MONOTONICITY IN ORDERED MEASURE SPACES

ALEJANDRO SANTACRUZ¹ GORD SINNAMON¹

¹University of Western Ontario

12TH INTERNATIONAL CONFERENCE IN NONLINEAR ANALYSIS, FUNCTION SPACES AND APPLICATIONS, MAY 30 2022, PRAGUE, CZECH REPUBLIC

Let (S, Σ, λ) be a $\sigma-$ finite complete measure space.

Let (S, Σ, λ) be a σ -finite complete measure space. **Definition:** An **Ordered core** is a totally ordered subset $\mathcal A$ of Σ , satisfying $\lambda(E)<\infty$ for all $E\in\mathcal A$.

Let (S, Σ, λ) be a σ -finite complete measure space.

Definition: An Ordered core is a totally ordered subset A of Σ , satisfying $\lambda(E) < \infty$ for all $E \in A$.

Examples:

■
$$S = (0, \infty)$$
: $A = \{(0, x] : x > 0\}$ (Hardy operator $f(x) \mapsto \int_0^x f(x) dx$)

Let (S, Σ, λ) be a σ -finite complete measure space.

Definition: An Ordered core is a totally ordered subset \mathcal{A} of Σ , satisfying $\lambda(E) < \infty$ for all $E \in \mathcal{A}$.

Examples:

- $S = (0, \infty)$: $A = \{(0, x] : x > 0\}$ (Hardy operator $f(x) \mapsto \int_0^x f(x) dx$)
- S metric measure space: $A = \{B(a,r) : r > 0\}$ for fixed $a \in S$

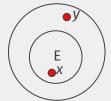
Let (S, Σ, λ) be a σ -finite complete measure space.

Definition: An Ordered core is a totally ordered subset A of Σ , satisfying $\lambda(E) < \infty$ for all $E \in A$.

Examples:

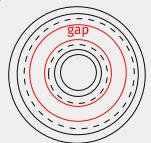
1.

- $S = (0, \infty)$: $A = \{(0, x] : x > 0\}$ (Hardy operator $f(x) \mapsto \int_0^x f(x) dx$)
- S metric measure space: $A = \{B(a,r) : r > 0\}$ for fixed $a \in S$ **Definition:** A positive measurable function is **core-decreasing** if
 - 2. f is constant in each gap



if
$$x \in E$$
 and $y \notin E$, $f(x) \ge f(y)$

$$\forall E \in \mathcal{A}$$



Version in $(0, \infty)$ with Lebesgue measure.

Least decreasing majorant	Level function
$\widetilde{f}(x) = \sup_{y \ge x} f(y)$	$f^{o}(x) = \frac{d}{dx} \left(\text{least concave maj } \int_{0}^{x} f \right)$

Version in $(0, \infty)$ with Lebesgue measure.

Least decreasing majorant	Level function
$\widetilde{f}(x) = \sup_{y \geq x} f(y)$	$f^{o}(x) = \frac{d}{dx}$ (least concave maj $\int_{0}^{x} f$)
$\int_0^\infty \widetilde{f}g = \sup \{ \int_0^\infty fh : \int_0^x h \le \int_0^x g \}$ g and h are positive	$\int_0^\infty f^o g = \sup\{\int_0^\infty fh: \int_0^x h \leq \int_0^x g\}$ g and h are decreasing

Version in (o, ∞) with Lebesgue measure.

Least decreasing majorant	Level function
$\widetilde{f}(x) = \sup_{y \ge x} f(y)$	$f^{o}(x) = \frac{d}{dx}$ (least concave maj $\int_{0}^{x} f$)
$\int_0^\infty \widetilde{f}g = \sup \{ \int_0^\infty fh : \int_0^x h \le \int_0^x g \}$ g and h are positive	$\int_0^\infty f^o g = \sup \{ \int_0^\infty fh : \int_0^x h \le \int_0^x g \}$ g and h are decreasing

Version in (S, Σ, λ)

Least C.D majorant	Level function
\widetilde{f}	$f^{o_{\mathcal{A}}}$

Version in $(0, \infty)$ with Lebesgue measure.

Least decreasing majorant	Level function
$\widetilde{f}(x) = \sup_{y \ge x} f(y)$	$f^{o}(x) = \frac{d}{dx}$ (least concave maj $\int_{0}^{x} f$)
$\int_0^\infty \widetilde{f} g = \sup \{ \int_0^\infty f h : \int_0^x h \le \int_0^x g \}$	$\int_0^\infty f^o g = \sup \{ \int_0^\infty fh : \int_0^x h \le \int_0^x g \}$
g and h are positive	g and h are decreasing

Version in (S, Σ, λ)

Least C.D majorant	Level function
\widetilde{f}	$f^{o_{\mathcal{A}}}$
$\int_{S} \widetilde{f} g d\lambda =$	$\int_{S} f^{o_{\mathcal{A}}} g d\lambda =$
$\sup\{\int_{S} fh: \int_{E} h \leq \int_{E} g, \forall E \in A\}$	$\sup \{ \int_{S} fh : \int_{E} h \leq \int_{E} g, \forall E \in \mathcal{A} \}$
g and h are positive	g and h are core-decreasing

For $p \in [1,\infty]$, the 'Down space' $(L^p_\lambda)^\downarrow$ is defined by the norm

$$\|f\|_{(L^p_\lambda)^\downarrow}=\sup\left\{\int_{\mathbb{S}}|f|\,g\,d\lambda:\|g\|_{L^{p'}_\lambda}\leq ext{1 and core-decreasing}
ight\}$$

For $p \in [1, \infty]$, the 'Down space' $(L^p_\lambda)^\downarrow$ is defined by the norm

$$\|f\|_{(L^p_\lambda)^\downarrow}=\sup\left\{\int_S|f|\,g\,d\lambda:\|g\|_{L^{p'}_\lambda}\le ext{1 and core-decreasing}
ight\}$$

$$=\|f^{o_\mathcal{A}}\|_{L^p_\lambda}$$

For $p \in [1, \infty]$, the 'Down space' $(L^p_\lambda)^{\downarrow}$ is defined by the norm

$$\|f\|_{(L^p_\lambda)^\downarrow}=\sup\left\{\int_{\mathbb{S}}|f|\,g\,d\lambda:\|g\|_{L^{p'}_\lambda}\leq ext{1 and core-decreasing}
ight\}$$

$$=\|f^{o_\mathcal{A}}\|_{L^p_\lambda}$$

The space $\widetilde{L_{\lambda}^{p'}}$ is defined by the norm $\|g\|_{\widetilde{L_{\lambda}^{p'}}} = \|\widetilde{g}\|_{L^{p'}}.$

For $p \in [1, \infty]$, the 'Down space' $(L^p_\lambda)^{\downarrow}$ is defined by the norm

$$\|f\|_{(L^p_\lambda)^\downarrow}=\sup\left\{\int_{\mathbb{S}}|f|\,g\,d\lambda:\|g\|_{L^{p'}_\lambda}\leq ext{1 and core-decreasing}
ight\}$$

$$=\|f^{o_\mathcal{A}}\|_{L^p_\lambda}$$

The space $\widetilde{L_{\lambda}^{p'}}$ is defined by the norm $\|g\|_{\widetilde{L_{\lambda}^{p'}}} = \|\widetilde{g}\|_{L^{p'}}.$

We have: $\widetilde{L_{\lambda}^p} \subseteq L_{\lambda}^p \subseteq (L_{\lambda}^p)^{\downarrow}$.

For $p \in [1, \infty]$, the 'Down space' $(L^p_\lambda)^{\downarrow}$ is defined by the norm

$$\|f\|_{(L^p_\lambda)^\downarrow}=\sup\left\{\int_{\mathbb{S}}|f|\,g\,d\lambda:\|g\|_{L^{p'}_\lambda}\leq ext{1 and core-decreasing}
ight\}$$

$$=\|f^{o_\mathcal{A}}\|_{L^p_\lambda}$$

The space $\widetilde{L_{\lambda}^{p'}}$ is defined by the norm $\|g\|_{\widetilde{L_{\lambda}^{p'}}} = \|\widetilde{g}\|_{L^{p'}}$.

We have: $\widetilde{L_{\lambda}^{p}} \subseteq L_{\lambda}^{p} \subseteq (L_{\lambda}^{p})^{\downarrow}$.

Duality:

$$\left((L^p_\lambda)^\downarrow\right)'=\widetilde{L^{p'}_\lambda}.$$

TRANSFERRING MONOTONICITY

For the operator $f \mapsto Kf(y) = \int_S k(y,s)f(s) \, d\lambda(s)$, where $k(y,\bullet)$ is core-decreasing. Let X be a Banach function space.

Theorem

The best constant C in

$$\int_{S} fu \, d\lambda \le C \|Kf\|_{X}, \, \forall f \text{ is non-negative}$$

doesn't change when u is replaced by \tilde{u} .

TRANSFERRING MONOTONICITY

For the operator $f \mapsto Kf(y) = \int_S k(y,s)f(s) \, d\lambda(s)$, where $k(y,\bullet)$ is core-decreasing. Let X be a Banach function space.

Theorem

The best constant C in

$$\int\limits_{S} fu\,d\lambda \leq C\|Kf\|_{X}, \ \forall f \ \text{is non-negative}$$

doesn't change when u is replaced by \tilde{u} . The best constant C in

$$\int\limits_{S} fu\,d\lambda \leq C\|\mathit{K} f\|_{\mathsf{X}}, \; \forall f \; \mathsf{is \; core-decreasing}$$

doesn't change when u is replaced by u^{o_A} .

TRANSFERRING MONOTONICITY

For the operator $f \mapsto Kf(y) = \int_S k(y,s)f(s) \, d\lambda(s)$, where $k(y,\bullet)$ is core-decreasing. Let X be a Banach function space.

Theorem

The best constant C in

$$\int\limits_{S} fu\,d\lambda \leq C\|Kf\|_{X}, \ \forall f \ \text{is non-negative}$$

doesn't change when u is replaced by \tilde{u} .

The best constant C in

$$\int\limits_{S} fu\,d\lambda \leq C\|Kf\|_{X}, \ \forall f \ \text{is core-decreasing}$$

doesn't change when u is replaced by u^{o_A} .

Possible applications

■ Boundedness of Abstract Hardy operator $L^1 \to L^q$, $q \in (0,1)$: Consider $B: Y \to \Sigma$ a map whose image is an ordered core. The kernel $k(y,s) = \chi_{B(y)}(s)$ is core-decreasing in s. Characterization of C for the inequality

$$\left(\int_{\mathsf{Y}} \left(\int_{B(y)} f(\mathsf{s}) \, d\lambda(\mathsf{s})\right)^q \, d\mu(y)\right)^{1/q} \leq \mathsf{C} \int_{\mathsf{S}} f \mathbf{w} \, d\lambda$$

POSSIBLE APPLICATIONS

■ Boundedness of Abstract Hardy operator $L^1 \to L^q$, $q \in (0,1)$: Consider $B: Y \to \Sigma$ a map whose image is an ordered core. The kernel $k(y,s) = \chi_{B(y)}(s)$ is core-decreasing in s. Characterization of C for the inequality

$$\left(\int_{\mathsf{Y}} \left(\int_{B(y)} f(\mathsf{s}) \, d\lambda(\mathsf{s})\right)^q \, d\mu(y)\right)^{1/q} \leq \mathsf{C} \int_{\mathsf{S}} f \mathbf{w} \, d\lambda$$

 $\blacksquare \ \, \text{Interpolation of} \, \left(L_{\lambda}^{1}, (L_{\lambda}^{\infty})^{\downarrow}\right) \, \text{and} \, \left(\widetilde{L_{\lambda}^{1}}, L_{\lambda}^{\infty}\right)$

$$(L_{\lambda}^{1})^{\downarrow} = L_{\lambda}^{1} = \overline{L_{\lambda}^{\infty}} - L_{\lambda}^{\infty} = \widetilde{L_{\lambda}^{\infty}}$$

$$\widetilde{L_{\lambda}^{1}} - \overline{L_{\lambda}^{\infty}} = \overline{L_{\lambda}^{\infty}}$$