Twisted Arrow Construction for Segal Spaces

Chirantan Mukherjee joint with Nima Rasekh

University of Western Ontario

May 24, 2023

Content

(1) Twisted Arrow Complete Segal Space

- Definition
- Segal Space
- Completeness Condition
(2) Left Fibration

The twisted arrow category $\operatorname{Tw}(W)$ on a category W is defined as,

The twisted arrow category $\operatorname{Tw}(W)$ on a category W is defined as,

Morphism

Morphisms

The twisted arrow category $\operatorname{Tw}(W)$ on a category W is defined as,

Morphism

$D \longrightarrow D^{\prime}$
Composition

Morphisms

A simplicial space W is a functor,

$$
W: \Delta^{O P} \times \Delta^{O P} \rightarrow \text { Set. }
$$

By Yoneda Lemma, $W_{n, I} \cong s S(F(n) \times \Delta[/], W)$.

A simplicial space W is a functor,

$$
W: \Delta^{O P} \times \Delta^{O P} \rightarrow \text { Set. }
$$

By Yoneda Lemma, $W_{n, I} \cong s S(F(n) \times \Delta[/], W)$.

Applying Tw on generators,

$$
\begin{gathered}
\mathrm{Tw}: s S \rightarrow s S \\
F(n) \times \Delta[/] \mapsto F(2 n+1) \times \Delta[/] .
\end{gathered}
$$

A simplicial space W is a functor,

$$
W: \Delta^{O P} \times \Delta^{O P} \rightarrow \text { Set. }
$$

By Yoneda Lemma, $W_{n, I} \cong s S(F(n) \times \Delta[/], W)$.

Applying Tw on generators,

$$
\begin{gathered}
\mathrm{Tw}: s S \rightarrow s S \\
F(n) \times \Delta[/] \mapsto F(2 n+1) \times \Delta[/] .
\end{gathered}
$$

Hence,

$$
T w(W)_{n, l} \cong s S(F(2 n+1) \times \Delta[/], W) \cong W_{2 n+1, l}
$$

A simplicial space W is a Segal space if the maps,

$$
W_{n} \xrightarrow{\simeq} W_{1} \underset{W_{0}}{\times} \cdots \underset{W_{0}}{\times} W_{1} .
$$

A simplicial space W is a Segal space if the maps,

$$
W_{n} \xrightarrow{\simeq} W_{1} \underset{W_{0}}{\times} \cdots \underset{W_{0}}{\times} W_{1} .
$$

Lemma

If W is a Segal space then $\operatorname{Tw}(W)$ is a Segal space.

Lemma

If W is a Segal space then $\operatorname{Tw}(W)$ is a Segal space.
Consider the case $n=2$,

$$
\begin{aligned}
& \operatorname{Tw}\left(W_{1}\right) \underset{\operatorname{Tv}\left(W_{0}\right)}{\times} \operatorname{Tw}\left(W_{1}\right) \cong W_{3} \underset{W_{1}}{\times} W_{3} \rightarrow W_{3} \xrightarrow{\simeq} W_{1} \underset{W_{0}}{\times} W_{1} \underset{W_{0}}{\times} W_{1}
\end{aligned}
$$

$$
\begin{aligned}
& W_{1} \underset{W_{0}}{\times} W_{1} \underset{W_{0}}{\times} W_{1}
\end{aligned}
$$

Lemma

If W is a Segal space then $\operatorname{Tw}(W)$ is a Segal space.
Consider the case $n=2$,

$$
\begin{aligned}
& \operatorname{Tw}\left(W_{1}\right) \underset{\operatorname{Tw}\left(W_{0}\right)}{\times} \operatorname{Tw}\left(W_{1}\right) \cong W_{3} \underset{W_{1}}{\times} W_{3} \rightarrow W_{3} \xrightarrow{\simeq} W_{1} \underset{W_{0}}{\times} W_{1} \underset{W_{0}}{\times} W_{1}
\end{aligned}
$$

$$
\begin{aligned}
& W_{1} \underset{W_{0}}{\times} W_{1} \underset{W_{0}}{\times} W_{1}
\end{aligned}
$$

From 2-out-of-3 property,

The homotopy category of W, denoted as HoW is defined as,

The homotopy category of W, denoted as HoW is defined as,
(1) objects are same objects of W,

The homotopy category of W, denoted as HoW is defined as,
(1) objects are same objects of W,
(2) morphism $\operatorname{HoW}(x, y)=\pi_{0}\left(\operatorname{map}_{W}(x, y)\right)$,

The homotopy category of W, denoted as HoW is defined as,
(1) objects are same objects of W,
(2) morphism $\operatorname{HoW}(x, y)=\pi_{0}\left(\operatorname{map}_{W}(x, y)\right)$,
(3) composition
$\operatorname{HoW}(x, y) \times \operatorname{HoW}(y, z) \rightarrow \operatorname{HoW}(x, z):([f],[g]) \mapsto[g \circ f]$.

The homotopy category of W, denoted as HoW is defined as,
(1) objects are same objects of W,
(2) morphism $\operatorname{HoW}(x, y)=\pi_{0}\left(\operatorname{map}_{W}(x, y)\right)$,
(3) composition
$\operatorname{HoW}(x, y) \times \operatorname{HoW}(y, z) \rightarrow \operatorname{HoW}(x, z):([f],[g]) \mapsto[g \circ f]$.

For a Segal space W the space of homotopy equivalences $W_{\text {hoequiv }} \subset W_{1}$ is such that every map is a homotopy equivalence.

The homotopy category of W, denoted as HoW is defined as,
(1) objects are same objects of W,
(2) morphism $\operatorname{HoW}(x, y)=\pi_{0}\left(\operatorname{map}_{W}(x, y)\right)$,
(3) composition $\operatorname{HoW}(x, y) \times \operatorname{HoW}(y, z) \rightarrow \operatorname{HoW}(x, z):([f],[g]) \mapsto[g \circ f]$.

For a Segal space W the space of homotopy equivalences $W_{\text {hoequiv }} \subset W_{1}$ is such that every map is a homotopy equivalence.

A Segal space W is a complete Segal space if,


```
Theorem
If \(W\) is a complete Segal space then \(\operatorname{Tw}(W)\) is a complete Segal space.
```


Theorem

If W is a complete Segal space then $\operatorname{Tw}(W)$ is a complete Segal space.

- $\operatorname{TwHo}(W) \rightarrow \operatorname{HoTw}(W)$ is an equivalence.

Theorem
If W is a complete Segal space then $\operatorname{Tw}(W)$ is a complete Segal space.

- $\operatorname{TwHo}(W) \rightarrow \operatorname{HoTw}(W)$ is an equivalence.

Theorem

If W is a complete Segal space then $\operatorname{Tw}(W)$ is a complete Segal space.

- $\operatorname{TwHo}(W) \rightarrow \operatorname{HoTw}(W)$ is an equivalence.


```
Theorem
If W is a Segal space, then Tw}(W)->\mp@subsup{W}{}{OP}\timesW\mathrm{ is a left fibration.
```


Theorem

If W is a Segal space, then $\operatorname{Tw}(W) \rightarrow W^{O P} \times W$ is a left fibration.
(1) $\operatorname{Tw}(W) \rightarrow W^{O p} \times W$ is a Reedy fibration.

Theorem

If W is a Segal space, then $\operatorname{Tw}(W) \rightarrow W^{O P} \times W$ is a left fibration.
(1) $\operatorname{Tw}(W) \rightarrow W^{O p} \times W$ is a Reedy fibration.
(2) $T w(W)$ is a Segal space and,

Hence the result follows from by [Ras17, Lemma 3.29].

