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A molecular explanation for the recessive nature
of parkin-linked Parkinson’s disease
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Mutations in the park2 gene, encoding the RING-inBetweenRING-RING E3 ubiquitin ligase

parkin, cause 50% of autosomal recessive juvenile Parkinsonism cases. More than 70 known

pathogenic mutations occur throughout parkin, many of which cluster in the inhibitory amino-

terminal ubiquitin-like domain, and the carboxy-terminal RING2 domain that is indispensable

for ubiquitin transfer. A structural rationale showing how autosomal recessive juvenile

Parkinsonism mutations alter parkin function is still lacking. Here we show that the structure

of parkin RING2 is distinct from canonical RING E3 ligases and lacks key elements required

for E2-conjugating enzyme recruitment. Several pathogenic mutations in RING2 alter the

environment of a single surface-exposed catalytic cysteine to inhibit ubiquitination. Native

parkin adopts a globular inhibited conformation in solution facilitated by the association of the

ubiquitin-like domain with the RING-inBetweenRING-RING C-terminus. Autosomal recessive

juvenile Parkinsonism mutations disrupt this conformation. Finally, parkin autoubiquitinates

only in cis, providing a molecular explanation for the recessive nature of autosomal recessive

juvenile Parkinsonism.
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Parkinson’s disease (PD) is a neurodegenerative disorder that
arises from the loss of dopaminergic neurons in the
substantia nigra of the midbrain. Typical symptoms include

bradykinesia and loss of motor control. In addition to sporadic
PD, mutations in six different genes lead to heritable forms of the
disease. In particular, homozygous and compound heterozygous
mutations in the gene encoding parkin (PARK2) cause 50% of
autosomal recessive juvenile Parkinsonism (ARJP) cases resulting
in early-onset PD1.

Parkin is a RING-inBetweenRING-RING (RBR) E3 ubiquitin
ligase involved in the ubiquitination of substrate proteins2,3 and
mitochondrial mitophagy4,5. The hallmark of RBR ligases is the
presence of two RING (Really Interesting New Gene) domains
(RING1 and RING2), separated by an inBetweenRING (IBR)
domain (Fig. 1a). The family includes the human homologue of
the Drosophila Ariadne (HHARI/ARI1), androgen-receptor-
associated protein 54, haem-oxidized IRP2 ubiquitin ligase 1
(HOIL-1), HOIL-1-interacting protein (HOIP) and Dorfin2,3.
Parkin also contains an inhibitory N-terminal ubiquitin-like
domain (Ubl) (ref. 6). Pathogenic mutations leading to ARJP
include numerous deletions, truncations and point mutations that
occur throughout parkin, but cluster in the Ubl and RING2
domains7,8.

RING E3 ligases function by recruiting both a ubiquitin-loaded
E2 enzyme and a substrate to catalyse the transfer of ubiquitin.
Parkin was originally thought to be a subclass of the canonical
RING E3 enzymes, as early studies showed that the RING1 and
RING2 domains could each recruit E2-conjugating enzymes,
including UbcH7 (UBE2L3), UbcH8 (UBE2L6) and UbcH13/
Uev1a9–13, and lead to autoubiquitination10,11. Numerous studies
show that the RBR domains of parkin, HOIP and HHARI are
sufficient for ubiquitination14–16. However, the ubiquitination
activity of parkin is modulated by its Ubl domain (Fig. 1a),
proposed to render parkin in an autoinhibited state6,17. ARJP
mutations in the Ubl domain result in constitutively active parkin
that is capable of autoubiquitination6. Such mutants are unstable
in cells, often only detectable in the presence of proteasome
inhibitors6,18. In contrast most C-terminal mutations, particularly
those found in RING2, abolish ligase activity11,18–26.

Studies with HOIP and HHARI suggest that RBR ligases form
a thiolester intermediate between a cysteine in the RING2 domain
and ubiquitin14,15,27. By this mechanism, the RING1 module
recruits the E2Bubiquitin complex, whereas RING2 acts as a true
catalytic domain performing the transthiolation reaction14,15,27

by transferring ubiquitin to a substrate, in a manner analogous to
the homologous to E6AP C terminus (HECT)-type ligases28. Both
parkin and HOIP can catalyse ubiquitin conjugation in the
absence of an E2 enzyme14,19. The loss of the RING1 domain of
parkin, thought to be essential for E2 recruitment, does not result
in a loss of ligase activity19,25. Parkin RING2 mutants are
catalytically dead in the absence or presence of E2s, whereas
mutations outside of RING2 retain both E2-dependent and
-independent catalytic activity24. These insights suggest that the
RING2 of RBR ligases is a catalytic entity that can function in the
absence of an E2 enzyme.

The mechanism of RBR ligase-catalysed ubiquitin transfer is
poorly understood, partly because of a lack of biophysical and
structural data on these enzymes. Structures of Ubl domains from
parkin and HOIL-1, and the IBR of parkin and HOIP (PDB
2CT7), are available29–34. However, little structural data exist for
any RBR RING2 domain that would support a catalytic role,
identify potential catalytic residues needed to catalyse
transthiolation, or identify how this domain might differ from
conventional RING E3 ligases. The only available structure of the
HHARI RING2 domain shows a loosely organized structure
containing a single zinc ion35 compared with typical RING

proteins that possess two metal ions. Although potentially
interesting, the HHARI RING2 structure cannot be reconciled
with available functional data. Further, the structure sheds little
insight on the function of the parkin RING2 domain and how
ARJP-causing mutations contribute to the loss of E3 ligase
activity. The opposing effects of different mutations in the Ubl
and RING2 domains on parkin activity presents an enigma for
understanding the loss-of-function phenotype associated with
recessive PD.

To understand how inhibitory and catalytic domains function in
both wild-type parkin and in the disease context, we carried out an
extensive biophysical and biochemical characterization of parkin
and mutants in solution. We determined structures of the parkin
RING2 and IBR–RING2 domains, revealing that the RING2 is
neither a canonical RING E3 ligase nor an E2-recruiting module.
We find that RING2 is catalytic, identify catalytic residues and show
that pathogenic mutations in RING2 perturb the catalytic
environment. We show that the tertiary structure of native parkin
is dependent on the interaction of the Ubl domain with the RBR
region and is disrupted by pathogenic mutations within the
N-terminal domain. Finally, we find that constitutively active
mutant parkin autoubiquitinates in cis, and not in trans, thereby
providing a molecular rationale for the homozygous nature of ARJP.

Results
Parkin RING2 is distinct from canonical RING E3 ligases. In
addition to the characteristic RING1, RING2 and IBR domains,
parkin contains N-terminal Ubl and RING0 (ref. 36) domains
(Fig. 1a). We used the RING2 region from Drosophila melano-
gaster (A417–G482; Fig. 1b), because it resulted in improved
solubility compared with the human protein (residues A398–
V465). Numerous studies show that loss of D. melanogaster
parkin recapitulates characteristics of PD37,38. In addition, ARJP
variants are conserved between species with the exception of
T455 (P437 in human). Initial characterization of fly parkin
RING2 by 1H–15N heteronuclear single quantum coherence
(HSQC) spectroscopy (Fig. 1c) and analytical ultracentrifugation
(Supplementary Fig. S1) shows the domain is monomeric and
well-folded, but with a disordered N terminus (A417–I429). The
solution structure of parkin RING2 shows a well-defined globular
fold (root mean squared deviation (r.m.s.d.) 0.82 Å) comprising
two pairs of antiparallel b-strands (b1, T433–P435; b2, P442–
E444; b3, H451–V453; and b4, E462–C464) and a one-turn
C-terminal a-helix (M476–W480) (Fig. 1d,e and Supplementary
Table S1). Two Zn2þ -binding sites are present comprising
residues in the b1–b2 and b3–b4 loops (Site I: C436, C439, C454
and C459) and the loop after b4 and a1 (Site II: C464, C467,
C475 and H479). A single cysteine residue (C449; C431 in
human) is exposed on the b2–b3 loop, which, according to
chemical-shift analysis, was not oxidized or involved in Zn2þ

coordination (Supplementary Table S2). This residue is conserved
in all parkin orthologues (Fig. 1b) and other RBR sequences.

The parkin RING2 structure clearly reveals two Zn2þ ions
coordinated in a linear arrangement consistent with observations
that full-length parkin can accommodate eight Zn2þ ions (that
is, two Zn2þ ions per RING0, RING1, IBR and RING2
domains)36. Disagreement exists for the Zn2þ -coordinating
ability of RBR proteins, as the structure of HHARI RING2
shows a single bound Zn2þ and several non-coordinating
cysteine residues35 (Fig. 1f). Substitutions of cysteine residues in
parkin render the protein inactive23,24. Given the importance for
the Zn2þ ion coordination in canonical E3 ligases and cysteine
residues in parkin on its function, we used native-state mass
spectrometry to identify the metal–ion stoichiometry of the
RING2 domains for both parkin and HHARI. Our analyses
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Figure 1 | Sequence alignment, structure and metal analysis of parkin RING2 domain. (a) Domain structure of parkin showing the C-terminal RING1, IBR
and RING2 domains found in all RBR E3 ligase proteins. The ubiquitin-like (Ubl) and RING0 domains are specific to the parkin E3 ligase. Residue numbering
is shown for both the human (top) and D. melanogaster (bottom) parkin sequences. (b) Multiple sequence alignment of the RING2 domain for parkin
orthologues. Sequence numbers are indicated for the human and D. melanogaster species only. Conserved (grey) and cysteine/histidine (yellow)
residues are highlighted. Substitutions that contribute to ARJP in the parkin RING2 domain are shown below the sequences (magenta). (c) Assigned
600 MHz 1H–15N HSQC spectrum of 13C,15N-labelled parkin RING2 (500 mM in 20 mM Tris–HCl, 120 mM NaCl, 1 mM DTT, pH 7.25), labelled using the
one-letter amino acid code and residue number according to the D. melanogaster parkin sequence. (d) Superposition of the 20 lowest energy solution
structures of parkin RING2 (residues 430–482, backbone r.m.s.d. 0.82±0.17 Å). (e) Ribbon structure of parkin RING2 showing b-strands b1 (T433–P435),
b2 (P442–E444), b3 (H451–V453) and b4 (E462–C464), and helix a1 (M476–W480). Side chains for Zn2þ -coordinating residues are shown in
yellow. (f) Structure of the HHARI RING2 (ref. 35) (PDB accession code 1WD2) showing different zinc occupancy and fold compared with parkin (e).
Deconvoluted mass spectra for native and denatured parkin RING2 (g), and native and denatured HHARI RING2 (h). The mass differences of 127.5 Da
(g) and 128.4 Da (h) indicate the presence of two bound Zn2þ ions in the native proteins. Raw data are found in Supplementary Figure S2. Structures were
visualized using Pymol (PyMOL Molecular Graphics System, Version 1.5.0.4 Schrödinger, LLC).
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reproducibly showed that the mass differences between native
and denatured states of parkin and HHARI RING2 (Fig. 1g,h and
Supplementary Fig. S2) corresponded to those expected for two
Zn2þ ions, indicating both RING2 domains bind two Zn2þ ions
in their native states.

We next used nuclear magnetic resonance (NMR) spectro-
scopy to reconcile the zinc-binding differences between our data
and the previously solved structure of HHARI RING2 (ref. 35).
The well-dispersed nature of the 1H–15N HSQC spectrum of
HHARI RING2 (Supplementary Fig. S3) indicates the protein is
well-folded. Analysis of Ca and Cb chemical shifts for HHARI
RING2 reveal that seven cysteines are involved in Zn2þ

coordination (Supplementary Table S2), including C372, C375
and C389 that appear unstructured in HHARI (Fig. 1f) but form a
well-defined metal centre (Site II) in parkin (Fig. 1e). The NMR
and mass spectral data clearly show that parkin, HHARI and,
probably, all related RBR RING2 domains require the coordina-
tion of two Zn2þ ions for correct folding.

The RING2 domain lacks features required for E2 recruitment.
Comparison of parkin RING2 with canonical RING E3s (Fig. 2)
reveals little similarity in protein fold. Parkin RING2 displays a
sequential Zn2þ ion coordination (Fig. 2a,b) where the first and
second cysteine pairs and the third and fourth cysteine/histidine
pairs act as metal–ion ligands. In contrast, canonical RING E3
ligases, such as TRAF6 or BRCA1, adopt a cross-brace coordi-
nation motif39,40 (Fig. 2c,d), using the first and third pairs of
cysteines and the second and fourth pair of cysteine/histidine
residues. This difference in coordination leads to a more
elongated structure for the parkin RING2 domain compared
with the more compact fold of canonical RING domains. These
structural differences indicate that the RING2 function will not
parallel that of canonical RING E3 ligases.

In contrast to the structural dissimilarity with RING E3 ligases,
parkin RING2 possesses several features in common with the IBR

domains from parkin32 (PDB accession code 2JMO) and HOIP
(PDB accession code 2CT7). With identities below 20%, the
sequence of the RING2 domain does not suggest an IBR-fold.
However, parkin RING2 superposed well with both IBR
structures (backbone r.m.s.d. 2.07 Å and 2.28 Å, respectively)
and shares similar Zn2þ -coordination topology32. The surface-
exposed cysteine residue (C449) observed in the parkin RING2
structure (Fig. 2a) is notably absent in the sequences of other IBR
domains32. Alignment of the parkin RING2 sequence with other
RBR E3s (Fig. 2e) shows that all proteins contain conserved
cysteine and histidine residues required to coordinate two Zn2þ

ions as observed in the parkin RING2 structure (Fig. 1e). This
indicates that the architecture and Zn2þ coordination observed
for parkin RING2 is common to all RBR family members.

Several structures exist for complexes between RING E3 ligases
and E2-conjugating enzymes that allow regions of interaction and
function to be identified. For example, the E2:E3 complexes of
Ubc13/TRAF6 (ref. 41), UbcH5b/cIAP2 (ref. 42) and UbcH7/c-
Cbl (ref. 43) show that two loop regions (L1 and L2) of the RING
are integral for E2 recruitment (Fig. 2f). Substitutions in these
regions compromise the interaction and ubiquitination activity,
indicating E2 interaction is necessary for ubiquitin transfer41,42,44.
As parkin RING2 is essential for ubiquitination, we reasoned that
examining the E2-interacting regions observed in canonical
RING E3 ligases might reveal how the RING2 domain in an
RBR E3 ligase is involved in a ubiquitination reaction. Using
TRAF6 as a template, we find that the RING2 domain lacks the
surface and residues typically used by a RING domain to recruit
an E2 enzyme as a requisite for ubiquitin transfer. The closest
similarity between parkin RING2 and TRAF6 RING domains
exists with L2 (Fig. 2f,g, r.m.s.d. 1.2 Å for RING2 T434–E444,
T455–G458, and TRAF6 V81–K91 and C105–D108). In TRAF6,
hydrophobic residues (P71, I72, L74, M75 and P106) within
the adjacent L1 and L2 loop regions are used to recruit Ubc13
(ref. 41). In particular, a conserved proline (P106 in TRAF6),
central to E2 binding, is replaced by a polar side chain group
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Figure 2 | RING2 domain of parkin and other RBR E3 ligases do not recruit E2 enzymes. Parkin RING2 defines a novel structure common to RBR ubiquitin
ligases that are unable to recruit E2 enzymes. The structures and schematic representations of (a,b) RBR RING2 (parkin) and (c,d) RING (TRAF6, PDB
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(R456) in parkin RING2. Further, this region lying between the
third and fourth chelating cysteine residues from Site I is amongst
the poorest conserved in the RBR RING2 sequences (Fig. 2e). The
most significant difference between the RBR RING2 and
canonical RING domain structures occurs for the L1 loop. In
parkin RING2, the different Zn2þ -binding topology places its L1
equivalent on the opposite side of the domain distal from the L2
loop (Fig. 2g). These observations indicate that parkin RING2
should be incapable of E2 recruitment using the same binding
mode as a canonical E3 RING ligase. To test this hypothesis, we
examined the interaction between parkin RING2 and the E2s
UbcH7 and UbcH8, which can both facilitate autoubiquitination
with full-length parkin6,10,11. As predicted from our structure, we
were unable to identify any direct interaction between the IBR or
RING2 domains and the E2 enzymes using NMR and isothermal
titration calorimetry experiments, even at high concentrations

(Supplementary Fig. S4). Our observations demonstrate that
parkin RING2, and, by corollary, other RBR RING2 domains are
not an E2 recruitment module.

Pathogenic RING2 mutations disrupt catalysis. The parkin
RING2 structure positions a single cysteine (C449 in fly; C431 in
human), required for transthiolation and proposed to be catalytic,
on the surface of the domain (Fig. 3a). To confirm whether this
residue is absolutely required for catalysis, we assayed for the
formation of a reducible ubiquitin thiolester. We find that active
parkin forms a reducible band consistent with the formation of a
thiolester (Fig. 3b, lanes 7 and 8). In contrast, a C431S mutant
forms a non-reducible band that is base labile, consistent with an
ester adduct (Fig. 3b lanes 9–11). C431A-parkin does not form
either band, indicating that C431 is required for activity and
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Figure 3 | Pathogenic mutations in parkin RING2. The structure of parkin predicts catalytic residues conserved between parkin and HHARI. (a) The
structure of parkin with the catalytic cysteine highlighted (star) and chemical-shift perturbation experiments show affected residues (blue) in parkin RING2
by the ARJP substitution G447E (magenta). (b) The formation of a reducible parkinBUb thiolester was monitored using His-SUMO-IBR-R2-parkin. Lanes
1–2 contain E1, Mg2þ and Cy5–ubiquitin incubated for 10 min at 37 oC. Lanes 3–4 have ATP added for 10 min. Lanes 5–6 have E2 added followed
by a further 10-min incubation. Lanes 7–8 have wild-type parkin added. Lanes 9–11 have C431S–parkin added, with NaOH added to lane 11, indicated by red
crosses. Lanes 12–13 have C431A–parkin added; ‘" ’ and ‘þ ’ below the line indicate the absence or presence of TCEP. (c) An autoubiquitination assay
of folded pathogenic mutants. Parkin–ubiquitin conjugates are detected by western blotting using parkin (left) and His-ubiquitin (right) antibodies. (d) An
alignment of the RING2 domains of fly and human parkin, and HHARI. Conserved residues are shaded yellow and the potential catalytic residues are
marked with an asterisk. (e) Close-up view of the surface of parkin RING2 with the potential catalytic residues indicated. (f) Autoubiquitination assay of
active parkin (DUbl) and parkin DUbl-E426D. (g) Autoubiquitination assays of active parkin (DUbl) and parkin DUbl-H433A and DUbl-H444A. In f and g,
parkin–ubiquitin conjugates are detected by western blotting using parkin (left) and His-ubiquitin (right) antibodies.
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forms a thiolester (Fig. 3b), as seen for HHARI and HOIP15,27.
Several ARJP mutations in RING2 (T433N, C436R, G447E,
G448D, C449F and C459R in fly; T415N, C418R, G429E, G430D,
C431F and C441R in human), which lead to loss of parkin’s E3
ligase activity, have been reported11,18–26. There are two possible
explanations for the loss of ligase activity in these mutants—(i)
the substitutions lead to the loss of the integrity of the fold of
RING2; or (ii) the substitutions alter the chemical environment of
the catalytic cysteine, leading to a loss of catalytic competency. To
test these hypotheses, ARJP RING2 substitutions were examined
to identify how they might alter the structure of parkin. As
expected, C436R- and C459R-substituted proteins were insoluble,
consistent with their role in Zn2þ coordination. All other
RING2 proteins were soluble and well-folded as determined by
SDS–polyacrylamide gel electrophoresis and NMR analysis
(Supplementary Figs S5 and S6), including C449F, the site of
the proposed catalytic cysteine. NMR experiments show that
most of the substitutions alter the chemical shifts of residues near
the unligated cysteine C449 (Fig. 3a and Supplementary Fig. S6).
Our observations show that several ARJP substitutions in the
RING2 domain likely modify the chemical environment of C449
and interfere with ubiquitin transthiolation. To test this
hypothesis, we assayed each of the pathogenic mutants for
autoubiquitination activity and observed that all of the mutants
exhibited reduced or no activity (Fig. 3c).

One substitution (T433N) had little effect on the environment
of C449; hence, a rationale for the loss of activity is less obvious.
In human parkin, the analogous T415N mutation consistently
results in an inactive form of parkin regardless of experimental
setup11,18,19,24,45. This threonine is conserved in all parkin
orthologues and HHARI (Figs 1b and 3d), and rests on the
surface of RING2 B14 Å from the proposed catalytic cysteine.
Analysis of the structure revealed a potential catalytic surface
hydrogen-bonding network between T433 and a neighbouring
glutamate residue (E444; E426 in human) located 3.5 Å from
T433, (Fig. 3e), which is also conserved in parkin and HHARI.
Consistent with this observation, a large chemical shift occurs for
E444 in the 1H–15N HSQC spectrum of the T433N-parkin
RING2 (Supplementary Fig. S6a). This led us to hypothesize that
this glutamate could be acting in conjunction with the threonine
as a catalytic residue to support the transthiolation reaction by
C449. To test this hypothesis, we generated a conservative E426D
mutation (human numbering; E444D in fly parkin) in an active
form of parkin lacking the N-terminal Ubl domain6 (DUbl,
Fig. 3f). We find that in contrast to DUbl–parkin, DUbl–E426D is
not active for autoubiquitination, further supporting the notion
that the RING2 domain is a catalytic entity. In addition to the
catalytic cysteine, H451 exhibits a conformation and protonation
state consistent with a catalytic role. To test whether H451
(human H433) could act as the proton shuttle between C449 and
E462 (human E444), we conducted autoubiquitination assays
using H433A and E444A substitutions. Both of these
substitutions are unable to support ubiquitination (Fig. 3f).
Taken together, the structure and subsequent assays reveal the
existence of a hydrogen-bonding network involving T433, E444,
H451, E462 and semi-conserved R445 and D446 (Fig. 3e) that
supports the catalytic cysteine required for ubiquitination.

IBR and RING2 facilitate interaction with RING0 and RING1.
To determine the structural relationship between the IBR domain
and the catalytic RING2 domain, we analysed both human and fly
IBR–RING2 fragments by NMR spectroscopy and mass spec-
trometry, and determined the solution structure of fly IBR–
RING2. Both human and fly IBR–RING2 structures bind a total
of four Zn2þ ions consistent with structures of the isolated IBR

and RING2 domains. The IBR–RING2 structure shows that IBR
and RING2 domains are each well-folded but separated by a 26-
residue flexible linker between the domains (Fig. 4a and
Supplementary Table S3). The lack of interaction between the two
domains is supported by the absence of interdomain nuclear
overhauser effects (NOEs), near identical peak positions when
individual domain 1H–15N HSQC spectra are superimposed with
that of IBR–RING2 (Fig. 4d), and no observable chemical-shift
changes in NMR titrations between RING2 and 15N-labelled IBR
domains (Supplementary Fig. S7). The structure also reveals that
the IBR and RING2 domains in IBR–RING2 have similar folds to
their independent structures (Fig. 4b,c). Analysis of chemical-
shift data indicates that fly and human IBR–RING2 utilize ana-
logous cysteine and histidine residues to coordinate two Zn2þ

ions in each domain (Supplementary Table S4). Together, these
results indicate that in the context of native parkin the IBR and
RING2 domains are not juxtaposed in the structure.

To identify how the IBR and RING2 domains might be
arranged with respect to the RING0 and RING1 domains in
native parkin, we acquired 1H–15N HSQC spectra of fly RING0–
RING1–IBR–RING2 (Fig. 4e) and compared the data with
spectra of IBR–RING2. Unlike the near-perfect superposition of
spectra exhibited for the IBR and RING2 domains with the IBR–
RING2 fragment, many chemical-shift changes were observed in
each of the IBR (that is, D367, V380, V381 and N384) and RING2
(that is, G447, A457, W465 and C475) domains in RING0–
RING1–IBR–RING2. This indicates that the environments of
these residues in IBR and RING2 are changed by the presence of
the RING0 and RING1 domains. The most logical explanation is
that the RING0 and/or RING1 domains are interacting with the
IBR–RING2 structure forming a more compact arrangement in
the protein.

Parkin tertiary structure is maintained by the Ubl domain. To
understand the parkin structure in the context of the native
protein, we obtained a molecular envelope of human parkin in
solution using small-angle X-ray scattering (SAXS) (Fig. 5a). The
analysis of the SAXS data, generated from a monodispersed pure
sample, indicates that full-length parkin adopts a globular con-
formation with a radius of gyration of 29.0 Å (Dmax 95 Å).
Removal of the Ubl domain leads to an extended conformation of
parkin (Fig. 5b), with a larger radius of gyration (32.0 Å; Dmax
110 Å) than the 8-kDa larger full-length protein. These observa-
tions were validated using sedimentation velocity analysis
(Fig. 5c) that showed sedimentation coefficients of 4.1 S (parkin)
and 3.5 S (DUblD–parkin), reflecting the higher mass for parkin.
However, the frictional ratio (f/f0) for DUblD–parkin (1.53) was
larger than that observed for parkin (1.38). This indicates that
DUblD–parkin has a more extended conformation, and that in
the presence of the Ubl domain parkin adopts a more compact
conformation. Activating point mutations in the Ubl domain,
R42P, I44A and K48A6 were also subjected to SAXS analysis and
have radii of gyration that were all larger than native parkin (31.8,
30.3 and 29.8 Å, Dmax 130, 105 and 104 Å, respectively). Despite
high-quality data from non-aggregated samples (Fig. 5d–f), ab
initio modelling cannot be used to interpret the data due to
inherent conformational flexibility. Taken together, these data
suggest the Ubl associates with the RBR domains in the full-
length protein.

Parkin is not a substrate of parkin in trans. Our structural data
indicate that parkin and parkin mutants form monomers in
solution, even at the very high concentrations required for
SAXS analysis (up to 0.5 mM). As parkin is reported to be a
substrate of parkin, these insights led us to ask whether parkin
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self-ubiquitination occurs in cis or in trans. To address this
question, we first probed the targets of mutant human parkin
autoubiquitination by mass spectrometry and identified a con-
served site at K349, located within the IBR domain
(Supplementary Fig. S8). The IBR–RING2 is sufficient for auto-
ubiquitination activity of parkin19,25, suggesting that IBR–RING2
is a plausible candidate substrate of full-length mutant parkin.
Furthermore, at 17-kDa, IBR–RING2 is easily distinguishable
from full-length parkin (52 kDa), or parkin lacking the Ubl
domain (46 kDa). The pathogenic mutation T415N in RING2
results in well-folded but inactive protein (Fig. 3f and
Supplementary Fig. S6) and, therefore, we used IBR–RING2–
T415N as a model substrate for parkin to distinguish between cis
and trans autoubiquitination. In contrast to the mutants

themselves, IBR–RING2–T415N is not ubiquitinated by any of
the active parkin mutants (Fig. 6a), even in the presence of a large
excess of ‘substrate’ (Fig. 6b). To rule out that IBR–RING2–T415N
simply does not contain a recognition site for parkin, we expressed
and purified full-length haemagglutinin (HA)-tagged T415N–
parkin (Fig. 6c). Again, even at high concentrations full-length
parkin is not a substrate of active parkin. Taken together, these
data show that parkin autoubiquitinates in cis, and not in trans.

Discussion
There are several classes of E3 ligases, including the RING, U-box
and HECT E3s. HECT E3 ligases form a catalytic intermediate via
a thiolester with the C terminus of ubiquitin before transferring it

RING2

Site II

Site II

Flexible
linker

IBR

N

C C

N

C

Site I

Site I

N

G388

G349
G361

G350

G359 G460

G447G398

G477

C368

C475
A478

V380

V345 K370

C449

Q387

D367

N384
V466

L363
F461F381

V371

W471

L352

L346

D446 D412

R456

W465

C377

10.0 9.0 8.0
1H (p.p.m.)

105.0

110.0

115.0

15
N

 (
p.

p.
m

.)

120.0

125.0

130.0

105.0

110.0

115.0

15
N

 (
p.

p.
m

.)

120.0

125.0

130.0

7.0 6.010.0 9.0 8.0
1H (p.p.m.)

7.0

A457

E365
L362

Q355
Y379

L386

K434

T372

Y389C394

E397

Figure 4 | The structure of fly IBR–RING2 shows the domains are remote in parkin but interact with RING0 and RING1. (a) Representative ribbon
structure of parkin IBR–RING2 showing the flexible linker between the IBR and RING2 domains. (b) The superposition of parkin IBR domains from human
(white, PBD accession code 2JMO) and fly (black). (c) The superposition of RING2 domains from fly parkin RING2417–482 (white) and fly parkin IBR–
RING2342–482 (coloured). The two domains adopt similar folds, although the IBR domains do not contain formal b-strands. (d) Superposition of 1H–15N
HSQC spectra for the fly IBR–RING2 (black contours) with spectra for the individual fly parkin IBR342–402 (pink) and RING2417–482 (blue) domains. (e)
Superposition of 1H–15N HSQC spectra for parkin RING0–RING1–IBR–RING2 (red contours) and IBR–RING2342–482 (teal contours). The large number of
chemical-shift changes indicates that RING0 and RING1 interact with IBR–RING2. Residues in both IBR and RING2 that undergo the largest changes in
chemical shift are indicated near their positions from the IBR–RING2 assignment.

NATURE COMMUNICATIONS | DOI: 10.1038/ncomms2983 ARTICLE

NATURE COMMUNICATIONS | 4:1983 | DOI: 10.1038/ncomms2983 | www.nature.com/naturecommunications 7

& 2013 Macmillan Publishers Limited. All rights reserved.

http://www.nature.com/naturecommunications


to a substrate protein28,46. In contrast, the RING and U-box E3
ligases function primarily as scaffolds by orienting the
E2Bubiquitin thiolester complex and target protein for
ubiquitin transfer47. Recently, the RBR ligases were proposed to

function as a hybrid between the HECT and RING ligases that
can also form a catalytic thiolester intermediate14,15,27.

In this study we set out to understand the RBR ligase parkin
and its domains both in detail, and in the broader context of the
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whole protein. We determined the structure of parkin RING2 to
decipher how this domain might account for the unique RING/
HECT hybrid mechanism. We show that parkin RING2 adopts a
different fold and Zn2þ -coordination topology than its RING
namesake that likely exists for all RBR ligases. RING2 lacks key
residues required for E2/RING interactions, which, in combina-
tion with our isothermal titration calorimetry experiments
showing no interaction with either UbcH7 or UbcH8, reinforces
that RING2 is not an E2 recruitment domain. Likewise, recent
observations that parkin IBR–RING2 is capable of E2-indepen-
dent ubiquitination19 supports the notion of this RING2 domain
having different structural features and activity than canonical
RINGs. A key observation from the RING2 structure is the
location of a solvent-exposed cysteine that is absolutely conserved
in all RBR-containing E3 ligases. This cysteine is perfectly poised
to accept an ubiquitin molecule, be it from an E1 or an E2
enzyme, and perform a transthiolation reaction. Clearly, RING2
is the true catalytic domain for the RBR ligases that is not
dependent on interacting with an E2 enzyme. Consistent with
this, there are numerous ARJP mutations that affect the RING2
domain, not only point mutations but also truncations and
deletions that lead to the loss of the RING2 fold16 (http://
www.molgen.ua.ac.be/PDmutDB).

Understanding the regulation of E3 ubiquitin ligases has
become increasingly important in the ubiquitin field. A prime
example is the autoinhibited state of the Cullin-RING ligases
that can be alleviated by the conjugation of the ubiquitin-like
protein NEDD8 to the extreme C terminus of the Cullin, thus
increasing the mobility of the Rbx1/ROC1 RING E3 protein for
guiding an E2Bubiquitin complex to successfully transfer its
ubiquitin cargo to a substrate48. Interestingly, several RBR ligases
have been recently shown to use autoinhibition to regulate
their ubiquitination activity6,14,15, a regulatory mechanism also
employed by HECT E3s49.

There are many aspects of parkin function that are poorly
understood, including the structural basis of parkin regulation
by a variety of post-translational modifications, and how
different E2s impact on parkin activity10,11,17. However, our
findings that an affected copy of parkin does not ubiquitinate
an unaffected copy suggest a unifying ‘loss-of-function’
rationale for parkin mutations, whereby mutations in the
catalytic domain lead to a catalytically inactive parkin, whereas
‘activating’ mutations in the inhibitory domain lead to
ubiquitination and subsequent degradation. Our structural
analyses in solution combined with biochemical data suggest
that in a heterozygous scenario, only the mutant copy of parkin
is affected. If the mutation is inactivating, only the mutant
copy loses function, and if the mutation is activating only the
mutant copy is destroyed. Wild-type parkin is not preyed
upon by mutant parkin and remains functional. Our data
also provide a molecular rationale for the existence of non-
homozygous ARJP sufferers who have compound heterozygous
mutations.

Methods
Protein expression and purification. All domains from D. melanogaster
PARK2 were cloned into a modified pGEX-6P-2 vector having an N-terminal
GST tag and TEV cleavage site (ENLYFQ). Site-directed mutagenesis was used to
create all substitutions in parkin RING2. The full length (residues 1–465),
DUbl (residues 77–465), IBR–RING2 (residues 321–465) domains and substituted
proteins from human PARK2 were cloned, expressed and purified as described
previously6. The RING2 domain of HHARI (residues 325–396) was synthesized
by DNA 2.0 (Menlo Park, CA, USA) and cloned into the pGEX-TEV vector.

GST-tagged constructs were transformed into Escherichia coli BL21(DE3)-RIL
(Stratagene) and grown in Luria broth supplemented with 500 mM ZnCl2 at 37 !C
until OD600 reached 0.8. Expression was induced with 1 mM isopropylthiogalac-
toside at 16 !C for 20 h. For 13C/15N-labelled proteins, cells were grown similarly in
M9 media supplemented with 15NH4Cl (1 g l" 1), 13C6-glucose (2 g l" 1) and
500 mM ZnCl2. Purification used GSTrap FF columns (GE Healthcare) before and
following TEV cleavage.
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Protein solubility experiments. Isopropylthiogalactoside-induced overnight cul-
tures (10 ml) were collected and resuspended in 20 mM Tris-HCl, 120 mM NaCl,
5 mM dithiothreitol (DTT), pH 7.4 (1 ml), sonicated for 20 s and centrifuged at
16,000g for 5 min. The cleared supernatant was separated and the pellet was
resuspended in 2% SDS. The preinduction, postinduction, supernatant and pellet
samples were then heated in SDS-loading buffer with 5 mM DTT, run on a 16.5%
SDS–PAGE gel and stained with Coomassie Brilliant Blue R-250 dye.

Metal-binding experiments using mass spectrometry. Zinc ion content was
assessed by mass spectrometry as previously described36. Samples were dialysed
twice against 120 mM ammonium acetate pH 7.4, with a final exchange against
10 mM ammonium acetate to remove sodium adducts. Mass spectrometry was
performed in positive-ion mode on a Q-TOF Micro mass spectrometer (Waters)
with Z-spray source. Denatured proteins were prepared by mixing the native
samples with acetonitrile and formic acid (5%) in a 50:50 ratio. Data showed the
following masses; fly parkin RING2 C449S (MWcalc 7643.6 Da, MWobs (native)
7771.99 Da, MWobs (denatured) 7643.47 Da), human HHARI RING2 C357S
(MWcalc 8428.2 Da, MWobs (native) 8556.56 Da, MWobs (denatured) 8428.15 Da),
human parkin IBR–RING2 (MWcalc 16095.34 Da, MWobs (native) 16346.39 Da,
MWobs (denatured) 16093.80 Da), fly parkin IBR–RING2 (MWcalc 15589.6 Da,
MWobs (native) 15842.06 Da, MWobs (denatured) 15588.65 Da), human parkin
DUbl (MWcalc 42834.53 Da, MWobs (native) 43342.07 Da, MWobs (denatured)
42836.07 Da) and fly parkin DUbl (MWcalc 42470.8 Da, MWobs (native)
42974.25 Da, MWobs (denatured) 42472.0 Da).

Isothermal titration calorimetry experiments. The interaction of human or
D. melanogaster parkin IBR, RING2 or IBR–RING2 with either UbcH7 or UbcH8
was probed by isothermal titration calorimetry using an iTC200 Microcalorimeter
(GE Healthcare). Sample cells contained 30–50 mM of the appropriate parkin
domain, and 10# sample cell concentration in the injection syringe of either
UbcH7 or UbcH8. All samples were buffered using 50 mM HEPES, 200 mM NaCl
and 250mM TCEP (tris-(2-carboxyethyl)phosphine) at pH 8.0. Injections of
1.5 ml were dispensed with a 5-s addition time and a spacing of 250 s, with a total of
20 injections at 18 !C. The stirrer speed was 1,000 r.p.m.

NMR spectroscopy and structure calculations. NMR data were collected using
15N- or 13C/15N-labelled parkin domains (100–500 mM) and HHARI RING2
(400 mM) at 25 !C using a Varian Inova 600 MHz NMR spectrometer equipped
with a triple resonance probe and z-field gradients. Data were processed using
NMRPipe50 and were analysed using NMRViewJ51. Structures were calculated
using manual and automatic NOE assignments and dihedral angular restraints
(j,c) from TALOSþ (ref. 52) incorporated into the programme CYANA53. The
standard CYANA protocol was used with default settings, involving eight cycles of
structure generation and refinement (100 structures per round). Cysteine residues
involved in Zn2þ coordination were identified using Ca and Cb chemical shifts54.
The protonation state of histidine residues was determined from Cd chemical
shifts55. Initial structures were calculated in the absence of any Zn2þ -ion restraints
so as to not bias the fold of the domain. Following this, zinc atoms were added
using virtual linkers. Restraints between the atom pairs Zn–Sg, Sg–Cb, (His Ne2)–
Sg and Sg–Sg were imposed to maintain tetrahedral geometry around the zinc ion
as previously described32. The final 50 structures were water refined using a
modified force field in Xplor-NIH56. The 20 structures with the lowest NOE
energies were chosen as representative of the calculation.

Mass spectrometric identity of autoubiquitination sites. Ubiquitination
experiments were carried out in 50 mM HEPES pH 8.0, 2 mM DTT and 5 mM
MgCl2 containing 5 mM ATP, 200 nM UBE1, 4mM UbcH7, 16 mM His6-ubiquitin
and 2 mM of either R42P, K48A or DUblD. Reactions were incubated at 37 !C for
60 min before addition of LDS sample buffer and b-ME. Boiled samples were
resolved by gel electrophoresis and gel bands corresponding to ubiquitinated
parkin were subjected to further analysis by LC–MS/MS.

In vitro ubiquitination assays. Reactions were carried out in a total volume of
25ml in 50 mM Tris pH 7.5, 2 mM DTT and 5 mM MgCl2. His mouse UBE1 virus
(6# ) was a kind gift from Kazuhiro Iwai and was purified as a His fusion using Ni-
NTA resin (QIAGEN) affinity chromatography followed by size-exclusion liquid
chromatography. UbcH7 was purified as previously described6. Ubiquitination
components were added as follows: 4 mM ATP, 15 nM UBE1, 1.1 mM UbcH7 and
5 mM His6-ubiquitin. Untagged parkin (0.77–1 mM) was added with or without the
stated parkin substrate. IBR–R2–T415N (1 mM) or HA–parkin-T415N (0.77 mM)
were added in the respective assays unless otherwise specified. Incubation at 37 !C
for 60 min preceded addition of SDS buffer and denaturation by boiling. Samples
were resolved by gel electrophoresis and analysed by western blot. Antibodies used
for visualization were as follows: anti-parkin (1/5,000, 1A1; IBL), anti-6#His
(1/2,000; GE Healthcare), anti-HA (1/1,000; Mono-HA.11, Covance) and anti-IBR-
R2 raised against recombinant IBR-R2 (Pettingill Technology Ltd). Full blots and
gel scans are included in Supplementary Fig. S9 where appropriate.

Parkin thiolester in vitro ubiquitination assays. Cy5-labelled His6-ubiquitin was
generated as described15. A cysteine residue was inserted between the 6xHis tag
and the first methionine by site-directed mutagenesis. Purification was carried out
initially on a HiLoad 16/10 Q-Sepharose High Performance column (GE
Healthcare) equilibrated in 25 mM Tris, 1 mM EDTA, at pH 8. His6-ubiquitin
eluted in the flowthrough was then concentrated and purified further using size-
exclusion chromatography. Protein was stored in 50 mM HEPES pH 7.5. Purified
protein (1 mg) was incubated at room temperature with one vial of Cy5 Maleimide
Mono-Reactive Dye (GE Healthcare) in a 550ml total reaction volume for 90 min
with gentle agitation. Excess dye was removed on a 5 ml HiTrap Desalting column
(GE Healthcare) equilibrated in 50 mM HEPES pH 7.5 and 150 mM NaCl. Labelled
protein was further purified by size-exclusion chromatography.

Reactions were buffered in 50 mM Tris pH 7.5 and contained 2 mM DTT and
5 mM MgCl2. Cy5-His6-ubiquitin (1mM), 2 mM UBE1 and 1 mM ATP were mixed
and incubated at 37 !C for 10 min before addition of 10 mM UbcH7, and a further
10 min incubation at 37 !C. 20mM His-SUMO-IBR-R2, His-SUMO-IBR-R2-C431S
or His-SUMO-IBR-R2-C431A-parkin was then added. The native parkin was
incubated for only 15 s, C431S was incubated at 37 !C for 1 h, and a sample
incubated with 0.15 M NaOH. Reactions were stopped using NuPAGE LDS Sample
Buffer (Invitrogen) and were reduced by the addition of TCEP and boiling where
indicated. Gels were visualized using an ImageQuant LAS 4000 imaging system.

Analytical ultracentrifugation. Sedimentation velocity experiments were per-
formed using a Beckman Coulter XL-A analytical ultracentrifuge equipped with an
An-60 Ti rotor. Samples (400 ml) were prepared in 25 mM Tris–HCl, 50 mM NaCl
and 0.5 mM TCEP pH 8.0, and centrifuged in a double sector cell (1.2 cm)
equipped with sapphire windows at 45,000 r.p.m. at 20 !C. Samples were scanned at
equal intervals (60 scans total) and the absorbance at 280 nm measured with three
replicates averaged per scan. Data were analysed using the programme Sedfit
using non-linear regression to determine the frictional ratio (f/f0) for each species
as well as the sedimentation coefficient corrected to 20 !C. All data were fit to an
r.m.s.d. equal or less than 0.008.

SAXS data collection and processing. SAXS data were collected at Synchrotron
Soleil; beamline SWING. Samples ranging in concentration from 5 to 25 mg ml" 1

were directly passed into the beam from HPLC gel filtration using an Agilent
BioSec-3 300 column. Data were collected from the peak(s) comprising the protein
of interest, avoiding any aggregates with data for the buffer blank collected before
the elution of protein from the column.

Initial data processing was undertaken automatically using the FOXTROT
software at the beamline. Further processing, using the ATSAS suite (version
2.5.0—http://www.embl-hamburg.de/biosaxs/software.html), was undertaken using
PRIMUS57 (for initial Rg and Kratky plot analysis), GNOM58 (generation of
distance distribution plots) and DAMMIF59 (generation of ab initio models).
Models were converted to Situs format using PDB2VOL (part of the SITUS suite,
http://situs.biomachina.org/). Figures were produced using CHIMERA60 followed
by superimposition of envelopes.
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