Generalized monotone functions in measure spaces

Alejandro Santacruz Hidalgo

University of Western Ontario

CMS Summer meeting Saskatoon, Saskatchewan June 2, 2024

A function $f:[0,\infty) \to [0,\infty)$ is increasing (decreasing) if x < y implies $f(y) \ge f(x)$ (for decreasing $f(y) \le f(x)$).

A function $f:[0,\infty) \to [0,\infty)$ is increasing (decreasing) if x < y implies $f(y) \ge f(x)$ (for decreasing $f(y) \le f(x)$). Some properties (among others):

- Borel measurable, differentiable almost everywhere, continuous except at most at countably many jumps.

A function $f:[0,\infty) \to [0,\infty)$ is increasing (decreasing) if x < y implies $f(y) \ge f(x)$ (for decreasing $f(y) \le f(x)$). Some properties (among others):

- Borel measurable, differentiable almost everywhere, continuous except at most at countably many jumps.
- For increasing functions $f(x) = \sup_n \int_0^x h_n(t) dt$.

A function $f:[0,\infty) \to [0,\infty)$ is increasing (decreasing) if x < y implies $f(y) \ge f(x)$ (for decreasing $f(y) \le f(x)$). Some properties (among others):

- Borel measurable, differentiable almost everywhere, continuous except at most at countably many jumps.
- For increasing functions $f(x) = \sup_n \int_0^x h_n(t) dt$.
- For decreasing functions $f(x) = \sup_n \int_x^{\infty} h_n(t) dt$.

A function $f:[0,\infty) \to [0,\infty)$ is increasing (decreasing) if x < y implies $f(y) \ge f(x)$ (for decreasing $f(y) \le f(x)$). Some properties (among others):

- Borel measurable, differentiable almost everywhere, continuous except at most at countably many jumps.
- For increasing functions $f(x) = \sup_n \int_0^x h_n(t) dt$.
- For decreasing functions $f(x) = \sup_n \int_x^{\infty} h_n(t) dt$.

A function $f:[0,\infty) \to [0,\infty)$ is increasing (decreasing) if x < y implies $f(y) \ge f(x)$ (for decreasing $f(y) \le f(x)$). Some properties (among others):

- Borel measurable, differentiable almost everywhere, continuous except at most at countably many jumps.
- For increasing functions $f(x) = \sup_n \int_0^x h_n(t) dt$.
- For decreasing functions $f(x) = \sup_{n} \int_{x}^{\infty} h_n(t) dt$.

Classic Hardy's inequality (1925)

For
$$p>1$$
,
$$\left(\int_0^\infty \left|\frac{1}{x}\int_0^x f(t)\,dt\right|^p\,dx\right)^{1/p}\leq C_p \left(\int_0^\infty |f(x)|^p\,dx\right)^{1/p}$$

A function $f:[0,\infty) \to [0,\infty)$ is increasing (decreasing) if x < y implies $f(y) \ge f(x)$ (for decreasing $f(y) \le f(x)$). Some properties (among others):

- Borel measurable, differentiable almost everywhere, continuous except at most at countably many jumps.
- For increasing functions $f(x) = \sup_n \int_0^x h_n(t) dt$.
- For decreasing functions $f(x) = \sup_{n} \int_{x}^{\infty} h_n(t) dt$.

Classic Hardy's inequality (1925)

$$\begin{split} &\text{For } p>1, \ \left(\int_0^\infty \left|\frac{1}{x}\int_0^x f(t) \, dt\right|^p \, dx\right)^{1/p} \leq C_p \left(\int_0^\infty \left|f(x)\right|^p \, dx\right)^{1/p} \\ &\text{Conjugate: } \left(\int_0^\infty \left|\frac{1}{x}\int_x^\infty f(t) \, dt\right|^p \, dx\right)^{1/p} \leq C_p \left(\int_0^\infty \left|f(x)\right|^p \, dx\right)^{1/p} \\ &\text{Differential } \left(f \in W_0^1\right): \left(\int_0^\infty \left|\frac{f(x)}{x}\right|^p \, dx\right)^{1/p} \leq C_p \left(\int_0^\infty \left|f'(x)\right|^p \, dx\right)^{1/p} \end{split}$$

Questions/Goals: 1. Can we define monotone functions on a general measure space (S, Σ, μ) (no a priori order among the elements)?

Questions/Goals: 1. Can we define monotone functions on a general measure space (S, Σ, μ) (no a priori order among the elements)?

Definition: An Ordered core is a totally ordered subset \mathcal{A} of Σ , satisfying $\mu(E) < \infty$ for all $E \in \mathcal{A}$ and $S = \cup_n E_n$ for some $\{E_n\} \in \mathcal{A}$.

Questions/Goals: 1. Can we define monotone functions on a general measure space (S, Σ, μ) (no a priori order among the elements)?

Definition: An Ordered core is a totally ordered subset $\mathcal A$ of Σ , satisfying $\mu(E)<\infty$ for all $E\in\mathcal A$ and $S=\cup_n E_n$ for some $\{E_n\}\in\mathcal A$.

Examples:

$$S = (0, \infty)$$
: $A = \{(0, x] : x > 0\}$ (Hardy: $f \mapsto \int_0^x f$).

Questions/Goals: 1. Can we define monotone functions on a general measure space (S, Σ, μ) (no a priori order among the elements)?

Definition: An Ordered core is a totally ordered subset $\mathcal A$ of Σ , satisfying $\mu(E)<\infty$ for all $E\in\mathcal A$ and $S=\cup_n E_n$ for some $\{E_n\}\in\mathcal A$.

Examples:

$$S=(0,\infty)$$
: $\mathcal{A}=\{(0,x]:x>0\}$ (Hardy: $f\mapsto \int_0^x f$). S metric measure space: $\mathcal{A}=\{B(a,r):r>0\}$ for fixed $a\in S$

Questions/Goals: 1. Can we define monotone functions on a general measure space (S, Σ, μ) (no a priori order among the elements)?

Definition: An Ordered core is a totally ordered subset $\mathcal A$ of Σ , satisfying $\mu(E)<\infty$ for all $E\in\mathcal A$ and $S=\cup_n E_n$ for some $\{E_n\}\in\mathcal A$.

Examples:

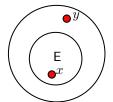
$$S = (0, \infty): \ \mathcal{A} = \{(0, x] : x > 0\} \ (\mathsf{Hardy}: \ f \mapsto \int_0^x f).$$

S metric measure space: $\mathcal{A} = \{B(a,r): r>0\}$ for fixed $a\in S$

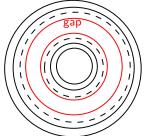
Definition: A positive measurable function is core-decreasing if

1.

2. f is constant in each



if $x \in E$ and $y \notin E$, $f(x) \ge f(y)$



gap

Every core contains \emptyset .

1. Let $U = [0, \infty)$, μ the Lebesgue measure. The core $\mathcal{A} = \{[0, x] : x > 0\}$. Note $\sigma(\mathcal{A})$ is the Borel σ -algebra. f is core decreasing if for each E = [0, t], $x \in [0, t]$ and $y \notin [0, t]$ then f(y) < f(x).

Every core contains \emptyset .

- **1.** Let $U = [0, \infty)$, μ the Lebesgue measure. The core $\mathcal{A} = \{[0, x] : x > 0\}$. Note $\sigma(\mathcal{A})$ is the Borel σ -algebra. f is core decreasing if for each E = [0, t], $x \in [0, t]$ and $y \notin [0, t]$ then $f(y) \leq f(x)$.
- **2.** Let $U = [0, \infty)$, μ the Lebesgue measure. The core $\mathcal{A} = \{[0, n] : n \in \mathbb{N}^+\}$. Now $\sigma(\mathcal{A})$ is strictly smaller than the Borel σ -algebra. f is core decreasing if x < y implies $f(y) \le f(x)$ and f is constant on each set (n-1, n].

Every core contains \emptyset .

- 1. Let $U=[0,\infty)$, μ the Lebesgue measure. The core $\mathcal{A}=\{[0,x]:x>0\}$. Note $\sigma(\mathcal{A})$ is the Borel σ -algebra. f is core decreasing if for each E=[0,t], $x\in[0,t]$ and $y\not\in[0,t]$ then $f(y)\leq f(x)$.
- 2. Let $U = [0, \infty)$, μ the Lebesgue measure. The core $\mathcal{A} = \{[0, n] : n \in \mathbb{N}^+\}$. Now $\sigma(\mathcal{A})$ is strictly smaller than the Borel σ -algebra. f is core decreasing if x < y implies $f(y) \le f(x)$ and f is constant on each set (n-1, n].
- **3.** Let $U=\mathbb{R}^d$, μ satisfying $\mu(B[0;r])<\infty$ for each r>0. The core $\mathcal{A}=\{B[0;r]:r>0\}$. Again $\sigma(\mathcal{A})$ is strictly smaller than the Borel σ -algebra. f is core decreasing if it is radially decreasing

Every core contains \emptyset .

- 1. Let $U=[0,\infty)$, μ the Lebesgue measure. The core $\mathcal{A}=\{[0,x]:x>0\}$. Note $\sigma(\mathcal{A})$ is the Borel σ -algebra. f is core decreasing if for each E=[0,t], $x\in[0,t]$ and $y\not\in[0,t]$ then $f(y)\leq f(x)$.
- 2. Let $U = [0, \infty)$, μ the Lebesgue measure. The core $\mathcal{A} = \{[0, n] : n \in \mathbb{N}^+\}$. Now $\sigma(\mathcal{A})$ is strictly smaller than the Borel σ -algebra. f is core decreasing if x < y implies $f(y) \le f(x)$ and f is constant on each set (n-1, n].
- **3.** Let $U=\mathbb{R}^d$, μ satisfying $\mu(B[0;r])<\infty$ for each r>0. The core $\mathcal{A}=\{B[0;r]:r>0\}$. Again $\sigma(\mathcal{A})$ is strictly smaller than the Borel σ -algebra. f is core decreasing if it is radially decreasing
- **4.** Let (U, Σ, μ) be σ -finite and fix $\varphi: U \to \mathbb{C}$ satisfying for all r > 0, $\mu\big(\{y: |\varphi(y)| > r\}\big) < \infty$. The core $\mathcal{A} = \{\{y: |\varphi(y)| > r\}: r > 0\}$. f is core decreasing if $f(x) \leq f(y) \Longleftrightarrow |\varphi(x)| \leq |\varphi(y)|$.

Maps between ordered cores

Definition: A map $r: A \to \Sigma$ is a core morphism if: 1. $\tau(r(\emptyset)) = 0$.

- 2. There exists c > 0: $\tau(r(B) \setminus r(A)) \le c\mu(B \setminus A)$ for all $A, B \in \mathcal{A}$.
- 3. If $A \subseteq B$ then $r(A) \subseteq r(B)$ for all $A, B \in \mathcal{A}$.

Maps between ordered cores

Definition: A map $r: A \to \Sigma$ is a core morphism if: 1. $\tau(r(\emptyset)) = 0$.

- 2. There exists c > 0: $\tau(r(B) \setminus r(A)) \le c\mu(B \setminus A)$ for all $A, B \in \mathcal{A}$.
- 3. If $A \subseteq B$ then $r(A) \subseteq r(B)$ for all $A, B \in \mathcal{A}$.

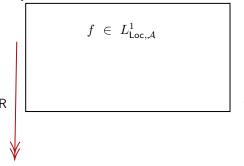
Theorem [Sinnamon, S.- 2024]

Given a core morphism $r: \mathcal{A} \to \Sigma$, there exists a linear map $R: L^1_{\mathsf{Loc},\mathcal{B}} \to L^1_{\mathsf{Loc},\mathcal{A}}$ such that

$$\int_{A} Rf \, d\mu = \int_{r(A)} f \, d\tau, \quad \forall A \in \mathcal{A}.$$

Induced measure on the half line

Every ordered core induces a Borel measure λ on $[0,\infty)$ and maps R,Q:



 $QRf \neq f$ in general

$$g \in L^1_{loc}([0,\infty),\lambda)$$

- \bigcirc Q and R preserve monotonicity.
- QRf = f if f is core-decreasing

An application to Hardy inequalities

Recall the inequality
$$\left(\int_0^\infty \left|\frac{1}{x}\int_0^x f(t)\,dt\right|^p\,dx\right)^{1/p} \le C_p \left(\int_0^\infty |f(x)|^p\,dx\right)^{1/p}$$

Recall the inequality
$$\left(\int_0^\infty \left|\frac{1}{x}\int_0^x f(t)\,dt\right|^p\,dx\right)^{1/p} \leq C_p \left(\int_0^\infty \left|f(x)\right|^p\,dx\right)^{1/p}$$

This shows the boundedness from $L^p \to L^p_\mu$ of the operator $H: f \mapsto H'f(x) = \int_0^x f(t) dt$. With $d\mu = x^{-p} dx$

Recall the inequality
$$\left(\int_0^\infty \left|\frac{1}{x}\int_0^x f(t)\,dt\right|^p\,dx\right)^{1/p} \le C_p \left(\int_0^\infty |f(x)|^p\,dx\right)^{1/p}$$

This shows the boundedness from $L^p \to L^p_\mu$ of the operator $H: f \mapsto Hf(x) = \int_0^x f(t) \, dt$. With $d\mu = x^{-p} \, dx$

Extensions to measures: Find necessary and sufficient conditions (in terms of the measures and indices) such that there exists C such that

$$\left(\int_{0}^{\infty} \left| \int_{[0,x]} f(t) \, d\mu(t) \right|^{q} \, d\tau(x) \right)^{1/q} \leq C_{p,q,\mu,\tau,\eta} \left(\int_{0}^{\infty} \left| f(x) \right|^{p} \, d\eta(x) \right)^{1/p}, \, \forall f \geq 0.$$

Recall the inequality
$$\left(\int_0^\infty \left|\frac{1}{x}\int_0^x f(t)\,dt\right|^p\,dx\right)^{1/p} \le C_p \left(\int_0^\infty |f(x)|^p\,dx\right)^{1/p}$$

This shows the boundedness from $L^p o L^p_\mu$ of the operator $H: f \mapsto Hf(x)$ $=\int_0^x f(t) dt$. With $d\mu = x^{-p} dx$

Extensions to measures: Find necessary and sufficient conditions (in terms of the measures and indices) such that there exists C such that

$$\left(\int_0^\infty \left| \int_{[0,x]} f(t) \, d\mu(t) \right|^q \, d\tau(x) \right)^{1/q} \le C_{p,q,\mu,\tau,\eta} \left(\int_0^\infty |f(x)|^p \, d\eta(x) \right)^{1/p}, \, \forall f \ge 0.$$

More Hardy operators:

(Sequences):
$$Hf(n) = \int_{[0,n]} f d\# = \sum_{k=0}^{n} f(n)$$
.

Higher dimensions): $Hf(x) = \int f(s) \, ds$, where

$$B(|x|) = \{ y \in \mathbb{R}^n : |y| \le |x| \}.$$

Previous work on metric measure spaces

M. Ruzhansky, D. Verma (2019) Metric measure spaces

Let X be a metric measure space that must admit a polar decomposition Let $1 , <math>a \in X$ and weights u, v > 0, there is C > 0 such that

$$\left(\int\limits_X \left(\int_{B(a,|x|_a)} f(s) \, d(s)\right)^q u(x) \, dx\right)^{\frac{1}{q}} \le C \left(\int\limits_X f(x)^p v(x) \, dx\right)^{\frac{1}{p}}$$

holds for all $f \in L^+$ if and only if ... conditions u, v.

Question: Is the polar decomposition hypothesis needed?

Abstract Hardy inequalities

Fix $p\geq 1$ and q>0. Let (Y,\mathcal{T},τ) and (U,Σ,μ) be σ -finite measure spaces. A map $B:Y\to\Sigma$ such that the range is an ordered core. Does there exist a constant C such that

$$\left(\int_{Y} \left(\int_{B(y)} f \, d\mu\right)^{q} d\tau\right)^{1/q} \le C \left(\int_{U} f^{p} \, d\mu\right)^{1/p}$$

holds for all $f \in L_{\mu}^+$?

Abstract Hardy inequalities

Fix $p\geq 1$ and q>0. Let (Y,\mathcal{T},τ) and (U,Σ,μ) be σ -finite measure spaces. A map $B:Y\to\Sigma$ such that the range is an ordered core. Does there exist a constant C such that

$$\left(\int_{Y} \left(\int_{B(y)} f \, d\mu\right)^{q} d\tau\right)^{1/q} \le C \left(\int_{U} f^{p} \, d\mu\right)^{1/p}$$

holds for all $f \in L_{\mu}^+$?

[Sinnamon 2022]

There exists a nonincreasing function b such that the best constant for which the above inequality holds is the same as the best constant for

$$\left(\int_0^\infty \left(\int_0^{b(y)} g(s)\,ds\right)^q dy\right)^{1/q} \le C \left(\int_0^\infty g^p(s)\,ds\right)^{1/p}, \quad \forall g \in L^+.$$

Abstract Hardy inequalities with p = 1.

Theorem [S.2024]

For $(Y,\mathcal{T},\tau),(U,\Sigma,\mu),(U,\Sigma,\nu)$ σ -finite and a core map $B:Y\to\Sigma$. Let $\eta=\eta_a+\eta_s$, where $d\eta_a=ud\mu$ and $\eta_s\perp\mu$. Then the best constant C in the inequality

$$\left(\int\limits_{Y} \left(\int\limits_{B(y)} f \, d\mu\right)^{q} d\tau(y)\right)^{1/q} \le C \int\limits_{U} f \, d\eta,\tag{1}$$

satisfies

$$C \approx \left[\int\limits_{Y} \left(\int\limits_{\mu(B(z)) \leq \mu(B(y))} R\left(\frac{1}{\underline{u}}\right) \circ \mu \circ B(y) \, d\tau(y)\right)^{\frac{q}{1-q}} d\tau(z)\right]^{\frac{1-q}{q}}, \text{ for } q \in (0,1),$$

and

$$C = \sup_{s \in U} \left(\frac{1}{u}(s) \right) \tau \left(\left\{ y \in Y : s \in B(y) \right\} \right)^{1/q}, \text{ for } q \in [1, \infty).$$

Where \underline{u} is the greatest core decreasing minorant.

Bibliography

- 1. A. Kufner, L. Maligranda, and L. Persson. *The Hardy inequality: about its history and some related results.* Vydavatelsky Servis Publishing House, Pilsen, 2007.
- 2. M. Ruzhansky and D. Verma. *Hardy inequalities on metric measure spaces*. Proceedings of the Royal Society A 475 (2019).
- 3. Santacruz Hidalgo, A. Abstract hardy inequalities: The case p=1. (submitted)
- 4. Santacruz Hidalgo, A., and Sinnamon, G. *Core decreasing functions.* (to appear in Journal of Functional Analysis)
- 5. Sinnamon, G. *Hardy inequalities in normal form.* Trans. Amer. Math. Soc. 375, 2 (2022), 961–995.

Thank you!