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ABSTRACT

Boundedness of an abstract formulation of Hardy operators between Lebesgue spaces over general
measure spaces is studied and, when the domain is L1, shown to be equivalent to the existence of a
Hardy inequality on the half line with general Borel measures. This is done by extending the greatest
decreasing minorant construction to general measure spaces depending on a totally ordered collection
of measurable sets, called an ordered core. A functional description of the greatest decreasing
minorant is given, and for a large class of ordered cores, a pointwise description is provided. As an
application, characterizations of Hardy inequalities for metric measure spaces are given, we note that
the metric measure space is not required to admit a polar decomposition.

1 Introduction: Abstract Hardy inequalities

Given three Borel measures on [0,∞), simple necessary and sufficient conditions for which the inequality( ∫
[0,∞)

( ∫
[0,x]

f dλ

)q

dν(x)

)1/q

≤ C
( ∫
[0,∞)

fp dη
)1/p

(1)

holds for all positive measurable functions have been given by several authors. Letting p = q > 1, λ and η as the
Lebesgue measure and dν = 1/x dλ yields the classical Hardy inequality proved in the 1925 paper [4], which holds
with best constant p/(p− 1). Muckenhoupt, in [8], showed that letting ν and η be absolutely continuous with respect to
the Lebesgue measure, the inequality holds if and only if a one-parameter supremum is finite. Bradley, in [3], extended
the result for indices 1 < p ≤ q <∞. Maz’ya, in [7] and Sinnamon, in [17], showed that for 0 < q < p and
1 < p <∞, the characterization is given by the finiteness of a single integral. In the case p > 1, simple
characterizations for inequality (1) can be found in [14].

Extensions have been made in several directions; results for more general measures, higher dimensions, restrictions on
the domain are available, see [6].

The case p = 1 must be treated differently. In [5, Theorem 3.1] the following characterization is shown:
Theorem 1.1. If 0 < q < 1 = p, then the inequality (1) holds if and only if( ∫

[0,∞)

( ∫
[0,x]

1

w
dν

) q
1−q

dν(x)

)1/q

<∞, (2)

with w(x) = ess infλ{w(t) : t ∈ [0, x]}, where dη = dλ⊥ + wdλ and λ⊥ ⊥ λ.

In this paper we are concerned with a large class of Hardy inequalities introduced in [13], which require the following
definition.
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Definition 1.2. Let (U,Σ, µ) and (Y, T , τ) be two σ−finite measure spaces, a map B : Y → Σ is called a core map
provided it satisfies:

1. (Total order) The range of B is totally ordered by inclusion.

2. (Measurability) For each E ∈ Σ the map y 7→ µ(E ∩B(y)) is T −measurable.

3. (σ-boundedness) There is a countable subset Y0 ⊆ Y such that
⋃

y∈Y B(y) =
⋃

y∈Y0
B(y).

4. (Finite measure) For all y ∈ Y , µ(B(y)) <∞.

Given a core map, an inequality of the form(∫
Y

( ∫
B(y)

f dµ

)q

dτ(y)

)1/q

≤ C
(∫

U

fp dη
)1/p

, (3)

for all positive measurable functions f is called an Abstract Hardy inequality. Notice that setting Y = U = [0,∞) and
B(y) = [0, y] recovers inequality (1). In the case that µ = η, [13, Theorem 2.4] shows that the best constant C in (3) is
the same as the best constant in the inequality(∫ ∞

0

(∫ b(x)

0

f(t) dt

)q

dx

)1/q

≤ C
( ∞∫

0

f(t)p dt
)1/p

, for all f ∈ L+,

for an appropriate non-increasing function b : (0,∞) → [0,∞]. For p > 1, any abstract Hardy inequality (3) can be
reduced to the case where η and µ coincide (see [13, Theorem 5.1]), however the reduction is not available for the case
p = 1, as the formula involves a power of the form 1

p−1 . Our main result is the following extension of Theorem 1.1 to
the abstract setting.

Theorem. For σ−finite measure spaces (Y, T , τ), (U,Σ, µ), (U,Σ, ν) and a core map B : Y → Σ, let η = ηa + ηs,
where dηa = udµ and ηs ⊥ µ. Then the best constant C in the inequality(∫

Y

( ∫
B(y)

f dµ

)q

dτ(y)

)1/q

≤ C

∫
U

f dη,

satisfies

C ≈

(∫
Y

( ∫
µ(B(z))≤µ(B(y))

R

(
1

u

)
◦ µ ◦B(y) dτ(y)

) q
1−q

dτ(z)

) 1−q
q

, for q ∈ (0, 1),

and

C = sup
s∈U

(
1

u
(s)

)
τ ({y ∈ Y : s ∈ B(y)})1/q , for q ∈ [1,∞).

The map R is introduced in Section 2.1 and the proof of the main Theorem will be provided in Chapter 3.

Our approach is to show that, for p = 1, an abstract Hardy inequality is equivalent to a Hardy inequality with measures
and give necessary and sufficient conditions for such an inequality to hold.

In Section 2 we introduce the tools necessary to state our main result. The key construction is the greatest core
decreasing minorant of a function, which extends the construction w of Theorem 1.1 to general measure spaces. This
construction allows us to reduce inequality (3) to a suitable inequality of the form (1). This is done in Section 3. In
Section 4 we give explicit examples of the greatest core decreasing minorant and apply the main result in Section 3 for
Hardy inequalities in metric measure spaces. We leave Section 5 for a proof of a functional description of the least core
decreasing minorant, which is the key step in proving our main result.

We finish this introduction by setting up notation and some basic results. For a σ−finite measure space (U,Σ, µ) and a
set A ⊆ Σ we denote the σ−ring generated by A by σ(A). By L(A) we mean the collection of all (equivalence classes
of) [−∞,∞]−valued σ(A)−measurable functions on U . The collection of non-negative functions in L(A) is written
as L+(A). We reserve the notation L0

µ for the collection of Σ−measurable functions and L+
µ for the non-negative ones.
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We write 0 ≤ αn ↑ α to indicate the limit of a non-decreasing sequence in [0,∞] and use αn ↓ α when the limit is
non-increasing. In the case of sets, we write An ↑ A or An ↓ A if their characteristic functions converge increasingly
or decreasingly almost everywhere. We adopt the convention that expressions that evaluate to 0/0 will be taken to be
zero. For p ∈ (0,∞] the expression Lp

µ denotes the usual Lebesgue space of µ−measurable functions. For two positive
constants C and D we write C ≈ D if d1D ≤ C ≤ d2D for positive numbers d1, d2.

For a function f ∈ L(Σ), its distribution function, µf is given by µf (α) = µ ({s ∈ U : |f(s)| > α}). Following [1], if
µf = τg then for any p ∈ (0,∞) we have

∫
U

|f |p dµ =
∫
Y

|g|p dτ .

We consider a metric measure space to be the triple (X, d, µ) where d is a distance function and µ is a Borel measure
with respect to the topology induced by the metric d and for every a ∈ X and r > 0, the closed ball of radius r centered
at a has finite measure.

2 Ordered cores

In this section, we set up our tools and notation to work with monotone functions in general measure spaces without an
order relation on the elements. First, we recall some key definitions in [12, Definition 1.1]:
Definition 2.1. Let (U,Σ, µ) be a σ−finite measure space. A family of sets A ⊆ Σ is a full σ-bounded ordered core
provided:

1. The family A is totally ordered by inclusion.

2. Every set E ∈ A has finite µ−measure.

3. The space U can be realized as the union U =
⋃

E∈A0
E for some countable subfamily A0 of A.

We will also need following related concepts

• For a full ordered core A the relation ≤A on U is defined by u ≤A v if for all A ∈ A, v ∈ A implies u ∈ A.
When there is no ambiguity on the core, we omit the subscript A. We will write u <A v whenever u ≤A v
holds but v ≤A u fails.

• For a full ordered core A there exists an extension M that does not modify the order relation and is closed
under arbitrary unions and intersections, provided the result has finite measure and σ(A) = σ(M) (see [12,
Lemma 4.1]). We will refer to this extension as the maximal core induced by A.

• For a maximal core M and E ∈ σ(A), then E ∈ M is equivalent to: For all u, v ∈ U , if v ∈ E and u ≤A v,
then u ∈ E. (see [12, Lemma 4.1 (c)])

• A function f : U → [0,∞] is called core-decreasing relative to A if it is σ(A)-measurable and if for all
u, v ∈ U , u ≤A v implies f(u) ≥ f(v). The collection of core-decreasing functions is denoted by L↓(A).

We define the collection of (equivalence classes of) functions

L1
locA,µ =

{
f ∈ L(Σ) :

∫
A

|f | dµ <∞ for all A ∈ A
}
.

Let B be the Borel σ−algebra on [0,∞), then by virtue of [12, Theorem 6.4], for every ordered core A there exists a
Borel measure λ induced by the core A and linear transition maps R : L1

locA,µ → L1
loc,λ and Q : L1

loc,λ → L1
locA,µ

satisfying:

1. If φ ∈ L+(B) ∪ L1
loc,λ, then RQφ = φ up to a set of λ−measure zero.

2. If f ∈ L+(A) ∪
(
L1

locA,µ ∩ L(A)
)
, then QRf = f up to a set of µ−measure zero.

3. If f ∈ L+(Σ), φ ∈ L+(B) and A ∈ A then∫
A

fQ(φ) dµ =

∫
[0,µ(A)]

R(f)φdλ and
∫
U

fQ(φ) dµ =

∫
[0,∞)

R(f)φdλ.

4. If f, g ∈ L+
µ ∩ L1

locA,µ ∩ L(A), then R(fg) = R(f)R(g).
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5. If f, g ∈ L+
µ ∩ L1

locA,µ ∩ L(A) satisfy
∫
A
f dµ =

∫
A
g dµ for all A ∈ A, then f = g up to a set of zero

µ−measure.

Notice that condition (v) follows from (ii) and the fact that the equality
∫

[0,x]

Rf dλ =
∫

[0,x]

Rg dλ holding for all x > 0

forces that the functions Rf and Rg to be equal λ−almost everywhere.

We introduce our main technical tool, which extends the greatest non-increasing minorant (see [16, Section 2]).
Definition 2.2. For a Σ−measurable function g, we call h ∈ L↓(A) a greatest core decreasing minorant of g if
0 ≤ h ≤ |g| µ−a.e and for any w ∈ L↓(A) satisfying 0 ≤ w ≤ |g|, then w ≤ h µ−a.e.

Note that a greatest core decreasing minorant is unique almost everywhere, provided it exists. The next lemma shows
that such a greatest core decreasing minorant always exists.
Lemma 2.3. Every Σ−measurable function g admits a greatest core-decreasing minorant denoted g, which is unique
µ−almost everywhere.

Proof: Suppose that |g| ≤ C <∞ and let {An}n∈N ⊆ A such that An ↑ U . Set

αn = sup

{∫
An

h dµ : h ∈ L↓(A) and h ≤ |g|
}
.

The collection defining the supremum is not empty as h = 0 is a core-decreasing function, moreover, the supremum is
finite since

∫
An

h dµ ≤ Cµ(An) <∞.

Let hn = 0 if αn = 0, otherwise there exists hn ∈ L↓(A) such that hn ≤ |g| and αn − 1/n <
∫
An

hn dµ. Since the

pointwise maximum of core decreasing functions is core decreasing, we may assume that {hn} is an increasing
sequence. Let h = supn hn, which is clearly a core decreasing minorant of g.

To show that h is the greatest core decreasing minorant of g, let w be another core decreasing minorant, then so is
max{h,w}, thus

∞ >

∫
An

h dµ ≥
∫
An

hn dµ > αn − 1/n ≥
∫
An

max{w, h} dµ− 1/n.

Then 1/n ≥
∫
An

(max{w, h} − h) dµ ≥ 0. Let n→ ∞ to get max{w, h} = h almost everywhere. This completes the

proof in the case that g is bounded.

For the unbounded case, define gm = min{m, |g|} and let gm be its greatest core decreasing minorant which exists
since gm is bounded. Since gm−1 ≤ min{m− 1, |g|} ≤ min{m, |g|} = gm, then gm−1 ≤ gm. Therefore {gm}m∈N
is an increasing sequence.

Let h = supm∈N gm. Since each gm is bounded above by |g|, then h ≤ |g|, thus h is a core decreasing minorant of |g|.
If w is another core decreasing minorant of |g|, then min(m,w) is a core decreasing minorant of |gm|, thus
min(m,w) ≤ gm. Let m→ ∞ to get w ≤ h and complete the proof.

The next theorem gives a functional description of the greatest core decreasing minorant; it extends the corresponding
statement in [16, Theorem 2.1] to a very large class of functions. The proof follows a different argument than its real
line counterpart and is left for Section 5.
Theorem 2.4. Let u and f be non-negative measurable functions, finite µ−almost everywhere, such that∫
U
uf dµ <∞ and f ∈ L1

locA,µ. Then∫
U

fu dµ = inf


∫
U

gu dµ :

∫
A

g dµ ≥
∫
A

f dµ for all A ∈ A

 .

As the necessary and sufficient conditions for the existence of a finite constant C in the abstract Hardy inequality (3)
depend on the computation of this greatest core decreasing minorant, the next result gives an explicit pointwise formula
of this minorant, in the case that the ordered core satisfies a mild condition. It is worth mentioning that for the ordered
core constructed in [12, Example 5.4], the following formula does not hold. Hence, some condition on the core must be
required.
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Theorem 2.5. Let (U,Σ, µ) be a measure space with a full σ−bounded ordered core A such that arbitrary unions and
intersections in A are σ(A)−measurable. Then for any Σ−measurable function g the formula

g(s) = ess infµ {|g(v)| : v ≤A s}

holds.

Proof: Let h(s) = ess infµ {|g(v)| : v ≤A s}. Since the order relation A is unchanged if we replace A by its maximal
core, we may assume that A is maximal and that arbitrary unions and intersections of core sets are in the core, provided
the result has finite µ−measure. It follows from the definition of the order relation that

{t ∈ U : t <A s} =
⋃

{A ∈ A : s ∈ A} and {t ∈ U : t ≤A s} =
⋂

{A ∈ A : s ̸∈ A} .

By hypothesis, all of these sets are σ(A)−measurable for all s ∈ U . Define [s] = {t ∈ U : t ≤A s and s ≤A t}, which
is the difference of the sets above, so it is σ(A)−measurable as well.

To show that g is a σ(A)-measurable function: Let α ∈ R and define O = h−1 (α,∞), we proceed to show that O is
σ(A)−measurable.

Clearly O ⊆
⋃

x∈O {t ∈ U : t ≤A x}. Conversely, if x ∈ O and y ≤A x, then

h(y) = ess infµ {t ∈ U : t ≤A y} ≥ ess infµ {t ∈ U : t ≤A x} = h(x) > α,

hence {t ∈ U : t <A x} ⊆ O, this proves that O =
⋃

x∈O {t ∈ U : t <A x}, which by hypothesis, is a
σ(A)−measurable set. As α was arbitrary, then h is σ(A)−measurable.

Since h satisfies y ≤A x implies h(y) ≥ h(x) and is σ(A)−measuable, then it only remains to show that h is a
minorant of |g| and that it is optimal.

We show the inequality h(z) ≤ |g(z)| by cases, depending on the measure of the set [z]. If z ∈ U satisfies µ([z]) > 0,
notice that if z′ ∈ [z] then h(z′) = h(z). Hence, by definition of essential infimum we have that
µ ({z′ ∈ [z] : |g(z′)| < h(z)}) = 0. Therefore h ≤ |g| on [z] up to a set of µ−measure zero. Since λ is a σ−finite
measure, the collection of sets UD = {[z] : µ([z]) > 0} must be countable. Hence, we have h ≤ |g| on its union up to
a set of µ−measure zero.

We must show the same inequality holds for the set U0 = {z ∈ U : µ([z]) = 0}. For this purpose: Fix
ϵ > 0, n,m ∈ N, {An} ∈ A satisfy U ⊆ ∪nAn and define

Sm,n = {z ∈ U0 ∩Am : h(z)− |g(z)| > ϵ and nϵ ≤ |g(z)| < (n+ 1)ϵ} .

By the previous estimate, we have that

µ ({z ∈ U : |g(z)| < h(z)} \ ∪m,nSm,n) = 0.

Since UD ∈ σ(A), is obtained by countably many unions of set differences of core sets, then RχUD
is a characteristic

function by [12, Proposition 6.2(i)]. Since U = U0 ∪ UD, we have that RχU0
is also a characteristic function, and

[0,∞) is a disjoint union of some Borel sets L0, LD such that χL0
= RχU0

and χLD
= RχUD

.

We claim that any t ∈ [0,∞) satisfying λ({t}) > 0 must be contained in LD. To see this, let E1, E2 satisfy
µ(E1) = λ(0, t) and µ(E2) = λ(0, t], Observe that any A ∈ A must satisfy µ(A) ≤ µ(E1) or µ(E2) ≤ µ(A). Define

M = ∪{A ∈ A : µ(A) < µ(E2)} and N = ∩{A ∈ A : µ(E1) < A}.

By hypothesis M,N ∈ A, by the choice of E1, E2 we must have that µ(A) < µ(E2) implies µ(A) ≤ µ(E1) and the
monotone convergence theorem shows that µ(M) = µ(E1). Similarly, the dominated convergence theorem shows that
µ(N) = µ(E2). Let z ∈M \N , then µ([z]) = λ(t) > 0, so M \N is contained in UD. An application of R yields
t ∈ LD.

Since the support of RχSm,n is contained in LC , then there are no atoms, thus the function

φ(y) =

∫
[y,∞]

RχSm,n
dλ

is continuous. Moreover, φ(0) = µ(Sm,n) and lim
y→∞

φ(y) = 0.
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Suppose that µ(Sm,n) > 0 seeking a contradiction. Pick r1, r2 > 0 such that φ(r1) =
µ(Sm,n)

3 , φ(r2) =
µ(Sm,n)

2 and
let E ∈ A satisfy r1 ≤ µ(E) ≤ r2. Then µ(Sm,n ∩ E) > 0 and µ(Sm,n \ E) > 0. Let z ∈ Sm,n \ E, then any t ∈ E
satisfies t ≤A z, thus

h(z) = ess infµ {|g(t)| : t ≤A z} ≤ ess infµ {|g(t)| : t ∈ E} ≤ ess infµ {|g(t)| : t ∈ E ∩ Sm,n} ≤ ϵ(n+ 1).

But since z ∈ Sm,n, we have h(z) > ϵ+ |g(t)| > ϵ+ nϵ = (n+ 1)ϵ, which is a contradiction, therefore µ(Sm,n) = 0
for all m,n ∈ N. This shows that h(z) ≤ |g(z)| almost everywhere.

We have shown that h is a core-decreasing minorant of g, thus h ≤ g. To show the converse, let z ∈ U , and note that if
t ≤A z, then g(z) ≤ g(t) ≤ |g(t)|, therefore taking essential infimum yields g(z) ≤ h(z) completing the proof.

As a consequence of this result we have the following examples where the ordered core satisfies that any arbitrary union
or intersection of core sets can be reduced to a countable one, therefore it is measurable. These examples show that the
terms appearing in formula (1.1) and [9, Theorem 3.1] are a particular case of the greatest core decreasing majorant.
Example 2.6. Let U = [0,∞), A = {∅} ∪ {[0, x] : x > 0} and µ be a Borel measure, then

g(x) = ess inf[0,x] |g(t)| .

Example 2.7. Let U = X be a metric measure space with distance function d, a ∈ X be any element, µ be any Borel
measure and the core

A = {∅} ∪ {Ba,r : r > 0}
where Ba,r = {x ∈ X : d(a, x) ≤ r}. Then

g(x) = ess infµ
{
|g(t)| : t ∈ Ba,|x|a

}
,

where |x|a = d(a, x).

3 Abstract Hardy inequalities with p=1

Our approach to finding necessary and sufficient conditions on the measures for inequality (3) is to find an equivalent
inequality involving only two measures and a weight function, then to use Theorem 2.4 to replace the weight function
with a core decreasing function. Finally we find an equivalent Hardy inequality on the half line.
Proposition 3.1. Let η and µ be σ-finite measures over (U,Σ) and let τ be a σ-finite measure over (Y, τ). Suppose
B : Y → Σ is a core map and p = 1. Then there exists a positive Σ−measurable function u such that the best constant
in inequality (3) is the same as the best constant in the inequality(∫

Y

( ∫
B(y)

f dµ

)q

dτ(y)

)1/q

≤ C

∫
U

fu dµ, ∀f ∈ L+
µ (4)

Proof: An application of the Lesbesgue decomposition theorem shows that µ = µ1 + µ2, with µ2 << η and µ1 ⊥ η.
Also U = U1 ∪ U2 with U1 ∩ U2 = ∅ and µ2(U1) = 0 = η(U2). The Radon-Nikodym theorem provides a
Σ−measurable non-negative function h such that dµ2 = h dη. If E = {s ∈ U : h(s) = 0} we can define the function
g = hχ(U\E) and the sets V1 = U1 \ E and V2 = U2 ∪ E to get a decomposition dµ = g dη + dµ1 supported on V1
and V2 respectively, moreover g is never zero on V1. Thus the inequality (3) becomes(∫

Y

( ∫
B(y)

fg dη +

∫
B(y)

f dµ1

)q

dτ(y)

) 1
q

≤ C

∫
U

f dη, ∀f ∈ L+
µ .

Fix z ∈ Y and set f = χ(B(z)∩V2), then if C is finite, we have(∫
Y

(
µ1 (B(y) ∩B(z))

)q

dτ(y)

) 1
q

=

(∫
Y

( ∫
B(y)∩B(z)

dµ1

)q

dτ(y)

) 1
q

≤ Cη (B(z) ∩ V2) = 0.

Therefore µ1 (B(y) ∩B(z)) = 0 for almost every y, since this holds for all z ∈ Y , then letting B(y) ↑ U we get
µ1 (U) = 0.
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Hence the inequality becomes(∫
Y

( ∫
B(y)

fg dη

)q

dτ(y)

) 1
q

≤ C

∫
U

f dη, ∀f ∈ L+
µ .

Since g is non-zero η−almost everywhere, then we can define u = 1
g , so dη = u dµ and yields inequality (4). This

shows that if the best constant in the inequality (3) is finite, then it is also the best constant in the inequality (4). For the
remaining case, notice that we can decompose dη = udµ+ dη2 for some measure η2 satisfying η ⊥ η2. Therefore

sup
f∈L+

µ

(∫
Y

( ∫
B(y)

f dµ

)q

dτ(y)

) 1
q

∫
U
f dη

≤ sup
f∈L+

µ

(∫
Y

( ∫
B(y)

f dµ

)q

dτ(y)

) 1
q

∫
U
fu dµ

,

thus if the best constant in inequality (3) is infinite, then it is also the best constant in the inequality (4) and completes
the proof.

Now we replace the weight function u with its greatest core decreasing minorant.
Proposition 3.2. Given a σ-finite measure µ over (U,Σ), a σ-finite measure τ over (Y, τ), and a core map
B : Y → Σ, the best constant in inequality (4) is the same as the best constant in the inequality(∫

Y

( ∫
B(y)

f dµ

)q

dτ(y)

)1/q

≤ C

∫
U

fu dµ, (5)

where u is the greatest core-decreasing minorant of u with respect to the ordered core A = {∅} ∪ {B(y) : y ∈ Y }.

Proof: Our goal is to show that

sup
f≥0

(∫
Y

( ∫
B(y)

f dµ

)q

dτ(y)

)1/q

∫
U

fu dµ
= sup

f≥0

(∫
Y

( ∫
B(y)

f dµ

)q

dτ(y)

)1/q

∫
U

fu dµ
.

Since u ≤ u, then ’≤’ is clear, hence we focus on the converse. If the left hand side of the inequality above is infinite,
then the result is trivial. Thus, we focus only on functions for which

∫
U
fu dµ is finite and

∫
E
f dµ is also finite for any

core set E ∈ A, so Theorem 2.4 applies and we get

sup
f≥0

(∫
Y

( ∫
B(y)

f dµ

)q

dτ(y)

)1/q

∫
U

fu dµ
= sup

f≥0

(∫
Y

( ∫
B(y)

f dµ

)q

dτ(y)

)1/q

inf

{∫
U

gu dµ : f ≼ g

}

= sup
f≥0

sup



(∫
Y

( ∫
B(y)

f dµ

)q

dτ(y)

)1/q

∫
U

gu dµ
: f ≼ g



≤ sup
f≥0

sup



(∫
Y

( ∫
B(y)

g dµ

)q

dτ(y)

)1/q

∫
U

gu dµ
: f ≼ g


.
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Where the symbol f ≼ g means that
∫
E
f dµ ≤

∫
E
g dµ for every E ∈ A.

The right hand side is bounded above by supf≥0

( ∫
Y

( ∫
B(y)

f dµ

)q

dτ(y)

)1/q

∫
U

fu dµ
, this completes the proof.

We now reduce the problem to a Hardy inequality with measures over the half line.
Lemma 3.3. Given B, τ, µ as in the previous propositions, then there exist Borel measures ν, λ on [0,∞) and a
non-increasing function w finite λ−almost everywhere, such that the best constant in inequality (5) is the best constant
in ( ∫

[0,∞)

( ∫
[0,x]

f dλ

)q

dν(x)

)1/q

≤ C

∫
[0,∞)

fw dλ, ∀f ∈ L+
λ (6)

Proof: Since B is a core map, then the function φ : Y → [0,∞) defined by φ(y) = µ(B(y)) is measurable. Let ν be
the push-forward Borel measure associated to φ, that is

ν(E) = τ
(
φ−1(E)

)
,∀E Borel.

Let λ be the Borel measure associated to the ordered core A with enriched core M, and R,Q the transition operators.

Fix a positive Σ−measurable function f integrable over every core set A ∈ A and define the functions

Hf(x) =

∫
[0,x]

R(f) dλ, and Tf(y) =

∫
B(y)

f dλ.

We will show that Hf and Tf are equimeasurable with respect to the measures ν and τ by computing their distribution
functions. First notice that for all y ∈ Y we have

Hf ◦ φ(y) = Hf
(
µ
(
B(y)

))
=

∫
[0,µ(B(y))]

R(f) dλ =

∫
B(y)

f dλ = Tf(y).

Fix α > 0 and define the sets
Eα = {x ∈ [0,∞) : Hf(x) > α} and Fα = {y ∈ Y : T (y) > α} .

Let

γ = sup

x ∈ [0,∞) :

∫
[0,x]

Rf dλ ≤ α

 .

Notice that by the monotone convergence theorem Hf(γ) ≤ α. We claim that Eα = (γ,∞) and that Fα = φ−1(Eα).

Let x ∈ Eα, then since Hf is increasing, we must have that x > γ, thus Eα ⊆ (γ,∞). Conversely, let x > γ, then
Hf(x) > α, thus x ∈ Eα, this shows the first equation.

For the second equation, notice that
Fα = {y ∈ Y : T (y) > α} = {y ∈ Y : Hf ◦ φ(y) > α} .

So if y ∈ Fα, then φ(y) ∈ Eα, this shows Fα ⊆ φ−1(Eα). Conversely, if y ∈ φ−1(Eα), then T (y) > α, hence
y ∈ Fα.

Computation of the distribution functions yields
ν(Eα) = τ

(
φ−1(Eα)

)
= τ(Fα).

Therefore Hf and Tf are equimeasurable, hence( ∫
[0,∞)

( ∫
[0,x]

R(f) dλ

)q

dν

) 1
q

=

( ∫
[0,∞)

(
Hf

)q

dν

) 1
q

=

(∫
Y

(
Tf

)q

dτ

) 1
q

=

(∫
Y

( ∫
B(y)

f dµ

)q

dτ

) 1
q

.
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Since u is core-decreasing, then we have ∫
U

fu dµ =

∫
[0,∞)

RfRudλ.

Therefore if inequality (5) holds, so does( ∫
[0,∞)

( ∫
[0,x]

Rf dλ

)q

dν(x)

) 1
q

≤ C

∫
[0,∞)

RfRudλ, ∀Rf ∈ L+
λ .

Note that Ru must be finite almost everywhere, otherwise the original measures are not σ−finite. The result follows
from letting w = Ru and noting that R is surjective.

We are ready to prove the main result.

Theorem 3.4. For σ−finite measure spaces (Y, T , τ), (U,Σ, µ), (U,Σ, ν) and a core map B : Y → Σ. Let
η = ηa + ηs, where dηa = udµ and ηs ⊥ µ. Then the best constant C in the inequality(∫

Y

( ∫
B(y)

f dµ

)q

dτ(y)

)1/q

≤ C

∫
U

f dη, (7)

satisfies

C ≈

[∫
Y

( ∫
µ(B(z))≤µ(B(y))

R

(
1

u

)
◦ µ ◦B(y) dτ(y)

) q
1−q

dτ(z)

] 1−q
q

, for q ∈ (0, 1),

and

C = sup
s∈U

(
1

u
(s)

)
τ ({y ∈ Y : s ∈ B(y)})1/q , for q ∈ [1,∞).

Where the least core decreasing majorant is taken with respect to the core A = {∅} ∪ {B(y) : y ∈ Y } and R is the
linear map mentioned in Section 2.

Proof: Suppose that q ∈ (0, 1), then by Lemma 3.3 and Theorem 1.1 (Theorem 3.1 of [5]) the best constant is
equivalent to ( ∫

[0,∞)

( ∫
[0,x]

1

w
dν

) q
1−q

dν(x)

)1/q

,

where w = R(u) and ν is the push-forward measure (see [2]) for the map φ(y) = µ ◦B(y). Notice that w = w, and it
follows from Definition 2.2 (iv) that 1

R(u) = R
(

1
u

)
, then∫

[0,x]

1

w
dν =

∫
[0,∞)

R

(
1

u

)
χ[0,x] dν =

∫
Y

R

(
1

u

)
◦ φ(y)χ[0,x] ◦ φ(y) dτ(y)

=

∫
φ(y)≤x

R

(
1

u

)
◦ φ(y) dτ(y).

Thus ∫
[0,∞)

( ∫
[0,x]

1

w
dν

) q
1−q

dν(x) =

∫
Y

( ∫
φ(y)≤φ(z)

R

(
1

u

)
◦ φ(y) dτ(y)

) q
1−q

dτ(z)

and completes the proof for the case q ∈ (0, 1).

The case q ∈ [1,∞) follows directly from duality and we include it for the sake of completeness.
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By Proposition 3.1 the best constant in inequality (7) is the norm of the integral operator
Kf(y) =

∫
U
k(y, s)f(s) dθ(s) acting from L1

θ → Lq
τ where dθ = udµ and k(y, s) = 1

u(s)χB(y)(s). By duality, it is
the best constant in the inequality∥∥∥∥∥∥

∫
Y

k(y, ·)h(y) dτ(y)

∥∥∥∥∥∥
L∞

θ

≤ C

(∫
Y

hq
′
dτ

) 1
q′

,∀h ∈ L+
τ .

Define ψs(y) = 1 if s ∈ B(y) and ψs(y) = 0 otherwise. Divide both sides of the equation by ∥h∥
Lq′

τ
to get

sup

 1

u(s)

∫
Y

ψs(y)
h(y)

∥h∥
Lq′

τ

dτ(y) : s ∈ U

 ≤ C.

Taking supremum over non-zero positive functions h yields

sup
s∈U

1

u(s)
∥ψs∥Lq

τ
≤ C,

which is the same as

C ≥ sup
s∈U

(
1

u
(s)

)
τ ({y ∈ Y : s ∈ B(y)})1/q .

For the reverse inequality, an application of Minkowski’s integral inequality yields∫
Y

(∫
U

k(s, y)f(s) dθ(s)

)q

dτ(y)

1/q

≤

∫
U

(∫
Y

ψs(y) dτ(y)

)1/q
f(s)

u(s)
dθ(s)


≤ sup

s∈U

(
1

u
(s)

)
τ ({y ∈ Y : s ∈ B(y)})1/q

∫
U

f(s) dθ(s)

hence C ≤ sups∈U

(
1
u (s)

)
τ ({y ∈ Y : s ∈ B(y)})1/q and proves the statement for q ∈ (1,∞).

4 Applications to metric measure spaces

In this section we show that the framework of abstract Hardy inequalities can be used to give different proofs to [10,
Theorem 2.1 Condition D1], [11, Theorem 2.1] and [9, Theorem 3.1]. These theorems give necessary and sufficient
conditions for Hardy inequalities to hold in metric measure spaces; they cover three cases depending on the indices p
and q, provided the existence of a locally integrable function λ ∈ L1

loc such that for all f ∈ L1(X) the following polar
decomposition at a ∈ X holds: ∫

X
fdµ =

∫ ∞

0

∫
Σr

f(r, ω)λ(r, ω) dωrdr,

for a family of measures dωr, where Σr = {x ∈ X : d(x, a) = r}.

Our new proofs show that the polar decomposition hypothesis is not required so the results hold in all metric measure
spaces.

We also give the corresponding results regarding the conjugate Hardy inequality discussed in [10,
Theorem 2.2 Condition D∗

1] and [9, Theorem 3.2].

We begin with the case p > 1, extending [10, Theorem 2.1 Condition D1], [11, Theorem 2.1] to all metric measure
spaces.
Theorem 4.1. Let µ be a σ−finite measure on a metric measure space X. Fix a ∈ X and let p ∈ (1,∞), q ∈ (0,∞)

and ω, v be measurable functions, positive µ−almost everywhere satisfying ω ∈ L1
µ(X \ {a}), v1−p′ ∈ L1

Loc(X). Then
the Hardy inequality(∫

X

( ∫
Ba,|x|a

f(y) dµ(y)

)q

ω(x) dµ(x)

) 1
q

≤ C

(∫
X

f(x)pv(x) dµ(x)

) 1
p

, ∀f ∈ L+
µ

10
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holds if and only if p ≤ q and:

sup
x ̸=a


( ∫
X\Ba,|x|a

ω dµ

) 1
q
( ∫
Ba,|x|a

v1−p′
dµ

) 1
p′

 <∞,

0 < q < 1 < p and ∫
X

( ∫
X\Ba,|x|a

ω dµ

) r
p
( ∫
Ba,|x|a

v1−p′
dµ

) r
p′

u(s) dµ(s) <∞,

1 < q < p and ∫
X

( ∫
X\Ba,|x|a

ω dµ

) r
q
( ∫
Ba,|x|a

v1−p′
dµ

) r
q′

v1−p′
(s) dµ(s) <∞,

where 1
r = 1

q − 1
p .

Proof: The Lebesgue decomposition theorem applied to the measures dµ and vdµ provides measures µ1, µ2 such that
µ = µ1 + µ2, µ1 ⊥ vdµ and µ2 << v dµ. Since v > 0 µ−almost everywhere we can take µ1 to be zero and write

dµ =
1

v
d(v dµ).

Let dτ = v−p′
d(v dµ) and set Y = {s ∈ X :

∫
Ba,|s|a

v1−p′
dµ <∞}. Define the map B : X → Σ by

B(y) = Ba,|y|a .

The image of B is an ordered core with respect to the measure τ .

By hypothesis Y = X and since µ1 = 0, [13, Theorem 5.1] provides the equivalent abstract Hardy inequality(∫
X

( ∫
Ba,|y|a

f dτ

)q

ω(y) dµ(y)

) 1
q

≤ C

(∫
X

fp dτ

) 1
p

, ∀f ∈ L+
µ .

By definition of τ this is equivalent to(∫
X

( ∫
Ba,|y|a

fv1−p′
dµ

)q

ω(y) dµ(y)

) 1
q

≤ C

(∫
X

fpv1−p′
dµ

) 1
p

, ∀f ∈ L+
µ . (8)

Let λ be the measure on [0,∞) induced by the core, so that for every M in the core∫
[0,x]

Rf dλ =

∫
M

fv1−p′
dµ, where x =

∫
M

v1−p′
dµ.

We claim that inequality (8) is equivalent to the Hardy inequality( ∫
[0,∞)

( ∫
[0,y]

g dλ

)q

R
( ω

v1−p′

)
dλ(y)

) 1
q

≤ C

( ∫
[0,∞)

gpdλ

) 1
p

, ∀g ∈ L+
λ . (9)

By [13, Theorem 2.4], it suffices to show that the normal form parameters of inequalities (8) and (9) coincide. Hence, it
suffices to show that the maps

b1(s) =

∫
Ba,|s|a

v1−p′
dµ and b2(x) = λ([0, x])

have the same distribution functions with respect to the measures ω dµ and R
(

ω
v1−p′

)
dλ respectively.

11
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Fix t > 0 and consider the sets E1 = b−1
1 (t,∞) and E2 = b−1

2 (t,∞), we give a characterization for these sets.

Define the set W as follows

W =
⋃Ba,|s| :

∫
Ba,|s|a

v1−p′
dµ ≤ t

 .

If z ∈ E1, then b1(z) > t, thus z ̸∈W , conversely if z ∈W then b1(z) ≤ t, therefore z ̸∈ E1. Hence W c = E1.
Since W is a union of closed balls centered at a, then there exists a sequence sn such that B(a, sn) ↑W . Let
tn =

∫
B(a,sn)

v1−p′
dµ.

Let t̃ be defined as

t̃ = sup

z ≤ t : z =

∫
Ba,|s|a

v1−p′
dµ for some s ∈ X

 ,

hence t̃ = λ[0, t].

Therefore, ∫
Ec

1

ω dµ = sup
n∈N

∫
B(a,sn)

ω dµ by the Monotone convergence theorem

= sup
n∈N

∫
[0,tn]

R
( ω

v1−p′

)
dλ by the action of R

=

∫
[0,t]

R
( ω

v1−p′

)
dλ by Monotone convergence theorem

=

∫
Ec

2

R
( ω

v1−p′

)
dλ.

Since by hypothesis
∫
Ec

1

ω dµ <∞, then we have that

∫
b−1
1 (t,∞)

ω dµ =

∫
b−1
2 (t,∞)

R
( ω

v1−p′

)
dλ.

It follows that the distribution functions coincide and proves that the Hardy inequalities (8) and (9) have the same
normal form parameter, therefore they are equivalent.

For all the index cases, we can apply [15, Theorem 7.1] to get that in the case 1 < p ≤ q <∞, the inequality (9) holds
if and only if

sup
x

( ∫
[x,∞)

R
( ω

v1−p′

)
dλ(t)

) 1
q
( ∫
[0,x]

dλ

) 1
p′

<∞

which is equivalent to

sup
s̸=a

( ∫
X\Ba,|s|a

ω dµ

) 1
q
( ∫
Ba,|s|a

v1−p′
dµ

) 1
p′

<∞

And in the case 0 < q < 1 < p <∞, the inequality (9) holds if and only if∫
[0,∞)

( ∫
[x,∞)

R
( ω

v1−p′

)
dλ

) r
p
( ∫
[0,x]

dλ

) r
p′

R
( ω

v1−p′

)
dλ(x) <∞

12
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which is equivalent to ∫
X

( ∫
X\Ba,|s|a

ω dµ

) r
p
( ∫
Ba,|s|a

v1−p′
dµ

) r
p′

ω(s) dµ(s) <∞.

In the case 1 < q < p we have that inequality (9) holds if and only if∫
[0,∞)

( ∫
[x,∞)

R
( ω

v1−p′

)
dλ

) r
q
( ∫
[0,x]

dλ

) r
q′

dλ(x) <∞

which is equivalent to ∫
X

( ∫
X\Ba,|s|a

ω dµ

) r
q
( ∫
Ba,|s|a

v1−p′
dµ

) r
q′

v1−p′
dµ(s) <∞

completing the proof.

We also have a corresponding result to the conjugate Hardy inequality, extending [10, Theorem 2.1 Condition D1]
Theorem 4.2. Let µ be a σ−finite measure on a metric measure space X. Fix a ∈ X and let p ∈ (1,∞), q ∈ (0,∞)

and ω, v be measurable functions, positive µ−almost everywhere satisfying v1−p′ ∈ L1
µ(X \ {a}), ω ∈ L1

Loc(X). Then
the Hardy inequality(∫

X

( ∫
X\Ba,|x|a

f(y) dµ(y)

)q

ω(x) dµ(x)

) 1
q

≤ C

(∫
X

f(x)pv(x) dµ(x)

) 1
p

, ∀f ∈ L+
µ

holds if and only if p ≤ q and:

sup
x ̸=a


( ∫
Ba,|x|a

ω dµ

) 1
q
( ∫
X\Ba,|x|a

v1−p′
dµ

) 1
p′

 <∞,

0 < q < 1 < p and ∫
X

( ∫
Ba,|x|a

ω dµ

) r
p
( ∫
X\Ba,|x|a

v1−p′
dµ

) r
p′

u(s) dµ(s) <∞,

1 < q < p and ∫
X

( ∫
Ba,|x|a

ω dµ

) r
q
( ∫
X\Ba,|x|a

v1−p′
dµ

) r
q′

v1−p′
(s) dµ(s) <∞,

where 1
r = 1

q − 1
p .

Proof: We only sketch the proof as most details follow the same argument as Theorem 4.1.

Let dτ = v1−p′
dµ. Observe that the hypothesis on v guarantees that, for each y ∈ X,the sets X \Ba,|y|a have finite τ

measure. Thus the map B(y) = X \Ba,|y|a is a core map.

Then the Lebesgue decomposition Theorem and [13, Theorem 5.1] provides the equivalent abstract Hardy inequality(∫
X

( ∫
X\Ba,|y|a

f dτ

)q

ω(y) dµ(y)

) 1
q

≤ C

(∫
X

fp dτ

) 1
p

, ∀f ∈ L+
µ .

By definition of τ this is equivalent to(∫
X

( ∫
X\Ba,|y|a

fv1−p′
dµ

)q

ω(y) dµ(y)

) 1
q

≤ C

(∫
X

fpv1−p′
dµ

) 1
p

, ∀f ∈ L+
µ . (10)
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Let λ be the measure on [0,∞) induced by the core, so that for every y ∈ Y :∫
[0,x]

Rf dλ =

∫
X\Ba,|y|a

fv1−p′
dµ, where x =

∫
X\Ba,|y|a

v1−p′
dµ.

The maps

b1(s) =

∫
X\Ba,|s|a

v1−p′
dµ and b2(x) = λ([0, x])

have the same distribution functions with respect to the measures ω dµ and R
(

ω
v1−p′

)
dλ respectively. Then, by [13,

Theorem 2.4], we get that the inequality (10) is equivalent to the Hardy inequality( ∫
[0,∞)

( ∫
[0,y]

g dλ

)q

R
( ω

v1−p′

)
dλ(y)

) 1
q

≤ C

( ∫
[0,∞)

gpdλ

) 1
p

, ∀g ∈ L+
λ . (11)

For all the index cases, we can apply [15, Theorem 7.1] to get that in the case 1 < p ≤ q <∞, the inequality (11)
holds if and only if

sup
x

( ∫
[x,∞)

R
( ω

v1−p′

)
dλ(t)

) 1
q
( ∫
[0,x]

dλ

) 1
p′

<∞

which is equivalent to

sup
s̸=a

( ∫
Ba,|s|a

ω dµ

) 1
q
( ∫
X\Ba,|s|a

v1−p′
dµ

) 1
p′

<∞

And in the case 0 < q < 1 < p <∞, the inequality (11) holds if and only if∫
[0,∞)

( ∫
[x,∞)

R
( ω

v1−p′

)
dλ

) r
p
( ∫
[0,x]

dλ

) r
p′

R
( ω

v1−p′

)
dλ(x) <∞

which is equivalent to ∫
X

( ∫
Ba,|s|a

ω dµ

) r
p
( ∫
X\Ba,|s|a

v1−p′
dµ

) r
p′

ω(s) dµ(s) <∞.

In the case 1 < q < p we have that inequality (11) holds if and only if∫
[0,∞)

( ∫
[x,∞)

R
( ω

v1−p′

)
dλ

) r
q
( ∫
[0,x]

dλ

) r
q′

dλ(x) <∞

which is equivalent to ∫
X

( ∫
Ba,|s|a

ω dµ

) r
q
( ∫
X\Ba,|s|a

v1−p′
dµ

) r
q′

v1−p′
dµ(s) <∞

completing the proof.

For the case p = 1, our main result implies the following characterization
Corollary 4.3. Let µ be a σ−finite measure on a metric measure space X. Fix a ∈ X, let q ∈ (0,∞) and ω, v be
measurable functions, positive µ−almost everywhere satisfying ω ∈ L1

µ(X \ {a}), v1−p′ ∈ L1
Loc(X). Then the best

constant in the Hardy inequality(∫
X

( ∫
Ba,|x|a

f(y) dµ(y)

)q

ω(x) dµ(x)

) 1
q

≤ C

∫
X

f(x)v(x) dµ(x), ∀f ∈ L+
µ

14
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satisfies

C ≈

(∫
X

( ∫
z≤Ax

1

v
(x)ω(x) dµ(x)

) q
1−q

ω(z) dµ(z)

) 1−q
q

, for q ∈ (0, 1),

and

C = sup
x∈X

(
1

v
(x)

)( ∫
x≤At

ω(t) dµ(t)

)1/q

, for q ∈ [1,∞).

Where v(x) = ess infµ{v(t) : t ∈ Ba,|x|a}, x ≤A t means Ba,|x|a ⊆ B(a, |t|) and
Ba,|x|a = {z ∈ X : dist(a, z) ≤ dist(a, x)}.

Proof: Let A = {∅} ∪ {Ba,|x|a}x∈X, it is the full ordered core induced by the core map x→ Ba,|x|a . Let dτ = ωdµ,
dη = vdµ and λ be the measure on [0,∞) induced by the ordered core.

Consider the function φ : X → [0,∞) defined by φ(x) = µ
(
Ba,|x|a

)
and let ν be the pushforward measure. Then, if

y = φ(x) we have

ν
(
[0, y]

)
= µ

(
φ−1([0, y])

)
=

∫
φ(t)≤y

dµ(t) =

∫
Ba,|x|a

dµ = λ
(
[0, φ(x)]

)
= λ

(
[0, y]

)
.

It follows that the Borel measures ν and λ coincide and are finite over [0, y] for all y > 0, therefore λ is the
pushforward measure of φ.

We now show that R
(

1
v

)
= 1

v ◦ φ up to a set of µ−measure zero.

Indeed ∫
Ba,|x|a

1

v
dµ =

∫
φ(t)≤φ(x)

1

v
(t) dµ(t) =

∫
[0,φ(x)]

R

(
1

v

)
(t) dλ(t) =

∫
[0,∞)

R

(
1

v

)
(t)χ[0,φ(x)](t) dλ(t)

=

∫
X

R

(
1

v

)
◦ φ(t)χ[0,φ(x)]φ(t) dµ(t) =

∫
φ(t)≤φ(x)

R

(
1

v

)
◦ φ(t) dµ(t)

=

∫
Ba,|x|a

R

(
1

v

)
◦ φ(t) dµ(t).

Since the equality holds for all core sets, then R
(

1
v

)
= 1

v ◦ φ almost everywhere.

Then for q ∈ (0, 1), Theorem 3.4 yields

C ≈

(∫
X

( ∫
φ(z)≤φ(x)

R

(
1

v

)
◦ φ(x)ω(x) dµ

) q
1−q

ω(z) dµ(z)

) 1−q
q

≈

(∫
X

( ∫
z≤Ax

1

v
(x)ω(x) dµ

) q
1−q

ω(z) dµ(z)

) 1−q
q

.

The statement for q ∈ [1,∞) follows directly from Theorem 3.4. The description of v follows from Example 2.2 and
completes the proof.

Our result regarding the conjugate Hardy inequality to Corollary 4.1 needs a small adjustment. Since for a metric
measure space X, the sets (X \Ba,|x|a) may have infinite measure, then the collection {X \Ba,|x|a}x∈X may fail
condition (ii) in Definition 2.1. This obstruction is addressed in the following lemma.
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Lemma 4.4. Let µ be a σ−finite measure on a metric measure space X. Fix a ∈ X. Let {Xn} be a sequence of sets
with finite µ-measure such that a ∈ Xn ↑ X, q ∈ (0,∞) and ω, v be measurable functions, positive µ−almost
everywhere satisfying v1−p′ ∈ L1

µ(X \ {a}), ω ∈ L1
Loc(X).

For each n ∈ N. Let Cn be the best constant in the inequality(∫
Xn

( ∫
Xn\Ba,|x|a

f(y) dµ(y)

)q

ω(x) dµ(x)

) 1
q

≤ Cn

∫
Xn

f(x)v(x) dµ(x), ∀f ∈ L+
µ (12)

and C be the best constant in the inequality(∫
X

( ∫
X\Ba,|x|a

f(y) dµ(y)

)q

ω(x) dµ(x)

) 1
q

≤ C

∫
X

f(x)v(x) dµ(x), ∀f ∈ L+
µ , (13)

where Ba,|x|a = {z ∈ X : dist(a, z) ≤ dist(a, x)}.

Then,
C = sup

n∈N
Cn.

Proof:

Fix f ∈ L+
µ , then an application of inequality (13) yields

(∫
Xn

( ∫
Xn\Ba,|x|a

f(y) dµ(y)

)q

ω(x) dµ(x)

) 1
q

≤

(∫
X

( ∫
X\Ba,|x|a

f(y)χXn
(y) dµ(y)

)q

ω(x) dµ(x)

) 1
q

≤ C

∫
X

f(y)χXn
(y) v(y)dµ(y) = C

∫
Xn

f(y) v(y)dµ(y).

Division by
∫
Xn

f(y) v(y)dµ(y) and taking supremum over f yields Cn ≤ C. Thus supn∈N Cn ≤ C.

Conversely, the monotone convergence theorem together with equation (12) yields(∫
X

( ∫
X\Ba,|x|a

f(y) dµ(y)

)q

ω(x) dµ(x)

) 1
q

= sup
n

(∫
Xn

( ∫
X\Ba,|x|a

f(y)χXn
(y) dµ(y)

)q

ω(x) dµ(x)

) 1
q

= sup
n

(∫
Xn

( ∫
Xn\Ba,|x|a

f(y) dµ(y)

)q

ω(x) dµ(x)

) 1
q

≤ sup
n
Cn

∫
Xn

f(x)v(x) dµ(x) ≤
(
sup
n
Cn

) ∫
X

f(x)v(x) dµ(x).

Division by
∫
X
f(x)v(x) dµ(x) and taking supremum over f yields C ≤ supn∈N Cn and completes the proof.

We are ready to state our result for the conjugate Hardy inequality with p = 1.
Corollary 4.5. Let µ be a σ−finite measure on a metric measure space X. Fix a ∈ X, let q ∈ (0,∞) and ω, v be
measurable functions, positive µ−almost everywhere satisfying v1−p′ ∈ L1

µ(X \ {a}), ω ∈ L1
Loc(X). Then the best

constant in the Hardy inequality(∫
X

( ∫
X\Ba,|x|a

f(y) dµ(y)

)q

ω(x) dµ(x)

) 1
q

≤ C

∫
X

f(x)v(x) dµ(x), ∀f ∈ L+
µ
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satisfies

C ≈

(∫
X

( ∫
x≤Az

1

v
(x)ω(x) dµ(x)

) q
1−q

ω(z) dµ(z)

) 1−q
q

, for q ∈ (0, 1),

and

C = sup
x∈X

(
1

v
(x)

)( ∫
t≤Ax

ω(t) dµ(t)

)1/q

, for q ∈ [1,∞).

Where v(x) = ess infµ{v(t) : t ̸∈ Ba,|x|a}, x ≤A t means Ba,|x|a ⊆ Ba,|t| and
Ba,|x|a = {z ∈ X : dist(a, z) ≤ dist(a, x)}.

Proof: For each n ∈ N+ define Xn = {x ∈ X : dist(a, x) ≤ n}. Let Cn be the best constant in the inequality (12). Let
An = {∅} ∪ {XnBa,|x|a}x∈X, it is the full ordered core over Xn induced by the core map x→ (Xn \Ba,|x|a). Let
dτ = ωdµ, dη = vdµ and λn be the measure on [0,∞) induced by the ordered core. Notice that λn is supported on the
compact interval [0, µ(Xn)].

Consider the function φn : X → [0,∞) defined by φn(x) = µ
(
Xn \Ba,|x|a

)
and let νn be the pushforward measure.

Then, if y = φn(x) we have

νn
(
[0, y]

)
= µ

(
φ−1
n ([0, y])

)
=

∫
φn(t)≤y

dµ(t) =

∫
Xn\Ba,|x|a

dµ = λ
(
[0, φ(x)]

)
= λ

(
[0, y]

)
.

It follows that the Borel measures νn and λn coincide and are finite over [0, y] for all y > 0, therefore λn is the
pushforward measure of φn.

We now show that Rn

(
1
vn

)
= 1

vn
◦ φ up to a set of µ−measure zero, here Rn is the transition map between µ and λn

and vn is the greatest core decreasing minorant of v relative to the core An.

Indeed ∫
Xn\Ba,|x|a

1

vn
dµ =

∫
φn(t)≤φn(x)

1

vn
(t) dµ(t) =

∫
[0,φn(x)]

Rn

(
1

vn

)
(t) dλ(t)

=

∫
[0,∞)

Rn

(
1

vn

)
(t)χ[0,φn(x)](t) dλ(t)

=

∫
X

Rn

(
1

vn

)
◦ φn(t)χ[0,φ(x)] ◦ φn(t) dµ(t) =

∫
φn(t)≤φn(x)

Rn

(
1

vn

)
◦ φn(t) dµ(t)

=

∫
Xn\Ba,|x|a

Rn

(
1

vn

)
◦ φn(t) dµ(t).

Since the equality holds for all core sets, then Rn

(
1
vn

)
= 1

vn
◦ φn almost everywhere.

Then for q ∈ (0, 1), Theorem 3.4 yields

Cn ≈

(∫
Xn

( ∫
φn(z)≤φn(x)

Rn

(
1

vn

)
◦ φn(x)ω(x) dµ

) q
1−q

ω(z) dµ(z)

) 1−q
q

≈

(∫
Xn

( ∫
x≤Az

1

vn
(x)ω(x) dµ

) q
1−q

ω(z) dµ(z)

) 1−q
q

.

Notice that
1

vn
(x) =

1

ess infµ
{
v(t) : t ∈ Xn \Ba,|x|a

} = ess supµ

{
1

v(t)
: t ∈ Xn \Ba,|x|a

}
,
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therefore

sup
n

1

vn
(x) = ess supµ

{
1

v(t)
: t ∈ X \Ba,|x|a

}
=

1

v
(x).

An application of Lemma 4.4 and the monotone convergence theorem yields

C ≈ sup
n∈N

(∫
Xn

( ∫
x≤Az

1

v
(x)ω(x) dµ

) q
1−q

ω(z) dµ(z)

) 1−q
q

=

(∫
X

( ∫
x≤Az

1

v
(x)ω(x) dµ

) q
1−q

ω(z) dµ(z)

) 1−q
q

.

For q ≥ 1 we get

Cn = sup
x∈Xn

(
1

vn
(x)

)( ∫
t≤Ax

ω(t) dµ(t)

)1/q

= sup
x∈X

(
1

vn
(x)

)( ∫
t≤Ax

ω(t) dµ(t)

)1/q

χXn(x).

By Lemma 4.4 we get

C = sup
n
Cn = sup

n
sup
x∈X

(
1

vn
(x)

)( ∫
t≤Ax

ω(t) dµ(t)

)1/q

χXn(x)

= sup
x∈X

(
1

v
(x)

)( ∫
t≤Ax

ω(t) dµ(t)

)1/q

.

This completes the proof.

5 Proof of Theorem 2.4

Before proving the functional description of the greatest core decreasing majorant, we need some preparation. The use
of infimum instead of supremum makes the use of approximating simple functions difficult. We need a technical lemma
first, which will be the key in the ’pushing mass’ technique needed to prove Theorem 2.4.
Lemma 5.1. Let u be a non-negative measurable function, a > 0 and A = {s ∈ U : u(s) ≥ a} such that 0 < µ(A).
Then, for all δ > 0 and B ∈ M such that µ(A) < µ(B), the set

{s ∈ B \A : u(s) + δ > u(s)}

has positive µ−measure.

Proof: Since u is core-decreasing, then, up to a set of µ−measure zero, if s ∈ A and t ≤A s then t ∈ A. Therefore A
coincides with a set in M up to measure zero. Suppose that the statement does not hold, then there exist some δ > 0
and B ∈ M such that µ(A) < µ(B) and u(s) + δ ≤ u(s) for µ-almost all s ∈ B \A.

Let b = ess infB\Au(s), since u is core-decreasing, then a > b, equality does not hold, otherwise µ(B \A) = 0.
Without loss of generality, we may assume that δ < a− b, pick n big enough, such that a−b

n < δ and define the function

h = uχ(U\(B\A)) +

n∑
k=1

(
b+ k

a− b

n

)
χ(Ek−1\Ek),

where Ek = {s ∈ U : u(s) ≥ b+ k a−b
n }. Notice that h is core-decreasing by construction and h ≥ u but

h(s)− u(s) < δ, hence h is also a minorant of u, by maximality we get h = u. Since µ(B \A) > 0, there exists some
k such that µ(Ek−1 \ Ek) > 0, and notice that k ̸= n, now define

h2 = uχ(U\(Ek−1\Ek) +

(
b+ (k + 1)

a− b

n

)
χ(Ek−1\Ek).
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By the same argument as before, h2 is a core-decreasing minorant of u, but h2 is strictly greater than u, a contradiction.

We now ’push the mass to the left’ of f to an appropriate function g to achieve the desired infimum.

Lemma 5.2. Let u and f be non-negative measurable finite µ−almost everywhere functions, such that
∫
U
uf dµ <∞

and
∫
M
f dµ <∞ for all M ∈ M. Then, for any ϵ > 0, there exists a measurable non-negative function g such that∫

E
g dµ ≥

∫
E
f dµ for any E ∈ A and

∫
U

gu dµ− ϵ <

∫
U

fu dµ.

Proof: Fix ϵ > 0. By hypothesis, there exists M ∈ M such that

∫
U\M

fu dµ <
ϵ

4
.

Let a = ess infMu(s), if we set N = {s ∈ U : u(s) ≥ a}, then, up to a set of measure zero, M ⊆ N and the previous
inequality still holds for N , therefore, without loss of generality we may assume that M = {s ∈ U : u(s) ≥ a} for
some a ≥ 0.

Let En = {s ∈ U : u(s) ≥ a+ n ϵ
8
∫
M

f dµ
} and

J = {n ∈ N : µ ((En−1 \ En)) > 0} .

Notice that M = ∪j∈J (Ej−1 \ Ej) up to a set of µ−measure zero.

Fix j ∈ J , let αj = inf{µ(E) : E ∈ M and µ(E) > µ(Ej)}. If αj > µ(Ej), let Cj be an element in M such that
µ(Cj) = αj . If αj = µ(Ej), then pick Cj ∈ M such that µ(Ej) < µ(Cj) and

∫
Cj\Ej

fu dµ <
ϵ

2j+2
.

In either case, by Lemma 5.1, the set

Hj = {s ∈ Cj \ Ej : u(s) +
ϵ

8
∫
M
f dµ

> u(s)}

has positive measure.

If αj > µ(Ej), define the function

gj =

( ∫
Ej−1\Ej

f dµ

)
χ(Hj∩(Cj\Ej))

µ (Hj ∩ (Cj \ Ej))
.
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This function is supported on Ej−1 \ Ej and for any E ∈ A we have
∫
E
gj dµ = 0 if µ(E) ≤ µ(Ej) or∫

E
gj dµ =

∫
Ej−1\Ej

f dµ otherwise. Moreover,

∫
U

ugj dµ−
∫

Ej−1\Ej

fu dµ =

( ∫
Ej−1\Ej

f dµ

) ∫
Hj∩(Cj\Ej)

u dµ

µ (Hj ∩ (Cj \ Ej))
−

∫
Ej−1\Ej

fu dµ

<

( ∫
Ej−1\Ej

f dµ

) ∫
Hj∩(Cj\Ej)

(
u+ ϵ

8
∫
M

f dµ

)
dµ

µ (Hj ∩ (Cj \ Ej))
−

∫
Ej−1\Ej

fu dµ

=
ϵ

8
∫
M
f dµ

∫
Ej−1\Ej

f dµ

+

( ∫
Ej−1\Ej

f dµ

) ∫
Hj∩(Cj\Ej)

u dµ

µ (Hj ∩ (Cj \ Ej))
−

∫
Ej−1\Ej

fu dµ

≤ ϵ

8
∫
M
f dµ

∫
Ej−1\Ej

f dµ+

(
a+ j

ϵ

8
∫
M
f dµ

) ∫
Ej−1\Ej

f dµ

−
(
a+ (j − 1)

ϵ

8
∫
M
f dµ

) ∫
Ej−1\Ej

f dµ

=
ϵ

4
∫
M
f dµ

∫
Ej−1\Ej

f dµ.

In the case that αj = µ(Ej), define gj as follows

gj =

( ∫
Ej−1\Cj

f dµ

)
χ(Hj∩(Cj\Ej))

µ (Hj ∩ (Cj \ Ej))
+ fχ(Cj\Ej).

This function satisfies
∫
E
gj dµ = 0 if µ(E) = µ(Ej), also

∫
E
gj dµ ≥

∫
E\Ej

f dµ if µ(Ej) < µ(E) < µ(Cj) and∫
E
gj dµ =

∫
Ej−1\Ej

f dµ if µ(E) ≥ µ(Cj). A similar computation as before, shows that

∫
U

ugj dµ−
∫

Ej−1\Ej

fu dµ <
ϵ

4
∫
M
f dµ

∫
Ej−1\Ej

f dµ+
ϵ

2j+2
.

Now define the function
g = fχ(U\M) +

∑
j∈J

gjχ(Ej−1\Ej).

Let E ∈ M, if µ(E) ≥ µ(M), by construction we have∫
E

g dµ =

∫
E\M

f dµ+
∑
j∈J

∫
Ej−1\Ej

f dµ =

∫
E\M

f dµ+

∫
M

f dµ =

∫
E

f dµ.

If µ(E) < µ(M), then there exists k ∈ J such that µ(Ek−1) < µ(E) ≤ µ(Ek) and∫
E

g dµ =
∑

j∈J,j<k

∫
Ej−1\Ej

f dµ+

∫
E\Ek−1

gk dµ ≥
∫

Ek−1

f dµ+

∫
E\Ek−1

f dµ =

∫
E

f dµ.
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Therefore
∫
E
g dµ ≥

∫
E
f dµ for all E ∈ A.

Finally, ∫
U

gu dµ−
∫
U

fu dµ =

∫
M

gu dµ−
∫
M

fu dµ+

∫
U\M

gu dµ−
∫

U\M

fu dµ

=

∫
M

gu dµ−
∫
M

fu dµ+

∫
U\M

fu dµ−
∫

U\M

fu dµ

<

∫
M

gu dµ−
∫
M

fu dµ+
ϵ

2

=
ϵ

2
+
∑
j∈J

 ∫
Ej−1\Ej

gju dµ−
∫

Ej−1\Ej

fu dµ


<
ϵ

2
+
∑
j∈J

 ϵ

4
∫
M
f dµ

∫
Ej−1\Ej

f dµ+
ϵ

2j+2


=
ϵ

2
+

ϵ

4
∫
M
f dµ

∑
j∈J

∫
Ej−1\Ej

f dµ+
∑
j∈J

ϵ

2j+2

≤ ϵ

2
+

ϵ

4
∫
M
f dµ

∫
M

f dµ+
ϵ

4
= ϵ.

This completes the proof.

With this we finish the functional description of the greatest core decreasing minorant

Proof of Theorem 2.4: If g satisfies
∫
E
g dµ ≥

∫
E
f dµ for all E ∈ A then∫

U

gu dµ ≥
∫
U

gu dµ since u ≥ u

≥
∫
U

fu dµ since u is core-decreasing.

Infimum over all g yields the inequality
∫
U
fu dµ ≤ inf

{∫
U
gu dµ :

∫
E
g dµ ≥

∫
E
f dµ for all E ∈ A

}
. Equality

follows from Lemma 5.2.
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