u is core-decreasing.
U

Infimum over all g yields the inequality [, fudu <inf { [, gudp : [, gdp > [}, f duforall E € A}. Equality
follows from Lemma[3.2]

O
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