DOWN SPACES OVER A MEASURE SPACE WITH AN ORDERED CORE

ALEJANDRO SANTACRUZ¹ GORD SINNAMON¹

¹University of Western Ontario

2022 CANADIAN MATHEMATICAL SOCIETY WINTER MEETING, DEC 3 2022, TORONTO, CANADA

Recall Down spaces over $\mathbb R$

Let X be a rearrangement-invariant Banach Function space over (\mathbb{R}, λ) , that is $||f||_X = ||g||_X$ when f, g are equimeasurable.

Let X be a rearrangement-invariant Banach Function space over (\mathbb{R},λ) , that is $\|f\|_X=\|g\|_X$ when f,g are equimeasurable. The Köthe dual X' is the space of functions where

$$\|g\|_{X'} = \sup\left\{\int\limits_{\mathbb{R}} |g|f \, d\lambda : \|f\|_X \le 1\right\} < \infty$$

Let X be a rearrangement-invariant Banach Function space over (\mathbb{R}, λ) , that is $||f||_X = ||g||_X$ when f, g are equimeasurable.

The Köthe dual X' is the space of functions where

$$\|g\|_{X'} = \sup\left\{\int\limits_{\mathbb{R}} |g|f \, d\lambda : \|f\|_X \le 1\right\} < \infty$$

Under mild conditions on X we have X'' = X, or

$$\|g\|_{\mathbf{X}} = \sup\left\{\int\limits_{\mathbb{R}} |g|f\,d\lambda: \|f\|_{\mathbf{X'}} \leq 1
ight\}$$

Let X be a rearrangement-invariant Banach Function space over (\mathbb{R},λ) , that is $\|f\|_X=\|g\|_X$ when f,g are equimeasurable.

The Köthe dual X' is the space of functions where

$$\|g\|_{X'} = \sup\left\{\int\limits_{\mathbb{R}} |g|f \, d\lambda : \|f\|_X \le 1\right\} < \infty$$

Under mild conditions on X we have X'' = X, or

$$\|g\|_{\mathbf{X}} = \sup \left\{ \int\limits_{\mathbb{R}} |g| f \, d\lambda : \|f\|_{\mathbf{X'}} \leq 1
ight\}$$

The down space 'X-down' is given by the restricted norm

$$\|g\|_{X^{\downarrow}}=\sup\left\{\int\limits_{\mathbb{R}}|g|f\,d\lambda:\|f\|_{X'}\leq 1\, ext{and}\,f ext{ is non-increasing}
ight\}$$

•

Let X be a rearrangement-invariant Banach Function space over (\mathbb{R},λ) , that is $\|f\|_X=\|g\|_X$ when f,g are equimeasurable.

The Köthe dual X' is the space of functions where

$$\|g\|_{X'}=\sup\left\{\int\limits_{\mathbb{R}}|g|f\,d\lambda:\|f\|_X\leq 1
ight\}<\infty$$

Under mild conditions on X we have X'' = X, or

$$\|g\|_{\mathbf{X}} = \sup \left\{ \int\limits_{\mathbb{R}} |g| f \, d\lambda : \|f\|_{\mathbf{X'}} \leq 1 \right\}$$

The down space 'X-down' is given by the restricted norm

$$\|g\|_{\mathsf{X}^\downarrow} = \sup\left\{\int\limits_{\mathbb{R}} |g|f\,d\lambda: \|f\|_{\mathsf{X}'} \le 1 ext{ and } f ext{ is non-increasing}
ight\}$$

Applications: Study of weighted norm inequalities, describe the dual of Lorentz spaces and study of Cesaro spaces

ľ

Let X be a rearrangement-invariant Banach Function space over (\mathbb{R},λ) , that is $\|f\|_X=\|g\|_X$ when f,g are equimeasurable.

The Köthe dual X' is the space of functions where

$$\|g\|_{X'} = \sup\left\{\int\limits_{\mathbb{R}} |g|f\,d\lambda: \|f\|_X \leq \mathbf{1}
ight\} < \infty$$

Under mild conditions on X we have X'' = X, or

$$\|g\|_{\mathbf{X}} = \sup \left\{ \int\limits_{\mathbb{R}} |g| f \, d\lambda : \|f\|_{\mathbf{X'}} \leq 1 \right\}$$

The down space 'X-down' is given by the restricted norm

$$\|g\|_{\mathsf{X}^\downarrow} = \sup\left\{\int\limits_{\mathbb{R}} |g|f\,d\lambda: \|f\|_{\mathsf{X}'} \le 1 ext{ and } f ext{ is non-increasing}
ight\}$$

Applications: Study of weighted norm inequalities, describe the dual of Lorentz spaces and study of Cesaro spaces given by the norm $||f||_{C(X)} = ||\frac{1}{x} \int_0^x |f(t)| \ dt||_X$

ľ

Recall Down spaces over $\mathbb R$

Let X be a rearrangement-invariant Banach Function space over (\mathbb{R}, λ) , that is $||f||_X = ||g||_X$ when f, g are equimeasurable. The Köthe dual X' is the space of functions where

$$\|g\|_{X'} = \sup\left\{\int\limits_{\mathbb{R}} |g|f\,d\lambda: \|f\|_X \leq 1
ight\} < \infty$$

Under mild conditions on X we have X'' = X, or

$$\|g\|_{\mathbf{X}} = \sup \left\{ \int\limits_{\mathbb{R}} |g| f \, d\lambda : \|f\|_{\mathbf{X'}} \leq 1
ight\}$$

The down space 'X-down' is given by the restricted norm

$$\|g\|_{\mathsf{X}^\downarrow} = \sup\left\{\int\limits_{\mathbb{R}} |g|f\,d\lambda: \|f\|_{\mathsf{X}'} \le 1 ext{ and } f ext{ is non-increasing}
ight\}$$

Applications: Study of weighted norm inequalities, describe the dual of Lorentz spaces and study of Cesaro spaces given by the norm $\|f\|_{\mathcal{C}(X)} = \|\frac{1}{X}\int_0^X |f(t)| \ dt\|_X$ Whenever $f(x) \mapsto \frac{1}{X}\int_0^X f(t) \ dt$ is bounded in X then $\mathcal{C}(X) \approx X^{\downarrow}$.

Recall the *K*-functional for a compatible couple (X_1, X_2) is $K(x, t, X_1, X_2) = \inf \{ \|x_1\|_{X_1} + t \|x_2\|_{X_2} : x = x_1 + x_2 \}.$

Recall the K-functional for a compatible couple (X_1,X_2) is $K(x,t,X_1,X_2)=\inf\{\|x_1\|_{X_1}+t\|x_2\|_{X_2}: x=x_1+x_2\}$. Over $[o,\infty)$ with the Lebesgue measure for $X_1=L^1,X_2=L^\infty$.

Recall the K-functional for a compatible couple (X_1,X_2) is $K(x,t,X_1,X_2)=\inf\{\|x_1\|_{X_1}+t\|x_2\|_{X_2}: x=x_1+x_2\}$. Over $[o,\infty)$ with the Lebesgue measure for $X_1=L^1,X_2=L^\infty$.

$$K(f,t,L^1,L^\infty) = \int_0^t f^*.$$

Recall the K-functional for a compatible couple (X_1,X_2) is $K(x,t,X_1,X_2)=\inf\{\|x_1\|_{X_1}+t\|x_2\|_{X_2}: x=x_1+x_2\}$. Over $[o,\infty)$ with the Lebesgue measure for $X_1=L^1,X_2=L^\infty$.

- $\blacksquare K(f,t,L^1,L^\infty) = \int_0^t f^*.$
- $\blacksquare K(f,t,(L^1)^{\downarrow},(L^{\infty})^{\downarrow}) = \int_0^t f^o.$

Recall the K-functional for a compatible couple (X_1,X_2) is $K(x,t,X_1,X_2)=\inf\{\|x_1\|_{X_1}+t\|x_2\|_{X_2}: x=x_1+x_2\}$. Over $[o,\infty)$ with the Lebesgue measure for $X_1=L^1,X_2=L^\infty$.

- $\blacksquare K(f,t,L^1,L^\infty) = \int_0^t f^*.$
- $\blacksquare K(f,t,(L^1)^{\downarrow},(L^{\infty})^{\downarrow}) = \int_0^t f^o.$
- $K(f,t,((L^{\infty})^{\downarrow})',((L^{1})^{\downarrow})')=K(f,t,\widetilde{L^{1}},\widetilde{L^{\infty}})=\int_{0}^{t}\widetilde{f}.$

Recall the K-functional for a compatible couple (X_1,X_2) is $K(x,t,X_1,X_2)=\inf\{\|x_1\|_{X_1}+t\|x_2\|_{X_2}: x=x_1+x_2\}$. Over $[o,\infty)$ with the Lebesgue measure for $X_1=L^1,X_2=L^\infty$.

- $K(f,t,L^1,L^\infty) = \int_0^t f^*.$
- $\blacksquare K(f,t,(L^1)^{\downarrow},(L^{\infty})^{\downarrow}) = \int_0^t f^o.$
- $K(f,t,((L^{\infty})^{\downarrow})',((L^{1})^{\downarrow})')=K(f,t,\widetilde{L^{1}},\widetilde{L^{\infty}})=\int_{0}^{t}\widetilde{f}.$

And we have a complete description of the interpolation spaces, in terms of the rearrangement invariant spaces

$$(L^{1})^{\downarrow} = L^{1} = \overline{L}^{2} - \overline{L}^{\infty} = \widetilde{L}^{\infty}$$

$$\widetilde{L}^{1} = \overline{L}^{2} - \overline{L}^{\infty} = \widetilde{L}^{\infty}$$

Let (S, Σ, μ) be a σ -finite complete measure space.

Let (S, Σ, μ) be a σ -finite complete measure space. **Definition:** An **Ordered core** is a totally ordered subset \mathcal{A} of Σ , satisfying $\mu(E) < \infty$ for all $E \in \mathcal{A}$ and $S = \cup_n E_n$ for some $\{E_n\} \in \mathcal{A}$.

Let (S, Σ, μ) be a σ -finite complete measure space. **Definition:** An Ordered core is a totally ordered subset \mathcal{A} of Σ , satisfying $\mu(E) < \infty$ for all $E \in \mathcal{A}$ and $S = \cup_n E_n$ for some $\{E_n\} \in \mathcal{A}$. **Examples:**

■ $S = (0, \infty)$: $A = \{(0, x] : x > 0\}$ (usual order)

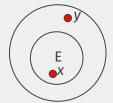
Let (S, Σ, μ) be a σ -finite complete measure space. **Definition:** An Ordered core is a totally ordered subset \mathcal{A} of Σ , satisfying $\mu(E) < \infty$ for all $E \in \mathcal{A}$ and $S = \cup_n E_n$ for some $\{E_n\} \in \mathcal{A}$. **Examples:**

- $S = (0, \infty)$: $A = \{(0, x] : x > 0\}$ (usual order)
- S metric measure space: $A = \{B(a,r) : r > o\}$ for fixed $a \in S$

Let (S, Σ, μ) be a σ -finite complete measure space.

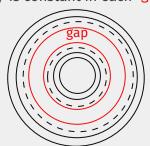
Definition: An Ordered core is a totally ordered subset \mathcal{A} of Σ , satisfying $\mu(E) < \infty$ for all $E \in \mathcal{A}$ and $S = \cup_n E_n$ for some $\{E_n\} \in \mathcal{A}$. **Examples:**

- $S = (0, \infty)$: $A = \{(0, x] : x > 0\}$ (usual order)
- S metric measure space: $A = \{B(a,r) : r > 0\}$ for fixed $a \in S$ **Definition:** A positive measurable function is **core-decreasing** if **2.** f is constant in each **gap**



if $x \in E$ and $y \notin E$, $f(x) \ge f(y)$

$$\forall E \in A$$



DOWN SPACES WITH ORDERED CORES

Let X be a rearrangement invariant Banach Function space over (S, μ) then

$$\|f\|_{X^\downarrow} = \sup \left\{ \int\limits_{S} |f| \, g \, d\mu : \|g\|_{X'} \le 1 \text{ and } g \text{ is core-decreasing} \right\}.$$
 Examples: $(L^1_\mu)^\downarrow = L^1_\mu \text{ but } L^\infty_\mu \subsetneq (L^\infty_\mu)^\downarrow.$

DOWN SPACES WITH ORDERED CORES

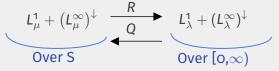
Let X be a rearrangement invariant Banach Function space over (S, μ) then

$$\|f\|_{X^\downarrow} = \sup \left\{ \int\limits_{S} |f| \, g \, d\mu : \|g\|_{X'} \le 1 \text{ and } g \text{ is core-decreasing} \right\}.$$
 Examples: $\left(L^1_\mu\right)^\downarrow = L^1_\mu \text{ but } L^\infty_\mu \subsetneq \left(L^\infty_\mu\right)^\downarrow.$

Questions

- 1. What is the relation with the down spaces over $[0, \infty)$?
- 2. Do we have a level function ' f^{o} '?
- 3. What is the dual (associate space) of X^{\downarrow} ?
- 4. Is $\left(L_{\mu}^{1},\left(L_{\mu}^{\infty}\right)^{\downarrow}\right)$ a Calderón Couple?

Every ordered core induces a Borel measure λ on $[0,\infty)$ and maps



Every ordered core induces a Borel measure λ on $[0,\infty)$ and maps

$$L_{\mu}^{1} + (L_{\mu}^{\infty})^{\downarrow} \xrightarrow{R} L_{\lambda}^{1} + (L_{\lambda}^{\infty})^{\downarrow}$$
Over S
Over $[0,\infty)$

With properties

$$\blacksquare \ \|Rh\|_{L^1_\lambda} \leq \|h\|_{L^1_\mu}, \|Rh\|_{\left(L^\infty_\lambda\right)^\downarrow} \leq \|h\|_{\left(L^\infty_\mu\right)^\downarrow}, \text{ same for } Q.$$

Every ordered core induces a Borel measure λ on $[0,\infty)$ and maps

$$L_{\mu}^{1} + (L_{\mu}^{\infty})^{\downarrow} \xrightarrow{R} L_{\lambda}^{1} + (L_{\lambda}^{\infty})^{\downarrow}$$
Over S
Over $[o, \infty)$

With properties

- $\blacksquare \ \|Rh\|_{L^1_\lambda} \leq \|h\|_{L^1_\mu}, \|Rh\|_{\left(L^\infty_\lambda\right)^\downarrow} \leq \|h\|_{\left(L^\infty_\mu\right)^\downarrow}, \text{ same for } Q.$
- RQ = Id but QRh = h may fail, the functions are indistinguishable in terms of the core elements but not equal.

Every ordered core induces a Borel measure λ on $[0,\infty)$ and maps

$$L_{\mu}^{1} + (L_{\mu}^{\infty})^{\downarrow} \xrightarrow{R} L_{\lambda}^{1} + (L_{\lambda}^{\infty})^{\downarrow}$$
Over S
Over $[o, \infty)$

With properties

- $\blacksquare \ \|Rh\|_{L^1_\lambda} \leq \|h\|_{L^1_\mu}, \|Rh\|_{\left(L^\infty_\lambda\right)^\downarrow} \leq \|h\|_{\left(L^\infty_\mu\right)^\downarrow}, \text{ same for } Q.$
- RQ = Id but QRh = h may fail, the functions are indistinguishable in terms of the core elements but not equal.
- Core-decreasing functions on S and decreasing functions on $[0,\infty)$ are in bijective correspondence via R,Q.

LEVEL FUNCTION

We use the operators R and Q to lift the level function **Definition:** For $f \in L^1_\mu + (L^\infty_\lambda)^\downarrow$ we define the level function f^o relative to the core $\mathcal A$ by $f^o = Q\Big(\big(R(f)\big)^o\Big)$.

LEVEL FUNCTION

We use the operators R and Q to lift the level function **Definition:** For $f \in L^1_\mu + (L^\infty_\lambda)^\downarrow$ we define the level function f^o relative to the core $\mathcal A$ by $f^o = Q\Big(\big(R(f)\big)^o\Big)$.

Theorem

Let X be a rearrangement invariant Banach function space over (S, μ) and \mathcal{A} be an ordered core then

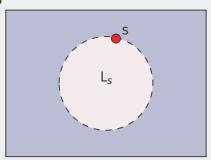
$$||f||_{X^{\downarrow}}=||f^o||_X.$$

DUAL SPACES

We define the least core decreasing majorant of f as follows:

$$\widetilde{f}(s) = \sup_{t \not\in L_s} |f(t)|$$
.

S



In the case of $[o,\infty)$ with usual core

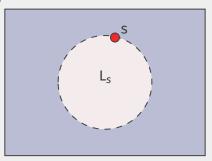
$$L_s = [0, s) \ and \ \widetilde{f}(s) = \sup_{t \ge s} |f(t)|$$

DUAL SPACES

We define the least core decreasing majorant of *f* as follows:

$$\widetilde{f}(s) = \sup_{t \not\in L_s} |f(t)|$$
.

S



In the case of $[o,\infty)$ with usual core

$$L_s = [0,s)$$
 and $\tilde{f}(s) = \sup_{t \ge s} |f(t)|$

Theorem (Duality)

Let
$$||f||_{\widetilde{X}} = ||\widetilde{f}||_X$$
, then $(X^{\downarrow})' = \widetilde{X'}$.

INTERPOLATION OF DOWN SPACES

For the couples $\left(L_{\mu}^{1},\left(L_{\mu}^{\infty}\right)^{\downarrow}\right)$ and its dual $\left(\widetilde{L_{\mu}^{1}},L_{\mu}^{\infty}\right)$:

Theorem (K-functional)

$$\mathit{K}(f,t,L_{\mu}^{1},\left(L_{\mu}^{\infty}\right)^{\downarrow})=\int_{o}^{t}(f^{o_{\mathcal{A}}})^{*}$$
 and $\mathit{K}(f,t,\widetilde{L_{\mu}^{1}},L_{\mu}^{\infty})=\int_{o}^{t}(\widetilde{f})^{*}$

INTERPOLATION OF DOWN SPACES

For the couples $\left(L_{\mu}^{1},\left(L_{\mu}^{\infty}\right)^{\downarrow}\right)$ and its dual $\left(\widetilde{L_{\mu}^{1}},L_{\mu}^{\infty}\right)$:

Theorem (K-functional)

$$\mathit{K}(f,t,L_{\mu}^{1},\left(L_{\mu}^{\infty}\right)^{\downarrow})=\int_{0}^{t}(f^{o_{\mathcal{A}}})^{*}$$
 and $\mathit{K}(f,t,\widetilde{L_{\mu}^{1}},L_{\mu}^{\infty})=\int_{0}^{t}(\widetilde{f})^{*}$

Theorem (Exact Calderón couples)

If $f,g\in L^1_\mu+\left(L^\infty_\mu\right)^\downarrow$ and $\int_0^t (f^{o_\mathcal{A}})^*\leq \int_0^t (g^{o_\mathcal{A}})^*$ for all t> 0 then there exists an admissible contraction $T:L^1_\mu+\left(L^\infty_\mu\right)^\downarrow$ such that Tg=f.

An analogous result holds for the dual couple.

Corollary

Z is an interpolation space of $(L_{\mu}^{1}, (L_{\mu}^{\infty})^{\downarrow})$ if and only if $Z = X^{\downarrow}$ for some rearrangement invariant space X.

CALDERÓN COUPLES, CONCLUSION

We have a complete description of the interpolation spaces for the couples $(L_{\mu}^{1}, (L_{\mu}^{\infty})^{\downarrow})$ and $(\widetilde{L_{\mu}^{1}}, L_{\mu}^{\infty})$, in terms of the rearrangement invariant spaces

$$(L_{\mu}^{1})^{\downarrow} = L^{1} = \overline{L}^{2} - \overline{L}^{\infty}_{\mu} = \widetilde{L}^{\infty}$$

$$\widetilde{L}^{1}_{\mu} = \overline{L}^{\infty} + \overline{L}^{\infty}_{\mu} = \widetilde{L}^{\infty}$$