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SUMMARY. Model-based inference procedures for the kappa statistic have developed rapidly over the last 
decade. However, no method has yet been developed for constructing a confidence interval about a differ- 
ence between independent kappa statistics that is valid in samples of small to moderate size. In this article, 
we propose and evaluate two such methods based on an idea proposed by Newcombe (1998, Statistics in 
Medicine, 17, 873-890) for constructing a confidence interval for a difference between independent propor- 
tions. The methods are shown to provide very satisfactory results in sample sizes as small as 25 subjects per 
group. Sample size requirements that achieve a prespecified expected width for a confidence interval about 
a difference of kappa statistic are also presented. 
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1. Introduction 
There has recently been increased interest in developing mod- 
el-based inferences for the kappa statistic, particularly as ap- 
plied to the assessment of interobserver agreement. Most of 
this research has focused on problems that arise in a single 
sample of subjects, each assessed on the presence or absence 
of a binary trait by two observers (e.g., Donner and Eliasziw, 
1992; Hale and Fleiss, 1993; Basu, Banerjee, and Sen, 2000; 
Klar, Lipsitz, and Ibrahim, 2000; Nam, 2000). Extension of 
this research to single-sample inference problems involving 
more than two raters and/or multinomial outcomes has also 
recently appeared (e.g., Altaye, Donner, and Klar, 2001; Bart- 
fay and Donner, 2001). 

Although single-sample problems involving the kappa sta- 
tistic perhaps predominate, the need to compare two or more 
kappa statistics also frequently arises in practice. For exam- 
ple, it may be of interest to compare measures of interobserver 
agreement across different study populations or different pa- 
tient subgroups in a single study. The latter was an objective 
of a study reported by Ishmail et al. (1987) that focused on 
interobserver agreement with respect to the presence of the 
third heart sound (S3), recognized as an important sign in 
the evaluation of patients with congestive heart failure. One 
question of interest in this study was whether the degree of 
interobserver agreement varied by the gender of the patient, 
an issue that arose because it may be more difficult to hear S3 
in women compared with men. Other examples of such inves- 
tigations are given by Barlow, Lai, and Azen (1991), McLellan 
et al. (1985), and McLaughlin et al. (1987). The comparison of 
coefficients of interobserver agreement is also the major focus 

of many measurement studies in educational and psychologi- 
cal research (e.g., Alsawalmeh and Feldt, 1992). 

Appropriate testing procedures for this problem have been 
described by Donner, Eliasziw, and Klar (1996) for the case 
of independent samples of subjects and Donner et al. (2000) 
for the case of dependent samples involving the same sub- 
jects. Reed (2000) has also addressed this problem, provid- 
ing an executable Fortran code for testing the homogeneity 
of kappa statistics in the former case. However, to the best 
of our knowledge, procedures have not yet been developed 
for constructing an interval estimate about the difference be- 
tween two kappa statistics. With the increased emphasis on 
confidence-interval construction as an alternative to signifi- 
cance testing, this would seem to be an important gap in the 
literature. 

As discussed by Nam (2000), there are two models that 
have tended to be adopted for constructing inferences for the 
kappa statistic in the caSe of two raters and a binary outcome. 
The first model allows the marginal probabilities of a success 
to differ between the two raters and leads naturally to Cohen’s 
(1960) kappa. The second model assumes the same marginal 
probability of success for each rater and leads naturally to the 
intraclass kappa statistic, identically equal to Scott’s (1955) T .  

Landis and Koch (1977) and Bloch and Kraemer (1989) have 
presented arguments supporting the use of this model when 
the main emphasis is directed at the reliability of the mea- 
surement process rather than in potential differences among 
raters. Zwick (1988) also discusses this issue, pointing out 
that, if marginal differences are small, the value of Cohen’s 
kappa will be close to that of Scott’s T and the choice between 
them will not be important. Furthermore, as shown by Black- 
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man and Koval (2000), the two estimators are asymptotically 
equivalent. 

In this article, we develop and evaluate a method for con- 
structing a confidence interval for a difference between two in- 
traclass kappa statistics computed from independent samples 
of subjects. The procedures compared are developed in Sec- 
tion 2, followed in Section 3 by a simulation study evaluating 
their properties. Section 4 provides guidelines for sample size 
estimation, while two examples illustrating the procedures are 
presented in Section 5. The article concludes with overall rec- 
ommendations for practice and with advice concerning avail- 
able software. 

2. Development of Procedures 
Following Donner et al. (1996), we let Xijh denote the rating 
for the ith subject by the j t h  rater in sample h ( h  = 1,2). 
Letting nh = Pr(Xijh = 1) be the probability of a success, 
the probabilities of joint responses within sample h are given 
by P l h ( n h )  = Pr(Xi1h = 1,X,2h  = 1) = 7ri + nh(1- nh)nh, 
P2h(nh) = Pr(Xilh = 0,XiZh = 1 or Xi lh  = 1, Xi2h = 0) = 
2nh(l - sjLd(l - nh),  and P3h(nh) = Pr(Xi1h = O,Xi2h = 0) 
= (1 - nh) + n h ( l  - nh)nh. This model, previously discussed 
by several authors, including Mak (1988) and Bloch and Krae- 
mer (1989), has been referred to as the common correlation 
model because it assumes that the correlation between any 
pair (Xilh,Xi~h) has the same value nh. 

We now assume that the observed frequencies n l h ,  n2h,  n3h 
corresponding to Plh(nh) ,  P2h(nh),  Psh(nh) follow a multi- 
nomial distribution conditional on Nh = $=, n k h ,  the to- 
tal number of subjects in sample h. Letting +h = (2nlh + 
nzh)/(2Nh), Bloch and Kraemer (1989) show that, for a sin- 
gle sample of subjects, the maximum likelihood estimator of 
nh under the common correlation model is given by k.h = 
1 -7~h/{2Nh?h (1 -?h)}, with large-sample variance obtained 
as var(Rh) = (1 - nh)[( 1 - nh)( 1 - 2nh) +nh(2 - nh)/{2nh( 1 - 
nh)}]/Nh.  It is easily verified that kh is simply the standard 
intraclass correlation coefficient (e.g., Snedecor and Cochran, 
1989) as applied to dichotomous outcome data. 

We can estimate var(kh) by substituting +h and k.h for r h  

and nh, respectively. A large-sample lOO(1 - a)% confidence 
interval for n 1 - n ~  is then given by (R1 - R2)?~z,/~{v2r(k.1)+ 
&ir(R2)}1/2, where i&ir(kh) is the sample estimate of var(kh) 
and 2,p denotes the lOO(1 - a/2)% percentile point of the 
standard normal distribution. We refer to this method as the 
simple asymptotic (SA) method. 

A potential difficulty with the SA method is that the sam- 
pling distribution of kh may be far from normal when nh is 
close to one and the nuisance parameter nh is close to zero or 
one, a parameter range that is frequently of practical interest 
(see Bloch and Kraemer (1989) for a detailed discussion). An 
extreme case of this problem arises at  kh = 1, where var(Rh) 
is degenerate. We therefore consider alternatives that are less 
subject to aberrant results in samples of small t o  moderate 
size. 

Newcombe (1998) evaluated 11 methods for constructing a 
confidence interval about the difference between two propor- 
tions and recommended a computationally simple hybrid pro- 
cedure based on the Wilson (1927) score method for a single 
proportion. He found that this method performs remarkably 
well under a wide range of conditions. We apply the same idea 
here to constructing a confidence interval for A = nl - n2. 

Let ( Ih ,uh)  denote lower and upper l O O ( 1  - a)% limits 
for nh. Then the hybrid confidence interval for A is given by 
( L , U ) ,  where 

L = (RI - R 2 )  - ~ , ~ 2 { v a r ( k i ) l ~ ~ = ~ ~  + ~ a r ( k 2 ) 1 ~ ~ = ~ ~  }1/2 

u = (a1 - k2) + ~,/2{var(~1)lK,"u,+",,(R2)("2=12 } 1 / 2  ' 

and 

Further details concerning the theoretical basis for this pro- 
cedure are given in the Appendix. 

One approach to obtaining the limits ( Ih ,  uh), h = 1,2, 
was proposed by Donner and Eliasziw (1992), who used a 
goodness-of-fit approach to construct a confidence interval for 
nh. This approach, algebraically equivalent to an approach 
independently proposed by Hale and Fleiss (1993), assumes 
only that the observed frequencies W k h  (k = 1,2,3) follow a 
multinomial distribution with corresponding probability Pkh 
conditional on Nh. If estimated probabilities & ( K h )  are ob- 
tained by replacing ~h with ?h, it then follows that x; = 
~;=,{nkh - NhPkh (nh)12 / {NhPkh (nh)} has a limiting chi- 
square distribution with 1 d.f. One can then obtain the con- 
fidence limits (Zh,uh)  for K h  by finding the two admissible 

2 roots to the cubic equation xG = x:,~-,. We refer to this 
method as the hybrid goodness-of-fit (HGOF) approach. 

An alternative method of obtaining ( I h , u h )  is to invert a 
modified Wald test (Rao and Mukerjee, 1997), which may 
be constructed by replacing var(kh) with vTrrp(Rh), obtained 
by substituting ejrh for nh. The confidence limits for nh are 
then given by the two admissible roots of the cubic equation 
given by (Rh - nh) /varp(nh) = xl,l-cu. An approach similar 
to this was applied by Lee and Tu (1994) to the problem of 
constructing confidence limits about Cohen's kappa, who refer 
to it as the profile variance approach. We refer to it here as 
the hybrid profile variance (HPR) approach. Note that the 
HGOF and HPR methods differ only in how the confidence 
limits (Zh, uh), h = 1,2,  are computed, 

3. Evaluation 
The finite sample properties of the three methods presented 
in Section 2 are, for the most part, intractable. We therefore 
compared the performance of the SA, HGOF, and HPR meth- 
ods using Monte Carlo simulation. Simulation runs having 
+h(l-+h)  = 0 (for which kh is undefined) were discarded until 
10,000 runs were obtained. The expected proportion of such 
runs is given by {n2 + 7r(  1 - n ) ~ } ~  $- { (1 - T ) ~  +n( 1 - n ) ~ } ~ ,  
well under 5% for all parameter combinations considered in 
the simulation. Procedure PROC IML in the statistical soft- 
ware package SAS was used to generate observations from the 
common correlation model. 

The restriction 7r1 = 7r2 was imposed in the simulation 
study since many authors (e.g., Thompson and Walter, 1988) 
caution strongly against the comparison of two or more kappa 
statistics when the population prevalence for the groups dif- 
fers. This restriction, although not required by the theoretical 
development above, is reasonable in practice given the well- 
known dependence of the kappa statistic on the estimated 
group prevalence. 

For each parameter combination (N1, N2, T ,  n l ,  A),  we 
computed the empirical coverage level generated by each 
method for a 95% confidence interval constructed about A 
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Figure 1. Empirical coverage percentage based on 10,000 
runs for the HGOF (O), HPR (A),  and SA (+) methods 
as used to construct a 95% two-sided confidence interval for 
A = K I - R ~ .  Sample sizes (Ni, Nz):  1 = (25,25), 2 = (25,501, 
3 = (50,50), 4 = (50, loo), 5 = (100,100). 

Figure 2. Mean confidence-interval width based on 10,000 
runs for the HGOF (0) and HPR (A) methods as used to 
construct a 95% two-sided confidence interval for A = ~1 -Q. 
Sample sizes (N1, Nz): 1 = (25,25), 2 = (25,50), 3 = (50,50), 
4 = (50, loo), 5 = (100,100). 

= - K 2 .  These are shown in ~i~~~~ 1, with mean 
confidence-interval widths shown in Figure 2. 

The results in Figure 1 are consistent with previous work 
(e.g., Bloch and Kraemer, 1989; Barlow et al., 1991; Nam, 

2000), demonstrating that confidence-interval methods based 
on the estimated large-sample variance of the kappa statistic 
give reliable coverage only when sample sizes are large and the 
prevalence A is not extreme. Otherwise, the actual coverage 



212 Biometrics, March 2002 

Table 1 
Number of subjects ( N )  per group required to  ensure a two-sided 
95% confidence interval (CI) for A (= nl - ~ 2 )  has width Wo 
.for various values of ~ 1 ,  A, and a based on the HGOF method 

CI width Wo CI width Wo 
K,I A 7r 0.20 0.40 0.60 nl A 7r 0.20 0.40 0.60 

0.6 0.0 0.1 
0.3 
0.5 

0.1 0.1 
0.3 
0.5 

0.2 0.1 
0.3 
0.5 

0.3 0.1 
0.3 
0.5 

1400 
590 
493 

1490 
636 
534 

1533 
671 
568 

1520 
693 
594 

342 
147 
124 
361 
158 
133 
369 
166 
141 
363 
170 
148 

145 
65 
55 

151 
69 
59 

152 
72 
62 

149 
74 
65 

level may be substantially less than nominal. The two hybrid 
methods, on the other hand, maintain coverage levels very 
close to nominal, even when N1 = N2 = 25 and 

Our simulation results also showed that the SA method 
yields mean confidence-interval widths consistently greater 
than that of the other two methods, even when its cover- 
age level is below nominal. Because of this observation and 
the other difficulties associated with this method discussed in 
Section 2, we report mean widths in Figure 2 only for the two 
hybrid methods. 

The results in this figure clearly show the importance of re- 
cruiting a large number of subjects in each comparison group 
if the investigator’s objective is to estimate A with a rea- 
sonable degree of precision. For example, if n1 = 0.8 and 
n2 = 0.6, then it is necessary to recruit at least 100 sub- 
jects per group to obtain a mean confidence width no more 
than about 0.50, assuming T = 0.3. However, a comparison 
between the HGOF and HPR methods shows that they pro- 
vide virtually the same mean confidence-interval widths at all 
parameter values. 

4. Sample Size Estimation 
The results in Section 2 can also be used to estimate the sam- 
ple sizes N1 and N2 needed to achieve a confidence interval 
about A = n1 - n2 having prespecified width. In particular, 
we may ask how many subjects per sample are needed to con- 
struct a 100( 1 - a)% two-sided confidence interval about A 
having width no greater than a prespecified value Wo. This 
problem could arise when the objective of a study is to specif- 
ically estimate the difference between agreement levels that 
arise in distinct subgroups of subjects (e.g., Faerstein, Chor, 
and Lopes, 2001). 

For the sake of simplicity, we assume equal sample sizes 
N1 = N2 = N and focus on the hybrid goodness-of-fit 
(HGOF) approach (results obtained using the hybrid pro- 
file variance [HPR] approach were virtually the same). Us- 
ing equation (2) in the Appendix as applied to obtaining the 
limits ( L ,  V )  given in Section 2, it may be noted that the ex- 
pression for the interval width W = U - L depends on N ,  

= 0.1. 

0.8 0.0 0.1 826 
0.3 344 
0.5 286 

0.1 0.1 982 
0.3 409 
0.5 341 

0.2 0.1 1108 
0.3 465 
0.5 388 

0.3 0.1 1196 
0.3 511 
0.5 429 

220 104 
93 45 
77 38 

252 115 
107 50 
89 42 

278 123 
119 54 
100 46 
295 127 
129 58 
109 50 

on the number of subjects n2h in sample h having discordant 
ratings, on the observed values of the parameters ?rh, h = 1,2,  
and on the probability of coverage 1 - a. 

The values i f h  and n2h are unknown prior to the study. 
However, for the purpose of sample size estimation and as- 
suming a common prevalence 7r, an approximation to the ex- 
pected width of the confidence interval may be obtained by 
replacing %h by its anticipated value a, based on informa- 
tion obtained from previous studies or from a pilot investiga- 
tion. Furthermore, n2h may be replaced by its expected value 
from the common correlation model, given by N&h(nh) = 
2N7r(l - n)( l  - nh). These substitutions allow us to estimate 
the minimum value of N (rounded up to  the nearest integer) 
needed to ensure that W 5 WO at selected values of n1, A, 7r, 

and a. 
The results are shown in Table 1 for n1 = 0.6,0.8, A = 

0.0,0.1,0.2,0.3, a = 0.1,0.3,0.5, and a = 0.05 (two-sided) 
for prespecified interval width WO = 0.20,0.40,0.60. These 
values for nl correspond to what Landis and Koch (1977) have 
characterized as the upper limits for describing moderate and 
substantial interobserver agreement, respectively. It is clear 
from these results that the sample size requirements needed 
to achieve a confidence-interval width less than 0.40 will often 
be prohibitive in practice. 

As an example, suppose an interobserver agreement study 
is being planned with the aim of constructing a 95% confi- 
dence interval for A having width no greater than 0.4 when 
n1 = 0.8 and n2 = 0.6. Then if a = 0.50, N = 100 subjects 
are required in each group. At 7r = 0.10, however, the required 
value of N increases to 278, reflecting the substantial sensitiv- 
ity of these results to the value of the underlying prevalence 
parameter. 

5. Examples 
As a first example, we consider data from Landis and Koch 
(1977), previously analyzed by Barlow (1996). As part of a 
study on multiple sclerosis reported by Westlund and Kur- 
land (1953), two neurologists classified 149 Winnipeg patients 
and 69 New Orleans patients on a four-point scale. Using the 
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same dichotomous classification considered by Barlow (1996), 
we are interested here in the interobserver agreement with re- 
spect to a diagnosis of certain multiple sclerosis versus uncer- 
tain. This classification yields {n11,n21,n31} = {119,20,10} 
and {n12,n22,1232} = {44,11,14} for the Winnipeg and New 
Orleans samples, respectively, implying N1 = 149 and N2 = 
69. We then obtain 121 = 0.422 and 122 = 0.607, with i l  = 
0.866 and f?2 = 0.717. Applications of both the HGOF and 
HPR methods yield 95% confidence limits about A = nl - K,Z 

given by (-0.450,0.122), while the SA method yields the 
slightly narrower limits (-0.481,0.112). Therefore, there is 
no indication from this investigation that the level of interob- 
server agreement varies significantly by geographic region. 

As a second example, we consider data presented by Faer- 
stein et al. (2001), who investigated within-person agreement 
over time with respect to information recorded on the diag- 
nosis and treatment of hypertension. Interviewees involved in 
this study filled out a health questionnaire that was applied 
twice within an interval of two weeks. 

One aim of this study was to compare the consistency of 
agreement across this two-week period among different popu- 
lation subgroups, as defined by gender, age, and educational 
level. Although the focus of this example is on agreement 
between occasions rather than between observers, the kappa 
statistic is well suited to make this comparison. We focus here 
on the comparison of male (N1 = 82) and female (N2 = 
87) subjects with respect t o  level of agreement over time on 
recorded history of diagnosed hypertension. For this compari- 
son, Faerstein et al. (2001) report the kappa statistics as 121 = 
0.623 for males and 122 = 0.876 for females, with i l  = 0.177, 
i 2  = 0.167. The HGOF and HPR methods yield 95% confi- 
dence limits given by (-0.522,0.022) and (-0.523,0.023), re- 
spectively, while the SA method yields (-0.516,O.OlO). There- 
fore, there is some indication that the consistency of agree- 
ment over the two-week period is somewhat higher for females, 
although the difference between 121 and 122 is not significant 
at the 5% level. 

6. Discussion 
Suitable methodology is now available to construct confidence 
limits about estimates of interobserver agreement in sample 
sizes typical of those that are conducted in practice. However, 
as pointed out by Shrout (1998) in the context of psychiatric 
research, confidence intervals are often not reported by inves- 
tigators, thus perpetuating the proliferation of underpowered 
studies. For the comparison of kappa statistics, this problem 
is even more severe due to the paucity of available methods for 
constructing confidence intervals. It is hoped that the results 
presented in this article will help fill this gap. 

The HGOF and HPR methods each involve the combina- 
tion of independently computed single-sample confidence in- 
tervals for nl and n ~ ,  respectively. They differ only in that 
the goodness-of-fit procedure is used to calculate the single- 
sample limits for the HGOF method, while an inverted Wald 
test approach is used to calculate the single-sample limits for 
the HPR method. Since the two methods provide very similar 
results in practice, the choice between them is largely a matter 
of convenience. The single-sample goodness-of-fit procedure, 
used as an intermediate step in conducting confidence-interval 
limits using the HGOF method, is also now available in the 
software package PEPI (Abrahamson and Gohlinger, 1999) 

and is available at http : //ww . usd-inc . com/pepi . html. 
One advantage of the goodness-of-fit approach is that it can 
be readily extended to other inference problems, including hy- 
pothesis testing and sample size estimation involving multiple 
raters (e.g., Altaye et al., 2001). 
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RESUME 
Les prockdures infkrentielles baskes sur la modklisation pour 
la statistique du kappa se sont rapidement dkveloppkes dans la 
dernikre dBcennie. Cependant aucune mkthode n’a encore ktB 
d6veloppBe pour construire un intervalle de confiance pour la 
diffkrence de statistiques kappa indkpendantes qui soit valide 
sur des kchantillons de taille petite ou moyenne. Dans ce pa- 
pier nous proposons et kvaluons deux mkthodes reposant sur 
une idBe suggkrke par Newcombe (1998, Statistics in Medicine 
17, 873-890) pour construire un intervalle de confiance pour 
la diffkrence entre deux proportions indkpendantes. On mon- 
tre que les mkthodes donnent des rksultats trhs satisfaisants 
pour des kchantillons aussi petits que 25 sujets par groupe. 
On examine Bgalement les tailles d’kchantillon requises pour 
obtenir une largeur moyenne spBcifike pour l’intervalle de con- 
fiance d’une diffkrence de statistiques du kappa. 
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APPENDIX 

Let A = n1 - n2 denote the difference between nl and nz, 
estimated by A = R1 - k.2. As iV1 and N2 become large, it 
follows from the central limit theorem that 

(A-A)’ 2 = X1,1-a, 
var(A) 

which implies that the confidence limits ( L , U )  may be ob- 
tained as 

The limits L and U can also be recognized as the minimum 
and maximum values of A that satisfy equation (1). There- 
fore, we can estimate var(A) in (2) by var(A)la=minA and 
VZr(A)lA=maA for L and U ,  respectively. 

Suppose now we compute separate l O O ( 1 -  a)% confidence 
limits for n1 and n2, denoted by (11, u1) and ( 1 ~ ~ ~ 2 ) .  Then the 
values of min A and max A are given by 11 - u2 and u1 - 12, 

respectively, and by equation (2), we have 

A ^  

and 

This formulation is analogous to that used by Newcombe 
(1998) in constructing a confidence interval for the difference 
between two independent proportions. 

Confidence limits for nh ( h  = l , 2 )  can be obtained us- 
ing either the goodness-of-fit approach or the profile variance 
approach. Using the goodness-of-fit procedure and dropping 
the subscript h, the limits are obtained by solving the cubic 
equation given by An3 + BK’ + Cti + D = 0, where A = 
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2 2  4N?2(1-?) ( ~ 1 , 1 - ~ + N ) ,  B =4N?( l -? ) [n2+(1-2k ( l -  
*)}X?,i-a]-A> = ng-4N?(1-?){1-4k(1-k)}XI,1-~-A, 
and D = {ng - 2 N k ( l -  ?)}’ + 4N?’(1 - ?)’ - A. Now, let 
a1 = B/A, a2 = CIA, a3 = D / A ,  R = ala2/6 - a312 - 
af /27 ,  and Q = a213 - a2/9. Then the confidence limits for 
tc are given by 1 = 2(-Q)1/2cos{(B + 4II)/3} - a113 and 

= 2( -&)1 /2  cos(e/3) - a1/3 ,  where case = R/(-Q)3/’ and 
JI = 3.1415927. 

Similarly, using the single-sample profile variance method, 
the resulting limits are found by obtaining the solution to 

the cubic equation Atc3 + Btc2 + C K  + D = 0, where A = 

1 / { 2 k ( l -  ?)} - 2, B = -N/xf , l -a  - 3 / { 2 k ( l -  ?)} + 5, C = 

2N,i?/XI,1-a + l / { k ( l - k ) }  -4 ,  and D = -NR2/X:,1-a + 1. 
Now, if ir # 0.5, let a1 = B / A ,  a2 = CIA, a3 = D/A,  R = 

ala2/6 - a312 - af /27 ,  and Q = a2/3 - a f /9 .  The resulting 
confidence limits for K are then given by 1 = 2(-Q)1/2 cos{(~+ 
2I1)/3} - a113 and u = 2(-Q)1/2 cos{(B + 4II ) /3}  - a1/3, 
where case = R/(-Q)3/2 and II = 3.1415927. I f?  = 0.5, then 
the limits are given by ( I ,  u) = { -C& (C2 - 4 B D ) 1 / 2 } / ( 2 B ) .  



Toward Using Confidence Intervals to Compare Correlations
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Confidence intervals are widely accepted as a preferred way to present study results. They
encompass significance tests and provide an estimate of the magnitude of the effect. However,
comparisons of correlations still rely heavily on significance testing. The persistence of this
practice is caused primarily by the lack of simple yet accurate procedures that can maintain
coverage at the nominal level in a nonlopsided manner. The purpose of this article is to
present a general approach to constructing approximate confidence intervals for differences
between (a) 2 independent correlations, (b) 2 overlapping correlations, (c) 2 nonoverlapping
correlations, and (d) 2 independent R2s. The distinctive feature of this approach is its
acknowledgment of the asymmetry of sampling distributions for single correlations. This
approach requires only the availability of confidence limits for the separate correlations and,
for correlated correlations, a method for taking into account the dependency between
correlations. These closed-form procedures are shown by simulation studies to provide very
satisfactory results in small to moderate sample sizes. The proposed approach is illustrated
with worked examples.
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Statistical inference is often conducted through signifi-
cance testing and confidence interval construction. Al-
though closely related, significance testing focuses on a
single priori hypothesis, usually a null value (e.g., � � 0). In
contrast, a confidence interval can avoid such problems by
providing a range of plausible parameter values. For a given
investigation, the confidence interval reveals both the mag-
nitude and the precision of the estimated effect, whereas the
p value obtained from significance testing confounds these
two aspects of the data. Thus, confidence interval construc-
tion in principle is preferred, as discussed by Cohen (1994)
in general terms and by Olkin and Finn (1995) in the case of
comparing correlations.

Two distinctive types of correlational analyses are com-
mon. The first one involves the simple correlation, which is
a measure of linear relationship between two random vari-
ables. As a concept, it can be viewed in at least 14 different
ways (Rodgers & Nicewander, 1988; Rovine & von Eye,
1997). The second type of correlation analysis usually in-
volves the use of the multiple correlation coefficient to
quantify the proportion of criterion variation explained by
random predictors (Helland, 1987). This correlation usually
appears in the squared form commonly seen in multiple
regression models and referred to as R2 or the coefficient of
determination (Cohen, Cohen, West, & Aiken, 2003).

The choice between correlation and the squared correla-
tion as the effect measure in a given investigation may not
be as simple as the descriptions given here. A resolution of
this issue is not the focus of this article. Readers may
consult Ozer (1985) and Steiger and Ward (1987) for dif-
ferent viewpoints. A summary of related effect size mea-
sures has recently been provided by Kirk (2007).

The confidence interval for a single correlation � is often
obtained using Fisher’s r to z transformation because the
sampling distribution of r is negatively skewed. Specifi-
cally, one first forms confidence limits for z(�) � 1/2
ln[(1 � �)/(1 � �)] and then back-transforms the resultant
limits to obtain a confidence interval for �. Unfortunately,
using the same idea for �1 � �2 will fail because the limits
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for z(�1) � z(�2) cannot be back-transformed to obtain the
interval for �1 � �2 (Meng, Rosenthal, & Rubin, 1992;
Olkin & Finn, 1995). Therefore, although the confidence
interval approach is preferred in general (Olkin & Finn,
1995), the significance testing approach still dominates in
the comparison of correlations (Cheung & Chan, 2004;
Meng et al., 1992; Olkin & Finn, 1990; Raghunathan,
Rosenthal, & Rubin, 1996; Silver, Hittner, & May, 2006;
Steiger, 1980).

The problem is even more difficult in the case of squared
correlations. It is commonplace for statistical software pack-
ages to provide R2, but rarely with a confidence interval to
quantify its precision, primarily because of its complicated
sampling distribution (Fisher, 1928). Tabulated exact con-
fidence limits for the population parameter �2 are available
(Kramer, 1963; Lee, 1972) but have rarely been used. Sim-
pler approximate confidence interval procedures with good
performance have been proposed (Helland, 1987; Lee,
1971), although it is unclear how to use such procedures to
obtain confidence intervals for differences between two R2s.
An approach that ignores the asymmetry of the sampling
distribution of R2 has been suggested (Olkin & Finn, 1995)
but has poor performance (Algina & Keselman, 1999).

The purpose of this article is to present a general approach
to constructing confidence intervals for a difference be-
tween correlations. I show how to apply the approach to
obtain confidence intervals for (a) differences between two
independent simple correlations, (b) differences between
overlapping correlations arising from the case in which two
correlations involve a common variable, (c) differences
between nonoverlapping correlations arising from the case
in which two correlated correlations have no common vari-
able involved, and (d) differences between two independent
squared multiple correlations. The performance of the pro-
posed approach is compared with that of Olkin and Finn
(1995) via a Monte Carlo simulation. I then present worked
numerical examples that illustrate the calculations involved
in each of the four cases. Finally, I conclude with a brief
discussion of the advantages of the approach for practicing
researchers.

Confidence Intervals for Differences
Between Correlations

Simple Asymptotic Methods

A commonly used approach to setting approximate con-
fidence intervals for a parameter � is to invoke the central
limit theorem, resulting in 100(1 � �)% confidence limits,
(L, U), given by

�L, U� � �̂ � z�/ 2	̂, �̂ � z�/ 2	̂, (1)

where �̂ is the sample estimate of �, 	̂ is the estimate of its

standard deviation, and z�/2 is the 100 � �/2 percentile point
of a standard normal distribution. For example, for a 95%
two-sided confidence interval, z�/2 � 1.96. I refer to this
approach as the simple asymptotic (SA) method.

Differences Between Two Correlation Coefficients

The construction of a confidence interval for a difference
between two correlations may be useful in practice. For
instance, a human resources manager may want to use a
personnel selection test to select both male and female
employees. Before the manager did this, it would be of
interest to examine the difference in correlations between
job performance and test score, as obtained from data on
existing employees. A p value from the null hypothesis
testing of �male � �female would provide far less information
than would a confidence interval.

The comparison of correlated correlations has been of
interest in practice, as seen by extensive citations of key
articles focusing on hypothesis tests of the difference be-
tween correlated correlations (Meng et al., 1992; Raghu-
nathan et al., 1996). As a concrete example in psychological
research, the examination of whether a variable acts as a
suppressor with respect to two other variables can be mean-
ingfully informed by the presentation of the confidence
interval for two correlated correlations.

A direct application of the SA method yields a confidence
interval for a difference between two correlations, �1 � �2,
given by (Olkin & Finn, 1995)

�L, U� � r1 � r2 � z�/ 2�var̂�r1� � var̂�r2�, (2)

when the sample estimates r1 and r2 are independent, and

�L, U� � r1 � r2 � z�/ 2�var̂�r1� � var̂�r2� � 2cov̂�r1, r2�,

(3)

when r1 and r2 are dependent with covariance given by
cov̂(r1, r2).

There are two cases that may be distinguished in com-
paring dependent correlations. The first case may be re-
ferred to as overlapping: Two correlations are calculated
from the same sample with a common variable involved
(Meng et al., 1992). The second case, commonly referred to
as nonoverlapping, describes a situation in which two cor-
relations are obtained from the same sample without com-
mon variables involved (Raghunathan et al., 1996). Al-
though different in interpretation, these two cases are
identical from a statistical perspective. The fundamental
issue is to take into account the dependency between two
correlations.

On the basis of a result from Pearson and Filon (1898, p.
262, Equation xl), the covariance between two nonoverlap-
ping correlations (correlations without a common subscript)
may be approximated by
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cov�rij, rkl� � 
.5�ij�kl��ik
2 � �il

2 � �jk
2 � �jl

2� � �ik�jl

� �il�jk � ��ij�ik�il � �ij�jk�jl � �ik�jk�kl � �il�jl�kl��/n, (4)

where n is the sample size. This result has also appeared in
Olkin and Siotani (1976). Substituting i for k and j for l in
Equation 4 yields the covariance between two overlapping
correlations (correlations with a common subscript):

cov�rij, rik� � 
��jk � .5�ij�ik��1 � �ij
2 � �ik

2 � �jk
2 � � �jk

3 �/n.

(5)

Equation 5 reduces further to the variance for a single
correlation rij when k is replaced with j:

var�rij� � �1 � �ij
2�2/n. (6)

Bear in mind that �jj � 1 because the correlation of a
variable with itself is 1. SA variance estimates, denoted by
var̂, and covariance estimates, denoted by cov̂, may be
obtained by replacing each population parameter � with
corresponding sample value r in Equations 4, 5, and 6.
Equations 2 and 3 may then be used to construct confidence
intervals. For example, an SA 100(1 � �)% confidence
interval for a difference between two independent correla-
tions �1 � �2 is given by (L, U), with

L � r1 � r2 � z�/ 2� �1 � r1
2�2

n1
�

�1 � r2
2�2

n2
(7)

and

U � r1 � r2 � z�/ 2� �1 � r1
2�2

n1
�

�1 � r2
2�2

n2
, (8)

where n1 and n2 are the sample sizes of the two comparing
groups.

Differences Between Two Squared Correlation
Coefficients

Confidence interval construction for a difference between
two independent R2s, �1

2 � �2
2, is useful if one is interested

in determining the predictive power of a set of predictors for
two independent populations. For example, one might ask
how large a difference is present when a battery of entrance
tests is used to predict academic performance for male
compared with female college students.

The SA approach may also be used to construct confi-
dence intervals for differences between two squared corre-
lations (�2), with variance estimated by the delta (�) method
(Rao, 1973, p. 388). The delta method is a general proce-
dure that uses the Taylor series expansion of a function of
one or more random variables to obtain approximations to
the mean of the function and to its variance. Suppose �̂ has
mean � and variance var(�̂); then the mean and variance of

g(�̂) are given by g(�) and [g(�)]2var(�̂), where g(�) is the
derivative of the function g evaluated at �̂ � �. Application
of the delta method to R2 yields

var�R2� � �2��2var�r� � 4�2�1 � �2�2/n,

which may be estimated by substituting R2 for �2. A
100(1 � �)% confidence interval for the difference between
two independent R2s is given by

�L, U� � R1
2 � R2

2

� z�/ 2�4R1
2�1 � R1

2�2/n1 � 4R2
2�1 � R2

2�2/n2,

where n1 and n2 are sample sizes for the two groups.

Deficiency of the SA Approach

The SA confidence intervals in general are simple to
apply and thus have become almost universal (DiCiccio &
Efron, 1996; Efron & Tibshirani, 1993). However, one
needs to be aware that the validity relies crucially on two
conditions: (a) The sampling distribution of �̂ does not
change with the value of the underlying parameter �, and (b)
the sampling distribution is close to the standard normal.
Deviation from either of the two conditions will invalidate
the SA method. In the present context, the SA method could
provide confidence intervals containing values outside the
range of �1 to 1 for a single correlation and values outside
of �2 to 2 for a difference between two correlations.
Similarly, the SA method may result in confidence intervals
containing values outside the range of 0 to 1 for a squared
correlation and values outside the range of �1 to 1 for a
difference between two squared correlations. Large sample
sizes may improve the performance of the SA method
somewhat, but not completely. As Efron (2003, p. 137)
pointed out, in the context of a single correlation, the SA
method may provide adequate overall coverage with large
samples, but it does so in a lopsided fashion. In other words,
failure of the confidence interval to capture the true param-
eter value may be concentrated in one tail. A hidden defi-
ciency of the SA approach is that it may produce results
conflicting with that of hypothesis testing, because the latter
is usually conducted on the Fisher’s z scale (Meng et al.,
1992).

It was the above deficiency that motivated the develop-
ment of bootstrap confidence intervals (DiCiccio & Efron,
1996; Efron, 1979, 1981, 1985, 1987b; Efron & Tibshirani,
1993, chap. 12–14, 22). Increased computational efforts
aside, bootstrap confidence intervals are intended to be an
improvement over the SA method, although in many cases
the question becomes whether the improvement is sufficient
to be accurate. The answer to this question relies crucially
on whether the assumptions underpinning bootstrap confi-
dence intervals are satisfied. For example, the bias-corrected

401COMPARING CORRELATIONS



method (Efron, 1981) requires the existence of a monotone
increasing function g such that g(�̂) � g(�) has the same
normal distribution for all parameter values of �. See Schen-
ker (1985) for an example of how the bootstrap fails in
constructing confidence intervals for a normal variance. The
improved bias-corrected bootstrap method, termed bias-
corrected and accelerated (BCa; Efron, 1987b) relaxes the
requirement of g from being both normalizing and variance
stabilizing to being only normalizing. This is achieved by
calculating an acceleration constant. Therefore, the validity
BCa depends on the accuracy of the estimated acceleration
constant and the existence of the normalizing transforma-
tion, although one does not need to know what the trans-
formation is. Currently there are no simple approaches to
accurate estimation of the acceleration constant in general
(Shao & Tu, 1995, chap. 4). More discussion on bootstrap
confidence intervals can be found elsewhere (Carpenter &
Bithell, 2000; Young, 1994). Efron (1988) aptly stated

A good way to think of bootstrap intervals is as a cautious
improvement over standard intervals, using large amounts of
computation to overcome certain deficiencies of the standard
methods, for example its lack of transformation invariance. The
bootstrap is not intended to be a substitute for precise parametric
results but rather a way to reasonably proceed when such results
are unavailable. (p. 295)

In the next section, I apply available results for single
correlations (e.g., Fisher’s z transformation for correlation
and F distribution approximation for the sampling distribu-
tion of the squared correlation; Lee, 1971) to construct
confidence intervals for differences between correlations.
Similar to the bootstrap, these procedures attempt to provide
improvement over the SA method. Contrary to most boot-
strap methods, which demand intensive computation, the
proposed procedures are in closed form and may be calcu-
lated using a hand-held calculator.

Modified Asymptotic Methods

The sampling distributions for single r or R2 are highly
skewed, requiring both large sample sizes and middle sized
correlations for the SA method to be accurate, that is, to
provide adequate coverage in a nonlopsided fashion. On the
other hand, Fisher’s z transformation for single correlations
and F distribution based confidence intervals for �2 have
been known to perform very well (Lee, 1971). The accuracy
of these procedures originates largely from respecting the
asymmetric feature of the sampling distributions.

I now describe a procedure for setting approximate con-
fidence intervals for a difference between two parameters
(either two correlations or two squared correlations) that is
asymmetry respecting. As I make clear below, this method
is an extension of the SA method, which I refer to as the
modified asymptotic (MA) method. In what follows, I use
uppercase (L, U) to denote confidence limits for differences

between correlations and lowercase (l, u), with subscripts
representing comparison groups if needed, to represent con-
fidence limits for single correlations.

Confidence limits (l, u) that reflect the asymmetric sam-
pling distribution of �̂ may be seen as doing so through
different variance estimates for l and u, that is,

l � �̂ � z�/ 2�var̂��̂�l

and

u � �̂ � z�/ 2�var̂��̂�u.

Equivalently, when � � l,

var̂��̂�l � ��̂ � l �2/z�/ 2
2 , (9)

and when � � u,

var̂��̂�u � �u � �̂�2/z�/ 2
2 . (10)

To obtain confidence limits for a difference �1 � �2, I
exploit the relationship between hypothesis testing and con-
fidence limits, recognizing that the lower (L) and upper (U)
confidence limits are the minimum and maximum parameter
values that, asymptotically, satisfy


��̂1 � �̂2� � L�2

var��̂1� � var��̂2�
� z�/ 2

2

and


U � ��̂1 � �̂2��
2

var��̂1� � var��̂2�
� z�/ 2

2 ,

respectively.
Suppose now that we have two sample estimates and

associated 100(1 � �)% confidence limits obtained from
two independent samples �̂1 (l1, u1) and �̂2 (l2, u2), which
contain the plausible values of �1 and �2, respectively.
Among these plausible values for �1 and �2, the value
closest to the minimum L is l1 � u2, and the value closest to
the maximum U is u1 � l2. Therefore, it is reasonable to
estimate the variance of �̂1 � �̂2 when �1 � l1 and �2 � u2

for setting L. With Equations 9 and 10, we have

L � �̂1 � �̂2 � z�/ 2�var̂��̂1�l1 � var̂��̂2�u2

� �̂1 � �̂2 � z�/ 2� ��̂1 � l1�
2

z�
2 �

�u2 � �̂2�
2

z�
2

� �̂1 � �̂2 � ���̂1 � l1�
2 � �u2 � �̂2�

2. (11)

Similar steps result in the upper limit as
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U � �̂1 � �̂2 � ��u1 � �̂1�
2 � ��̂2 � l2�

2. (12)

These confidence limits have been applied to the case of
comparing intraclass kappa coefficients, which are indices
commonly used in interobserver agreement and reliability
studies (Donner & Zou, 2002). Notice that the expressions
for L and U may also be extended to include a covariance
term when �̂1 and �̂2 are dependent. Let corr̂ (�̂1, �̂2) be the
correlation between �̂1 and �̂2; Equations 11 and 12 may
then be extended to

L � �̂1 � �̂2

� ���̂1 � l1�
2 � �u2 � �̂2�

2 � 2corr̂��̂1, �̂2���̂1 � l1��u2 � �̂2�

(13)

and

U � �̂1 � �̂2

� ��u1 � �̂1�
2 � ��̂2 � l2�

2 � 2corr̂��̂1, �̂2��u1 � �1���̂2 � l2�.

(14)

I now apply these general results to a difference between
two correlations.

Differences Between Two Correlations

For a difference between two correlations, let (li, ui), i �
1, 2 be the (1 � �) � 100% confidence limits for �i obtained
using Fisher’s z transformation with data collected on two
independent groups. The confidence limits (L, U) for �1 �
�2 may be obtained, with r1 and r2 replacing �̂1 and �̂2 in
Equations 11 and 12, respectively, as

�L � r1 � r2 � ��r1 � l1�
2 � �u2 � r2�

2

U � r1 � r2 � ��u1 � r1�
2 � �r2 � l2�

2 . (15)

The confidence limits in Equation 15 reduce to those in
Equations 7 and 8, if the SA method has been used to obtain
the confidence limits for single correlations. This is because

l1, u1 � r1 � z�/ 2��1 � r1
2�2

n1
,

which yields

�r1 � l1�
2 � �u1 � r1�

2 � z�/ 2
2

�1 � r1
2�2

n1
,

and

l2, u2 � r2 � z�/ 2� �1 � r2
2�2

n2
,

which results in

�r2 � l2�
2 � �u2 � r2�

2 � z�/ 2
2

�1 � r2
2�2

n2
.

In fact, this relationship between the MA and SA methods
holds in general, including in the procedures presented
below. This insight also highlights the key feature of the
MA approach: It acknowledges the asymmetric nature of
the sampling distributions for the single correlations,
whereas the SA approach ignores this fact.

Equations 13 and 14 may be applied to overlapping and
nonoverlapping correlations, yielding

�
L � r1 � r2

� ��r1 � l1�
2 � �u2 � r2�

2 � 2corr̂�r1, r2��r1 � l1��u2 � r2�

U � r1 � r2

� ��u1 � r1�
2 � �r2 � l2�

2 � 2corr̂�r1, r2��u1 � r1��r2 � l2� ,

where the correlation between two correlations can be es-
timated by

corr̂�r1, r2� � cov̂�r1, r2�/�var̂�r1�var̂�r2�,

resulting in difference estimates depending on whether two
correlations being compared share a common third variable.

Differences Between Squared Correlation
Coefficients

The same idea may be applied to squared multiple cor-
relation coefficients, provided accurate confidence intervals
about single R2 are available. Because of the complexity of
the sample distribution for R2 (Fisher, 1928; Rao, 1973, p.
599), one might consider Fisher’s z transformation for R2.
However, Gajjar (1967) has shown that the limiting distri-
bution of Fisher’s z transformation of R2 does not approach
normality as sample size increases (see Lee, 1971, for
empirical evidence). In addition, Alf and Graf (1999) have
pointed out that in this case, “Fisher’s z values are severely
truncated in the lower tail, resulting in a distribution that is
even more positively skewed than is the original distribution
of squared multiple correlations” (p. 74). The key here is
that one should not confuse the sampling distribution of �R2

with that of r, as the former can only take positive values.
A stand-alone computer program implementing an exact

confidence interval for �2 based on Fisher (1928) has been
provided by Steiger and Fouladi (1992; available at www
.statpower.net). A noncentral F distribution approximate
confidence interval (Lee, 1971) can also be obtained using
a bisection method implementable with common statistical
software (see the Appendix for an outline of the theory and
supplemental materials for SAS and SPSS codes). Also note
that SAS PROC CANCORR has implemented the approx-
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imate confidence interval based on the F distribution (Hel-
land, 1987; Lee, 1971), available with the option SMC
(which stands for squared multiple correlations).

Letting (li, ui), i � 1, 2 denote 100(1 � �)% lower and
upper limits about R2 obtained using the noncentral F ap-
proximation, confidence limits about the difference between
two independent R2s are given (with R1

2 and R2
2 replacing �̂1

and �̂2 in Equations 11 and 12) by

� L � R1
2 � R2

2 � ��R1
2 � l1�

2 � �u2 � R2
2�2

U � R1
2 � R2

2 � ��u1 � R1
2�2 � �R2

2 � l2�
2

.

Simulation Studies

The theoretical properties of the proposed MA approach
are asymptotic. Simulation studies were therefore under-
taken to evaluate the performance as compared with that in
the SA approach. The simulation evaluation used 10,000
replicates for each parameter combination considered in
each of the five cases. All computations were conducted
using SAS proc iml, with codes made available in the online
supplemental materials to this article for readers interested
in exploring additional parameter combinations.

Evaluation Criteria Used

The focus here was on the extent to which the empirical
coverage of the confidence interval matched with the nom-
inal 95% level. For this purpose, three criteria commonly
seen in psychological literature (Bradley, 1978; Robey &
Barcikowski, 1992) were adopted: strict criterion, 94.5%–
95.5%; moderate criterion, 93.75%–96.25%; and liberal cri-
terion, 92.5%–97.5%.

All too often the literature has been using overall cover-
age alone to evaluate confidence interval procedures. How-
ever, as Efron (2003, p. 137) pointed out, the worst defini-
tion of accuracy in confidence interval evaluation is overall
coverage alone. Tail errors are also important. For example,
suppose for a sampling distribution for r1 � r2 arising from
10,000 samples with a true difference of 0, that we would
consider, at the 95% confidence level, both the lowest 250
and the highest 250 estimates as too extreme to be the
plausible parameter values. On the contrary, it would be
awkward if we regard only either the lowest 5% or, alter-
natively, the highest 5% values as extreme—that is, if the
entire error probability was contained in one tail. Therefore,
in a given simulation study, if two procedures satisfied the
coverage criterion, I considered the procedure having the
smaller difference between tail errors as preferable.

Empirical coverage percentage was estimated by the rel-
ative frequency out of 10,000 intervals that contained the
parameter. Tail errors were estimated by calculating the
frequencies of the intervals lying completely to the left of

the parameter value (missing from left, ML) and those lying
completely to the right of the parameter (missing from the
right, MR). Average interval width was also calculated as a
secondary criterion in the evaluation.

Differences Between Correlations

Overlapping correlations. For each data set with a sam-
ple size of n � 15, 50, 100, and 200, an n � 3 matrix X was
first generated as 3n independent standard normal variates.
The desired correlated data were then obtained as XU,
where U is the is the root matrix (Rao, 1973, p. 36) of the
correlation matrix determined by three elements (�12, �13,
�23) such that

UUT � � 1 �12 �13

�12 1 �23

�13 �23 1
�,

where the superscript T denotes transpose of matrix U. The
95% two-sided confidence intervals for �12 � �13 were then
constructed using both the SA and the MA methods. Using
a 2 � 2 � 3 factorial design, I generated all combinations
of �23 � .1, .3; �12 � .2, .4; and �13 � .1, .5, .7.

Simulation results in Table 1 indicate that the SA method
does not provide adequate coverage percentage for sample
sizes that are not greater than 100. For example, when n �
100, �23 � .3, �12 � .2, and �13 � .7, the coverage is only
93.97%, falling short of the strict criterion of 94.5%. This
means that the confidence intervals from the SA method are
overly narrow. Moreover, as the sample size increases, the
coverage percentages tend to reach the nominal level from
below, rather than hovering around the nominal level. This
result indicates that the asymptotic results of the SA method
are reached only with a minimum of 200 cases being nec-
essary for adequate overall coverage in the present study. In
contrast, the MA confidence intervals provide adequate
coverage according to Bradley’s (1978) strict criterion in a
nonlopsided fashion, even with a sample size as small as 15.

Nonoverlapping correlations. For each data set with a
sample size of n � 15, 50, 100, and 200, an n � 4 matrix
X was first generated using 4n independent standard normal
variates. The desired correlated data were then obtained as
XU, where U is the root matrix (Rao, 1973, p. 36) of the
correlation matrix determined by six elements (�12, �13, �14,
�23, �24, �34), that is,

UUT � �
1 �12 �13 �14

�12 1 �23 �24

�13 �23 1 �34

�14 �24 �34 1
�.

The 95% two-sided confidence intervals for �12 � �13 and
�12 � �34 were then constructed using the proposed meth-
ods and the SA approach.
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Table 1
Performance of Procedures for Constructing Two-Sided 95% Confidence Intervals (CIs) for a Difference Between Two Overlapping
Correlations (�12 � �13) Based on 10,000 Runs

n �23 �12 �13

Modified asymptotic Simple asymptotic

Coverage (ML, MR) % CI width Coverage (ML, MR) % CI width

15 .1 .2 .3 95.27 (2.18, 2.55) 1.27 91.40 (4.35, 4.25) 1.21
.5 94.75 (1.83, 3.42) 1.22 90.77 (4.09, 5.14) 1.14
.7 94.72 (1.43, 3.85) 1.12 89.70 (3.54, 6.76) 1.04

.4 .3 94.83 (3.00, 2.17) 1.25 91.35 (4.61, 4.04) 1.17
.5 95.02 (2.15, 2.83) 1.20 92.48 (3.38, 4.14) 1.10
.7 94.52 (1.68, 3.80) 1.10 90.66 (3.03, 6.31) .99

.3 .2 .3 95.14 (2.11, 2.75) 1.14 91.37 (4.19, 4.44) 1.08
.5 95.23 (1.15, 3.62) 1.10 91.18 (3.24, 5.58) 1.02
.7 95.12 (1.04, 3.84) 1.03 89.06 (3.24, 7.70) 0.94

.4 .3 94.69 (3.17, 2.14) 1.12 91.42 (4.68, 3.90) 1.03
.5 94.88 (2.09, 3.03) 1.09 92.73 (3.06, 4.21) 0.99
.7 95.07 (1.23, 3.70) 1.01 90.91 (2.22, 6.87) 0.90

50 .1 .2 .3 95.14 (2.33, 2.53) 0.70 93.79 (3.23, 2.98) 0.69
.5 94.75 (2.11, 3.14) 0.66 93.58 (2.85, 3.57) 0.65
.7 95.33 (1.82, 2.85) 0.60 93.83 (2.49, 3.68) 0.59

.4 .3 95.07 (2.43, 2.50) 0.67 94.15 (2.87, 2.98) 0.66
.5 94.67 (2.55, 2.78) 0.64 93.83 (2.95, 3.22) 0.62
.7 94.74 (2.10, 3.16) 0.57 93.71 (2.17, 4.12) 0.55

.3 .2 .3 95.29 (2.23, 2.48) 0.62 94.35 (2.75, 2.90) 0.62
.5 95.30 (1.91, 2.79) 0.59 94.31 (2.52, 3.17) 0.58
.7 95.21 (1.78, 3.01) 0.55 93.62 (2.27, 4.11) 0.54

.4 .3 94.99 (2.75, 2.26) 0.60 94.12 (3.19, 2.69) 0.59
.5 95.14 (2.30, 2.56) 0.57 94.62 (2.50, 2.88) 0.55
.7 94.62 (2.05, 3.33) 0.52 93.71 (2.04, 4.25) 0.50

100 .1 .2 .3 94.89 (2.48, 2.63) 0.50 94.43 (2.82, 2.75) 0.50
.5 95.02 (2.22, 2.76) 0.47 94.42 (2.67, 2.91) 0.46
.7 95.29 (2.02, 2.69) 0.42 94.47 (2.38, 3.15) 0.42

.4 .3 95.06 (2.61, 2.33) 0.48 94.62 (2.78, 2.60) 0.47
.5 94.52 (2.62, 2.86) 0.44 94.17 (2.78, 3.05) 0.44
.7 95.24 (1.99, 2.77) 0.40 94.78 (1.99, 3.23) 0.39

.3 .2 .3 95.21 (2.52, 2.27) 0.44 94.75 (2.87, 2.38) 0.44
.5 95.15 (1.99, 2.86) 0.42 94.61 (2.36, 3.03) 0.41
.7 94.71 (2.08, 3.21) 0.38 93.97 (2.26, 3.77) 0.38

.4 .3 95.32 (2.37, 2.31) 0.43 94.99 (2.53, 2.48) 0.42
.5 94.92 (2.44, 2.64) 0.40 94.65 (2.53, 2.82) 0.39
.7 95.30 (1.94, 2.76) 0.36 94.81 (1.87, 3.32) 0.36

200 .1 .2 .3 95.13 (2.20, 2.67) 0.35 94.85 (2.44, 2.71) 0.35
.5 95.03 (2.35, 2.62) 0.33 94.79 (2.58, 2.63) 0.33
.5 95.10 (2.32, 2.58) 0.30 94.81 (2.43, 2.76) 0.30

.4 .3 95.09 (2.50, 2.41) 0.34 94.84 (2.58, 2.58) 0.34
.5 94.82 (2.60, 2.58) 0.31 94.66 (2.67, 2.67) 0.31
.7 95.14 (2.17, 2.69) 0.28 94.94 (2.15, 2.91) 0.28

.3 .2 .3 95.16 (2.36, 2.48) 0.31 94.97 (2.50, 2.53) 0.31
.5 94.56 (2.32, 3.12) 0.29 94.38 (2.46, 3.16) 0.29
.7 95.13 (1.92, 2.95) 0.27 94.83 (1.98, 3.19) 0.27

.4 .3 94.78 (2.67, 2.55) 0.30 94.54 (2.76, 2.70) 0.30
.5 94.94 (2.47, 2.59) 0.28 94.77 (2.58, 2.65) 0.28
.7 95.25 (2.24, 2.51) 0.25 95.05 (2.12, 2.83) 0.25

Note. Ideally missing left (ML) and missing right (MR) should be 2.50%. Sample size is n.
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Table 2 presents typical results for a variety of parameter
combinations. The SA method again fails to provide ade-
quate coverage for sample sizes of 100 or fewer. Again, as
sample size increased, the coverage percentages for the SA
method tended to reach the nominal level through a lopsided
fashion. The MA method again performed very well on the
basis of Bradley’s (1978) strict criterion at all sample sizes
considered.

Differences Between Two Independent R2s

For a given parameter �2, I used patterned correlation
matrices to generate data to use in the evaluation of proce-
dures for differences between R2s. Consider a situation in
which each of the k predictors has the identical correlation
(�y) with the criterion in the population. Similarly, each pair
of predictors has a common correlation (�x) in the popula-
tion. Maxwell (2000) has shown that the population param-
eter �2 is then given by

�2 �
k�y

2

1 � �k � 1��x
. (16)

Equation 16 can be used to obtain any one of the four
parameters �2, �y, �x, or k, when the other three are known.
The root matrix (Rao, 1973, p. 36) of the correlation matrix
was again used to generate multivariate normal data.

Denote �1
2 and �2

2 as the two population parameter values
of squared correlation coefficients and n1 and n2 as the
corresponding sample sizes for the two comparison groups.
I considered 48 parameter combinations (2n1 � 4n2 � 3�1

2

� 2�2
2): n1 � 100, 200; n2 � 50, 100, 200, 500; �1

2 � .2, .5,
.8; and �2

2 � .3, .5. The results are presented in Table 3. I
present only the results for k � 6, as k � 3 showed similar
trends. The SA method resulted in adequate coverage for 9
parameter combinations. Among those outside the range, all
fell below 94.56%, even when the sample size was as large
as 500. For example, for �1

2 � �2
2 � 0.5, the sample size

combination of 100 and 500 provided a coverage of only
92.29%. Such poor performance of the SA method is not
unexpected and is consistent with previous simulation stud-
ies (Algina, 1999; Algina & Keselman, 1999; Algina &
Moulder, 2001).

The MA method provided a coverage percentage within
the range of 94.5%–95.5%, specified by Bradley’s (1978)
strict criterion in 18 of 48 parameter combinations. Among
those outside this range, all but one case showed coverage
within the range of 95.5%–96.00%. Thus, the magnitude of
the coverage failures was very small and within the range of
Bradley’s moderate criterion.

Worked-Out Examples

On the basis of the simulation results that showed that
only the proposed procedures may be recommended for

practical use, I now illustrate the calculations using exam-
ples from the published literature. The first three examples
illustrate the value of confidence intervals in highlighting
the imprecision of parameter estimates with small sample
sizes.

Example 1: Independent Correlations

As older populations increase in industrialized countries,
research into the association between diet and diseases in
older persons has become a focus of public health research-
ers. However, meaningful research results rely crucially on
valid instruments to quantify relevant nutrients in the diet.
Two common instruments for this purpose are interviews by
certified nutritionists and self-administered food frequency
questionnaires, with the former being more accurate but
costly, whereas the latter is more feasible but less accurate.
Various questionnaires have been developed and tested for
comparative validity, as measured by correlation between
the nutrient intake levels estimated from questionnaires and
dietary interviews. A high correlation between two instru-
ments may provide rationale for the use of self-administered
questionnaires, increasing the feasibility for use in large-
scale research.

A study by Morris, Tangney, Bienias, Evans, and Wilson
(2003) evaluated the validity of a self-administered food
frequency questionnaire, as compared with that of a 24-hr
dietary recall interview, in a group of older persons. Among
the objectives, it was of interest to determine how big a
difference in validity exists between female and male sub-
jects. In particular, it was believed that male subjects may
be less patient in completing self-administered question-
naires, thus resulting in lower validity. The magnitude of
such a difference is useful to determine whether the self-
administered questionnaires should be sent to male subjects.
From the data of 145 female subjects, the correlation be-
tween self-administered questionnaires and telephone inter-
view was r1 � .49, whereas that for 87 male subjects was
r2 � .36. Applying Fisher’s z transformation, a 95% confi-
dence interval for the validity correlation of the female
group is given by

exp�2l � � 1

exp�2l � � 1
,

exp�2u� � 1

exp�2u� � 1
,

where l and u are given by

1
2

ln
1 � 0.49

1 � 0.49
� 1.96� 1

145 � 3
� .3716, .7005.

The resultant 95% confidence interval for female subjects is
(.355, .605). Similarly, the confidence interval for male
subjects is (.162, .530). Therefore, the 95% confidence
interval for the difference between the two correlations is
given by
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Table 2
Performance of Procedures for Constructing Two-Sided 95% Confidence Intervals (CIs) for a Difference Between Two
Nonoverlapping Correlations (�12 � �34) Based on 10,000 Runs (�14 � �23 � �24 � .1)

n �13 �12 �34

Modified asymptotic Simple asymptotic

Coverage (ML, MR) % CI width Coverage (ML, MR) % CI width

15 .0 .5 .1 94.78 (3.25, 1.97) 1.26 90.39 (4.77, 4.84) 1.19
.4 95.44 (2.56, 2.00) 1.20 92.92 (3.96, 3.12) 1.10
.7 94.64 (2.21, 3.15) 1.03 92.61 (2.70, 4.69) 0.90

.8 .1 95.14 (2.90, 1.96) 1.08 89.56 (5.71, 4.73) 1.01
.4 95.07 (3.01, 1.92) 1.00 90.16 (6.91, 2.93) 0.90
.7 95.23 (2.72, 2.05) 0.79 95.41 (3.27, 1.32) 0.65

.3 .5 .1 94.70 (3.21, 2.09) 1.25 90.56 (4.47, 4.97) 1.18
.4 95.09 (2.85, 2.06) 1.19 92.93 (3.84, 3.23) 1.09
.7 95.18 (1.90, 2.92) 1.02 93.14 (2.53, 4.33) 0.90

.8 .1 94.98 (3.07, 1.95) 1.07 88.77 (6.42, 4.81) 1.00
.4 94.94 (3.18, 1.88) 0.99 90.03 (7.01, 2.96) 0.89
.7 95.09 (2.95, 1.96) 0.77 95.33 (3.49, 1.18) 0.63

50 .0 .5 .1 95.04 (2.67, 2.29) 0.69 93.80 (2.92, 3.28) 0.68
.4 94.64 (2.91, 2.45) 0.63 94.00 (3.18, 2.82) 0.62
.7 95.31 (2.29, 2.40) 0.52 94.89 (2.20, 2.91) 0.50

.8 .1 95.23 (2.77, 2.00) 0.58 93.55 (3.61, 2.84) 0.57
.4 95.05 (2.80, 2.15) 0.52 93.50 (4.38, 2.12) 0.50
.7 95.02 (2.96, 2.02) 0.37 95.16 (3.39, 1.45) 0.35

.3 .5 .1 94.63 (2.97, 2.40) 0.68 93.66 (3.15, 3.19) 0.67
.4 95.34 (2.58, 2.08) 0.63 94.78 (2.85, 2.37) 0.61
.7 94.85 (2.25, 2.90) 0.51 94.39 (2.17, 3.44) 0.49

.8 .1 95.21 (2.62, 2.17) 0.58 93.62 (3.43, 2.95) 0.57
.4 95.36 (2.65, 1.99) 0.51 93.86 (4.19, 1.95) 0.50
.7 94.79 (2.61, 2.60) 0.36 95.33 (2.87, 1.80) 0.34

100 .0 .5 .1 95.34 (2.45, 2.21) 0.49 94.85 (2.46, 2.69) 0.48
.4 95.19 (2.45, 2.36) 0.44 94.83 (2.64, 2.53) 0.44
.7 95.07 (2.16, 2.77) 0.36 94.80 (2.05, 3.15) 0.35

.8 .1 95.01 (2.58, 2.41) 0.41 94.29 (2.94, 2.77) 0.41
.4 94.89 (2.90, 2.21) 0.36 94.32 (3.64, 2.04) 0.36
.7 95.18 (2.56, 2.26) 0.25 95.26 (2.94, 1.80) 0.24

.3 .5 .1 95.33 (2.48, 2.19) 0.48 94.75 (2.49, 2.76) 0.48
.4 94.94 (2.64, 2.42) 0.44 94.47 (2.91, 2.62) 0.43
.7 94.86 (2.33, 2.81) 0.36 94.55 (2.26, 3.19) 0.35

.8 .1 95.14 (2.56, 2.30) 0.41 94.31 (3.00, 2.69) 0.41
.4 94.80 (2.92, 2.28) 0.36 93.96 (3.91, 2.13) 0.35
.7 95.37 (2.34, 2.29) 0.25 95.64 (2.67, 1.69) 0.24

200 .0 .5 .1 94.95 (2.52, 2.53) 0.34 94.70 (2.48, 2.82) 0.34
.4 95.11 (2.27, 2.62) 0.31 94.93 (2.34, 2.73) 0.31
.7 94.96 (2.29, 2.75) 0.25 94.91 (2.10, 2.99) 0.25

.8 .1 95.11 (2.62, 2.27) 0.29 94.74 (2.77, 2.49) 0.29
.4 95.32 (2.58, 2.10) 0.25 95.04 (2.98, 1.98) 0.25
.7 94.11 (3.16, 2.73) 0.17 94.17 (3.50, 2.33) 0.17

.3 .5 .1 95.29 (2.61, 2.10) 0.34 95.05 (2.51, 2.44) 0.34
.4 95.41 (2.48, 2.11) 0.31 95.30 (2.57, 2.13) 0.31
.7 95.04 (2.54, 2.42) 0.25 94.98 (2.33, 2.69) 0.25

.8 .1 95.55 (2.39, 2.06) 0.29 95.26 (2.53, 2.21) 0.29
.4 95.11 (2.54, 2.35) 0.25 94.70 (3.08, 2.22) 0.25
.7 95.13 (2.52, 2.35) 0.17 95.18 (2.82, 2.00) 0.17

Note. Ideally missing left (ML) and missing right (MR) should be 2.50%. Sample size is n.
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Table 3
Performance of Procedures for Constructing Two-Sided 95% Confidence Intervals (CIs) for a Difference Between Two Independent
R2s (�1

2 � �2
2) with Number of Predictors k � 6 Based on 10,000 Runs (�x � .1)

n1 n2 �1
2 �2

2

Modified asymptotic Simple asymptotic

Coverage (ML, MR) % CI width Coverage (ML, MR) % CI width

100 50 .2 .3 96.44 (1.61, 1.95) 0.53 93.19 (5.45, 1.36) 0.50
.5 95.89 (1.56, 2.55) 0.51 93.46 (4.76, 1.78) 0.46

.5 .3 95.81 (2.41, 1.78) 0.53 91.40 (7.38, 1.22) 0.49
.5 95.78 (2.06, 2.16) 0.52 92.52 (6.04, 1.44) 0.45

.8 .3 95.72 (2.12, 2.16) 0.46 88.47 (10.73, .80) 0.43
.5 95.50 (2.32, 2.18) 0.44 88.60 (10.66, .74) 0.39

100 .2 .3 95.95 (1.80, 2.25) 0.42 94.36 (2.72, 2.92) 0.41
.5 96.03 (1.38, 2.59) 0.41 94.54 (2.11, 3.35) 0.39

.5 .3 96.07 (2.44, 1.49) 0.43 94.68 (3.31, 2.01) 0.40
.5 95.47 (2.29, 2.24) 0.41 94.39 (2.75, 2.86) 0.38

.8 .3 95.46 (2.45, 2.09) 0.34 92.53 (5.96, 1.51) 0.33
.5 95.73 (2.06, 2.21) 0.33 93.85 (4.85, 1.30) 0.30

200 .2 .3 95.94 (1.74, 2.32) 0.36 94.29 (1.49, 4.22) 0.36
.5 95.38 (1.80, 2.82) 0.35 93.31 (1.46, 5.23) 0.35

.5 .3 95.45 (2.62, 1.93) 0.36 94.28 (1.95, 3.77) 0.34
.5 95.62 (2.25, 2.13) 0.35 94.24 (1.49, 4.27) 0.33

.8 .3 95.68 (2.44, 1.88) 0.27 94.77 (3.27, 1.96) 0.25
.5 95.41 (2.55, 2.04) 0.25 94.92 (2.95, 2.13) 0.24

500 .2 .3 95.46 (2.08, 2.46) 0.32 92.76 (0.99, 6.25) 0.32
.5 95.48 (2.12, 2.40) 0.31 92.49 (1.00, 6.51) 0.31

.5 .3 95.00 (2.65, 2.35) 0.32 92.68 (1.28, 6.04) 0.30
.5 94.95 (2.78, 2.27) 0.31 92.29 (1.28, 6.43) 0.29

.8 .3 95.19 (2.80, 2.01) 0.20 94.59 (1.79, 3.62) 0.19
.5 95.37 (2.42, 2.21) 0.20 94.55 (1.37, 4.08) 0.18

200 50 .2 .3 95.81 (1.73, 2.46) 0.48 90.22 (8.79, 0.99) 0.46
.5 95.88 (1.55, 2.57) 0.46 91.17 (7.82, 1.01) 0.41

.5 .3 95.86 (2.32, 1.82) 0.48 89.48 (9.72, 0.80) 0.45
.5 95.26 (2.31, 2.43) 0.46 90.23 (8.84, .93) 0.41

.8 .3 95.38 (2.34, 2.28) 0.44 87.97 (11.41, .62) 0.42
.5 95.17 (2.34, 2.49) 0.42 86.57 (12.79, .64) 0.37

100 .2 .3 95.72 (2.07, 2.21) 0.37 93.88 (4.54, 1.58) 0.36
.5 95.28 (2.03, 2.69) 0.35 93.92 (4.11, 1.97) 0.33

.5 .3 95.52 (2.44, 2.04) 0.37 93.45 (5.03, 1.52) 0.35
.5 95.76 (2.19, 2.05) 0.35 94.03 (4.58, 1.39) 0.33

.8 .3 95.11 (2.64, 2.25) 0.32 91.80 (7.13, 1.07) 0.31
.5 95.25 (2.32, 2.43) 0.30 91.96 (6.79, 1.25) 0.28

200 .2 .3 95.65 (1.91, 2.44) 0.30 94.90 (2.39, 2.71) 0.29
.5 95.49 (1.99, 2.52) 0.28 94.80 (2.41, 2.79) 0.28

.5 .3 95.12 (2.73, 2.15) 0.30 94.37 (3.17, 2.46) 0.29
.5 95.44 (2.08, 2.48) 0.28 94.90 (2.37, 2.73) 0.27

.8 .3 95.41 (2.32, 2.27) 0.24 93.84 (4.43, 1.73) 0.23
.5 95.00 (2.32, 2.68) 0.23 93.91 (4.21, 1.88) 0.22

500 .2 .3 95.49 (1.93, 2.58) 0.24 94.22 (1.61, 4.17) 0.24
.5 95.38 (2.17, 2.45) 0.24 94.26 (1.61, 4.13) 0.24

.5 .3 95.69 (2.33, 1.98) 0.24 94.97 (1.73, 3.30) 0.23
.5 95.51 (2.33, 2.16) 0.24 94.72 (1.64, 3.64) 0.23

.8 .3 95.85 (2.24, 1.91) 0.17 95.47 (2.31, 2.22) 0.17
.5 95.10 (2.60, 2.30) 0.16 94.79 (2.56, 2.65) 0.16

Note. Ideally missing left (ML) and missing right (MR) should be 2.50%. Sample sizes for two comparison groups are n1 and n2.
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L � r1 � r2 � ��r1 � l1�
2 � �u2 � r2�

2

� .49 � .36 � ��.49 � .355�2 � �.530 � .36�2

� �.087

and

U � r1 � r2 � ��u1 � r1�
2 � �r2 � l2�

2

� .49 � .36 � ��.605 � .49�2 � �.36 � .162�2

� .359.

This means that with 95% confidence, the difference be-
tween validity correlations for male versus female subjects
falls between �.087 to .359. Although the difference did not
reach statistical significance at the 5% level (because the
confidence interval contains 0), the difference could be as
high as .36. Thus, efforts may be called for to improve the
validity of using self-administered questionnaires in the
male group. A null hypothesis significance testing would
have missed such information.

Example 2: Overlapping Correlations

I now consider an example described by Olkin and Finn
(1990) in which measurements related to cardiovascular
health were collected on a sample of 66 adult Black women.
One of the objectives was to determine the predictive value
of cardiac measures such as heart rate (pulse) and blood
pressure (BP) with fitness as quantified by body mass index
(BMI, weight/height2). The correlations were as follows:
BMI and BP, r12 � .396; BMI and pulse, r13 � .179; and
pulse and BP, r23 � .088. The question of which of the two
cardiac measures has better predictive value may be an-
swered with a confidence interval for �12 –�13. Here, BMI is
the common variable and thus makes the comparison over-
lapping.

By the Fisher z transformation, a 95% confidence interval
for �12 is (l1, u1) � (.170, .582). A similar approach yields
a confidence interval for �13 of (l2, u2) � (�.066, .404). The
correlation between r12 and r13 is given by

corr̂�r12, r13� � cov̂�r12, r13�/�var̂�r12�var̂�r13�

� 
�r23 � .5r12r13��1 � r12
2 � r13

2 � r23
2 �

� r23
3 �/
�1 � r12

2 ��1 � r13
2 �� � .0526.

Therefore, the confidence limits (L, U) for �12 � �13 are
given by

L � r12 � r13

� ��r12 � l1�
2 � �u2 � r13�

2 � 2corr̂�r12, r13��r12 � l1��u2 � r13�

� .396 � .179

� ��.396 � .170�2 � �.404 � .179�2 � 2�.0526�
�.396 � .170��.404 � .179�

� �.093

and

U � r12 � r13

� ��u1 � r12�
2 � �r13 � l2�

2 � 2corr̂�r12, r13�
�u1 � r12��r13 � l2�

� .396 � .179

� ��.582 � .396�2 � 
.179 � ��.066)]2

�2(.0526)(.582�.396)[.179�(�.066)]

� .517.

These results indicate that BP may be more predictive,
although the difference in correlation did not reach the 5%
significance level with n � 66.

Example 3: Nonoverlapping Correlations

The same study above (Olkin & Finn, 1990) also col-
lected data on children of those women for the purpose of
determining whether the correlation of physiological mea-
sures increases with age. Specifically, it may be of interest
to estimate the difference between the correlation of BMI
and BP for mothers and that for children, that is, �12 � �34.
The estimated correlations are as follows:

Mother BP Child BMI Child BP
Mother BMI r12 � .396 r13 � .208 r14 � .143

BP r23 � .023 r24 � .423
Child BMI r34 � .189

From Example 2, the confidence interval for �12 is given by
(l1, u1) � (.170, .582). Applying Fisher’s z transformation to
r34 yields confidence limits for �34 as (�.056, .412). The
correlation between r12 and r34 is given by

corr̂�r12, r34� � cov̂�r12, r34�/�var̂�r12�var̂�r34�

� 
.5r12r34�r13
2 � r14

2 � r23
2 � r24

2 � � r13r24 � r14r23

� �r12r13r14 � r12r23r24 � r13r23r34 � r14r24r34��/
�1 � r12
2 �

� �1 � r34
2 �� � .0917.

Thus, the confidence interval for �12 � �34 is given by

L � r12 � r34

� ��r12 � l1�
2 � �u2 � r34�

2 � 2corr̂�r12, r34��r12 � l1��u2 � r34�

� .396 � .189
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� ��.396 � .170�2 � �.412 � .189�2

� 2�.0917��.396 � .170��.412 � .189�

� �.096

and

U � r12 � r34

� ��u1 � r12�
2 � �r34 � l2�

2 � 2corr̂�r12, r34��u1 � r12��r34 � l2�,

� .396 � .189

� ��.582 � .396�2 � 
�.189 � ��.056)]2

�2(.0917)(.582�.396)[.189�(�.056)]

� .500.

This result suggests that there is a stronger relationship
between BMI and BP in the mothers than in their young
children. However, the small sample size leads to a wide
confidence interval that includes 0, so the null hypothesis of
no difference cannot be rejected.

Example 4: Independent R2s

As an example for independent R2s, consider a situation
in which a battery of four tests has a validity of .52 (R2 �
.522) in a sample of 200 students in School A and a validity
of .45 (R2 � .452) in a sample of 300 students in School B
(Alf & Graf, 1999, p. 72). As per the computer codes
presented in the Appendix, the 95% confidence intervals are
given by (l1, u1) � (.1563, .3662) and (l2, u2) � (.1175,
.2788), respectively. Thus, the confidence limits for the
difference are

L � R1
2 � R2

2 � ��R1
2 � l1�

2 � �u2 � R2
2�2

� .522 � .452 � ��.522 � .1563�2 � �.2788 � .452�2

� �.069

and

U � R1
2 � R2

2 � ��u1 � R1
2�2 � �R2

2 � l2�
2

� .522 � .452 � ��.3662 � .522�2 � �.452 � .1175�2

� .196.

The results suggest that no substantial difference between
Schools A and B existed.

Discussion

Confidence interval construction has been advocated for
decades as a replacement for significance testing in the

reporting of study results (Cohen, 1994; Rozeboom, 1960;
Schmidt, 1996; Schmidt & Hunter, 1997; Wilkinson & APA
Task Force on Statistical Inference, 1999). The rationale for
such action is on the grounds that a p value obtained from
the significance testing approach is a mixed product of
sample size and a single parameter value, usually 0, regard-
less of whether that single value is of interest. In contrast, a
confidence interval provides a range of plausible parameter
values and thus is more informative in reporting research
work. As a result, “confidence intervals shift the interpre-
tation from a qualitative judgment about the role of chance
as the first (and sometimes only) interpretive goal to a
quantitative estimation of the biologic measure of effect”
(Rothman, 1986, p. 446).

If so desired, a confidence interval can always answer the
same question that a p value answers. Thus, it may be
puzzling why the efforts promoting confidence intervals
have had only a limited effect on the problem of comparing
correlations, as evidenced by the popularity of articles that
focus on hypothesis testing (Meng et al., 1992; Raghu-
nathan et al., 1996). I believe that the primary reason for the
persistence of significance testing in comparing correlations
is the lack of a simple approach for constructing the re-
quired confidence intervals.

The previous approach to confidence interval construction
for differences between correlations ignores the skewness of
the sampling distribution for correlations and thus results in
poor performance in terms of overall coverage and tail
errors (Algina & Keselman, 1999; Olkin & Finn, 1995). As
an alternative, I have presented a general approach to con-
structing confidence intervals for differences between cor-
relation coefficients. This approach actively takes into ac-
count the skewness of the sampling distributions, using
results such as Fisher’s r to z transformation for correlation
and Lee’s (1971) approximation for single R2s. The result-
ing confidence intervals were shown to perform very well in
terms of both overall coverage and tail errors when con-
structing a confidence interval for (a) a difference between
two independent correlations, (b) a difference between two
overlapping correlations arising from two correlations shar-
ing a common third variable, (c) a difference between two
nonoverlapping correlations arising from two correlations
obtained from the same sample but that do not share a third
variable, and (d) a difference between two independent R2s.
Because there is not much added complexity in computing,
there is little justification for focusing solely on significance
testing (Meng et al., 1992; Raghunathan et al., 1996) or for
using suboptimal methods (Olkin & Finn, 1995). The
method and the worked examples can save practitioners
from having to refer to the extensive literature describing
suboptimal procedures for each of the four cases discussed
above in a piecemeal manner.

One might apply the MA approach, that is, Equations 13
and 14, to obtain a confidence interval for the increase in R2
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(��2), a very useful effect size measure that quantifies the
gain in R2 with more predictors adding to a regression
model (Cohen et al., 2003). Unfortunately, simulation re-
sults (available on request) revealed that this approach
failed to provide substantial improvement over the simple
asymptotic approach (Algina & Moulder, 2001), unless both
the sample size and values of ��2 are large. Tentative
hypotheses for the suboptimal performance include (a) es-
timation errors in the correlation between estimates of R2s
from the full and the reduced models, using the multivariate
version of the delta methods as previously done (Alf &
Graf, 1999; Olkin & Siotani, 1976; Olkin & Finn, 1995),
and (b) the MA approach does not inherently take into
account the fact that ��2 has a constrained parameter space,
because by definition ��2 � 0, so that there is a boundary
problem. Future theoretical research is needed to focus on
these problems, with a simulation evaluation conducted
using an adequate definition for accuracy (Efron, 1987a,
2003).

All the confidence limits presented for single correlations
are based on the assumption of a normal distribution, which
may not be appropriate in all cases. Thus wherever this
assumption becomes unreasonable, alternative confidence
limits should be sought. However, the present MA approach
would still be applicable as the derivation did not implicitly
assume data to be normal. The MA approach derives its
validity from that of the validity of the confidence limits for
a single correlation.

The MA method presented in this article could contribute
to the ongoing statistical reforms, specifically in the aspect
of supplanting significance testing with confidence interval
construction (Wilkinson & APA Task Force on Statistical
Inference, 1999). The method can also be used to avoid the
common pitfall of using the overlap of two separate confi-
dence intervals as a criterion for judging the statistical
significance of an observed difference (Schenker & Gentle-
man, 2001). Moreover, the results presented here provide a
simple alternative to the rules set for inference by eye
(Cumming & Finch, 2005). This is because a confidence
interval for a difference is readily available from the con-
fidence limits for single parameters, and the statistical sig-
nificance is thus known without having to calculate the
proportion of overlap of two confidence intervals.
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Appendix

Sampling Distribution of R2 Approximated by Noncentral F Distribution

The sampling distribution for R2 (Fisher, 1928) is computation-
ally challenging even by present standards. However, it has long
been recognized that R̃2 � R2/�1 � R2� is distributed as

��̃�n�1 � z�2 � �k�1
2

�n�k�1
2 ,

with �̃2 � �2/�1 � �2�, n denoting sample size, k number of
predictors, and z the standard normal variate; �f and �f

2 are chi and
chi-square variates on f degrees of freedom. All variates are
independent from each other. Note that Fisher (1928) also proved
that the asymptotic distribution (as n 3 �) for R2 is a noncentral
chi-square distribution, which describes the sampling distribution
of the sum of squared normal distributions each with a nonzero
mean. A sum of squared standard normal variates makes up a
central chi-square, commonly referred to as a chi-square distribu-
tion. Thus, it is apparent that the simple asymptotic procedure
should not be used for inference for R2, let alone for the differences
between R2s.

By matching the first three cumulates of the numerator, Lee
(1971) approximated the numerator using a scaled noncentral
chi-square distribution g�v

2(�), where

G � 
�2 � ��2
2 � �1�3�/�1,

� � 
�2 � 2 �̃2���n � 1��n � k � 1��/G2,

and

� � �̃2���n � 1��n � k � 1�/G2 ,

with

� � 1/�1 � �2�

and

�j � �n � 1���2j � 1� � k, j � 1, 2, 3.

By definition, then, R̃2 may be approximated by a scaled noncen-
tral F distribution. Specifically,

R̃2 �
�G

n � k � 1
F��, G; ��.

Therefore, the confidence limits of �2 may be obtained by itera-
tively searching for the values that satisfy the equations involving
the cumulative noncentral F distribution. For this purpose, we can
adopt the bisection method, which works by repeatedly dividing an
interval in half and then selecting the subinterval in which the root
exists. The method is implemented using SAS (Statistical Analysis
Systems) and SPSS (Statistical Package for the Social Sciences).
(See the online supplemental materials for more information.)
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Construction of confidence limits about effect measures:
A general approach
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SUMMARY

It is widely accepted that confidence interval construction has important advantages over significance
testing for the presentation of research results, as now facilitated by readily available software. However,
for a number of effect measures, procedures are either not available or not satisfactory in samples of
small to moderate size. In this paper, we describe a general approach for estimating a difference between
effect measures, which can also be used to obtain confidence limits for a risk ratio and a lognormal mean.
Numerical evaluation shows that this closed-form procedure outperforms existing methods, including the
bootstrap. Copyright q 2007 John Wiley & Sons, Ltd.

KEY WORDS: bootstrap; confidence interval; lognormal; risk ratio; generalized confidence interval

1. INTRODUCTION

Confidence intervals are usually regarded as more informative than significance tests because
they provide a range of parameter values that reflect the degree of uncertainty in the estimation
procedure. Moreover, given the correspondence between these two approaches, confidence interval
estimation encompasses hypothesis testing [1, Chapter 9], and their use in presenting research
results is formally recommended in several published guidelines, e.g. the CONSORT statement
[2]. Simple procedures and widely available software have also made interval estimation readily
accessible to practitioners [3–8].

The purpose of this paper is to first describe a general approach for constructing a confidence
interval about a difference between effect measures, which has been previously applied only in
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special cases. This approach, which requires only the availability of confidence limits about the
two effect measures separately, is then further applied to construct a confidence interval about a
risk ratio and a lognormal mean. Its performance is compared with that of more computationally
intensive procedures using numerical evaluation studies.

2. CONFIDENCE INTERVAL CONSTRUCTION FOR DIFFERENCES

Let �i be the respective parameter of interest for population i , i=1,2, with point estimate �̂i .
Assuming that �̂1 and �̂2 are independently distributed, an approximate two-sided (1−�)100 per
cent confidence interval (L ,U ) for �1−�2 is traditionally given by

(L ,U )= �̂1− �̂2∓z�/2

√
v̂ar(̂�1)+ v̂ar(̂�2)

where z�/2 is the upper �/2 quantile of the standard normal distribution, and v̂ar(̂�i ), i=1,2,
are the respective variance estimators. Unfortunately, this procedure performs well only if sample
sizes are large or the sampling distributions of �̂i are close to normal. The Wald interval for a
difference between two proportions is a good example [9].

One reason for the poor performance of the traditional method is that it does not reflect the
asymmetry of the underlying sampling distributions [10, p. 190]. In this paper we attempt to
improve its performance by obtaining v̂ar(̂�i ) at the neighborhood of the confidence limits L and
U separately. We also note that estimating v̂ar(̂�i ) at L and U using an iterative procedure would
be equivalent to inverting a test statistic to obtain a confidence interval [11]. Using this approach
[1, Section 9.2], we may regard the (1−�)100 per cent confidence limits L ,U as the minimum
and maximum values of �1−�2 that satisfy

[(̂�1− �̂2)−(�1−�2)]2
var(̂�1)+var(̂�2)

< z2�/2

Let (l1,u1) and (l2,u2) be the two-sided (1−�)100 per cent confidence intervals for �1 and �2,
respectively. Among the plausible parameter values provided by these two sets of limits, l1−u2 is
near L and u1−l2 is near U . Thus, for obtaining L we estimate var(̂�1) under �1= l1 and var(̂�2)
at �2=u2. Similarly, for obtaining U we estimate var(̂�1) under �1=u1 and var(̂�2) under �2= l2.
By again applying the inversion principle, we have

v̂ar(̂�1)= (̂�1−l1)2

z2�/2

under �1= l1, and

v̂ar(̂�1)= (u1− �̂1)2

z2�/2

under �1=u1. Similarly, we have

v̂ar(̂�2)= (̂�2−l2)2

z2�/2
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under �2= l2, and

v̂ar(̂�2)= (u2− �̂2)2

z2�/2

under �2=u2.
Substituting corresponding variance estimators in the expressions for L and U , respectively, we

have

L = �̂1− �̂2−z�/2

√√√√ (̂�1−l1)2

z2�/2

+ (u2− �̂2)2

z2�/2

= �̂1− �̂2−
√

(̂�1−l1)2+(u2− �̂2)2 (1)

and

U = �̂1− �̂2+
√

(u1− �̂1)2+ (̂�2−l2)2 (2)

The advantage of this procedure is that it does not require any specific underlying distributions
for �̂i , but only separate confidence limits that have coverage levels close to nominal. It is also
trivial to show that it provides the traditional confidence interval if the sampling distributions for
�̂i (i=1,2) are symmetric, but is more general in that the symmetry assumption is not required.

We also recognize that this procedure has previously been applied in special cases, including, for
example, the construction of a confidence interval for variance components [12], the construction
of limits for a difference between two normal means [13] and for a difference between two kappa
statistics [14]. It has further been applied to the problem of assessing bioequivalence [15–18] and
is closely related to methodology proposed for the analysis of binary data in a variety of contexts
[9, 19–23].

It is trivial to show that the proposed procedure satisfies the invariance property in the sense
that the confidence interval for �2−�1 is always given by [−U,−L], in contrast to a recent claim
[24] which appears to confuse the properties of invariance and symmetry.

3. APPLICATIONS

3.1. Confidence interval about the risk ratio

We now use the approach described above to obtain a confidence interval for the risk ratio by
recognizing that a difference on the log scale is equivalent to the log of a ratio. Substitution of
ln pi (i=1,2) for �̂i and the corresponding confidence limits lpli , lpui for li ,ui in (1) and (2)

Copyright q 2007 John Wiley & Sons, Ltd. Statist. Med. 2008; 27:1693–1702
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yields a (1−�)100 per cent confidence interval for log risk ratio as

L = ln(p1)− ln(p2)−
√

[ln(p1)−lpl1)]2+[lpu2− ln(p2)]2

U = ln(p1)− ln(p2)+
√

[ln pu1− ln(p1)]2+[ln(p2)−lpl2]2

Note that this result provides a rebuttal to the assertion that ‘it is not possible to obtain a confidence
interval for a relative risk by using the confidence limits for the two components absolute risks’
[4, p. 789].

There are two methods that can be used for obtaining the confidence limits (lpli , lpui ). The
first is the delta method which results in the procedure found in most standard textbooks, e.g. [5,
p. 58]. A second approach is to obtain confidence limits for a single proportion using the Wilson
method [25, 26] and then use the transformation principle [3, 4] to obtain limits on the log scale.
Such limits satisfy 2 ln(pi )− ln(1+z2�/2/n)= lpli +lpui , where n is the sample size [25], whereas
limits obtained using the delta method satisfy 2 ln(pi )= lpli +lpui . Thus, it is clear that the Wilson
approach will provide a narrower interval and, thus, is theoretically preferable.

As an illustration, consider a study reported by Brenner et al. [27] where the prevalence of
Helcobacter pylori infection in preschool children having mothers with a history of duodenal or
gastric ulcer is 6

22 . Using the Wilson method a 95 per cent confidence interval about the prevalence
is given by (0.132, 0.482), while for children with no parental history of ulcer, the corresponding
prevalence is 112

842 (95 per cent CI 0.112, 0.158). Thus, the 95 per cent confidence interval for the
relative risk is given by

L = exp{ln 6
22 − ln 112

841 −
√

(ln 6
22 − ln0.132)2+(ln0.158− ln 112

841 )
2}=0.97

U = exp{ln 6
22 − ln 112

841 +
√

(ln0.482− ln 6
22 )

2+(ln 112
841 − ln 0.112)2}=3.71

This result is consistent with that obtained from the standard Pearson chi-square test (P=0.06),
which, by the duality principle [1, p. 421], can be regarded as a desirable feature. On the other
hand, the traditional textbook formula [5, p. 59] provides a 95 per cent confidence interval for
the relative risk given by 1.01 to 4.04, inconsistent with the hypothesis testing result [27]. One
may alternatively compute an ‘exact’ confidence interval, although the word exact in the present
context does not imply accurate. For example, the exact procedure for a single proportion has been
criticized because the method is too conservative [25, 26].

To evaluate the performance of the proposed procedure when using both the delta method and
the Wilson method for interval estimation of a single proportion on the log scale, we conducted a
numerical evaluation by computing all possible (n1+1)(n2+1) outcomes, where n1 and n2 are the
sizes of two independent samples. The coverage probability for a given interval estimate (L ,U )

is then easily shown to be given by

n1∑
x1=0

n2∑
x2=0

1(�1/�2∈[L ,U ])
2∏

i=1

(
ni

xi

)
�xi
i (1−�i )

ni−xi

Copyright q 2007 John Wiley & Sons, Ltd. Statist. Med. 2008; 27:1693–1702
DOI: 10.1002/sim



CONFIDENCE INTERVALS 1697

Table I. Comparative performance of confidence interval procedures for a risk ratio (summary
of 2000 parameter combinations).

Method Mean 10th Pctl 25th Pctl 50th Pctl 75th Pctl 90th Pctl

Delta
Coverage (per cent) 96.19 95.17 95.49 96.04 96.71 97.66
Left tail ∗ (per cent) 2.33 0.01 1.17 2.42 3.34 4.16
Right tail ∗ (per cent) 1.49 0.00 0.00 1.20 2.64 3.53
Width 21.22 0.60 1.04 4.46 30.10 66.36

Wilson
Coverage (per cent) 95.41 94.69 94.88 95.15 96.00 96.41
Left tail (per cent) 2.75 1.27 2.23 2.75 3.41 3.98
Right tail (per cent) 1.85 0.00 0.49 2.24 2.81 3.23
Width 15.48 0.58 0.97 4.06 21.78 47.06

∗Left tail: the interval lies completely below the parameter; right tail: the interval lies completely
above the parameter.

where 1(�1/�2∈[L ,U ]) is 1 if [L ,U ] contains �1/�2, 0 otherwise. To deal with extreme cases,
�i was set to 1/(2ni ) if xi =0, and 1−1/(2ni ) if xi =ni , for i=1,2. Interval width and tail errors
were evaluated in a similar manner.

When we set (n1,�1)=(22, 6
22 ) and (n2,�2)=(841, 112841 ), as in Brenner et al. [27], the coverage

(left tail error, right tail error) and width for the delta method are 95.53 (0.05, 4.42) and 3.10,
while the corresponding results using the Wilson method are given by 95.13 (1.91, 2.95) and
2.71. Thus, the method presented here provides a narrower interval than the traditional method
[5, p. 58], which in our evaluation misses the parameter value for 4.42 per cent of time instead of
the advertised 2.5 per cent.

We further evaluated the two procedures with n1 and n2 both ranging from 10 to 100 at intervals
of 10, �1 ranging from 0.1 to 0.5 at intervals of 0.1, and �2 varying from 0.05, 0.1, 0.3 and 0.5.
The results in Table I based on these 2000 (10×10×5×4) parameter combinations demonstrate
clearly the advantage of using Wilson confidence limits for single proportions in constructing a
confidence interval for the risk ratio. Thus, it exists in closed form, and has a shorter width, while
maintaining coverage close to nominal with equiprobable tail errors. This procedure for risk ratio is
also consistent with the recommendation of the Wilson method for a single proportion [5, 25, 26].

3.2. Confidence interval for a lognormal mean

Inferences obtained from positively skewed data are often performed on the log scale under the
assumption of an underlying lognormal distribution. This will result in inferences for the geometric
means (or the median). However, there are situations where the mean on the original scale is of
most interest, as, for example, in the analysis of health costs [28, 29]. Bootstrap methods have
been recommended for this purpose [30], although with some limitations that have been recently
recognized [31].

Let yi , i=1,2, . . . ,n, be observations from a lognormal distribution, implying that xi = ln yi is
distributed normally with mean and standard deviation � and �, respectively. Then the mean of
the lognormal distribution is given by

M=exp[�+�2/2]
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DOI: 10.1002/sim



1698 G. Y. ZOU AND A. DONNER

This relationship has prompted a remark that ‘obtaining the confidence interval for the lognormal
estimator is a non-trivial problem since it is a function of two transformed sample estimates [32,
p. 422]. However, if we regard � as �1 and −�2/2 as �2 in the above procedure, constructing a
confidence interval for M becomes straightforward. Since x̄ and −s2/2 are independent we can
treat x̄ and −s2/2 as �̂1 and �̂2 in (1) and (2), respectively. Furthermore, the confidence limits for
� can be obtained from normal distribution theory and those for −�2/2 may be obtained using
the chi-square distribution. Substituting these two pairs of limits in (1) and (2) yields a confidence
interval for a lognormal mean as

L = exp

⎡⎢⎣x̄+ s2

2
−
√√√√z2�/2

s2

n
+
{
s2

2

(
1− n−1

�21−�/2,n−1

)}2
⎤⎥⎦

U = exp

⎡⎢⎣x̄+ s2

2
+
√√√√z2�/2

s2

n
+
{
s2

2

(
n−1

�2�/2,n−1

−1

)}2
⎤⎥⎦

(3)

where �2�/2,df and �21−�/2,df are the �/2th and 1−�/2th percentiles of the chi-square distribution
with df degrees of freedom.

As an illustration, consider a study enrolling 26 asthma patients treated with a pressurized
metered dose inhaler [31]. Exploratory analysis implied that the observations are lognormally
distributed. Analysis of the log-transformed cost data yields x̄=5.877 and s2=2.158, and thus by
(3) a 95 per cent confidence interval is obtained as (520, 3243), very comparable with the Bayesian
parametric interval [31] obtained as (510, 3150).

Since the numerical evaluation approach used in Section 3.1 is not applicable here, we used
Monte Carlo simulation in this case to evaluate the performance of the proposed procedure
to that of more computationally intensive procedures. The methods evaluated were the tradi-
tional t , the jackknife, a method commonly referred to as a generalized confidence interval
based on the simulation of pivotal statistics [33–37], and six bootstrap methods [38, Chapter 4],
including the Normal, percentile, hybrid, bootstrap-t , bias corrected (BC), and the bias corrected
and accelerated (BCa). Each method was used to construct a 95 per cent two-sided confi-
dence interval. We considered sample sizes n=20, 50, 100, 200 and 500, and �2=0.5, 1 and
4 with �=−�2/2, resulting in a lognormal mean of 1. The simulation was performed using
1000 runs for each of the 15 parameter combinations. For the eight computational intensive
methods (six bootstraps, jackknife and generalized interval), we performed 1000 resamples at
each run.

Table II presents the observed coverage (per cent), and left and right tail errors (per
cent) (defined as missing the parameter from the left or right, respectively), as well as the
average interval width. By considering the standards proposed by Burton et al. [39], it is
seen that only the generalized interval approach and the proposed method (equation (3)) may
be regarded as acceptable in terms of coverage. The latter also delivers narrower intervals,
with separate tail errors that are closer to 2.5 per cent, advantages that are most obvious
at �2=4.
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Table II. Comparative performance of 10 procedures for constructing a 95 per cent two-sided
confidence interval for a lognormal mean with �=−�2/2 based on 1000 runs (computational

methods used 1000 resamples for each run).∗

�2=0.5 �2=1.0 �2=4.0

n Method Cover (L , R) per cent† W Cover (L , R) per cent W Cover (L , R) per cent W

20 1 88.1 (10.9, 1.0) 0.63 84.3 (15.2, 0.5) 0.93 59.7 (40.3, 0.0) 2.05
2 88.9 (9.1, 2.0) 0.63 86.5 (12.4, 1.1) 0.95 64.9 (35.0, 0.1) 2.10
3 89.5 (7.8, 2.7) 0.67 87.3 (10.7, 2.0) 1.05 69.3 (30.2, 0.5) 2.64
4 87.0 (12.3, 0.7) 0.62 82.7 (17.0, 0.3) 0.91 54.9 (45.1, 0.0) 1.87
5 88.6 (9.8, 1.6) 0.62 85.2 (13.9, 0.9) 0.91 62.4 (37.5, 0.1) 1.87
6 93.9 (4.7, 1.4) 0.85 92.1 (7.0, 0.9) 1.60 81.1 (18.8, 0.1) 44.81
7 89.2 (10.0, 0.8) 0.65 85.0 (14.6, 0.4) 0.96 60.3 (39.7, 0.0) 2.12
8 90.4 (9.0, 0.6) 0.69 86.6 (13.1, 0.3) 1.03 61.8 (38.2, 0.0) 2.26
9 95.8 (1.4, 2.8) 0.86 95.2 (1.9, 2.9) 1.64 96.3 (1.5, 2.2) 55.53

10 95.5 (2.4, 2.1) 0.82 96.1 (2.4, 1.5) 1.56 96.6 (1.9, 1.5) 36.77

50 1 91.4 (7.7, 0.9) 0.42 88.3 (11.1, 0.6) 0.65 67.7 (32.3, 0.0) 1.73
2 91.1 (6.4, 2.5) 0.42 89.6 (8.6, 1.8) 0.66 72.5 (26.7, 0.8) 1.79
3 91.4 (5.3, 3.3) 0.44 89.7 (7.2, 3.1) 0.71 76.7 (21.6, 1.7) 2.26
4 90.4 (8.7, 0.9) 0.42 86.7 (12.9, 0.4) 0.64 63.5 (36.5, 0.0) 1.60
5 91.6 (6.9, 1.5) 0.42 89.5 (9.5, 1.0) 0.64 70.0 (29.5, 0.5) 1.60
6 92.9 (4.8, 2.3) 0.48 91.7 (6.3, 2.0) 0.85 83.3 (16.0, 0.7) 10.59
7 92.1 (7.2, 0.7) 0.43 88.6 (10.9, 0.5) 0.66 68.0 (32.0, 0.0) 1.76
8 92.3 (7.0, 0.7) 0.44 89.4 (10.1, 0.5) 0.67 68.8 (31.2, 0.0) 1.80
9 93.9 (3.0, 3.1) 0.45 93.7 (3.5, 2.8) 0.77 94.8 (2.7, 2.5) 4.22

10 94.4 (3.2, 2.4) 0.46 94.0 (3.6, 2.4) 0.77 94.1 (3.4, 2.5) 3.82

100 1 92.5 (6.4, 1.1) 0.31 89.4 (9.9, 0.7) 0.48 74.0 (26.0, 0.0) 1.44
2 92.6 (5.4, 2.0) 0.31 90.2 (8.1, 1.7) 0.48 78.0 (21.7, 0.3) 1.48
3 92.6 (4.6, 2.8) 0.31 91.0 (6.2, 2.8) 0.51 80.7 (17.9, 1.4) 1.80
4 91.2 (7.8, 1.0) 0.30 88.1 (11.4, 0.5) 0.48 70.5 (29.5, 0.0) 1.35
5 92.3 (6.0, 1.7) 0.30 89.7 (9.1, 1.2) 0.48 75.7 (24.3, 0.0) 1.35
6 93.4 (4.1, 2.5) 0.33 92.7 (5.0, 2.3) 0.56 85.5 (14.2, 0.3) 5.40
7 92.6 (6.2, 1.2) 0.31 89.5 (9.8, 0.7) 0.48 74.3 (25.7, 0.0) 1.44
8 92.7 (6.1, 1.2) 0.31 89.6 (9.7, 0.7) 0.49 74.6 (25.4, 0.0) 1.46
9 94.2 (2.4, 3.4) 0.31 94.0 (2.9, 3.1) 0.50 93.6 (2.5, 3.9) 1.90

10 94.8 (2.9, 2.3) 0.32 94.4 (3.2, 2.4) 0.51 94.7 (3.3, 2.0) 1.84

200 1 93.7 (4.8, 1.5) 0.22 92.0 (6.6, 1.4) 0.35 76.8 (23.2, 0.0) 1.11
2 92.3 (4.4, 3.3) 0.22 91.7 (5.7, 2.6) 0.35 81.4 (18.0, 0.6) 1.15
3 92.1 (3.8, 4.1) 0.22 91.9 (4.5, 3.6) 0.36 85.1 (13.4, 1.5) 1.36
4 92.7 (5.8, 1.5) 0.22 92.3 (7.2, 0.5) 0.34 72.7 (27.3, 0.0) 1.07
5 93.0 (4.5, 2.5) 0.22 92.0 (6.2, 1.8) 0.34 79.4 (20.4, 0.2) 1.07
6 92.5 (4.0, 3.5) 0.23 92.4 (4.7, 2.9) 0.38 87.8 (11.6, 0.6) 2.81
7 93.5 (4.9, 1.6) 0.22 92.2 (6.7, 1.1) 0.35 76.8 (23.2, 0.0) 1.12
8 93.8 (4.8, 1.4) 0.22 92.5 (6.6, 0.9) 0.35 77.0 (23.0, 0.0) 1.12
9 91.8 (3.5, 4.7) 0.21 92.3 (3.3, 4.4) 0.34 94.2 (2.3, 3.5) 1.14

10 93.4 (3.3, 3.3) 0.22 93.7 (3.1, 3.2) 0.35 94.5 (3.0, 2.5) 1.11

500 1 93.5 (4.0, 2.5) 0.14 92.5 (5.6, 1.9) 0.22 79.1 (20.9, 0.0) 0.77
2 93.7 (3.5, 2.8) 0.14 92.2 (5.0, 2.8) 0.22 83.0 (16.3, 0.7) 0.79
3 93.1 (3.4, 3.5) 0.14 92.3 (4.0, 3.7) 0.23 85.2 (13.0, 1.8) 0.91
4 93.2 (4.7, 2.1) 0.14 92.2 (6.2, 1.6) 0.22 76.5 (23.5, 0.0) 0.75
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Table II. Continued.

�2=0.5 �2=1.0 �2=4.0

n Method Cover (L , R) per cent† W Cover (L , R) per cent W Cover (L , R) per cent W

5 93.6 (3.7, 2.7) 0.14 92.9 (5.0, 2.1) 0.22 81.2 (18.5, 0.3) 0.75
6 93.7 (3.1, 3.2) 0.14 93.5 (3.6, 2.9) 0.23 87.7 (11.5, 0.8) 1.37
7 93.6 (3.9, 2.5) 0.14 92.7 (5.7, 1.6) 0.22 79.1 (20.9, 0.0) 0.77
8 93.6 (3.9, 2.5) 0.14 92.7 (5.7, 1.6) 0.22 79.2 (20.8, 0.0) 0.77
9 91.9 (3.5, 4.6) 0.13 91.6 (4.0, 4.4) 0.20 92.6 (3.4, 4.0) 0.61
10 94.0 (2.5, 3.5) 0.14 94.0 (2.7, 3.3) 0.22 94.7 (2.8, 2.5) 0.64

∗Methods 1–6 are bootstrap methods: normal, BC, BCa, hybrid, percentile and t [38]; Methods 7–10 are
Jackknife, traditional t , generalized interval and the proposed, respectively.
†L: The interval lies completely below the parameter; R: the interval lies completely above the parameter.

4. DISCUSSION

We have presented a general approach to confidence interval construction that should prove useful
in a wide variety of settings. This has been illustrated by the consideration of two interval estimation
problems for which procedures are either currently unavailable or unduly complicated.

The basis of this approach relies on the observation that one can easily obtain a confidence
interval for a difference between two effect measures given the availability of a confidence interval
method for each effect measure separately. Thus, it provides a relatively simple method of avoiding
using the overlap of two separate confidence intervals as a criterion for judging the statistical
significance of an observed difference, a procedure which, aside form retaining a hypothesis-testing
perspective, is potentially misleading.

The approach presented here may also be extended to the case of two correlated effect measures
as obtained, for example, in paired comparisons. Let r be the estimator of the correlation coefficient
between �̂1 and �̂2. Then the procedure described may be extended by including covariance terms
r (̂�1−l1)(u2− �̂2) and r(u1− �̂1)(̂�2−l2) in the expressions given for L and U , respectively.
Examples are given in several references [20–23], where the Phi coefficient [40, p. 99] was used
to estimate the required correlation parameter.
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A four-by-two table with its four rows representing the presence and absence of gene and environmental factors
has been suggested as the fundamental unit in the assessment of gene-environment interaction. For such a table
to be more meaningful from a public health perspective, it is important to estimate additive interaction. A confidence
interval procedure proposed by Hosmer and Lemeshow has become widespread. This article first reveals that the
Hosmer-Lemeshow procedure makes an assumption that confidence intervals for risk ratios are symmetric and
then presents an alternative that uses the conventional asymmetric intervals for risk ratios to set confidence limits
for measures of additive interaction. For the four-by-two table, the calculation involved requires no statistical
programs but only elementary calculations. Simulation results demonstrate that this new approach can perform
almost as well as the bootstrap. Corresponding calculations in more complicated situations can be simplified by
use of routine output from multiple regression programs. The approach is illustrated with three examples.
A Microsoft Excel spreadsheet and SAS codes for the calculations are available from the author and the Journal ’s
website, respectively.

bootstrap; genotype-environment interaction; logistic regression; proportional hazards models; risk ratio

Abbreviations: AP, attributable proportion due to interaction; CI, confidence interval; OR, odds ratio; RERI, relative excess risk
due to interaction; RR, risk ratio; SA, simple asymptotic; SI, synergy index.

In 1976, it was recognized that ‘‘[a]s more risk factors
become established as probable causes in the elaboration of
disease etiology, scientists will turn their attention increas-
ingly to the question of interaction (synergy or antagonism)
of the causes’’ (1, p. 506). Scientists can now study literally
thousands of genes and their interactions with environmen-
tal factors, thanks to the Human Genome Project.

It has been suggested that at the fundamental core of as-
sessing gene-environment interaction is a four-by-two table;
note that the original article refers to the table as a two-by-four
table (2). However, conducting proper inferences is the ulti-

mate goal of any research (3, p. 2). Furthermore, on the basis
of the sufficient component cause model (4), it is more mean-
ingful to assess interaction on the additive scale (1). This is
because information concerning an additive interaction be-
tween two factors is more relevant to disease prevention and
intervention (5, 6; 7, chapters 6 and 10). For example, if the
joint effect of two factors surpasses the sum of their single
effects, then reduction of either one would also reduce the risk
of the other factor in producing the disease.

There has been little discussion concerning appropriate
statistical methods for estimating additive interactions. As
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a result, a simple asymptotic approach proposed by Hosmer
and Lemeshow (8) has proliferated in the literature (9–12),
despite its well-documented poor performance (13).

The purpose of this article is to present an alternative
approach for constructing accurate confidence intervals
(CIs) for measures of additive interaction. The desirable
performance of this new approach is the result of incorpo-
rating the asymmetric confidence limits for risk ratios (or
odds ratios), in contrast to the simple asymptotic approach
that forces confidence limits for risk ratios (RRs) to be sym-
metric. The central idea is to recover the variances needed
for measures of interactions from confidence limits for RRs.
For the four-by-two table, the calculations involved can be
done in a spreadsheet or by a hand-held calculator. Simula-
tion results demonstrate that the new approach is accurate
enough to replace the bootstrap. The new approach may also
be applied to more complicated situations by using output
from standard multiple regression programs. Three worked
examples are presented. All calculations were done by use
of a Microsoft Excel (Microsoft Corporation, Redmond,
Washington) spreadsheet that is available from the author
upon request. SAS codes (SAS Institute, Inc., Cary, North
Carolina) using routine regression output to obtain con-
fidence limits are supplementary material posted on the
Journal’s website (http://aje.oupjournals.org/).

THE FOUR-BY-TWO TABLE AND ESTIMATION OF
MEASURES OF ADDITIVE INTERACTION

Let G and E denote two risk factors, with their presence
and absence reflected by 1 and 0, respectively. In the case of
gene-environment interaction, three possible biallelic geno-
types may be readily handled. For example, one can assume
a dominant mode of gene action so that the genotype AA and
Aa are equivalent and coded as 1, and aa coded as 0. Thus,
a contingency table may be formed with four rows repre-
senting gene and environment combinations 11, 10, 01, and
00 and two columns representing disease status (yes and no)
as follows:

Depending on the study design, one can estimate either
odds ratios (ORs) in a case-control study or RRs in a cohort
study, as illustrated in figures 1 and 2, respectively. The
three measures of additive interaction devised by Rothman
(14, chapter 15), in terms of RR, are relative excess risks due
to interaction (RERI),

RERI¼RR11�RR10�RR01þ1;

attributable proportion due to interaction (AP),

AP¼RERI=RR11

¼ 1=RR11�RR10=RR11�RR01=RR11þ1;

and the synergy index (SI),

SI¼ RR11�1

RR10þRR01�2
;

which is simpler to investigate analytically on the log
scale (1),

ln SI¼ lnðRR11�1Þ� lnðRR10þRR01�2Þ:
Notice that all RRs are estimated with G¼ 0 and E¼ 0 as the
reference group. Lack of interaction is reflected by RERI ¼
AP ¼ 0 and SI ¼ 1. It should also be emphasized that one
should not rely on the OR in cohort studies, where the RR
is readily available (15, 16). Otherwise, the well-known
problem of the OR’s exaggerating the RR will be even
more severe in the current context (17).

CONFIDENCE INTERVALS FOR MEASURES OF
ADDITIVE INTERACTION

Because the sampling distributions for single RRs are
positively skewed, introductory texts in epidemiology thus
suggest that inferences be conducted on the log scale. Since
log-transformation cannot be applied to RERI (it could be
negative), Hosmer and Lemeshow (8) suggested a simple
asymptotic (SA) approach by which the 95 percent confi-
dence limits may be obtained by subtracting from and add-
ing to the point estimate a quantity of 1.96 times the
standard error.

Both RERI and AP may be parameterized as

h1�h2�h3þ1;

with h1 ¼ RR11, h2 ¼ RR10, and h3 ¼ RR01 for RERI and
h1 ¼ 1/RR11, h2 ¼ RR10/RR11, and h3 ¼ RR01/RR11 for AP.
Therefore, the problem reduces to constructing CIs for h1 �
h2 � h3 þ 1 using estimates ĥi (i ¼ 1, 2, 3) and the corre-
sponding confidence limits, which are shown in figures 1–3
for case-control and cohort studies.

The Appendix details a general approach to construction
of the CI for linear combination of parameters. Since the
basic idea is to recover variance estimates needed for setting
confidence limits for functions of parameters, the method
may be referred to as ‘‘MOVER,’’ indicating the method of
variance estimates recovery. By Appendix equations A7 and
A8, a (1 – a)100 percent CI (L, U) for 1 þ h1 – h2 – h3 is
given by

L¼ 1þ ĥ1� ĥ2� ĥ3�½ðĥ1� l1Þ2þðu2� ĥ2Þ2þðu3� ĥ3Þ2

�2r12ðĥ1� l1Þðu2� ĥ2Þ�2r13ðĥ1� l1Þðu3� ĥ3Þ
þ2r23ðu2� ĥ2Þðu3� ĥ3Þ�1=2 ð1Þ

and

G E
Outcomes

Yes No

1 1 a b

1 0 c d

0 1 e f

0 0 g h
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U¼ 1þ ĥ1� ĥ2� ĥ3þ½ðu1� ĥ1Þ2þðĥ2� l2Þ2þðĥ3� l3Þ2

�2r12ðu1� ĥ1Þðĥ2� l2Þ�2r13ðu1� ĥ1Þðĥ3� l3Þ
þ2r23ðĥ2� l2Þðĥ3� l3Þ�1=2

: ð2Þ

The estimated correlation rij, i ¼ 1, 2, j ¼ 2, 3 may be
obtained as

rij¼
dcovðĥi; ĥjÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffifficvarðĥiÞcvarðĥjÞ

q : ð3Þ

For tabulated case-control data (figure 1), Rothman (1,
p. 507) showed that

covðOR01;OR10Þ ¼ OR01 3 OR10ð1=gþ1=hÞ;

reflecting that OR10 and OR01 have g and h in common. An
application of the delta method yields

varðOR10Þ¼OR
2
10 3varðln OR10Þ

and similarly found for var(OR01). By the definition of cor-
relation,

corrðOR10;OR01Þ ¼
covðOR01;OR10Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

varðOR10Þ3varðOR01Þ
p

¼ 1=gþ1=hffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
varðln OR10Þvarðln OR01Þ

p :

Other correlations shown in figure 1 may be obtained in the
same fashion. Correlation estimates for a cohort study may
be obtained by replacing 1/h with �1/n00 and ORs with

FIGURE 1. The four-by-two table for a case-control study assessing gene (G)-environment (E) interaction. OR, odds ratio; var(lnOR), variance of
the data in the natural log of the odds ratio; RERI, relative excess risks due to interaction; AP, attributable proportion due to interaction; exp,
exponent; SI, synergy index.
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RRs, resulting in the expressions in figure 2. In the case of
the multiplicative regression model, applying the delta
method and definition of correlation, for i 6¼ j,

corrðebi;e
bjÞ ¼ covðebi ;e

bjÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
varðebiÞvarðebjÞ

q
¼ e

bi e
bj covðbi;bjÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðebiÞ2varðbiÞðebjÞ2varðbjÞ
q
¼ covðbi;bjÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

varðbiÞvarðbjÞ
p :

Applying the same idea to other correlations results in the
expressions in figure 3.

It can be shown with equations 1 and 2 that the SA method
by Hosmer and Lemeshow (8) is a consequence of assuming

symmetric confidence limits for RRs. To see this for RERI,

one needs to replace ĥ1 � l1 and u1 � ĥ1 by

za=2RR11

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
varðln RR11Þ

p
, ĥ2 � l2 and u2 � ĥ2

by za=2RR10

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
varðln RR10Þ

p
, and ĥ3 � l3 and u3 � ĥ3 by

za=2RR01

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
varðln RR01Þ

p
. Similar exercises will result in

the SA CI for AP. This brings out the failing point of the
SA approach, that it has implicitly assumed that confidence
limits for the RR are given by RR7za=2RR

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
varðln RRÞ

p
.

Failing to see this point may have resulted in the prolifera-
tion of the SA method (9–12).

Now, since the derivation of the MOVER method (equa-
tions 1 and 2) did not assume symmetric confidence limits
for hi, one can use sensible confidence limits for RRs, such

as RRexpð7za=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
varðln RRÞ

p
Þ, in the construction of con-

fidence interval for RERI and AP.

FIGURE 2. The four-by-two table for a cohort study assessing gene (G)-environment(E) interaction. RR, risk ratio; var(lnRR), variance of the data
in the natural log of the risk ratio; RERI, relative excess risks due to interaction; exp, exponent; AP, attributable proportion due to interaction; SI,
synergy index.
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Furthermore, denoting h1 ¼ ln(RR11 � 1) and h2 ¼
�ln(RR10 þ RR01 � 2), Appendix equations A5 and A6
may be applied to ln SI that, in turn, can be used to obtain
confidence limits for SI. With the expressions in figures 1–3,
the results for SI will be identical to those obtained by use of
the methods proposed by Rothman (1).

SIMULATION STUDY

Despite the justification provided in the Appendix, the
proposed procedure for measures of interaction is based
on asymptotic theory. Simulation studies were therefore un-
dertaken to evaluate its performance.

For AP, a method based on ln(1 � AP) (18) was also
included. The studies were performed in the context of
a case-control design, with the understanding that the sta-
tistical theory is identical regardless of whether the OR, RR,
or hazard ratio is selected as the effect measure.

The first study used 20 OR combinations (2RR10 3
2RR01 3 5RR11) and a sample size of 250 in each case

and control group as in the study reported by Assmann
et al. (13). Compared with the MOVER approach, the ap-
proaches were the SA approach (8) and the bias-corrected
and accelerated (BCa) bootstrap approach (3, pp. 184–188).
For each parameter combination, 1,000 replicates were per-
formed. The number of resamples for the bootstrap was also
set to 1,000. The proportions of control subjects exposed to
G alone, E alone, and both G and E were 0.1, 0.2, and 0.1,
respectively. The exposure probability distribution for the
case subjects was then calculated by use of the specific
values of RR11, RR10, and RR01. Data for the cases and
controls were generated separately from multinomial distri-
butions. Cells with 0 count were added by 0.5 so that ORs
could be calculated.

An additional simulation study without the bootstrap was
conducted to see whether the SA approach could perform
reasonably well in sample sizes of 1,000 in each of the case
and control groups.

A third simulation study was performed to assess the
performance of the MOVER method compared with the
SA method in situations with small exposure probabilities.
With the other parameters set as in the first simulation, the

FIGURE 3. Confidence interval construction for measures of additive interaction using output from multiplicative regression programs. G, gene;
var, variance; E, environment; RERI, relative excess risks due to interaction; AP, attributable proportion due to interaction; SI, synergy index.
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TABLE 1. Coverage properties of the 95% two-sided confidence intervals for relative excess risks due to

interaction and attributable proportion due to interaction based on 1,000 runs*

OR10y OR01 OR11 RERIy bRERI
SAy BCa MOVERy

Rate 95% CIy Rate 95% CI Rate 95% CI

4.0 5.0 20.000 12.000 12.86 94.4 5.6, 0.0 96.2 2.1, 2.7 94.9 3.1, 2.0

12.000 4.000 4.27 96.2 3.8, 0.0 95.7 2.4, 1.9 96.1 2.3, 1.6

8.000 0.000 �0.01 99.0 0.0, 0.1 95.6 2.3, 2.1 95.6 2.0, 2.4

6.000 �2.000 �2.09 98.5 0.8, 0.7 95.9 2.2, 1.9 95.5 2.2, 2.3

4.000 �4.000 �4.20 96.7 0.4, 2.9 95.8 2.2, 2.0 95.5 1.8, 2.7

2.0 5.0 15.000 9.000 9.55 95.0 5.0, 0.0 96.4 1.9, 1.7 95.4 2.9, 1.7

9.000 3.000 3.15 97.1 2.9, 0.0 95.9 2.7, 1.4 96.1 2.8, 1.1

6.000 0.000 �0.03 98.9 0.9, 0.2 95.5 3.0, 1.5 95.9 2.7, 1.4

4.500 �1.500 �1.61 98.4 0.4, 1.2 95.3 2.7, 2.0 95.5 2.4, 2.1

3.000 �3.000 �3.20 97.3 0.1, 2.6 96.1 2.3, 1.6 96.5 1.5, 2.0

4.0 2.5 13.750 8.250 8.81 94.4 5.6, 0.0 95.9 1.9, 2.2 95.6 2.6, 1.8

8.250 2.750 2.95 96.7 3.3, 0.0 95.7 2.3, 2.0 95.6 2.6, 1.8

5.500 0.000 0.04 98.2 1.6, 0.2 95.4 2.1, 2.5 95.6 2.1, 2.3

4.125 �1.375 �1.41 97.4 1.5, 1.1 95.9 2.0, 2.1 95.4 2.6, 2.0

2.750 �2.750 �2.87 97.0 0.5, 2.5 96.4 1.8, 1.8 96.1 2.0, 1.9

2.0 2.5 8.750 5.250 5.52 94.4 5.6, 0.0 96.1 2.3, 1.6 95.5 3.1, 1.4

5.250 1.750 1.83 97.0 2.9, 0.1 95.9 2.8, 1.3 95.9 3.0, 1.1

3.500 0.000 �0.01 98.3 1.2, 0.5 95.3 2.8, 1.9 95.4 2.8, 1.8

2.625 �0.875 �0.94 98.1 0.7, 1.2 95.6 2.3, 2.1 95.4 2.5, 2.1

1.750 �1.750 �1.85 96.2 0.6, 3.2 95.4 2.6, 2.0 95.3 2.4, 2.3

APy cAP
SA BCa ln(1 – AP)y MOVER

Rate 95% CI Rate 95% CI Rate 95% CI Rate 95% CI

4.0 5.0 20.000 0.60 0.58 95.7 0.3, 4.0 96.0 2.0, 2.0 96.7 2.3, 1.0 96.1 3.0, 0.9

12.000 0.33 0.30 95.0 0.1, 4.9 96.1 1.7, 2.2 96.2 2.1, 1.7 95.4 3.4, 1.2

8.000 0.00 �0.05 94.8 0.0, 5.2 95.9 2.0, 2.1 95.8 2.6, 1.6 95.6 3.4, 1.0

6.000 �0.33 �0.41 95.0 0.0, 5.0 95.5 2.6, 1.9 95.7 2.7, 1.6 95.2 3.7, 1.1

4.000 �1.00 �1.12 94.5 0.1, 5.4 95.5 2.6, 1.9 95.3 3.0, 1.7 94.9 3.8, 1.3

2.0 5.0 15.000 0.60 0.58 93.9 0.1, 6.0 96.8 2.1, 1.1 96.7 2.2, 1.1 96.6 2.5, 0.9

9.000 0.33 0.30 95.5 0.0, 5.0 96.5 2.1, 1.4 96.1 2.4, 1.5 96.2 2.9, 0.9

6.000 0.00 �0.06 94.5 0.0, 5.5 96.0 2.8, 1.2 96.1 3.1, 0.8 95.1 4.2, 0.7

4.500 �0.33 �0.42 94.3 0.0, 5.7 95.8 2.5, 1.7 95.6 3.0, 1.4 94.8 4.3, 0.9

3.000 �1.00 �1.15 94.8 0.0, 5.2 96.0 2.5, 1.5 95.4 3.0, 1.6 95.1 3.9, 1.0

4.0 2.5 13.750 0.60 0.58 94.6 0.2, 5.2 96.5 1.6, 1.9 96.0 2.4, 1.6 95.8 2.9, 1.3

8.250 0.33 0.31 95.0 0.1, 4.9 96.3 1.8, 1.9 95.5 2.6, 1.9 95.4 3.0, 1.6

5.500 0.00 �0.05 94.5 0.2, 5.3 95.8 2.0, 2.2 95.8 2.6, 1.6 95.0 3.7, 1.3

4.125 �0.33 �0.41 95.0 0.0, 5.0 95.6 2.4, 2.0 95.4 3.1, 1.5 95.0 3.8, 1.2

2.750 �1.00 �1.13 95.2 0.0, 4.8 95.7 2.5, 1.8 95.4 3.2, 1.4 94.8 3.9, 1.3

2.0 2.5 8.750 0.60 0.58 94.9 0.3, 4.8 96.2 2.2, 1.5 96.1 2.5, 1.4 95.9 3.2, 0.9

5.250 0.33 0.30 95.0 0.0, 5.0 96.8 2.1, 1.1 96.3 2.7, 1.0 96.0 3.2, 0.8

3.500 0.00 �0.06 94.4 0.0, 5.6 96.0 2.5, 1.5 95.4 3.4, 1.2 95.1 3.8, 1.1

2.625 �0.33 �0.42 94.2 0.0, 5.8 95.7 2.7, 1.6 95.2 3.6, 1.2 95.0 4.2, 0.8

1.750 �1.00 �1.16 94.1 0.1, 5.8 95.9 2.3, 1.8 95.2 3.0, 1.8 94.0 4.9, 1.1

* Each entry is the coverage rate (left miscoverage, right miscoverage) based on 250 cases and 250 controls. The

bias-corrected and accelerated (BCa) bootstrap approach was based on 1,000 resamples. The proportions of

controls exposed to 10, 01, and 11 were 0.1, 0.2, and 0.1, respectively.

y OR, odds ratio; RERI, relative excess risks due to interaction; SA, simple asymptotic; MOVER, method of

variance estimates recovery; CI, confidence interval; AP, attributable proportion due to interaction; ln(1 – AP),

natural log of (1 – AP).
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TABLE 2. Coverage properties of the 95% two-sided confidence intervals for relative excess risks due to

interaction and attributable proportion due to interaction based on 1,000 runs*

OR10y OR01 OR11 RERIy bRERI
SAy MOVERy

Rate 95% CIy Rate 95% CI

4.0 5.0 20.000 12.000 12.18 94.8 4.7, 0.5 95.8 2.6, 1.6

12.000 4.000 4.09 95.6 3.5, 0.9 95.5 2.4, 2.1

8.000 0.000 0.05 96.1 2.5, 1.4 95.1 2.5, 2.4

6.000 �2.000 �1.97 95.7 1.9, 2.4 95.0 2.2, 2.8

4.000 �4.000 �4.00 95.4 0.9, 3.7 95.4 1.4, 3.2

2.0 5.0 15.000 9.000 9.12 95.1 4.4, 0.5 95.5 2.7, 1.8

9.000 3.000 3.06 96.3 2.6, 1.1 95.6 2.2, 2.2

6.000 0.000 0.03 97.1 1.5, 1.4 96.4 1.6, 2.0

4.500 �1.500 �1.49 96.5 1.2, 2.3 95.8 1.8, 2.4

3.000 �3.000 �3.01 95.2 0.8, 4.0 95.6 1.5, 2.9

4.0 2.5 13.750 8.250 8.38 95.4 4.2, 0.4 96.1 2.7, 1.2

8.250 2.750 2.82 95.3 3.6, 1.1 94.6 3.1, 2.3

5.500 0.000 0.04 96.6 2.3, 1.1 95.6 2.3, 2.1

4.125 �1.375 �1.36 95.3 2.3, 2.4 94.6 2.6, 2.8

2.750 �2.750 �2.74 95.8 1.1, 3.1 95.5 1.7, 2.8

2.0 2.5 8.750 5.250 5.32 95.1 4.4, 0.5 96.0 2.6, 1.4

5.250 1.750 1.79 95.5 3.0, 1.5 95.6 2.6, 1.8

3.500 0.000 0.02 96.4 2.3, 1.3 95.6 2.3, 2.1

2.625 �0.875 �0.86 96.1 1.2, 2.7 95.8 1.6, 2.6

1.750 �1.750 �1.76 95.8 1.0, 3.2 95.8 1.6, 2.6

APy cAP
SA ln(1 – AP)y MOVER

Rate 95% CI Rate 95% CI Rate 95% CI

4.0 5.0 20.000 0.60 0.60 94.8 1.2, 4.0 94.9 3.0, 2.1 94.8 3.2, 2.0

12.000 0.33 0.33 95.0 1.1, 3.9 95.1 2.3, 2.6 95.1 2.8, 2.1

8.000 0.00 �0.01 94.6 1.2, 4.2 95.3 2.7, 2.0 95.4 3.0, 1.6

6.000 �0.33 �0.34 94.9 1.0, 4.1 95.4 2.8, 1.8 95.2 3.1, 1.7

4.000 �1.00 �1.01 95.3 0.8, 3.9 95.9 2.1, 2.0 95.8 2.3, 1.9

2.0 5.0 15.000 0.60 0.60 95.2 0.9, 3.9 95.1 2.4, 2.5 95.3 2.6, 2.1

9.000 0.33 0.33 94.1 0.8, 5.1 95.5 2.0, 2.5 95.3 2.4, 2.3

6.000 0.00 �0.01 94.9 0.9, 4.2 96.2 1.9, 1.9 96.2 2.3, 1.5

4.500 �0.33 �0.34 95.3 1.1, 3.6 95.9 2.0, 2.1 96.0 2.1, 1.9

3.000 �1.00 �1.02 95.1 0.6, 4.3 95.6 2.1, 2.3 95.5 2.5, 2.0

4.0 2.5 13.750 0.60 0.60 95.3 1.1, 3.6 95.6 2.7, 1.7 95.6 2.8, 1.6

8.250 0.33 0.33 94.6 1.2, 4.2 94.5 2.9, 2.6 94.7 3.0, 2.3

5.500 0.00 �0.01 95.1 1.2, 3.7 95.6 2.4, 2.0 95.5 2.7, 1.8

4.125 �0.33 �0.34 95.2 1.0, 3.8 94.7 3.0, 2.3 94.9 3.0, 2.1

2.750 �1.00 �1.01 94.7 0.7, 4.6 95.6 2.1, 2.3 95.7 2.5, 1.8

2.0 2.5 8.750 0.60 0.60 94.3 0.7, 5.0 95.0 2.1, 2.9 95.2 2.3, 2.5

5.250 0.33 0.33 94.3 1.0, 4.7 95.4 2.3, 2.3 95.4 2.5, 2.1

3.500 0.00 �0.01 95.5 0.7, 3.8 95.8 2.5, 1.7 95.5 3.0, 1.5

2.625 �0.33 �0.34 95.4 0.7, 3.9 95.4 2.5, 2.1 95.7 2.9, 1.4

1.750 �1.00 �1.02 95.9 0.6, 3.5 96.2 2.1, 1.7 95.5 3.0, 1.5

* Each entry is the coverage rate (left miscoverage, right miscoverage) based on 1,000 cases and 1,000 controls.

The bias-corrected and accelerated (BCa) bootstrap approach was based on 1,000 resamples. The proportions of

controls exposed to 10, 01, and 11 were 0.1, 0.2, and 0.1, respectively.

y OR, odds ratio; RERI, relative excess risks due to interaction; SA, simple asymptotic; MOVER, method of

variance estimates recovery; CI, confidence interval; AP, attributable proportion due to interaction; ln(1 – AP),

natural log of (1 – AP).
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TABLE 3. Coverage properties of the 95% two-sided confidence intervals for relative excess risks due to

interaction and attributable proportion due to interaction based on 1,000 runs*

OR10y OR01 OR11 RERIy bRERI
SAy MOVERy

Rate 95% CIy Rate 95% CI

4.0 5.0 20.000 12.000 13.7 94.5 5.5, 0 94.1 3.5, 2.4

12.000 4.000 4.35 97.8 2.2, 0 94.2 3.9, 1.9

8.000 0.000 0.12 100 0, 0 95.0 3.0, 2.0

6.000 �2.000 �2.35 99.6 0.1, 0.3 94.9 3.1, 2.0

4.000 �4.000 �4.42 98.2 0, 1.8 95.7 2.9, 1.4

2.0 5.0 15.000 9.000 10.02 94.9 5.1, 0 94.5 4.1, 1.4

9.000 3.000 3.06 98.2 1.8, 0 94.3 4.2, 1.5

6.000 0.000 �0.07 99.6 0.4, 0 96.0 2.5, 1.5

4.500 �1.500 �1.75 99.4 0.1, 0.5 95.5 2.2, 2.3

3.000 �3.000 �3.28 98.3 0, 1.7 95.6 2.5, 1.9

4.0 2.5 13.750 8.250 8.94 94.9 5.1, 0 94.1 4.3, 1.6

8.250 2.750 3.03 98.0 2.0, 0 95.4 3.3, 1.3

5.500 0.000 �0.04 99.4 0.5, 0.1 93.5 4.3, 2.2

4.125 �1.375 �1.75 99.7 0, 0.3 94.5 3.8, 1.7

2.750 �2.750 �3.11 98.7 0.1, 1.2 95.6 2.6,1.8

2.0 2.5 8.750 5.250 5.32 95.2 4.8, 0 94.6 4.2, 1.2

5.250 1.750 1.85 99.0 1.0, 0 96.0 2.5, 1.5

3.500 0.000 �0.19 99.4 0.5, 0.1 94.5 4.0, 1.5

2.625 �0.875 �1.00 98.9 0.5, 0.6 94.4 3.3, 2.3

1.750 �1.750 �2.10 98.0 0.1, 1.9 94.6 4.3, 1.1

APy cAP
SA ln(1 – AP)y MOVER

Rate 95% CI Rate 95% CI Rate 95% CI

4.0 5.0 20.000 0.60 0.55 92.9 0, 7.1 94.3 3.9, 1.8 92.9 6.0, 1.1

12.000 0.33 0.25 93.3 0, 6.7 95.0 3.1, 1.9 93.2 5.4, 1.4

8.000 0.00 �0.10 92.6 0, 7.4 95.6 2.4, 2.0 95.0 4.0, 1.0

6.000 �0.33 �0.51 93.2 0, 6.8 95.0 3.2, 1.8 93.9 4.8, 1.3

4.000 �1.00 �1.26 92.2 0, 7.8 96.3 2.4,1.3 93.9 5.4, 0.7

2.0 5.0 15.000 0.60 0.56 91.8 0, 8.2 95.9 2.4, 1.7 95.1 3.8, 1.1

9.000 0.33 0.23 91.8 0, 8.2 95.2 3.0, 1.8 93.5 5.3, 1.2

6.000 0.00 �0.12 93.1 0, 6.9 96.3 2.2, 1.5 94.9 3.9, 1.2

4.500 �0.33 �0.51 91.7 0, 8.3 95.9 2.0, 2.1 94.5 3.9, 1.6

3.000 �1.00 �1.26 92.2 0, 7.8 96.3 2.2, 1.5 94.6 4.2, 1.2

4.0 2.5 13.750 0.60 0.54 93.6 0, 6.4 95.4 3.0, 1.6 93.5 5.5, 1.0

8.250 0.33 0.26 92.6 0, 7.4 95.6 2.4, 2.0 94.5 4.2, 1.3

5.500 0.00 �0.13 92.2 0, 7.8 94.3 3.7, 2.0 92.6 5.8, 1.6

4.125 �0.33 �0.56 93.2 0, 6.8 94.9 3.3, 1.8 92.7 6.1, 1.2

2.750 �1.00 �1.34 93.3 0, 6.7 95.2 3.0, 1.8 93.0 5.8, 1.2

2.0 2.5 8.750 0.60 0.52 93.6 0, 6.4 94.7 3.8, 1.5 92.3 7.1, 0.6

5.250 0.33 0.24 93.1 0, 6.9 96.2 2.3, 1.5 94.2 5.1, 0.7

3.500 0.00 �0.18 93.1 0, 6.9 94.9 3.6, 1.5 92.0 7.0, 1.0

2.625 �0.33 �0.53 92.3 0, 7.7 95.2 2.4, 2.4 92.2 6.1, 1.7

1.750 �1.00 �1.44 93.6 0, 6.4 95.8 3.5, 0.7 90.4 9.4, 0.2

* Each entry is the coverage rate (left miscoverage, right miscoverage) based on 250 cases and 250 controls. The

proportions of controls exposed to 10, 01, and 11 were all set to 0.05.

y OR, odds ratio; RERI, relative excess risks due to interaction; SA, simple asymptotic; MOVER, method of

variance estimates recovery; CI, confidence interval; AP, attributable proportion due to interaction; ln(1 – AP),

natural log of (1 – AP).
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probabilities of controls exposed to G alone, E alone, and
both G and E were 0.05, 0.05, and 0.05, respectively.

Because the main focus was on the extent to which the
empirical coverage of the CI matched with the nominal 95
percent level, the first criterion was whether or not the cov-
erage rate was within the range of 93.6–96.4 percent. The
difference between the two miscoverage rates was the second
criterion, where smaller differences were preferred. The rea-
son to set balanced miscoverage errors as the second criterion
is that a CI should contain possible parameter values that are
not too large and not too small. An advertised 95 percent CI is
supposed to miss about 2.5 percent from each side.

The coverage rate for each method was calculated as the
proportion of the 1,000 CIs constructed that contained the
values of the additive interaction. The left miscoverage rate
was obtained by calculating the proportion of the upper
limits that were less than the parameter value, while the
right miscoverage rate was obtained as the proportion of
the lower limits larger than the parameter value.

The results in table 1 show that, for RERI, the SA approach
missed the target coverage range of 93.6–96.4 percent in 14
of 20 cases. The poor performance is more pronounced when
the miscoverage rates are considered. In contrast, the
MOVER approach provided coverage rates that are all in
the range, with only a single one with 96.5 percent. The over-
all performance is very comparable to that of the bootstrap.

For AP, the SA approach actually provides overall cover-
age rates that are within the range, but in a lop-sided manner.
In particular, the high right miscoverage rates indicate that
this approach tends to provide lower confidence limits that
are too high. A possible consequence is false positive re-
sults. Table 1 also demonstrates that the MOVER approach
and the ln(1 � AP) approach provided slightly better cov-
erage results, but the miscoverage rates are not balanced as
is the case for the bootstrap approach. Nonetheless, these
miscoverage rates seem to be reasonable from a practical
perspective. Table 2 shows that increasing sample sizes to
2,000 subjects can have only a limited effect in improving
the performance of the SA approach, especially when the
miscoverage rates are considered.

As predicted by the theoretical results above, further sim-
ulation results with small exposure probabilities (table 3)
demonstrate that, for RERI, the MOVER approach per-
formed satisfactorily, while the SA deteriorated. Interest-
ingly, the ln(1 � AP) approach performed very well. These
results also demonstrate that there exists room for improve-
ment in the case of AP when the exposure probabilities are
small. Since the MOVER approach draws its validity for
the confidence limits for ORs, future research may focus on
adopting better CIs for OR (19) or for RR (20).

EXAMPLES

Example 1: negative confidence limits for ORs used by
the SA method to obtain those for RERI

This example concerns smoking and alcohol use in relation
to oral cancer among male veterans (8; 14, chapter 15). The
data are presented in a four-by-two table in figure 4. An
application of the naive SA method results in a 95 percent

CI of �1.83, 9.31 for RERI (8). As discussed above, this CI
is a consequence of applying symmetric intervals for ORs in
equations 1 and 2. In other words, the SA method has im-
plicitly used a symmetric interval for OR given by

OR7za=2OR
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
varðln ORÞ

p
. For the data in figure 4, such an

approach provides 95 percent CIs for OR11, OR10, and OR01

as�2.07, 20.12;�1.86, 8.52; and�1.40, 7.32, respectively.
This hidden feature of the SA method has escaped notice for
the past 16 years, although it is well known that a better

interval for OR is given by ORexpð7za=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
varðln ORÞ

p
Þ.

For the data at hand, the CIs for the above three ORs are
2.64, 30.9; 0.70, 15.84; and 0.68, 12.89, respectively. It is
interesting to note that these limits were presented in the
article by Hosmer and Lemeshow (8, p. 454), but the SA
method has no ability to use them. Applying these asym-
metric intervals to equations 1 and 2 yields a 95 percent CI
of �11.41, 21.84 for RERI.

Example 2: falsely claimed interaction resulting from
the SA method

Consider a data set arising from a case-cohort design in
the Atherosclerosis Risk in Communities (ARIC) Study (21,
22), where it is of interest to determine the interaction be-
tween a susceptibility genotype, glutathione S-transferase
M1 polymorphism (GSTM1), and smoking on the risk of
incident coronary heart disease. A total of 458 incident
cases of coronary heart disease occurred in the population
of 14,239 eligible participants during the period from 1989

FIGURE 4. Calculation of 95% confidence intervals (CIs) for relative
excess risks due to interaction (RERI) by use of data from example 1.
OR, odds ratio; SA, simple asymptotic; MOVER, method of variance
estimates recovery.
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to the end of 1993. A cohort of 986 participants including 36
incident cases were selected from the eligible population.
Excluding 118 subjects with missing GSTM1 data, the final
sample of 1,290 with the outcome variable ‘‘time to coro-
nary heart disease diagnosis’’ was analyzed by Cox propor-
tional hazards regression, taking into account the feature of
the case-cohort design by using a weighting scheme (23).

Specifically, the weights in the denominator of the pseudo-
likelihood are one for cases that arise outside the subcohort
and the inverse of the sampling fraction for subcohort con-
trols. In addition, the subcohort cases are weighted by the
inverse of the sampling fraction before failure and by one at
failure. Valid variances can then be estimated using the
sandwich error approach (23).

FIGURE 5. Calculation of 95% confidence intervals (CIs) for measures of additive interaction by use of data from examples 2 and 3. GSTM1,
glutathione S-transferase M1 polymorphism; G 3 S, product term for GSTM1 and smoking; RERI, relative excess risks due to interaction; AP,
attributable proportion due to interaction; SA, simple asymptotic; MOVER, method of variance estimates recovery; BMI, body mass index.
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After adjustment for 10 covariates, it was reported (12)
that the estimated coefficients for the GSTM1 susceptibility
genotype (yes/no), ever smoking (yes/no), and their product
term are given, respectively, by b̂1 ¼ 0:0543, b̂2 ¼ 0:2826,
and b̂3 ¼ 0:5869. Application of the MOVER approach
with the use of figure 5 results in a 95 percent CI for RERI
of �0.013, 2.505. On the basis of the simulation results
presented above, one should doubt that ‘‘we found a statis-
tically significant additive interaction between susceptibility
genotype and ever smoking for the risk of incident CHD
[coronary heart disease]’’ (12, p. 232), which was based
on the CI of 0.052, 2.222 that was derived using the SA
method. As regards to attributable fraction due to interac-
tion, the MOVER approach also provided a 95 percent CI of
�0.023, 0.729, which is very comparable to that from the
ln(1 � AP) transformation method: �0.025, 0.706, but very
different from the one provided by the SA method: 0.108,
0.794. (Note that reference 12 contains errors in the expres-
sion for cAP). Again, there is no sufficient evidence to sug-
gest additive interaction as claimed (12, 22).

Example 3: exaggerated interaction using ORs in
a cohort study

This data set arose from a cohort study in which it was of
interest to investigate the effect of age and body mass index
(weight (kg)/height (cm)2) on diastolic blood pressure (17).
To form a four-by-two table, we coded age �40 years as 1
and age <40 years as 0, while body mass index �25 was
coded as 1 and body mass index <25 as 0. The outcome,
diastolic blood pressure�90 mmHg, was classified as hyper-
tension and coded as 1, and <90 mmHg was coded as 0. The
four-by-two table and associated calculation are given in fig-
ure 5. Although the RERI ¼ 1.3 in terms of RRs, the data
were analyzed by logistic regression with the percentile boot-
strap, resulting in a RERI of 2.7 (95 percent CI: 1.3, 4.4) (17).

As the measures of interaction are defined in terms of
RRs, it is much more appropriate to discuss additive inter-
action in terms of RRs when it is possible, using either re-
gression programs (15, 16) or the formulas presented here
(figure 5). With figure 5, the estimated RERI is 1.34 (95
percent CI: 0.31, 2.37), and AP is 21.5 percent (95 per-
cent CI: 5.6, 34.6). When estimating measures of interaction
in terms of ORs, the new approach would result in RERI ¼
2.71 (95 percent CI: 1.25, 4.45) and AP ¼ 33.0 percent (95
percent CI: 16.1, 46.0). Although the direction of the in-
teraction would be unchanged, the magnitude would be ex-
aggerated if ORs were used as the effect measure (17). The
intuitive explanation is that the first term in RERI is a prod-
uct of three RRs, and thus a slight exaggeration of each will
result in a large overestimation of RERI.

Concluding remarks

This article has proposed a simple approach to construc-
tion of confidence intervals for measures of additive inter-
action. This approach works because it acknowledges the
fact that confidence limits for risk ratios are asymmetric.
The article has also demonstrated that one can appropriately

analyze the four-by-two table without having to use a statis-
tical program. In the case of multivariable models, there is
no need to recode the risk variables prior to using a regres-
sion program (8–11).

Furthermore, this article has shown that the RR should
always be the first choice of effect measure for single risk
factors because, as shown in the third example (17), the
exaggeration of the OR can be more pronounced in assess-
ing additive interaction. Regression models resulting in
RR should be adopted if covariate adjustment is desired
(15, 16, 24).

Although additive regression models are available for
assessing additive interaction (25), multiplicative models
are still more accessible and commonly used by epidemiol-
ogists (26), even when assessment of additive interaction is
desired (14, chapter 15). This may be in part because addi-
tive models require specialized software to fit, and in part
because it is straightforward to estimate measures of addi-
tive interaction using routinely available output from mul-
tiplicative software (14, chapter 15). The results in this
article help to remove the obstacle of CI construction for
measures of additive interaction and thus face a real chal-
lenge of gene-environment interaction, that is, conducting
appropriate inferences for disease prevention (5–7).
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APPENDIX

Construction of Confidence Interval for Linear
Functions of Parameters

Recall that the asymmetric confidence limits for RRs are
readily available either by hand calculation or from regres-
sion programs. The strategy here is to use these limits to
recover the variance estimates, without destroying the asym-
metric feature of sampling distribution for RRs, in setting
confidence intervals for a linear function of several RRs.
The underlying principle has been discussed in the case of

constructing CIs for differences between two parameters in
general (20) and applied to correlations in particular (27). A
summary is presented here followed by a generalized frame-
work for a linear combination of parameters.

To begin, consider construction of a (1 � a)100 percent
two-sided confidence interval for h1 þ h2, where the two
estimates ĥ1 and ĥ2 are for the moment assumed to be in-
dependently distributed. The lower limit may be given by

L¼ðĥ1þ ĥ2Þ� za=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
varðĥ1Þþvarðĥ2Þ

q
; ðA1Þ

and the upper limit by

U¼ðĥ1þ ĥ2Þþ za=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
varðĥ1Þþvarðĥ2Þ

q
; ðA2Þ

where za/2 denotes the upper a/2 quantile from the standard
normal distribution.

Equations A1 and A2 contain unknown terms varðĥiÞ (i¼
1, 2), which may be estimated by two approaches: one as-
sumes that varðĥiÞ is independent of hi, while the other
makes no such assumption. Confidence limits from the
former are symmetric, and those from the latter are asym-
metric and usually perform better (3, p. 180). The focus here
is to derive asymmetric confidence intervals since the vari-
ance for the estimated RR is a function of RR itself.

By the duality between hypothesis testing and confidence
interval construction, a (1 – a)100 percent two-sided CI
should contain all such parameter values that cannot be
rejected by a test at the a level (3, p. 157). In other words,
L is the minimum value of h1 þ h2, satisfying

½ðĥ1þ ĥ2Þ�ðh1þh2Þ�2

varðĥ1þ ĥ2Þ
¼ z

2
a=2:

To reflect the fact that variance for ĥ1 þ ĥ2 in general de-
pends on the true parameter value h1 þ h2, the variance
estimate for obtaining L should be estimated in the neigh-
borhood of L, or min(h1) þ min(h2). Among the plausible
values provided by the two pairs of confidence limits (l1, u1

and l2, u2), h1 þ h2 ¼ l1 þ l2 is close to L. This implies that
the variance can be estimated at h1 ¼ l1 and h2 ¼ l2.

Again, by the duality of hypothesis testing and confidence
interval construction,

li¼ ĥi� za=2

ffiffiffiffiffiffiffiffiffiffiffiffiffifficvarðĥiÞ
q

; i¼ 1;2;

which recovers the variance estimates as

cvarðĥiÞ¼
ðĥi� liÞ2

z
2
a=2

:

Plugging these estimates back into equation A1 yields

L¼ðĥ1þ ĥ2Þ�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðĥ1� l1Þ2þðĥ2� l2Þ2

q
: ðA3Þ

Analogous arguments result in the upper limit

U¼ðĥ1þ ĥ2Þþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðu1� ĥ1Þ2þðu2� ĥ2Þ2

q
: ðA4Þ
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Equations A3 and A4 may be extended to h1 – h2 ¼ h1 þ
(–h2) by recognizing that the confidence limits for –hi are
given by (–ui, –li). These equations may also be extended to
incorporate dependency between ĥ1 and ĥ2. Let
r ¼dcorrðĥ1; ĥ2Þ, and then a confidence interval for h1 þ
h2 is given by

L¼ðĥ1þ ĥ2Þ

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðĥ1� l1Þ2þðĥ2� l2Þ2þ2rðĥ1� l1Þðĥ2� l2Þ

q
ðA5Þ

and

U¼ðĥ1þ ĥ2Þ

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðu1� ĥ1Þ2þðu2� ĥ2Þ2þ2rðu1� ĥ1Þðu2� ĥ2Þ

q
:

ðA6Þ
By mathematical induction (28, pp. 28–29), it can be

shown that a (1 – a)100 percent confidence interval (L, U)
for
P

i cihi, where ci’s are constants, is given by

L¼
X

i

ciĥi

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX

i

ciĥi�minðcili;ciuiÞ
h i2

þ2covL

s
; ðA7Þ

where

covL¼
X
i<j

sgnðcicjÞrij ciĥi�minðcili;ciuiÞ
h i

3 cjĥj�minðcjlj;cjujÞ
h i

and

U¼
X

i

ciĥi

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX

i

ciĥi�maxðcili;ciuiÞ
h i2

þ2covU

s
; ðA8Þ

where

covU ¼
X
i<j

sgnðcicjÞrij ciĥi�maxðcili;ciuiÞ
h i

3 cjĥj�maxðcjlj;cjujÞ
h i

and

sgnðcicjÞ¼
(
þ1; if ci 3cj > 0
�1; if ci 3cj < 0:
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SUMMARY

The lognormal distribution has frequently been applied to approximate environmental data, with inference focusing
on arithmetic means. Confidence interval estimation involving lognormal means in small to moderate sample sizes
has received much attention over the years without a simple procedure in sight. We therefore propose a closed-form
procedure for constructing confidence intervals for a lognormal mean and a difference between two lognormal
means. The advantage of our procedure is that it only requires confidence limits for a normal mean and variance.
The results of a numerical study show that our method performs as well as the generalized confidence interval (GCI)
approach, which relies completely on computer simulation. Two real datasets are used to illustrate the methodology.
Copyright © 2008 John Wiley & Sons, Ltd.

key words: generalized confidence interval; log-normal; coverage; bootstrap

1. INTRODUCTION

It has become a tradition to fit the lognormal distribution to empirical data in environmental sciences
(e.g., El-Shaarawi and Viveros, 1997; El-Shaarawi and Lin, 2007), due largely to the multiplicative
central limit theorem (Limpert et al., 2001) in the sense that multiplication of a large number of random
variables will result in a composite variable which can be approximated by the lognormal distribution.

A simple approach to analyzing lognormal data would be to log-transfer the data prior to employing
standard statistical methods. The resultant inference would then be in terms of the median, which is less
than the mean, and thus may provide substantial underestimates if the mean is the parameter of interest.

Inference in terms of lognormal means has received widespread attention in the literature, with two
volumes devoted to the topic (Aitchison and Brown, 1957; Crow and Shimizu, 1988). Statistical methods
for inference involving lognormal means have also appeared frequently in this journal, ranging from
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computationally intensive methods such as the Gibbs sampler and bootstraps (Wild et al., 1996) to a
t-distribution-based method (El-Shaarawi and Lin, 2007). It seems evident that the results for single
lognormal means are not entirely satisfactory. Furthermore, there has not been much discussion on
methods of comparing two lognormal means.

The purpose of this paper is to present a closed-form confidence interval procedure for a single
lognormal mean and a difference between two lognormal means. We show that this closed-form proce-
dure, requiring only confidence limits for a normal mean and variance, performs at least as well as the
generalized confidence interval (GCI) approach which relies entirely on computer simulation.

The rest of the paper is structured as follows. Section 2 presents the new procedure, after summarizing
the GCI (Krishnamoorthy and Mathew, 2003) and the modified Cox method (Armstrong, 1992; El-
Shaarawi and Lin, 2007). In Section 3, we perform simulation studies to compare the performance of
our method with previous ones. Two real datasets in an environmental context are used to illustrate the
methods in Section 4. The paper closes with a discussion.

2. METHODS

Let Y1, Y2, . . . , Yn be independent and identically distributed (iid) as lognormal with parameters µ and
σ2. This is to say that the log-transformed variables X1 = ln Y1, X2 = ln Y2, . . . , Xn = ln Yn are iid
normal, denoted here as N(µ, σ2). It is well known that the lognormal mean is M = E(Y ) = exp(µ +
σ2/2), estimated by

M̂ = exp
(
x̄ + s2/2

)
where x̄ and s2 are the sample mean and variance obtained using the log-transformed observations. Note
that x̄ and s2 are independent of each other.

2.1. Confidence interval for a single lognormal mean

2.1.1. Existing methods. Land (1971) proposed an exact confidence interval by inverting the uniformly
most powerful unbiased test. The procedure is computationally tedious and requires extensive tables.
Thus, Land (1972) searched for simple approximate approaches and ended up with the one suggested by
DR Cox in a personal communication showing promising performance. This method uses the property
that x̄ and s2 are independent, with respective variances given by s2/n and s4/[2(n − 1)]. Thus, as n
becomes large, the 100(1 − α)% confidence limits for µ + σ2/2 are given by

[
x̄ + s2/2

] ± z1−α/2

√
s2/n + s4/[2(n − 1)]

where z1−α/2 is the 1 − α/2 quantile of the standard normal distribution. These limits can then be
exponentiated to obtain a confidence interval for exp(µ + σ2/2).

As pointed by Land (1972), this method is not entirely satisfactory, particularly in the case of small n
or large σ2. To improve the performance in small samples, Armstrong (1992) and El-Shaarawi and Lin
(2007) suggested replacing z1−α/2 with critical values from the t-distribution. This approach ignores
the fact that the sampling distribution for s2, which is distributed as chi-squared, is right-skewed.
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Recently, a computer simulation-based method termed GCI appeared to perform very well. Krish-
namoorthy and Mathew (2003) provide an algorithm as follows:

1. Obtain x̄ and s2 from log-transformed data.
2. Compute

T = exp

(
x̄ − Z

U/
√

n − 1
· s√

n
+ s2

2U2/(n − 1)

)

where Z and U2 are random numbers generated independently from the standard normal and chi-
square distribution with n − 1 degrees of freedom, respectively.

3. Repeat step 2 a large number (m) of times.
4. Sort the values of T. The m(α/2)th and m(1 − α/2)th values are the 100(1 − α)% confidence limits

for exp(µ + σ2/2).

2.1.2. The proposed method. Before presenting our method for a single lognormal mean, we propose
a general approach to setting confidence limits for a sum of two parameters, θ1 + θ2.

The conventional 100(1 − α)% two-sided limits are

θ̂1 + θ̂2 − z1−α/2

√
var(θ̂1) + var(θ̂2)

and

θ̂1 + θ̂2 + z1−α/2

√
var(θ̂1) + var(θ̂2)

assuming θ̂1 and θ̂2 are independent of each other. Besides the application of the central limit theorem,
these limits are immediate results of assuming θ̂i (i = 1, 2) and var(θ̂i) are statistically independent of
each other. Except for a normal mean x̄, this is unlikely to hold in general.

Our idea is to exploit the dependence between θ̂i and var(θ̂i) in confidence interval construction.
Specifically, we strive to estimate the variance of θ̂1 + θ̂2 in the vicinity of the limits (L, U) for θ1 + θ2.

By the duality between hypothesis testing and confidence interval construction, we recognize L as
the minimum and U as the maximum value of θ1 + θ2 such that

[
θ̂1 + θ̂2 − (θ1 + θ2)

]2

var(θ̂1) + var(θ̂2)
≈ z2

1−α/2 (1)

Thus, we should estimate the variances for θ̂1 and θ̂2 in the vicinity of min(θ1 + θ2) for L and that of
max(θ1 + θ2) for U.

Now suppose the confidence limits for θi are readily obtained as (li, ui), for i = 1, 2. Among the
plausible values provided by the two pairs of confidence limits (l1, u1) and (l2, u2), the plausible mini-
mum is l1 + l2 and the plausible maximum is u1 + u2. This implies that to obtain L, we need to estimate
var(θ̂1) + var(θ̂2) under the condition θ1 = l1 and θ2 = l2. Similarly, to obtain U, we need to estimate
var(θ̂1) + var(θ̂2) under the condition θ1 = u1 and θ2 = u2.
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Again by the duality between hypothesis testing and confidence interval construction, li is min(θi)
satisfying

(
θ̂i − li

)2

var(θ̂i)
≈ z2

1−α/2

which results in the estimated variance v̂ar(θ̂i) under the condition θi = li of

v̂arl(θ̂i) ≈
(
θ̂i − li

)2

z2
1−α/2

Similarly, the estimated variance v̂ar(θ̂i) under the condition θi = ui is

v̂aru(θ̂i) ≈
(
ui − θ̂i

)2

z2
1−α/2

Substituting these variance estimates back into Equation (1) yields the confidence limits (L, U) for
θ1 + θ2 as

L = θ̂1 + θ̂2 −
√

(θ̂1 − l1)2 + (θ̂2 − l2)2

U = θ̂1 + θ̂2 +
√

(u1 − θ̂1)2 + (u2 − θ̂2)2
(2)

These limits can now be applied in the current context, where θ1 = µ and θ2 = σ2/2, with re-
spective confidence intervals given by (l1, u1) = (x̄ − z1−α/2

√
s2/n, x̄ + z1−α/2

√
s2/n) and (l2, u2) =[

(n−1)s2

2χ2
1−α/2,n−1

,
(n−1)s2

2χ2
α/2,n−1

]
. Exponentiation of these limits yields a confidence interval for the lognormal

mean. Specifically, the limits (LL, UL) are given by

LL = M̂ exp

−
z2

1−α/2s
2

n
+

(
s2

2
− (n − 1)s2

2χ2
1−α/2,n−1

)2
1/2

 (3)

and

UL = M̂ exp


z2

1−α/2s
2

n
+

(
(n − 1)s2

2χ2
α/2,n−1

− s2

2

)2
1/2

 (4)
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The Cox method can be obtained the same way by replacing the confidence interval for σ2/2 with

(l2, u2) =
(

s2

[
1

2
− z1−α/2

√
1

2(n − 1)

]
, s2

[
1

2
+ z1−α/2

√
1

2(n − 1)

])

This is equivalent to treating the confidence interval of σ2 as symmetric, indicating that for n < 8 a
95% confidence interval contains negative variance values. Replacing z1−α/2 with the t-value will not
reduce the problem since the t1−α/2,n−1 is larger than that of a Normal distribution.

2.2. Confidence intervals for a difference between two lognormal means

Denoting a difference between two lognormal means as

� = exp(µ1 + σ2
1/2) − exp(µ2 + σ2

2/2)

the correspondent estimator is

�̂ = exp(x̄1 + s2
1/2) − exp(x̄2 + s2

2/2)

with (x̄1, s
2
1) and (x̄2, s

2
2) computed from the log-transformed observations from two independent

samples.

2.2.1. Generalized confidence interval approach. Krishnamoorthy and Mathew (2003) proposed the
following algorithm for obtaining a 100(1 − α)% confidence interval for �:

1. Compute (x̄1, s
2
1) and (x̄2, s

2
2).

2. Compute

T� = exp

(
x̄1 − Z1

U1/
√

n1 − 1
· s1√

n1
+ s2

1

2U2
1/(n1)

)

− exp

(
x̄2 − Z2

U2/
√

n2 − 1
· s2√

n2
+ s2

2

2U2
2/(n2)

)

where Zi and U2
i are random numbers generated independently from the standard normal and chi-

squared distribution with ni − 1 degrees of freedom from two independent samples (i = 1, 2);
3. Repeat step 2 a large number of, say m, times.
4. Sort the T� values from step 3. The confidence limits are given by the m(α/2)th and m(1 − α/2)th

T� values.

2.2.2. The proposed method. Our alternative is first to obtain confidence limits for M1 = exp(µ1 +
σ2

1/2) and M2 = exp(µ2 + σ2
2/2) using Equations (3) and (4), then to treat M1 as θ1 and −M2 as θ2 in

the application of Equation (2). Note here that the limits for M2, obtained using Equations (3) and (4),
must be multiplied by −1 and then switched positions before plugging into Equation (2).
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Straightforward algebra yields the 100(1 − α)% confidence interval (L�, U�) for the difference
between two lognormal means as

L� = M̂1 − M̂2 −
√

(M1 − LL1)2 + (UL2 − M2)2

and

U� = M̂1 − M̂2 +
√

(UL1 − M1)2 + (M2 − LL2)2

where

LLi = M̂i exp

−
z2

1−α/2s
2
i

ni

+
(

s2
i

2
− (ni − 1)s2

i

2χ2
1−α/2,ni−1

)2
1/2


and

ULi = M̂i exp


z2

1−α/2s
2
i

ni

+
(

(ni − 1)s2
i

2χ2
α/2,ni−1

− s2
i

2

)2
1/2


for i = 1, 2.

3. SIMULATION

The confidence interval procedures described above are all asymptotic, meaning that their performance
such as average percentage and tail errors may depend on sample size and parameter values. Before
making any recommendations, we must evaluate their performance in finite sample sizes. For this
purpose, we use Monto Carlo simulations to compare the procedures for the 95% confidence interval
in terms of the percentage of times the interval contains the parameter value (coverage%). For a given
parameter value, we assess the performance of a procedure using the percentage of times the confidence
interval lies completely below or above the parameter value, termed left and right tail errors, respectively.
We used 10 000 replicates for each parameter combination, with 10 000 resamples for the GCI approach.
Using two standard errors of the nominal coverage rate as the criterion, we regarded coverage as within
(.95 ± 2

√
0.95 × 0.05/10 000), or (94.6–95.4) as adequate.

The second criterion is the balance between left and right tail errors (Jennings, 1987; Efron, 2003). We
used confidence width as the third criterion to distinguish procedures satisfying the first and second cri-
teria equally. Without loss of generality (Land, 1972, p. 147), we set µ = −σ2/2 in the simulation study.

For a single lognormal mean, we considered n = 10, 15, 25, and 50; σ2 = 0.1, 0.5, 1.0, 1.5, and 2.0.
The performance of the modified Cox method, our proposed method, and the generalized confidence
interval are shown in Table 1. These results indicate that all three methods have acceptable coverage
percentages. As expected, the modified Cox method has unbalanced tail errors, while the other two
methods deliver reasonably balanced tail errors, with the proposed method showing consistently
narrower average width.
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Table 1. Comparative performance of three procedures for constructing a 95% two-sided confidence interval for
a lognormal mean with µ = −σ2/2 based on 10 000 runs

n = 10 n = 15 n = 25 n = 50

σ2 Method Cover (ML , MR) W Cover (ML , MR) W Cover (ML , MR) W Cover (ML , MR) W

0.1 MCox 95.23 (3.31, 1.46) 0.46 95.33 (3.03, 1.64) 0.36 94.90 (3.15, 1.95) 0.27 95.08 (2.88, 2.04) 0.18
Proposed 93.27 (3.87, 2.86) 0.44 93.85 (3.53, 2.62) 0.34 94.13 (3.32, 2.55) 0.26 94.55 (2.96, 2.49) 0.18
GCI 95.10 (2.20, 2.70) 0.50 95.00 (2.27, 2.73) 0.37 94.88 (2.38, 2.74) 0.27 94.92 (2.33, 2.75) 0.19

0.5 MCox 94.88 (4.48, 0.64) 1.29 94.93 (4.29, 0.78) 0.94 94.84 (3.87, 1.29) 0.68 94.44 (3.97, 1.59) 0.46
Proposed 94.50 (3.24, 2.26) 1.67 94.54 (3.30, 2.16) 1.05 94.79 (2.97, 2.24) 0.71 94.54 (3.20, 2.26) 0.47
GCI 94.84 (1.94, 3.22) 1.90 94.76 (2.33, 2.91) 1.14 95.03 (1.95, 3.02) 0.75 94.57 (2.62, 2.81) 0.48

1.0 MCox 93.99 (5.82, 0.19) 2.53 94.44 (5.17, 0.39) 1.67 94.69 (4.70, 0.61) 1.14 94.89 (3.89, 1.22) 0.73
Proposed 94.68 (3.39, 1.93) 5.36 94.89 (3.12, 1.99) 2.28 95.02 (3.18, 1.80) 1.30 94.87 (2.80, 2.33) 0.77
GCI 94.49 (2.40, 3.11) 6.12 94.42 (2.23, 3.35) 2.49 94.86 (2.42, 2.72) 1.37 94.77 (2.29, 2.94) 0.79

1.5 MCox 93.76 (6.19, 0.05) 4.84 94.24 (5.58, 0.18) 2.60 94.07 (5.40, 0.53) 1.63 95.00 (4.05, 0.95) 1.01
Proposed 95.37 (2.94, 1.69) 24.34 95.28 (2.89, 1.83) 4.48 94.74 (3.08, 2.18) 2.06 94.99 (2.64, 2.37) 1.11
GCI 94.89 (2.06, 3.05) 27.52 95.18 (2.04, 2.78) 4.91 94.53 (2.34, 3.13) 2.17 95.04 (2.11, 2.85) 1.14

2.0 MCox 93.32 (6.65, 0.03) 10.63 93.71 (6.16, 0.13) 4.14 94.58 (5.02, 0.40) 2.27 94.72 (4.50, 0.78) 1.31
Proposed 95.15 (2.98, 1.87) 497.08 94.83 (3.09, 2.08) 9.84 95.24 (2.73, 2.03) 3.19 94.82 (2.70, 2.48) 1.49
GCI 94.71 (2.15, 3.14) 899.26 94.38 (2.41, 3.21) 10.80 95.07 (2.14, 2.79) 3.38 94.64 (2.41, 2.95) 1.53

MCox, the modified Cox method; GCI, generalized confidence interval; ML, the confidence interval lies completely below the
parameter; MR, the confidence interval lies completely above the parameter; W, average interval width.

For a difference between two lognormal means, we considered n1 = 10, 15, 20, 25, and 50; n2 =
10, 20, 25, and 50; σ2

1 = 0.1, 0.5, 1.0, 1.5, 2.0; σ2
2 = 0.5, 1.5, and 2.0. The performance of the gen-

eralized confidence interval method and the proposed method with modified Cox method for single
means for these 300 parameter combinations are presented using summary statistics (Table 2). These
results clearly show that the Modified Cox method provides severely unbalanced tails with coverage
percentage ranging from 93.17 to 98.11%. Our proposed method is very competitive with the computer
simulation-based GCI, both having coverage rates outside the range of 94.6 to 95.4% when n ≤ 15.

Table 2. Comparative performance of three procedures for constructing a 95% two-sided confidence interval for
a difference between two lognormal means with µi = −σ2

i /2, i = 1, 2 (summary of 300 parameter combinations
with 10 000 runs for each combination)

Method Mean Min 10th pctl 25th pctl 50th pctl 75th pctl 90th pctl Max

MCox Cover 95.57 93.17 94.55 95.09 95.63 96.13 96.52 98.11
ML 1.86 0.04 0.25 0.66 1.50 2.85 3.98 6.19
MR 2.57 0.07 0.49 1.09 2.42 3.86 4.90 6.76
Width 2.36 0.49 1.05 1.46 2.11 2.96 3.90 8.25

Proposed Cover 95.32 94.26 94.92 95.13 95.32 95.52 95.75 96.32
ML 2.28 1.74 1.97 2.12 2.27 2.42 2.59 3.17
MR 2.40 1.69 2.06 2.19 2.36 2.59 2.84 3.42
Width 4.11 0.49 1.13 1.73 2.92 5.32 9.54 29.67

GCI Cover 95.25 94.29 94.86 95.03 95.23 95.48 95.71 96.18
ML 2.40 1.76 2.04 2.18 2.35 2.59 2.83 3.40
MR 2.34 1.82 2.06 2.16 2.32 2.51 2.68 3.25
Width 4.47 0.51 1.18 1.83 3.07 5.91 10.81 33.10

MCox, the modified Cox method; GCI, generalized confidence interval; ML, the confidence interval lies completely below the
parameter; MR, the confidence interval lies completely above the parameter.
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4. ILLUSTRATIVE EXAMPLES

As an example of a simple lognormal mean, we consider air lead levels (� g/m3) of n = 15 sites at
the Alma American Labs, Fairplay, Colorado on 23 February 1989 (Krishnamoorthy et al., 2006): 200,
120, 15, 7, 8, 6, 48, 61, 380, 80, 29, 1000, 350, 1400, 110. The lognormal distribution was found to fit
the data well. Log-transformation of the data yields x̄ = 4.333 and s = 1.739. Therefore, we have the
95% confidence limits for θ1 = µ given by [4.333 − 1.96 × 1.739/

√
15, 4.333 + 1.96 × 1.739/

√
15],

i.e., (3.452584, 5.213141) and that for θ2 = σ2/2 given by:

1

2

[
(15 − 1) × 1.7392

χ2
0.975,14

,
(15 − 1) × 1.7392

χ2
0.025,14

]

that is, (0.8108892, 3.762765). Substituting these limits into Equations (3) and (4) yields the 95% two-
sided confidence interval for exp(µ + σ2/2) as (112, 3873), comparable with the GCI of (122, 4280)
based on 100 000 simulations.

As an example for a difference between two lognormal means. We consider a dataset from the
Data and story Library (http://lib.stat.cmu.edu/DASL). In April–May 1993, an oil refinery near San
Francisco submitted n = 31 daily CO emission measurements from its stacks to the Bay Area Air
Quality Management District for establishing a baseline. It was of interest to see whether the refinery
had over-measured CO emission, as compared to nine measurements taken by the Management District
person between September 1990 to March 1993. The data are given as:

Refinery (n1 = 31): 45, 30, 38, 42, 63, 43, 102, 86, 99, 63, 58, 34, 37, 55, 58, 153, 75, 58, 36, 59,
43, 102, 52, 30, 21, 40, 141, 85, 161, 86, 71.

District management (n2 = 9): 12.5, 20, 4, 20, 25, 170, 15, 20, 15.
Recognizing the temporal dependence among the measurements, we nevertheless treat them as

independent for illustration purposes. The lognormal distribution fits both dataset well (Krishnamoorthy
and Mathew, 2003), with x̄1 = 4.074252, s2

1 = 0.252081, x̄2 = 2.963333, and s2
2 = 0.949618. Using

our approach, the estimated mean and 95% confidence interval of the refinery data are given by
66.70583 (55.57714, 81.69155) and that of the district Management data are given by 31.12906
(15.66019, 128.6178). Application of our procedure yields the difference and 95% confidence interval
of 35.58 (−62.55, 57.11). Again, comparable with those from the GCI (−79.15, 57.47) based on
100 000 simulations.

5. DISCUSSION

We have presented a simple approach to confidence interval estimation concerning lognormal means.
The resultant procedures for a single lognormal mean and a difference between two lognormal means
are in closed-form, requiring only methods found in introductory textbooks. The performance of
our procedure has been shown to do at least as well as the GCI approach, which relies on com-
puter simulation. Moreover, although exact in theory, even with the same dataset the latter approach
may result in different answers from different analysts or the same analyst performing analyses at
different times.

We note that the method we described here can be readily applied to lognormal regression mod-
els (Bradu and Mundlak, 1970; El-Shaarawi and Viveros, 1997; El-Shaarawi and Lin, 2007). Exten-

Copyright © 2008 John Wiley & Sons, Ltd. Environmetrics 2009; 20: 172–180
DOI: 10.1002/env



180 G. Y. ZOU, C. Y. HUO AND J. TALEBAN

sions and applications of this method in other contexts can be found elsewhere (Zou, 2007; Zou and
Donner, 2008).

We did not consider bootstrap methods for lognormal data, as it has been revealed that such methods
fail even for a normal variance (Schenker, 1985). It is then inevitable for bootstrap to fail for the
lognormal mean because it is a function of the normal mean and variance. We refer to Zhou and Dinh
(2005) for simulation results showing that bootstrap methods fail terribly in the case of lognormal data.
Interestingly, many papers have appeared by merely implementing a bootstrap method, as if it is the gold
standard. This practice is a result of overlooking the fact that bootstrap is also asymptotically reliable
and requires evaluation on a case-by-case basis (DiCiccio and Efron, 1996).
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a b s t r a c t

The Wilson score confidence interval for a binomial proportion has been widely applied
in practice, due largely to its good performance in finite samples and its simplicity in
calculation.We propose its use in setting confidence limits for a linear function of binomial
proportions using the method of variance estimates recovery. Exact evaluation results
show that this approach provides intervals that are narrower than the ones based on the
adjusted Wald interval while aligning the mean coverage with the nominal level.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

There exists a large literature on confidence interval estimation involving binomial proportions. For a single proportion,
there are several choices. The first is given by adding to and subtracting from themaximum likelihood estimator the standard
normal quantilemultiplied by its estimated standard error. This procedure is commonly referred to as theWaldmethod. The
second is the interval based on inverting the approximate normal test that uses the standard errors estimated at the lower
and upper limits. This procedure is commonly referred to as Wilson score method (Wilson, 1927). The score confidence
interval has now become very popular, especially after the expositions by Agresti and Coull (1998) and Newcombe (1998b).
With an attempt to ease classroom teaching, Agresti and Coull (1998) suggested an adjusted Wald method by adding two
successes and two failures and then using theWald formula. Despite the terminology, the adjustedWaldmethod is actually
an approximation of the score method.
The superior performance of the Wilson method has been carried over to cases of a difference between two

proportions (Newcombe, 1998a) and a difference between two differences (Newcombe, 2001). It is interesting to note that
this seemingly ad hoc procedure has become more popular than the rigorous score interval for a difference between two
proportions (Mee, 1984; Miettinen and Nurminen, 1985; Gart and Nam, 1990), caused largely by the computation involved
in obtaining the latter.
Due to its important practical value, confidence interval construction for a linear function of binomial proportions has

received some attention recently (Price and Bonett, 2004; Tebbs and Roths, 2008). The purpose of this note is to extend the
argument of Zou and Donner (2008) to a linear function of parameters, and in particular to binomial proportions. Since our
main idea is to recover variance estimates from readily available confidence limits for single parameters, we refer to the
approach as the MOVER, the method of variance estimates recovery. As shown below, the MOVER will not only shed some
light to Newcombe (1998a) and Newcombe (2001) but also provide an alternative to Price and Bonett (2004) who proposed

∗ Corresponding address: Robarts Clinical Trials, Robarts Research Institute, P. O. Box 5015, 100 Perth Drive, London, Ontario, Canada N6A 5K8. Tel.: +1
519 663 3400x34092; fax: +1 519 663 3807.
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a procedure for a linear function of proportions based on the adjustedWald interval for single proportions (Agresti and Coull,
1998). We will show that the confidence interval for a linear function of binomial proportions based on the Wilson method
is narrower than that of Price and Bonett (2004). We will not consider the approach by Tebbs and Roths (2008) because of
its inherent drawbacks such as involved computation, restriction in parameter ranges, and undercoverage.

2. The MOVER and its application to linear functions of binomial proportions

Supposewewish to construct an approximate 100(1−α)% two-sided confidence interval for θ1+θ2, where the estimates
θ̂1 and θ̂2 are assumed to be independent. By the central limit theorem, the lower limit (L) is given by

L = θ̂1 + θ̂2 − zα/2
√
var(̂θ1)+ var(̂θ2). (1)

Inspired by the score method for interval estimation (Bartlett, 1953; Gart and Nam, 1990), we can estimate the variance
needed for L at θ1 + θ2 = L. This has at least one disadvantage that it is in general an iterative procedure, which can be an
obstacle to wide application in practice as what happened to the score interval for a difference between two proportions.
Therefore, we proceed with estimating the variance in the neighborhood of L.
Now, suppose that the 100(1−α)% two-sided confidence intervals (li, ui) for single parameters θi, i = 1, 2 are available.

Note that there is no need to specify the approaches taken to obtain (li, ui). Among all the plausible parameter values of θ1
provided by (l1, u1) and that of θ2 provided by (l2, u2), l1 + l2 is usually closer to L than θ̂1 + θ̂2. As a result, for L, we can
estimate var(̂θ1) at θ1 = l1 and var(̂θ2) at θ2 = l2.
Furthermore, we can recover the required variance estimates from θ̂i(li, ui), i = 1, 2, as follows. By the central limit

theorem and letting zα/2 be the upper α/2 quantile of the standard Normal distribution, we have

li = θ̂i − zα/2
√
v̂ar(̂θi),

which gives a variance estimate for θ̂i at θi = li as

v̂arl(̂θi) = (̂θi − li)2/z2α/2
and

ui = θ̂i + zα/2
√
v̂ar(̂θi),

which gives a variance estimate at θi = ui as

v̂aru(̂θi) = (u1 − θ̂i)2/z2α/2.

Note that the recovered variance estimates v̂arl(̂θi) and v̂aru(̂θi) are different, exceptwhen the interval (li, ui) is symmetric
about θ̂i. Symmetric intervals are known to perform poorly in finite samples for most problems in practice. In fact, it was
stated (Efron and Tibshirani, 1993, p. 180) that symmetry is the most serious error in confidence interval construction. The
Wald interval for a binomial proportion is a perfect example. In contrast, theWilson interval is asymmetric as a consequence
of estimating variances at the lower and upper limits separately.
Plugging the recovered variance estimates into Eq. (1) results in

L = θ̂1 + θ̂2 − zα/2
√
var(̂θ1)+ var(̂θ2)

= θ̂1 + θ̂2 − zα/2
√
(̂θ1 − l1)2/z2α/2 + (̂θ2 − l2)2/z

2
α/2

= θ̂1 + θ̂2 −

√
(̂θ1 − l1)2 + (̂θ2 − l2)2.

Analogous steps with the notion that u1 + u2 is in the vicinity of U yield the upper limit U as

U = θ̂1 + θ̂2 +
√
(u1 − θ̂1)2 + (u2 − θ̂2)2.

Rewriting θ1−θ2 as θ1+(−θ2) andnoting that the confidence limits for−θ2 are given by (−u2,−l2), we obtain confidence
limits for θ1 − θ2 as

L = θ̂1 − θ̂2 −
√
(̂θ1 − l1)2 + (u2 − θ̂2)2

and

U = θ̂1 − θ̂2 +
√
(u1 − θ̂1)2 + (̂θ2 − l2)2.
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This confidence interval, apparently first presented by Howe (1974), has been applied by Newcombe (1998a) and
by Newcombe (2001) to binomial proportions. There has been no analytic justification for its general applicability until
recently (Zou and Donner, 2008).
Regarding θ1 + θ2 and θ1 − θ2 as c1θ1 + c2θ2, where c1 and c2 are constants, we can rewrite the intervals as

L = c1θ̂1 + c2θ̂2 −
√
[c1θ̂1 −min(c1l1, c1u1)]2 + [c2θ̂2 −min(c2l2, c2u2)]2

and

U = c1θ̂1 + c2θ̂2 +
√
[c1θ̂1 −max(c1l1, c1u1)]2 + [c2θ̂2 −max(c2l2, c2u2)]2.

For a 100(1− α)% confidence interval for
∑g
i=1 ciθi, where g > 2, an application of mathematical induction results in

L =
g∑
i=1

cîθi −

√√√√ g∑
i=1

[
cîθi −min(cili, ciui)

]2
U =

g∑
i=1

cîθi +

√√√√ g∑
i=1

[
cîθi −max(cili, ciui)

]2
.

(2)

Because L and U are derived using the recovered variance estimates, we can refer to the method as the MOVER, standing
for method of variance estimates recovery. A further extension of the MOVER to incorporate dependence between θ̂i and θ̂j
(i 6= j) has been applied to measures of additive interaction in epidemiology (Zou, 2008).
We can now apply the confidence interval in (2) to linear functions of binomial proportions. Since there are at least

three intervals for a single proportion, i.e., Wald, adjustedWald (Agresti and Coull, 1998) andWilson, we end up with three
procedures for linear functions of binomial proportions.
Specifically, let Yi (i = 1, 2, . . . , g) be independent binomial variates with parameters (ni, pi), and let p̂i = Yi/ni be

the sample estimates for pi. A linear function of binomial proportions may be defined as
∑g
i=1 cipi, where the ci are known

constants. Using the equations in (2), the 100(1− α)%Wald confidence interval can be obtained by setting θ̂i = p̂i = Yi/ni,
li = p̂i − zα/2

√̂
pi(1− p̂i)/ni, and ui = p̂i + zα/2

√̂
pi(1− p̂i)/ni.

The Wilson interval for
∑g
i=1 cipi may be obtained by setting θ̂i = p̂i = Yi/ni,

li, ui =
(̂
pi + z2α/2/(2ni)∓ zα/2

√
[̂pi(1− p̂i)+ z2α/2/(4ni)]/ni

)
/(1+ z2α/2/ni).

The adjusted Wald interval for
∑g
i=1 cipi (Price and Bonett, 2004) may be obtained by setting θ̂i = p̃i = (Yi + 2/k)/(ni +

4/k) (where k is the number of nonzero elements in ci), li = p̃i− zα/2
√
p̃i(1− p̃i)/ni, and ui = p̃i+ zα/2

√
p̃i(1− p̃i)/ni. Note

that the adjusted Wald method for a single proportion is an approximation of the Wilson score method for 95% interval,
see Agresti and Coull (1998) for its motivation and derivation. We also must point out that this method has the potential to
provide confidence limits that are out of parameter space.
It is fair to say that the superior performance of Newcombe (1998a) originates from that of theWilsonmethod for a single

proportion (Agresti and Coull, 1998; Newcombe, 1998b). On the same token, we can postulate that applyingWilson interval
for cases of more than two binomial proportions will be very competitive to that of Price and Bonett (2004).
To evaluate this claim, we conducted a numerical study to compare the performance of these two procedures in finite

samples for 90%, 95%, and 99% two-sided confidence intervals, in terms of mean coverage, minimum coverage, and mean
interval width as defined here.
For a 100(1− α)% interval (L,U) for

∑g
i=1 cipi, the coverage is defined by

Coverage = 100
n1∑
y1=0

· · ·

ng∑
yg=0

g∏
i=1

(
ni
yi

)
pyii (1− pi)

ni−yi I
(
L <

∑
cipi < U

)
,

where I(.) is an indicator function which takes values of 1 or 0 as the event in the brackets is true or not.
The expected interval width is defined as

Width =
n1∑
y1=0

· · ·

ng∑
yg=0

g∏
i=1

(
ni
yi

)
pyii (1− pi)

ni−yi(U − L).

We conducted the evaluation by first randomly sampling 1000 sets of pi’s from the uniform (0,1) distribution, and then
applied the above two definitions to each set.We did not arbitrarily truncate the adjustedWald confidence limits when they
fell out of the parameter space. With respect to each method, we obtained the mean coverage, minimum coverage, and the
mean interval width using these 1000 sets of values for coverage and width.
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Table 1
Performance of the method of variance estimates recovery in constructing two-sided confidence intervals (CI) for a linear function of binomial parameters,∑3
i=1 cipi , using confidence limits for single proportions obtained by the adjusted Wald and Wilson methods. Entries in each row are based on 1000 sets

of pi ’s randomly sampled from uniform (0,1), and each set evaluated by exact calculation.

Group sizes 90% CI 95% CI
n1/n2/n3 Adjusted Wald Wilson Adjusted Wald Wilson

c = (1/3, 1/3, 1/3)
5/5/5 92.04 (80.18, 0.32)∗ 90.58 (82.60, 0.31) 96.12 (91.24, 0.38) 94.99 (86.34, 0.36)
5/5/10 91.65 (83.59, 0.29) 90.45 (85.36, 0.29) 95.95 (88.12, 0.35) 95.07 (89.55, 0.33)
5/10/15 91.53 (84.60, 0.25) 90.69 (87.42, 0.25) 95.86 (92.93, 0.30) 95.26 (90.65, 0.29)
5/10/20 91.63 (86.89, 0.25) 90.80 (87.37, 0.24) 95.88 (92.51, 0.29) 95.31 (91.02, 0.28)
5/15/20 91.57 (84.34, 0.23) 90.80 (84.39, 0.23) 95.83 (90.95, 0.28) 95.30 (90.51, 0.27)
5/20/20 91.53 (83.99, 0.23) 90.72 (87.15, 0.22) 95.73 (84.97, 0.27) 95.27 (91.50, 0.26)

c = (1,−1/2,−1/2)
5/5/5 92.29 (80.22, 0.67) 90.82 (85.45, 0.65) 96.19 (86.68, 0.79) 95.14 (89.23, 0.75)
5/5/10 91.97 (84.26, 0.64) 90.84 (84.63, 0.62) 95.91 (89.26, 0.77) 95.27 (89.48, 0.72)
5/10/15 92.00 (82.28, 0.60) 91.06 (86.44, 0.58) 95.87 (86.43, 0.72) 95.31 (91.04, 0.67)
5/10/20 92.00 (82.74, 0.60) 91.06 (85.77, 0.57) 95.83 (87.82, 0.71) 95.33 (91.62, 0.66)
5/15/20 92.00 (82.28, 0.59) 91.06 (86.34, 0.56) 95.75 (88.50, 0.70) 95.27 (91.63, 0.65)
5/20/20 92.13 (81.69, 0.58) 91.13 (85.68, 0.55) 95.80 (86.75, 0.69) 95.27 (91.15, 0.64)

c = (−1, 1/2, 2)
5/5/5 92.08 (79.06, 1.25) 90.94 (86.88, 1.20) 95.91 (86.89, 1.49) 95.19 (89.05, 1.39)
5/5/10 91.52 (85.49, 1.00) 90.67 (86.58, 0.98) 95.81 (91.28, 1.19) 95.24 (89.05, 1.15)
5/10/15 91.33 (85.15, 0.88) 90.64 (87.14, 0.87) 95.66 (91.82, 1.05) 95.29 (88.53, 1.02)
5/10/20 91.35 (85.32, 0.82) 90.72 (87.51, 0.81) 95.71 (92.89, 0.98) 95.32 (90.85, 0.95)
5/15/20 91.29 (82.82, 0.81) 90.65 (87.98, 0.80) 95.67 (92.39, 0.97) 95.23 (91.42, 0.94)
5/20/20 91.29 (85.58, 0.81) 90.65 (86.88, 0.80) 95.66 (90.11, 0.96) 95.30 (90.18, 0.93)

c = (1, 1,−1)
5/5/5 92.04 (80.36, 0.95) 90.56 (81.21, 0.93) 96.19 (92.21, 1.13) 95.15 (86.22, 1.08)
5/5/10 91.74 (85.12, 0.88) 90.64 (85.70, 0.86) 95.96 (89.78, 1.04) 95.18 (89.86, 1.00)
5/10/15 91.49 (84.88, 0.76) 90.71 (87.33, 0.74) 95.78 (87.97, 0.90) 95.26 (90.45, 0.87)
5/10/20 91.49 (85.56, 0.74) 90.76 (86.80, 0.72) 95.80 (92.41, 0.88) 95.29 (90.54, 0.84)
5/15/20 91.42 (85.05, 0.70) 90.69 (86.68, 0.69) 95.70 (90.10, 0.84) 95.20 (91.24, 0.80)
5/20/20 91.59 (85.28, 0.68) 90.82 (87.43, 0.66) 95.82 (88.32, 0.81) 95.26 (90.77, 0.78)

∗Mean coverage % (minimum coverage %, mean confidence interval width) based on 1000 sets of proportion parameters randomly sampled from uniform
(0,1) distribution.

For linear functions of 3 binomial proportions, results in Table 1 show consistently that the intervals for linear functions
based on the Wilson score method have mean coverage closer to the nominal levels, with narrow average width. For group
sizes considered, theminimum coverage for the adjustedWald can be as low as 79.06% for 90% nominal level, and 84.97% for
95% nominal level. For confidence interval based on theWilson method, the minimum coverage can be as low as 81.21% for
90% nominal level, and 86.22% for 95% nominal level. Results from constructing confidence intervals for linear functions of
4 binomial proportions in Table 2 show again that the procedure based on Wilson score method performed better in terms
of mean coverage and interval width, as well as minimum coverage. For example, the minimum coverage for the adjusted
Wald can be as low as 77.16% for 90% nominal level, compared to that of 83.23% for Wilson score method. Similar trends
were observed with nominal level of 99% (results not shown). One possible explanation for our results is that the adjusted
Wald method was proposed to approximate theWilson score method at 95% level, on the rationale that the middle point of
Wilson interval is a weighted average of p̂ and 0.5, and that 1.962 ≈ 4 (Agresti and Coull, 1998, p. 122).

3. Examples

In the light of the above numerical results, we now compare confidence intervals using two examples from Price and
Bonett (2004).

Example 1. This data set arose from a study in which rats are fed with different types of diets. The diets are controlled by
two factors, namely fiber and fat. Each rat is observed to determine if it has developed a tumor during the study period.
The outcome of the experiment is summarized in Table 3 (each group had 30 rats). It is of interest to construct confidence
intervals for the main effects of fiber and fat, as well as their interaction. Here we can obtain the 95% confidence intervals
using the MOVER for the linear functions of proportions. The results are shown in Table 3, which shows that the intervals
obtained using the Wilson method for single proportions are narrower than those using the adjusted Wald method for
single proportion. This is consistent with the results in our evaluation study. In fact, the Wilson method based intervals are
all contained in that based on the adjusted Wald method for single proportions in this moderate size study.

Example 2. This example arose from the Framingham heart study. As an alternative to conventional generalized linear
model with logistic link function, Price and Bonett (2004) approached the problem with a linear function of binomial
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Table 2
Performance of the method of variance estimates recovery in constructing two-sided confidence intervals (CI) for a linear function of binomial parameters,∑4
i=1 cipi , using confidence limits for single proportions obtained by the adjusted Wald and Wilson methods. Entries in each row are based on 1000 sets

of pi ’s randomly sampled from uniform (0,1), and each set evaluated by exact calculation.

Group sizes 90% CI 95% CI
n1/n2/n3/n4 Adjusted Wald Wilson Adjusted Wald Wilson

c = (1/4, 1/4, 1/4, 1/4)
5/5/5/5 91.27 (81.65, 0.28)∗ 90.24 (83.23, 0.27) 95.63 (92.16, 0.33) 94.86 (88.56, 0.31)
5/5/10/10 91.03 (87.49, 0.24) 90.33 (85.65, 0.24) 95.48 (93.03, 0.29) 95.07 (90.18, 0.28)
5/5/15/15 91.01 (87.61, 0.23) 90.53 (86.71, 0.22) 95.45 (92.91, 0.27) 95.13 (91.33, 0.26)
5/5/15/20 91.11 (88.33, 0.22) 90.67 (87.18, 0.22) 95.50 (93.10, 0.26) 95.25 (91.75, 0.26)
5/10/15/20 90.84 (86.26, 0.20) 90.57 (87.66, 0.20) 95.33 (90.52, 0.24) 95.27 (91.64, 0.23)

c = (−1, 1,−1, 1)
5/5/5/5 91.33 (85.72, 1.10) 90.29 (82.48, 1.08) 95.70 (92.91, 1.31) 95.09 (88.82, 1.25)
5/5/10/10 91.03 (83.19, 0.96) 90.37 (85.96, 0.95) 95.49 (92.68, 1.15) 95.09 (90.56, 1.11)
5/5/15/15 91.11 (87.96, 0.91) 90.67 (86.77, 0.89) 95.50 (92.51, 1.08) 95.24 (91.47, 1.04)
5/5/15/20 91.08 (87.41, 0.89) 90.71 (87.05, 0.88) 95.50 (92.45, 1.06) 95.26 (91.74, 1.02)
5/10/15/20 90.86 (87.58, 0.81) 90.51 (87.68, 0.80) 95.37 (91.86, 0.97) 95.17 (91.40, 0.94)

c = (1/3, 1/3, 1/3, 1)
5/5/5/5 91.33 (77.16, 0.63) 90.87 (86.18, 0.61) 95.29 (84.48, 0.75) 95.15 (89.89, 0.70)
5/5/10/10 90.82 (86.51, 0.49) 90.52 (87.43, 0.49) 95.23 (90.73, 0.59) 95.16 (91.24, 0.57)
5/5/15/15 90.64 (87.56, 0.44) 90.29 (87.33, 0.43) 95.22 (93.25, 0.52) 95.10 (91.60, 0.51)
5/5/15/20 90.74 (88.44, 0.40) 90.25 (86.91, 0.40) 95.34 (93.10, 0.48) 95.07 (90.91, 0.47)
5/10/15/20 90.48 (88.76, 0.39) 90.29 (87.89, 0.38) 95.12 (93.65, 0.46) 95.15 (92.17, 0.45)

c = (−3,−1, 1, 3)
5/5/5/5 91.34 (83.03, 2.44) 90.89 (83.44, 2.38) 95.49 (90.28, 2.90) 95.20 (89.81, 2.76)
5/5/10/10 90.94 (83.95, 2.14) 90.80 (87.55, 2.10) 95.23 (88.85, 2.55) 95.32 (91.50, 2.44)
5/5/15/15 91.01 (82.16, 2.01) 90.80 (87.95, 1.96) 95.24 (86.35, 2.40) 95.22 (90.66, 2.29)
5/5/15/20 90.92 (83.77, 1.96) 90.77 (88.24, 1.90) 95.13 (86.91, 2.33) 95.19 (91.50, 2.22)
5/10/15/20 91.08 (83.32, 1.91) 91.02 (88.56, 1.86) 95.15 (85.88, 2.27) 95.36 (91.06, 2.16)
∗ Mean coverage % (minimum coverage %, mean confidence interval width) based on 1000 sets of proportion parameters randomly sampled from uniform
(0,1) distribution.

Table 3
Confidence intervals for effects of factors in the diet–tumor study.

Fiber Fat p̂i ci
Fiber× Fat Fiber Fat

Yes High 20/30 1 1/2 1/2
Low 14/30 −1 1/2 −1/2

No High 27/30 1 −1/2 1/2
Low 19/30 −1 −1/2 −1/2

Interval for
∑
cipi:

Adj Wald −0.3806, 0.2516 −0.3516, 0.0355 0.0677, 0.3839
Wilson −0.3790, 0.2386 −0.3459, 0.0375 0.0691, 0.3773

Table 4
Framingham heart study.

Systolic BP Number of subjects Number with heart disease

115 156 3
121 252 17
131 284 12
141 271 16
151 139 12
161 85 8
176 99 16
190 43 8

proportions. Specifically, if the population proportion of heart disease is considered a linear function of systolic blood
pressure, the slope is

∑
cipi, which is a linear function of the proportions pi of heart disease of systolic blood pressure

groups, where ci = (xi −
∑
xi/g)/

∑
(xi −

∑
xi/g)2 and xi is the value of the quantitative factor in group i. Using the data

in Table 4, we obtained the 95% confidence interval for the population slope using the adjusted Wald method as 0.0010 to
0.0032, comparable to that of using the Wilson method as 0.0012 to 0.0034 in such a large study.
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4. Concluding remarks

The confidence interval for a general linear function of binomial proportions introduced here is a simple application of
a more general idea presented by Zou and Donner (2008). The basic idea is to recover variance estimates needed for linear
functions of proportions from the confidence limits for single proportions. Since the Wilson interval procedure has been
strongly recommended for single proportions (Agresti and Coull, 1998; Newcombe, 1998b; Santner, 1998), it is thus natural
to extend it to linear functions of binomial proportions. By use of theMOVER,wehave provided a very competitive procedure
to that of Price and Bonett (2004), whose procedure can be seen as an application of theMOVER based on the adjustedWald
method for single proportions. The MOVER has also provided an analytic justification for Newcombe (1998a, 2001).
It should also be noted that the derivation of the MOVER relies only on the validity of confidence limits for single

parameters such that variance estimates can be recovered by normal distributions. The direct implication is that one can
apply the MOVER to linear functions of other discrete distribution parameters, e.g., Poisson rates (Stamey and Hamilton,
2006; Tebbs and Roths, 2008), and linear functions of normal mean and variance, e.g., lognormal means (Zou and Donner,
2008).
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a b s t r a c t

There has accumulated a large amount of literature on confidence interval construction
involving lognormal data owing to the fact that many data in scientific inquiries may be
approximated by this distribution. Procedures have usually been developed in a piecemeal
fashion for a single mean, a single mean with excessive zeros, a difference between two
means, and a difference between two differences (net health benefit). As an alternative, we
present a general approach for all these cases that requires only confidence limits available
in introductory texts. Simulation results confirm the validity of this approach. Examples
arising from health economics are used to exemplify the methodology.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

The lognormal distribution may be used to approximate right skewed data arising in a wide range of scientific
inquires (Limpert et al., 2001). Traditional statistical analysis of such data has usually been focused on the means
of log-transformed data, resulting in inferences expressed in terms of geometric means rather than the arithmetic
means. However, there are many situations, including in environmental science (Parkhurst, 1998) and in occupational
health research (Rappaport and Selvin, 1987), in which arithmetic means may provide more meaningful information.
Consequently, there has accumulated a relatively large amount of literature regarding statistical methods for this type of
data, including Aitchison and Brown (1957) and Crow and Shimizu (1988), with more articles being added rapidly to the
literature (Chen, 1994; Taylor et al., 2002; Wu et al., 2002, 2003, 2006; Gill, 2004; Tian and Wu, 2006; Shen et al., 2006;
Krishnamoorthy et al., 2006; Bebu and Mathew, 2008; Fletcher, 2008).
Since many health cost data may be positively skewed (Thompson and Barber, 2000; Briggs et al., 2002), the literature

dealing with the analysis of lognormal data in this context has also increased substantially. This includes procedures for
a one sample mean, a difference between two independent sample means, a difference between two dependent sample
means, and additional zero values for each of these cases (Zhou, 2002). Recent advances include a method based on the
Edgeworth expansion (Zhou and Dinh, 2005; Dinh and Zhou, 2006). It is worthwhile to note that this approach not only
fails to provide adequate coverage rates but also lacks invariance in the sense that a confidence interval for−θ differs from
(−u,−l) when confidence interval for θ is given by (l, u). As a consequence, one may reach different conclusions depending
on the labeling of groups in a comparative study. One could naturally suggest the bootstrap, but simulation results (Diciccio
and Efron, 1996; Zhou and Dinh, 2005; Dinh and Zhou, 2006; Zou and Donner, 2008) suggest that it can fail in the case of
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lognormal data. A possible explanation is that the lognormal mean is a function of a normal variance and some bootstrap
intervals have been shown to fail in confidence interval construction for a normal variance (Schenker, 1985).
Recently, a procedure relying on the simulation of pivotal statistics, commonly referred to as a generalized confidence

interval, has generated a series of articles on lognormal data (see, e.g., Krishnamoorthy andMathew, 2003; Tian, 2005; Chen
and Zhou, 2006; Krishnamoorthy et al., 2006; Tian and Wu, 2007a,b; Bebu and Mathew, 2008).
Instead of adopting a simulation approach to each of the situations summarized above (Zhou, 2002; Chen and Zhou,

2006), we extend a simple confidence interval procedure proposed by Zou and Donner (2008) to each of these scenarios.
One advantage of our procedure is that it relies only on techniques readily available in introductory texts. We also discuss
confidence interval estimation for net health benefit (NHB), an alternative to incremental cost-effectiveness ratio (Stinnett
and Mullahy, 1998; Willan, 2001). By assuming a value for the willingness-to-pay for a unit of effectiveness, a positive NHB
indicates the treatment is cost-effective. Detailed principles for cost-effectiveness analysis in health care can be found in
textbooks (e.g. Drummond et al., 2005; Willan and Briggs, 2006).
The rest of the article is structured as follows. In Section 2we present a general approach applicable to confidence interval

estimation, which will be referred to as the MOVER, standing for the method of variance estimates recovery. We then apply
the MOVER to obtain confidence intervals for a single lognormal mean, a single lognormal mean with excessive zeros, a
difference between two lognormalmeans, and the net health benefit in Section 3. In Section 4, we compare the performance
of our approach to some existing methods, particularly to generalized confidence intervals, using simulation studies. We
provide examples using data from previously published studies in Section 5. The article concludes with some final remarks
in Section 6.

2. Confidence interval estimation by the method of variance estimates recovery

The complication in constructing a confidence interval for the lognormal mean appears to have been due to the fact that
it involves two parameters, as reflected by the remark that ‘obtaining the confidence interval for the lognormal estimator
is a non-trivial problem since it is a function of two transformed sample estimates’ (Briggs et al., 2005, p. 422). However,
the confidence limits for each individual parameter (the normal mean and variance) are simple to obtain. Our strategy is
to ‘recover’ variance estimates from these limits and then to form approximate confidence intervals for functions of the
parameters, using similar arguments to those of Zou and Donner (2008) and Zou et al. (2009a).
Suppose wewish to construct a 100(1−α)% two-sided confidence interval (L,U) for θ1+ θ2, where the estimates θ̂1 and

θ̂2 are independent. Using the central limit theorem, a lower limit (L) is given by

L = θ̂1 + θ̂2 − zα/2
√
var(̂θ1)+ var(̂θ2),

where zα/2 is the upper α/2 quantile of the standard normal distribution. The limit L is not readily applicable because var(̂θi)
(i = 1, 2) is unknown.
Now, suppose that a 100(1−α)% two-sided confidence interval for θi is given by (li, ui). Among all the plausible parameter

values of θ1 provided by (l1, u1) and that of θ2 by (l2, u2), we know L is in the neighborhood of l1 + l2. Inspired by the score
interval approach (Bartlett, 1953), we proceed to estimate the variances needed for L at θ1 + θ2 = l1 + l2, i.e., when θ1 = l1
and θ2 = l2.
We have, by the central limit theorem,

li = θ̂i − zα/2
√
v̂ar(̂θi),

which gives a variance estimate for θ̂i at θi = li of

v̂ar(̂θi) = (̂θi − li)2/z2α/2.

Therefore, the lower limit L for θ1 + θ2 is given by

L = θ̂1 + θ̂2 − zα/2
√
v̂ar(̂θ1)+ v̂ar(̂θ2)

= θ̂1 + θ̂2 − zα/2
√
(̂θ1 − l1)2/z2α/2 + (̂θ2 − l2)2/z

2
α/2

= θ̂1 + θ̂2 −

√
(̂θ1 − l1)2 + (̂θ2 − l2)2. (1)

Analogous steps with the notion that u1 + u2 is close to U , and the variance estimate at θi = ui is

v̂ar(̂θi) = (u1 − θ̂i)2/z2α/2,

we obtain an upper limit U as

U = θ̂1 + θ̂2 +
√
(u1 − θ̂1)2 + (u2 − θ̂2)2. (2)
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Rewriting θ1−θ2 as θ1+(−θ2) andnoting that the confidence limits for−θ2 are given by (−u2,−l2), we obtain confidence
limits for θ1 − θ2 as (Zou and Donner, 2008)L = θ̂1 − θ̂2 −

√
(̂θ1 − l1)2 + (u2 − θ̂2)2

U = θ̂1 − θ̂2 +
√
(u1 − θ̂1)2 + (̂θ2 − l2)2,

(3)

where θ̂1 and θ̂2 are assumed to be independent, and (li, ui), i = 1, 2, are the 100(1 − α)% confidence limits for θ1 and
θ2, respectively. We note that this procedure satisfies the invariance property in the sense that the confidence interval for
θ2− θ1 is given by [−U,−L], in contrast to those based on the Edgeworth expansion (Zhou and Dinh, 2005; Dinh and Zhou,
2006; Zhou and Qin, 2007).
We can extend the above results to cases where θ̂1 and θ̂2 are dependent. Let r be the estimated correlation coefficient

between θ̂1 and θ̂2, then the limits in Eq. (3) may be directly extended by including covariance terms, r (̂θ1 − l1)(u2 − θ̂2)
and r(u1 − θ̂1)(̂θ2 − l2), in the expressions given for L and U as followsL = θ̂1 − θ̂2 −

√
(̂θ1 − l1)2 + (u2 − θ̂2)2 − 2r (̂θ1 − l1)(u2 − θ̂2)

U = θ̂1 − θ̂2 +
√
(u1 − θ̂1)2 + (̂θ2 − l2)2 − 2r(u1 − θ̂1)(̂θ2 − l2).

(4)

Note that if the sampling distribution for θ̂i is symmetric, then θ̂i − li = ui − θ̂i, which results in a symmetric confidence
interval.
Since the essence of the procedure discussed above relies on recovering a variance from confidence limits, it may be

regarded as the method of variance estimates recovery (MOVER). Note that the validity of the MOVER relies on the validity
of the confidence limits for each of the two parameters.
Note that Eq. (3) is similar to modified large sample confidence intervals for variance components (Howe, 1974; Graybill

and Wang, 1980; Burick and Graybill, 1992; Lee et al., 2004). Previous authors tend to justify their procedures by assuming
the limits are of certain form and solving the limits by forcing the confidence coefficients to be exact under special
conditions (see, e.g, Graybill and Wang, 1980; Lee et al., 2004). ‘Square-and-add’ is another term used for Eq. (3) when
applied to proportions (Newcombe, 2001, p. 2889). We prefer to use the termMOVER because it reflects clearly that the key
step of the method is to recover variance estimates.

3. Applying the MOVER to lognormal data

We now apply the MOVER to lognormal data. We also present some existing methods along the way.

3.1. One sample lognormal mean

Let yj denote observations such that xj = ln yj ∼ N(µ, σ 2), j = 1, 2, . . . , n, and denote the distribution of yj by
Λ(µ, σ 2). From the moment generating function for the normal distribution, the arithmetic mean of yj is given by exp(η)
with η = µ+ σ 2/2, which may be estimated by

η̂ = x̄+ s2/2,

where x̄ and s2 are the sample mean and variance respectively. Confidence interval estimation for exp(η) is equivalent to
that for η. A confidence interval for η, commonly known as the Cox method in Land (1972), is then given by

x̄+ s2/2± zα/2
√
s2/n+ s4/{2(n− 1)}. (5)

Previous evaluation (Land, 1972) has confirmed that this method performs reasonably well over a wide range of
parameter values. Mohn (1979) has also shown that it competes well with the likelihood ratio based approach in terms
of coverage. This conclusion is consistent with those of follow-up evaluations (Zhou and Gao, 1997).
An alternative approach based on simulation is the so-called generalized confidence interval, discussed by Krishnamoor-

thy and Mathew (2003). This method involves simulating the pivotal statistic

T = x̄−
Z

U/
√
n− 1

s
√
n
+

s2

2U2/(n− 1)
,

where Z ∼ N(0, 1) and U2 ∼ χ2n−1. The resulting 100(1 − α)% limits are given by the α/2 and 1 − α/2 percentiles of T ,
yielding the generalized confidence interval (GCI).
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Here we can apply the MOVER to set confidence limits for η by setting θ1 = µ and θ2 = s2/2 in Eqs. (1) and (2). The
resultant confidence limits are given by

l = x̄+
s2

2
−

√√√√z2α/2 s2n +
{
s2

2

(
1−

n− 1
χ21−α/2,n−1

)}2

u = x̄+
s2

2
+

√√√√z2α/2 s2n +
{
s2

2

(
n− 1
χ2α/2,n−1

− 1

)}2
.

(6)

Underlying these limits is the well-known result that the 100(1 − α)% confidence interval for σ 2 is given by [(n −
1)s2/χ21−α/2,n−1, (n − 1)s

2/χ2α/2,n−1], where χ
2
α,df is the α% percentile from the chi-square distribution with df degrees

of freedom.

3.2. One sample∆-distribution mean

In practice, a subgroupof patientsmay incur zero cost,with the remainder of the cost data assumed to be approximatedby
the lognormal distribution, as in Diehr et al. (1999). The resulting distribution, commonly referred to as the∆-distribution,
is denoted by ∆(δ, µ, σ 2) and has mean M = (1 − δ) exp(µ + σ 2/2), where δ is the probability that a patient has zero
value (Aitchison and Brown, 1957; Owen and DeRouen, 1980; Pennington, 1983; Smith, 1988).
Tian (2005) has shown that the GCI procedure performed better than procedures based on likelihood theory by Zhou

and Tu (2000). An iterative procedure based on an adjusted likelihood function has also recently appeared in Tian and Wu
(2006).
Alternatively, by recognizing that lnM = ln(1− δ)+ µ+ σ 2/2 and defining θ1 = ln(1− δ) and θ2 = (µ+ σ 2/2), one

can obtain 100(1− α)% confidence limits forM using the MOVER in Eqs. (1) and (2). An accurate confidence interval for δ is
readily available (Wilson, 1927; Agresti and Coull, 1998) and is given by[̂

δ + z2α/2/(2n)± zα/2

√{̂
δ(1− δ̂)+ z2α/2/(4n)

}
/n

]/(
1+ z2α/2/n

)
, (7)

where n0 is the number of zeros and δ̂ = n0/n. The confidence interval for θ2 can be obtained using Eq. (6).

3.3. Difference between two lognormal means

To find the confidence interval for a difference between two lognormal means, an approach based on the Edgeworth
expansion has been proposed by Zhou and Dinh (2005). Denote yij as the observation arising from subject j in group
i (i = 1, 2 and j = 1, 2, . . . , ni), with sample mean and variance given by ȳi =

∑
j yij/ni and s

2
i =

∑
j(yij − ȳi)

2/

(ni − 1), respectively. The estimated variance for ȳ1 − ȳ2 is given by s2 = s21/n1 + s
2
2/n2. The simple asymptotic

interval for the group difference is then given by ȳ1 − ȳ2 ± zα/2s. To take into account the skewness estimated by
γ̂i = ni

∑
j(yij − ȳi)

3/
[
s3i (ni − 1)(ni − 2)

]
, a nonparametric confidence interval procedure for skewed data based on the

Edgeworth expansion was suggested by Zhou and Dinh (2005). This confidence interval is given by{
L = ȳ1 − ȳ2 −

√
NG−1(z1−α/2/

√
N)s

U = ȳ1 − ȳ2 −
√
NG−1(zα/2/

√
N)s,

where N = n1 + n2, zx is the upper x percentile from the standard normal distribution,

G−1(x) =
{
1+ 3

(
x−

A
6N

)}1/3
− 1,

and

A =

√
N
[
s31γ1/n

2
1 − s

3
2γ2/n

2
2

]
s3

,

which is a simplified version of the expression given by Zhou and Dinh (2005).
To see whether this procedure possesses the invariance property, we can apply it to an example from Zhou and Dinh

(2005) where it was of interest to compare the cost of diagnosis of depressed patients to that of non-depressed patients.
The summary statistics for the non-depressed group are n1 = 108, ȳ1 = 1646.53, s1 = 4103.84, γ1 = 5.41, and for the
depressed group are n2 = 103, ȳ2 = 1344.58, s2 = 1785.54, γ2 = 2.55. By this method, the 95% confidence interval for the
difference between populationmeans (non-depressed groupminus depressed group) is (−492, 1338), while the interval for
the opposite difference (depressed group minus non-depressed group) is given by (−1077, 657). This abnormality was first
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noticed in the case of binary data (Lecoutre and Faure, 2007), which prompted a response that appears to have confused the
properties of invariance and symmetry (Zhou and Qin, 2007). Since a lot has been published (see, e.g., Zhou, 2002; Zhou and
Dinh, 2005; Dinh and Zhou, 2006) based on the idea of removing skewness by transformation (Hall, 1992), it would be of
high practical value to effectively fix this abnormality.
Alternatively, we may apply the MOVER to differences between lognormal means (Zou et al., 2009b). Let exp(ηi) denote

the arithmetic mean of population i with a random sample of observations yielding the confidence limits (li, ui) (i = 1, 2),
whichmay be obtained using Eq. (6). It is then simple to obtain the confidence limits for exp(η1)−exp(η2) using theMOVER
in Eq. (3).
When two groups are not independent, with data from at least one group assumed to be lognormally distributed, the

correlation between observations in the two groupsmust be taken into account. Fromprevious results presented by Shimizu
(1983), one can show that the correlation on the original scale is given by

r =
exp(ρσ1σ2)− 1√[

exp(σ 21 )− 1
] [
exp(σ 22 )− 1

] , (8)

for bivariate lognormal dataΛ2(µ1, µ2, σ 21 , σ
2
2 , ρ). That is, (ln y1, ln y2) has a bivariate normal distributionwith parameters

(µ1, µ2, σ 21 , σ
2
2 , ρ). Moreover, for the semi-lognormal distribution, with (ln y1, y2) following bivariate normal with

parameters (µ1, µ2, σ 21 , σ
2
2 , ρ), the correlation is given by

r =
ρσ1√

exp(σ 21 )− 1
. (9)

The sample estimate r̂ may be obtained by substitution of estimates ρ̂ and s2i for ρ and σ
2
i , respectively. Note that

expression (8) has previously been obtained by Mostafa and Mahmoud (1964). Special cases of both Eqs. (8) and (9) can
also be found in Kowalski (1972).
We note that the procedure also provides a simple solution to interval estimation of a difference in mean cost when

data contain zero values, discussed in Chen and Zhou (2006). This can be done by using the method in Section 3.2 for each
group, then applying Eq. (3) to obtain a confidence interval for the difference.We also note that since a difference on the log-
scale is equivalent to a ratio on the original scale, the procedure discussed here provides a simple alternative to an iterative
procedure based on likelihood ratio (Wu et al., 2002, 2006).

3.4. Net health benefit: A difference between two differences

Cost-effectiveness analysis has traditionally focused on the ratio of the cost difference to the effectiveness difference,
commonly known as incremental cost-effectiveness ratio (ICER). The ICER is the additional cost incurred when the test
intervention delivers one unit of additional health benefit relative to the standard intervention. Interpretational and
statistical difficulties associated with ICER have resulted in the net health benefit (NHB) being used as an alternative
summary measure of the value for money of health-care programs (Stinnett and Mullahy, 1998; Willan, 2001; Hoch et al.,
2002).
Let Cij and Eij denote the cost and effectiveness, respectively, for subject j who receives treatment i, respectively, for

i = 1, 2 and j = 1, 2, . . . , ni. Assuming the (Cij, Eij) are independent and identically distributed bivariate random variables
withmeansµCi , µEi , variances σ

2
Ci
, σ 2Ei and covariance σCiEi , then theNHB is defined asNHB = (µE1−µC1/λ)−(µE2−µC2/λ),

where λ is the amount society is willing to pay for a unit of effectiveness (Stinnett and Mullahy, 1998). The sample estimate
for NHBmay then be obtained for a given λ by substituting estimates for µEi and µCi . Summary statistics may be calculated
as Ēi =

∑
Eij/ni, s2E1 =

∑
(Eij − Ēi)2/ni, C̄i =

∑
Cij/ni, s2C1 =

∑
(Cij − C̄i)2/ni, and sCiEi =

∑
(Cij − C̄i)(Eij − Ēi)/ni.

For bivariate data (Cij, Eij), a simple asymptotic (SA) confidence interval for NHB is given by

N̂HB± zα/2σ̂ , (10)

with the estimated variance for N̂HB given by

σ̂ 2 = v̂ar(N̂HB) =
2∑
i=1

v̂ar
(

̂µEi − µCi/λ
)
=

2∑
i=1

(
s2Ei + s

2
Ci/λ

2
− 2sCiEi/λ

)
/ni.

This procedure may require very large sample sizes to be valid because of its enforced symmetry. As pointed out
above, the procedure based on the transformation of the Edgeworth expansion (Zhou and Dinh, 2005) lacks the invariance
property. Dinh and Zhou (2006) have nonetheless applied it to the NHB.We summarize this procedure here for comparison.
The 100(1− α)% confidence limits are given by{

L = N̂HB−
√
NG−1(z1−α/2/

√
N)σ̂

U = N̂HB−
√
NG−1(zα/2/

√
N)σ̂ ,
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Table 1
The performance of the GCI approacha and the MOVER for constructing a two-sided 95% confidence interval for the lognormal mean based on 10,000
simulations (µ = −σ 2/2). Each interval by GCI was based on 10,000 simulated pivotal quantities.

n σ 2 GCI MOVER
Cover (<,>) %b Width Cover (<,>) % Width

5 0.5 93.99 (2.00, 4.01) 2.69 93.47 (3.19, 3.34) 2.54
1.0 93.98 (1.92, 4.10) 4.78 94.65 (2.75, 2.60) 4.66
1.5 94.15 (2.07, 3.78) 6.76 95.03 (2.92, 2.05) 6.67
2.0 93.77 (2.36, 3.87) 8.82 95.10 (2.99, 1.91) 8.76
2.5 94.08 (2.38, 3.54) 10.59 95.30 (2.89, 1.81) 10.55
3.0 93.90 (2.09, 4.01) 12.74 95.35 (2.60, 2.05) 12.72

20 0.5 94.56 (2.35, 3.09) 0.76 94.24 (3.37, 2.39) 0.74
1.0 94.90 (2.17, 2.93) 1.22 95.19 (2.87, 1.94) 1.20
1.5 94.36 (2.40, 3.24) 1.64 94.76 (3.04, 2.20) 1.63
2.0 94.39 (2.39, 3.22) 2.06 94.94 (2.89, 2.17) 2.04
2.5 94.89 (2.14, 2.97) 2.44 95.24 (2.61, 2.15) 2.43
3.0 94.97 (2.37, 2.66) 2.87 95.41 (2.82, 1.77) 2.86

a GCI: generalized confidence interval; MOVER: method of variance estimates recovery.
b < lower error rate,> upper error rate.

where N = n1 + n2, zx is the upper x percentile from the standard normal distribution,

G−1(x) =
{
1+ 3

(
x−

A
6N

)}1/3
− 1,

A =

√
N
σ̂ 3

(B1 − B2),

and

Bi =
ni∑
j=1

{
Cij − C̄i
niλ

−
Eij − Ēi
ni

}3
, i = 1, 2.

Note that these expressions are simplified version of those given in Dinh and Zhou (2006, p. 580).
As an alternative, we can first use the MOVER in Section 2 to construct two separate confidence intervals for θ1 =

µE1−µC1/λ and θ2 = µE2−µC2/λ, with correlations between the cost and effectiveness measure within groups taken into
account using Eq. (4). Application of Eq. (3) will then yield a confidence interval for the NHB. An advantage of our approach
is that it reflects the asymmetry of the sampling distribution for N̂HB by recovering variance estimates separately from the
lower and upper limits for individual parameters.

4. Simulation studies

Since its derivation relies on asymptotic theory, we conducted three simulation studies to evaluate the performance of
the MOVER as applied to lognormal data. For comparisons, we also included several existing methods. All simulations were
conducted with 10,000 replications and implemented using SAS PROC IML.
For a single lognormal mean, we compared the MOVER with the GCI for setting 95% confidence limits forµ+ σ 2/2 with

n = 5 and 20, and σ 2 = 0.5 to 3.0 by increments of 0.5. Without loss of generality, we set µ = −σ 2/2. Each confidence
interval using GCI in Table 1 was obtained from 10,000 simulated pivotal quantities using the algorithm in Krishnamoorthy
and Mathew (2003). These results indicate that the MOVER performed as least as well as the GCI, even for sample sizes as
small as 5.
We also compare the MOVER with the GCI, after correcting for a typographic error (Tian, 2005, p. 3227), in the case of

the∆-distribution. For this purpose, we considered the proportion of zero values δ = 0.1 and 0.2, with n = 15, 25, and 50,
and σ 2 = 1.0 to 3.0 by increments of 1.0. Again, we set µ = −σ 2/2. Each GCI was obtained using 10,000 sets of simulated
pivotal statistics. Simulation results in Table 2 show that both the MOVER and the GCI generally have confidence interval
coverage close to the nominal 95% level, with the former consistently resulting in narrower interval width. We also note
that MOVER tends to provide slightly unbalanced tail errors as compared to the GCI.
The last simulation study compared the MOVER to the Edgeworth expansion based method for the NHB (Dinh and

Zhou, 2006). Simulation results are presented in Table 3. Consistent with Zhou and Dinh (2005), the Edgeworth expansion
based method performs poorly, often worse than the method of point estimate plus/minus 1.96 times standard error. These
results also show that the simple asymptotic method may provide reasonable overall coverage with a sample size of at
least 500 per group, although with unbalanced error levels in the tails. On the other hand, the MOVER performs very well.
Simulation results (not shown) using the same parameters as those in a previous study by Dinh and Zhou (2006) also show
this procedure performs well.
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Table 2
The performance of GCIa and theMOVER for constructing a two-sided 95% confidence interval for themean of a∆-distribution based on 10,000 simulations
(µ = −σ 2/2). Each interval by GCI was based on 10,000 simulated pivotal quantities.

δ n σ 2 GCI MOVER
Cover (<,>) %b Width Cover (<,>) % Width

0.1 15 1.0 95.53 (2.34, 2.13) 1.72 95.03 (3.60, 1.37) 1.65
2.0 95.50 (2.26, 2.24) 2.85 95.22 (3.13, 1.65) 2.78
3.0 94.94 (2.35, 2.71) 3.94 94.87 (2.90, 2.23) 3.88

25 1.0 95.95 (2.03, 2.02) 1.22 95.21 (3.09, 1.70) 1.17
2.0 95.21 (2.19, 2.60) 1.97 94.94 (2.87, 2.19) 1.93
3.0 95.31 (2.26, 2.43) 2.71 95.09 (2.80, 2.11) 2.67

50 1.0 95.79 (2.26, 1.95) 0.80 95.10 (3.02, 1.88) 0.78
2.0 95.41 (2.37, 2.22) 1.29 95.16 (2.87, 1.97) 1.26
3.0 94.87 (2.43, 2.70) 1.76 94.86 (2.69, 2.45) 1.73

0.2 15 1.0 95.99 (2.14, 1.87) 1.98 95.17 (3.30, 1.53) 1.87
2.0 95.70 (2.02, 2.28) 3.23 95.41 (2.78, 1.81) 3.13
3.0 94.93 (2.54, 2.53) 4.47 94.97 (3.11, 1.92) 4.38

25 1.0 96.01 (2.14, 1.85) 1.36 95.17 (3.20, 1.63) 1.30
2.0 95.70 (2.11, 2.19) 2.16 95.34 (2.79, 1.87) 2.10
3.0 95.57 (2.17, 2.26) 2.96 95.27 (2.74, 1.99) 2.91

50 1.0 95.56 (2.26, 2.18) 0.88 95.00 (2.99, 2.01) 0.85
2.0 95.28 (2.36, 2.36) 1.39 94.95 (2.92, 2.13) 1.37
3.0 95.39 (2.24, 2.37) 1.90 95.30 (2.58, 2.12) 1.87

a GCI: generalized confidence interval; MOVER: method of variance estimates recovery.
b < lower error rate,> upper error rate.

5. Examples

With the satisfactory performance of the MOVER in the simulation studies here and elsewhere (Zou and Donner, 2008;
Zou et al., 2009b), we now illustrate the procedure using examples arising from health economics. We retain excessive
decimal places until the end of the calculation, and then round to two decimal places.

Example 1: Mean of∆-distribution

To illustrate the calculations for amean from the∆-distribution, consider the data found in Zhou and Tu (2000) involving
a diagnostic test charge of n = 40 patients. Among them n0 = 10 patients had no diagnostic tests during the study period.
For the remaining patients, cost may be approximated by the lognormal distribution, as in Zhou and Tu (2000). Analysis of
the data on the log scale yields x̄ = 6.8535 and s2 = 1.8696 (Tian, 2005, p. 3231). FromEq. (7), the 95% confidence interval for
δ̂ = 0.25 is (0.141187, 0.40194). Setting θ1 = ln(1−δ) and θ2 = −(µ+σ 2/2) and applying Eq. (6) to θ̂2, the point estimates
(and 95% confidence interval) of θ1 and θ2 are−0.28768 (−0.51406,−0.15300) and 7.7883 (7.19140, 8.68761), respectively.
The MOVER then yields the 95% confidence limits for (1− δ) exp(µ+ σ 2/2) given by (955.50, 4491.55), comparable to the
GCI limits of (959.87, 4652.22) on the basis of 5000 simulated pivotal statistics (Tian, 2005, p. 3231), also close to our own
result of (970.81, 4687.37) with 10,000 sets of simulated pivotal statistics.

Example 2: Difference between two independent lognormal means

As an example of a difference between two means, consider a study from Zhou et al. (1997) where the effects of race on
the cost of medical care for patients with type I diabetes is of particular interest. The log-transformed cost data obtained on
119 black patients yields x̄1 = 9.06694, s21 = 1.82426, while for 106 white patients yields x̄2 = 8.69306, s

2
2 = 2.69186. By

Eq. (6), the mean cost (95% confidence interval) for black patients is estimated as 21570.19 (15806.00, 31388.77), while for
white patients it is 22902.28 (14842.03, 39722.09). The difference in mean costs (95% confidence interval) is then obtained
from the MOVER as−1332.09 (−19112.18, 11371.14).

Example 3: Difference between two dependent lognormal means

To exemplify our method for a difference between two dependent lognormal means, consider data presented by Zhou
et al. (2001) inwhich the sample estimates based on 98 patients who had outpatient costs pre/post a policy change are given
by x̄1 = 6.41, s21 = 2.73, x̄2 = 6.50, s

2
2 = 3.48, and ρ̂ = 0.45. By Eq. (6) the costs (95% confidence interval) at two periods

are 2380.34 (1511.15, 4266.23) and 3789.54 (2195.38, 7770.97), respectively. Eq. (8) yields r̂ = 0.141416, thus the pre/post
cost difference (95% confidence interval) is given by−1409.20 (−5362.49, 881.57) using the MOVER.

6. Conclusion

We have demonstrated that interval estimation involving lognormal data requires only the application of confidence
interval procedures found in introductory textbooks. Thus, it may be unnecessary to avoid lognormal assumptions for
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Table 3
The performance of three procedures for constructing a two-sided 95% confidence intervals for the net health benefit (λ = 10) based on 10,000 simulations.

n ρ1/ρ2 Edgeworth SAa MOVER
Cover (<,>) %b Width Cover (<,>) % Width Cover (<,>) % Width

(ln Cij, Eij) ∼ N2(µCi, µEi, σ 2Ci, σ
2
Ei, ρi)

c

50 −0.8/−0.8 90.91 (0.20, 8.89) 276.7 94.04 (1.13, 4.83) 258.7 94.84 (3.46, 1.70) 353.7
50 −0.8/−0.2 91.03 (0.30, 8.67) 275.0 94.05 (1.18, 4.77) 257.1 94.82 (3.37, 1.81) 352.3
50 −0.2/−0.8 90.99 (0.20, 8.81) 274.7 94.04 (1.00, 4.96) 256.8 94.75 (3.26, 1.99) 350.9
50 −0.2/0.4 91.09 (0.21, 8.70) 270.4 94.16 (1.11, 4.73) 252.7 95.03 (3.12, 1.85) 349.0
50 0.4/−0.8 91.41 (0.16, 8.43) 275.2 94.68 (0.94, 4.38) 257.3 95.02 (3.10, 1.88) 352.6
50 0.4/0.4 91.11 (0.13, 8.76) 271.0 94.36 (0.81, 4.83) 253.3 95.36 (2.83, 1.81) 348.6
100 −0.8/−0.8 92.00 (0.34, 7.66) 195.2 93.98 (0.98, 5.04) 189.6 95.13 (2.98, 1.89) 207.5
100 −0.8/−0.2 92.18 (0.35, 7.47) 196.8 94.23 (1.05, 4.72) 191.2 95.01 (2.94, 2.05) 207.1
100 −0.2/−0.8 92.29 (0.24, 7.47) 194.7 94.04 (0.81, 5.15) 189.1 94.98 (3.02, 2.00) 207.2
100 −0.2/0.4 91.70 (0.34, 7.96) 195.3 93.93 (0.85, 5.22) 189.8 94.99 (2.95, 2.06) 207.1
100 0.4/−0.8 91.68 (0.39, 7.93) 194.9 94.12 (0.91, 4.97) 189.4 95.34 (2.83, 1.83) 205.9
100 0.4/0.4 91.90 (0.29, 7.81) 193.3 94.14 (0.90, 4.96) 187.7 94.93 (3.13, 1.94) 205.8
500 −0.8/−0.8 93.20 (0.74, 6.06) 92.53 94.11 (0.90, 4.99) 92.15 94.82 (2.84, 2.34) 81.62
500 −0.8/−0.2 93.15 (0.67, 6.18) 91.45 94.07 (0.92, 5.01) 91.07 95.30 (2.58, 2.12) 81.42
500 −0.2/−0.8 92.93 (0.69, 6.38) 91.86 93.64 (0.94, 5.42) 91.48 94.88 (2.64, 2.48) 81.44
500 −0.2/0.4 92.84 (0.64, 6.52) 92.08 93.72 (0.93, 5.35) 91.70 94.74 (2.84, 2.42) 81.39
500 0.4/−0.8 93.36 (0.79, 5.85) 91.76 94.18 (1.01, 4.81) 91.38 95.24 (2.59, 2.17) 81.32
500 0.4/0.4 93.11 (0.69, 6.20) 91.82 94.06 (0.94, 5.00) 91.45 94.83 (2.84, 2.33) 81.29
(ln Cij, ln Eij) ∼ N2(µCi, µEi, σ 2Ci, σ

2
Ei, ρi)

50 −0.8/−0.8 89.75 (0.04, 10.21) 370.8 92.82 (0.72, 6.46) 347.6 95.09 (3.80, 1.11) 453.3
50 −0.8/−0.2 90.02 (0.07, 9.91) 367.8 92.61 (0.69, 6.70) 344.8 95.13 (3.61, 1.26) 451.0
50 −0.2/−0.8 89.53 (0.08, 10.39) 353.4 92.95 (0.64, 6.41) 331.6 94.83 (4.06, 1.11) 440.0
50 −0.2/0.4 89.57 (0.08, 10.35) 345.3 92.96 (0.70, 6.34) 324.0 94.55 (4.46, 0.99) 437.0
50 0.4/−0.8 88.10 (0.04, 11.86) 314.2 91.69 (0.61, 7.70) 295.3 95.24 (3.78, 0.98) 410.5
50 0.4/0.4 87.90 (0.02, 12.08) 301.9 91.56 (0.44, 8.00) 283.6 95.60 (3.56, 0.84) 404.0
100 −0.8/−0.8 90.75 (0.33, 8.92) 261.2 92.68 (0.98, 6.34) 254.0 94.89 (3.55, 1.56) 267.2
100 −0.8/−0.2 91.47 (0.23, 8.30) 262.0 93.61 (0.66, 5.73) 254.8 94.95 (3.56, 1.49) 267.3
100 −0.2/−0.8 90.80 (0.16, 9.04) 249.3 92.76 (0.62, 6.62) 242.6 94.93 (3.82, 1.25) 257.0
100 −0.2/0.4 91.02 (0.16, 8.82) 245.8 93.03 (0.62, 6.35) 239.1 95.10 (3.58, 1.32) 254.4
100 0.4/−0.8 90.00 (0.14, 9.86) 223.0 92.30 (0.57, 7.13) 217.1 95.48 (3.30, 1.22) 236.5
100 0.4/0.4 90.03 (0.18, 9.79) 218.7 92.22 (0.59, 7.19) 213.0 95.38 (3.34, 1.28) 232.9
500 −0.8/−0.8 93.84 (0.70, 5.46) 122.4 94.39 (1.02, 4.59) 121.9 95.13 (2.87, 2.00) 105.9
500 −0.8/−0.2 93.29 (0.78, 5.93) 121.0 93.89 (1.09, 5.02) 120.5 94.83 (3.17, 2.00) 105.6
500 −0.2/−0.8 93.20 (0.62, 6.18) 115.9 94.07 (0.83, 5.10) 115.4 95.13 (2.88, 1.99) 101.1
500 −0.2/0.4 93.63 (0.62, 5.75) 113.9 94.20 (0.92, 4.88) 113.4 95.21 (2.96, 1.83) 99.50
500 0.4/−0.8 92.87 (0.57, 6.56) 104.6 93.62 (0.78, 5.60) 104.3 95.65 (2.78, 1.57) 91.39
500 0.4/0.4 92.70 (0.47, 6.83) 102.8 93.62 (0.64, 5.74) 102.4 95.68 (2.72, 1.60) 89.67
a SA: simple asymptotic; MOVER: method of variance estimates recovery.
b < lower error rate,> upper error rate.
c N2(µCi, µEi, σ 2Ci, σ

2
Ei, ρi) denotes a bivariate normal distribution. Parameters used are µC1 = 8, µE1 = 4, σ

2
C1 = 0.5, σ

2
E1 = 2, µC2 = 6, µE2 = 3,

σ 2C2 = 2.5, σ
2
E2 = 1.0.

simplicity (Nixon and Thompson, 2005, p. 1226), or to rely on simulation of pivotal statistics (Krishnamoorthy andMathew,
2003; Tian, 2005; Chen and Zhou, 2006; Krishnamoorthy et al., 2006).
Interval estimation based on transformations using the Edgeworth expansion (Zhou and Dinh, 2005) lacks the invariance

property of a confidence interval for a difference, and performs poorly for lognormal data (Zhou and Dinh, 2005; Dinh and
Zhou, 2006). One may argue that this procedure is nonparametric and thus it is unfair to compare it with the MOVER. Our
position is that to be nonparametric, a proceduremust be able to provide valid results for data having a commondistribution,
such as the lognormal in the present context.
Although we have deliberately used examples from health economics, the approach described here is also suitable for

lognormal data arising from such disciplines as economics and environmental science (Rappaport and Selvin, 1987; Crow
and Shimizu, 1988; Krishnamoorthy et al., 2006; Fletcher, 2008; Zou et al., 2009b). We should also mention that the MOVER
we described here can be readily applied to lognormal regression models (Bradu and Mundlak, 1970; El-Shaarawi and
Viveros, 1997; Wu et al., 2006; Tian and Wu, 2007b; Shen and Zhu, 2008), because in concept this problem is identical
to that of producing confidence intervals for lognormal means.
As a final note, we should emphasize that the procedures in Section 3 are only applicable to lognormal data. Whenever

there is apparent evidence against the lognormal assumption, the procedures presented in this section should not be used.
However, this is not an inherent deficiency of the MOVER. This point is supported by several applications and extensions
beyond lognormal data (Zou and Donner, 2008). Zou (2008) presents a further extension to interval estimation formeasures
of additive interaction, which are functions of risk ratios having only asymptotic lognormal distributions. New applications
to set confidence limits for differences between Pearson correlations and coefficients of determination (R2) may be found
in Zou (2007), where it has been identified that the MOVER fails in the case of very small increments in R2.
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SUMMARY

Inferences for the difference between two dependent intraclass correlation coefficients (ICCs) may arise
in studies in which a sample of subjects are each assessed several times with a new device and a standard.
The ICC estimates for the two devices may then be compared using a test of significance. However,
a confidence interval for a difference between two ICCs is more informative since it combines point
estimation and hypothesis testing into a single inference statement. We propose a procedure that uses
confidence limits for a single ICC to recover variance estimates needed to set confidence limits for
the difference. An advantage of this approach is that it provides a confidence interval that reflects the
underlying sampling distribution. Simulation results show that this method performs very well in terms of
overall coverage percentage and tail errors. Two data sets are used to illustrate this procedure. Copyright
q 2009 John Wiley & Sons, Ltd.

KEY WORDS: reliability; Fisher’s z-transformation; skewness

1. INTRODUCTION

The intraclass correlation coefficient (ICC) is commonly used to assess the reliability of measure-
ments when observations approximately follow a normal distribution [1, 2]. As a result, an extensive
literature has been accumulated on inferences for this parameter, with extensive reviews provided
by Donner [3] and McGraw and Wong [4]. With few exceptions [5–7], relatively little research
has appeared on the problem of comparing two correlated ICCs computed from the same sample
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of subjects. However, such problems arise frequently, for example, when it is of interest to esti-
mate the difference in reliability between two observers or devices, as in a study [8] aimed at
evaluating the equivalence of two approaches designed to measure the size of a patients’ brain
ventricle relative to that of the patients’ skull (VBR). In this study, two VBR measurements were
obtained on each of the 50 patients using an automated pixel count based on the image displayed
on a television screen or a hand-held planimeter projecting an X-ray image. As a second example,
Gomez et al. [9] reported on a study in which five repeated measurements of broadband ultrasound
attenuation (in dB/MHz) on the right heel of 34 subjects were obtained using 2 scanning devices
(BEAM and UBIS3000). The purpose here was to compare the performance of the new device
(the BEAM scanner) with the performance of the currently available scanner (UBIS3000).

In this paper, we use a general method for confidence interval estimation proposed by Zou and
Donner [10] to obtain confidence limits about a difference between two dependent ICCs. The
advantage of this method is that it accounts for the left-skewness of the sampling distribution of
an ICC. Since the central idea here is to recover variance estimates from confidence limits about a
single ICC, we refer to this method as the method of variance estimates recovery (MOVER). Monte
Carlo simulation is used to assess the performance of this method using confidence limits for a
single ICC obtained from the application of five different procedures: (1) the simple asymptotic
approach, (2) application of Fisher’s z-transformation, (3) application of the inverse hyperbolic
tangent, (4) application of a modified Fisher’s z-transformation, and (5) an exact method based
on the F-distribution. The evaluation criteria considered are overall coverage, tail errors, and
confidence interval width. Two examples are presented.

2. NOTATION AND TERMINOLOGY

Suppose two devices each measuring the same sample of subjects, with the first device yielding
k1 measurements and the second device yielding k2 measurements on each subject. Adopting the
notation in Donner and Zou [6], let

Xi =(Xi1, Xi2, . . . , Xik1, Xi,k1+1, Xi,k1+2, . . . , Xi,k1+k2)

denote measurements on the i th subject, i=1,2, . . . ,n, where Xi1, Xi2, . . . , Xik1 are the measure-
ments obtained by the first device (or observer) and Xi,k1+1, Xi,k1+2, . . . , Xi,k1+k2 are the measure-
ments obtained by the second device (observer). We assume that the following model holds:

Xi ∼N (l,R) (1)

where lT=(�11
T
k1

,�21
T
k2

) and

R=
([(1−�1)Ik1 +�1Jk1]�21 �12�1�2Jk1×k2

�12�1�2Jk2×k1 [(1−�2)Ik2 +�2Jk2]�22

)
In these expressions 1k is a column vector with all the k elements equal to 1, Ik1 is a k1×k1 identity
matrix, while Jk and Jk1×k2 are k×k and k1×k2 matrices with all elements equal to 1. Thus, the
model assumes that the kg measurements taken by the first device have common mean �g , common
variance �2g , and common intraclass correlation �g , g=1,2. The interclass correlation coefficient
�12 between any pair of observations Xi j ( j =1,2, . . . ,k1) and Xi,k1+ j ′ ( j ′ =1,2, . . . ,k2) is also

Copyright q 2009 John Wiley & Sons, Ltd. Statist. Med. 2009; 28:1041–1053
DOI: 10.1002/sim
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assumed constant across all subjects in the population. These assumptions imply that the Xi j for
a given device are interchangeable.

Elston [11] derived the maximum likelihood estimators �̂1, �̂2 and �̂12 of �1,�2 and �12, respec-
tively. Briefly, one obtains �̂1 and �̂2 by computing the Pearson product–moment correlation overall
possible pairs of measurements that can be constructed within devices 1 and 2, respectively, while
�̂12 is similarly obtained by computing the correlation overall possible nk1k2 pairs (Xi j , Xi,k1+ j ′).

Another frequently applied approach requires calculation of the ANOVA (analysis of variance)
estimator for �g,g=1,2, given by

�̂g = MSAg−MSWg

MSAg+(kg−1)MSWg

where MSAg and MSWg are the mean-square errors among and within subjects, respectively, as
derived from an ANOVA on the measurements taken by device g. Note that the ANOVA estimator
and the maximum likelihood estimator are virtually indistinguishable from each other in the context
of reliability studies, where the number of measurements per subject tends to be constant.

3. REVIEW OF CONFIDENCE INTERVALS FOR ICCS

As mentioned above, our approach to interval estimation of �1−�2 is to recover variance estimates
from the confidence limits for a single ICC. The simplest such approach for single � is to apply
the central limit theorem in conjunction with Slutzky’s theorem, yielding

l,u= �̂∓z�/2

√
v̂ar(�̂) (2)

where �̂ is the sample estimate of �, z�/2 is the upper �/2 quantile of the standard normal
distribution, and

v̂ar(�̂)= 2(nk−1)(1− �̂)2[1+(k−1)�̂]2
k2(k−1)n(n−1)

(3)

where n is the number of subjects in the study, k is the number of measurements on each subject
(usually referred to as class size). This variance formula is a special case of Smith [12], who derived
a formula for the case of variable class sizes. We refer to this method as the simple asymptotic
method, which enforces symmetry on the sampling distribution for �̂ and thus cannot be expected
to perform well in most practical situation.

A well-known approach [13, p. 221] that may be used to account for the left-skewed sample
distribution of the ICC is Fisher’s z-transformation, given by

z(�̂)=0.5ln
1+(k−1)�̂

1− �̂

which is distributed asymptotically as normal distribution

N

(
0.5ln

1+(k−1)�

1−�
,

k

2(k−1)(n−2)

)
It has been suggested that [14, p. 566] the inverse hyperbolic tangent transformation (sometimes

also referred to as arctanh transformation) may perform better than Fisher’s z-transformation. This

Copyright q 2009 John Wiley & Sons, Ltd. Statist. Med. 2009; 28:1041–1053
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procedure entails first obtaining confidence limits on the transformed scales 0.5ln{[1+�]/(1−�)},
followed by inversion to obtain confidence limits on the original scale. The resulting limits are
based on the large sample distribution of

Z =0.5ln
1+ �̂

1− �̂

which may be taken as

N

(
0.5ln

1+�

1−�
,
2(nk−1)[1+(k−1)�̂]2

k2(k−1)n(n−1)

)
The variance estimate in this expression is derived using the delta method with variance formula
for �̂ given in (3).

Konishi [15] observed that Fisher’s z-transformation cannot simultaneously normalize the
sampling distribution and stabilize variance for the case of k>2, and thus proposed the modifi-
cation

√
(k−1)/(2k) ln{[1+(k−1)�]/(1−�)}. The resulting confidence interval is based on the

large sample distribution of

Z =
√
k−1

2k
ln

[1+(k−1)�̂]
1− �̂

which may be taken as

N

(√
k−1

2k
ln

[1+(k−1)�]
1− �̂

+ 7−5k

n
√
18k(k−1)

,
1

n

)
One can also construct an exact confidence interval for � based on the F-distribution [16, p. 659].
This confidence interval is given by

l=[k�̂+(1−F1−�/2)(1− �̂)]/[k−(k−1)(1−F1−�/2)(1− �̂)]
u=[k�̂+(1−F�/2)(1− �̂)]/[k−(k−1)(1−F�/2)(1− �̂)]

where Fq is the qth quantile of the F-distribution with degrees of freedom of n−1 and n(k−1).

4. INTERVAL ESTIMATION FOR A DIFFERENCE BETWEEN TWO
DEPENDENT ICCS

We first assume that �̂1 and �̂2 are statistically independent. By the central limit theorem, a
100(1−�) per cent confidence interval for �1−�2 is given by

L= �̂1− �̂2−z�/2

√
var(�̂1)+var(�̂2)

U = �̂1− �̂2+z�/2

√
var(�̂1)+var(�̂2)

(4)

where z�/2 is the upper �/2 quantile of the standard normal distribution. The confidence limits
in (4) are not yet applicable without the appropriate variance estimates, which we denote by
v̂ar(�̂g),g=1,2.

Copyright q 2009 John Wiley & Sons, Ltd. Statist. Med. 2009; 28:1041–1053
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Dropping the subscript g, suppose that nowwe are given two-sided 100(1−�) per cent confidence
limits (l,u) for �, as obtained using one of the five procedures presented in Section 3. Since the
limits l and u are not necessarily symmetric about �̂, we must have

l= �̂−z�/2

√
var(�̂)

which yields

v̂ar(�̂)= (�̂−l)2

z2�/2

under �≈ l. Similarly,

u= �̂+z�/2

√
var(�̂)

and thus

v̂ar(�̂)= (u− �̂)2

z2�/2

under �≈u.
Among the plausible values of �1 provided by (l1,u1) and �2 by (l2,u2), the lower limit L for

�1−�2 can be seen to be close to l1−u2 and the upper limit U close to u1−l2. In the spirit of
score-type confidence intervals [17], we can use the variance estimates needed to obtain L in (4)
under the condition of �1≈ l1 and �2≈u2, i.e.

v̂ar(�̂1)+ v̂ar(�̂2)=
(�̂1−l1)2

z2�/2

+ (u2− �̂2)
2

z2�/2

Substituting into (4), the lower limit L for �1−�2 is given by

L= �̂1− �̂2−
√

(�̂1−l1)2+(u2− �̂2)2 (5)

Similar steps lead to the upper limit U for �1−�2 given by

U = �̂1− �̂2+
√

(u1− �̂1)2+(�̂2−l2)2 (6)

Furthermore, by definition, we have

cov(�̂1, �̂2)=corr(�̂1, �̂2)
√
var(�̂1)var(�̂2)

which can be used to extend (5) and (6) to the case of dependent ICCs. Therefore, a 100(1−�)
per cent confidence interval for �1−�2 is given by

L= �̂1− �̂2−
√

(�̂1−l1)2−2 ĉorr(�̂1, �̂2)(�̂1−l1)(u2− �̂2)+(u2− �̂2)2

U = �̂1− �̂2+
√

(u1− �̂1)2−2 ĉorr(�̂1, �̂2)(u1− �̂1)(�̂2−l2)+(�̂2−l2)2
(7)

Copyright q 2009 John Wiley & Sons, Ltd. Statist. Med. 2009; 28:1041–1053
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Figure 1. Empirical coverage per cent (based on 10 000 runs) of 95 per cent nominal confidence intervals
for a difference between two dependent ICCs using variance estimates recovered from confidence limits
for single ICCs, as obtained from (1) simple asymptotic, (2) Fisher’s z transformation, (3) arctanh
transformation, (4) Konish modified Fisher z-transformation, and (5) F-distribution. Each boxplot was
drawn from coverage percentages of 128 (=4(k1,k2)×4�1×4(�1−�2)×2�12) parameter combinations.

Horizontal lines in each plot are 94.6, 95, and 95.4 per cent, respectively.

where

ĉorr(�̂1, �̂2)=
√
k1k2(k1−1)(k2−1)

[1+(k1−1)�̂1][1+(k2−1)�̂2]
�̂212 (8)

As an example of computing �̂12, suppose that for a given subject the measurements taken by the
first device are 2, 4, 3, and by the second device are 7, 6, 9 (k1=k2=3). We create the pairs
for this subject as (2, 7), (2, 6), (2, 9), (4, 7), (4, 6) (4, 9), (3, 7), (3, 6), and (3, 9) and proceed
in similar manner for all remaining subjects. The estimator �̂12 is then obtained by computing
the Pearson product moment correlation between the first and second elements in all resulting
pairs.

Note that the simple asymptotic confidence interval for a difference can be shown to be a
consequence of using the simple asymptotic limits (2) to recover the variance estimates. This
indicates that the validity of the MOVER relies on that of the confidence limits for single ICCs.

Copyright q 2009 John Wiley & Sons, Ltd. Statist. Med. 2009; 28:1041–1053
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Figure 2. Imbalance of tail errors, quantified by relative bias per cent [100|MR−ML|/(MR+ML)],
of 95 per cent nominal confidence intervals for a difference between two dependent ICCs using
variance estimates recovered from confidence limits for single ICCs, as obtained from (1) simple
asymptotic, (2) Fisher’s z-transformation, (3) arctanh transformation, (4) Konish modified Fisher
z-transformation, and (5) F-distribution. Each boxplot was drawn from coverage percentages of 128

(=4(k1,k2)×4�1×4(�1−�2)×2�12) parameter combinations.

5. SIMULATION STUDY

As the derivation of the MOVER and its application to interval estimation for a difference
between two dependent ICCs rely largely on the central limit theorem, its theoretical properties
are intractable in finite samples. We therefore used simulation to evaluate the performance of four
procedures resulting from using the five sets of confidence limits described in Section 3.

The parameters for the simulation study include the total number of subjects (n), the number of
measurements taken by each device (k1,k2), and values for �1, �2 and �12. We selected the values of
�1 and �2 based on suggested benchmark values [18] and considered n=15,50,100 and (k1,k2)=
(2,2), (2,4), (4,4), and (6, 6). The parameter values for �1 were set to be 0.6, 0.8, 0.9 and 0.95,
and for �1−�2 to be 0–0.3 with increment of 0.1. We considered �12 to be 0.5

√
�1�2−0.05 and√

�1�2−0.05 to satisfy the requirement of a positive definite variance–covariance matrix �. Finally,
without loss of generality, we set �1=�2=0 and �1=�2=1, where �1, �2 and �21, �

2
2 are the common

mean and common variance of the measurements obtained by device 1 and device 2, respectively.
For each of 384 parameter combinations [3n×4(k1,k2)×4�1×4(�1−�2)×2�12], we generated

10 000 runs from a multivariate normal distribution with correlation structure defined by (1).

Copyright q 2009 John Wiley & Sons, Ltd. Statist. Med. 2009; 28:1041–1053
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Figure 3. Confidence interval width of 95 per cent nominal confidence intervals for a difference between
two dependent ICCs using variance estimates recovered from confidence limits for single ICCs, as obtained
from (1) simple asymptotic, (2) Fisher’s z-transformation, (3) arctanh transformation, (4) Konish modified
Fisher z-transformation, and (5) F-distribution. Each boxplot was drawn from means of interval width

for 128 (=4(k1,k2)×4�1×4(�1−�2)×2�12) parameter combinations.

The selected number of runs was based on a 0.4 per cent margin of error, i.e. we expected the
empirical coverage to vary between 94.6–95.4 per cent for a two-sided 95 per cent confidence
interval. Following advice given by Efron [19] on the evaluation of confidence interval methods,
we also considered the balance between the left and right tail errors as the second criterion. Interval
width was considered as the third criterion. The empirical coverage percentage was estimated by
the relative frequency out of 10 000 intervals that contained the true parameter value. We also
recorded the number of intervals that missed from the left (ML), occurring when the interval is
completely to the left of the parameter value, and from the right (MR). The relative bias per cent
was then obtained as

|MR−ML|
MR+ML

×100

Figure 1 shows clearly that the simple asymptotic method provides erratic overall coverage,
especially when n=15 and 50. The procedure based on Fisher’s z-transformation has a tendency
to provide coverage percentages that are greater than the nominal level, while those based on the
arctanh transformation and Konish’s modified z-transformation tends to show undercoverage. The
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trends are most obvious when n=15 and 50. Overall, the procedure based on the F-distribution
performs very well, even at n=15. Figure 2 shows that the simple asymptotic method results in
lop-sided intervals, a problem has been reduced by use of the three transformations considered.
Confidence intervals constructed using variance estimates recovered from the F-distribution method
are seen to be slightly more balanced. Figure 3 demonstrates that, even when compared with
methods having poorer coverage levels, the MOVER method utilizing the F-distribution remains
competitive in terms of expected interval width.

Table I presents comparative performance of the procedures based on the Fisher z-transformation
with that based on the F-distribution at sample sizes of 15 and 50. It is clear that the former
performs very well when the number of replicates made by each device is 2, but for replicates of 6,
it tends to provide lop-sided intervals for nonzero differences between two ICC’s. In contrast, the
procedure based on F-distribution provides virtually balanced intervals. The numerical values of
all 384 parameter combinations are available from the authors.

6. EXAMPLES

We now consider the examples discussed in Section 1. For the first example, the data derived from
computer-aided tomographic scans of the heads of 50 patients are available in Donner and Zou
[6] and Dunn [20, Chapter 5]. The two devices used in the study were an automated pixel count
(PIX) based on the image displayed on a television screen and a hand-held planimeter (PLAN)
based on a projection of the X-ray image. As reported in [6], we have �̂1=0.994, �̂2=0.731, and
�̂12=0.652. By (8), ĉorr(�̂1, �̂2)=0.246. Table II shows the various confidence intervals for the
difference in reliability between these two devices, which are all fairly wide. However, consistent
with the simulation results, the confidence interval based on the simple asymptotic method differs
considerably from other methods.

We present this example mainly for illustrative purpose. As pointed out by Dunn [20] it may be
an oversimplification to conclude immediately that the pixel method is considerably more reliable
than the planimetry-based method. This is because an inspection of the raw data shows that the
planimeter-based measurements appear to be much less prone to gross errors, something that may
be better understood by using more explicit modeling methods.

Table II also shows the results for the study comparing the reliability of two quantitative
ultrasound devices in the diagnosis of osteoporosis. On the basis of observations of broadband
ultrasound attenuation, Giraudeau et al. [7, p. 169] reported that �̂1=0.982 for the BEAM scanner,
�̂2=0.948 for the UBIS 3000, and �̂12=0.915 that gives ĉorr(�̂1, �̂2)=0.434. Although the
difference in point estimates is very small (0.034), the results obtained from using five different
methods to recover variance estimates still shown considerable variability. However, in general,
one may conclude that there is little difference between the standard device UBIS-3000 and the
new BEAMER Scanner. Sole reliance on the result obtained from hypothesis testing (P<0.001)
could reach a different conclusion.

7. CONCLUDING REMARKS

We have presented a new approach to confidence interval estimation for a difference between
two dependent intraclass correlation coefficients (ICCs). The method is based on a recovery of
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Table I. Performance of two procedures (based on 10 000 runs) setting two-sided 95 per cent confidence
intervals for a difference between intraclass correlation coefficients.

k1=k2=2

Fisher z-transformation F-distribution

Sample size n �1,�2 �∗
12 Cover (L, R)+ per cent Width Cover (L, R) per cent Width

15 0.90, 0.90 1 95.22 (2.36, 2.42) 0.361 94.84 (2.56, 2.60) 0.376
0.90, 0.90 2 95.52 (2.18, 2.30) 0.317 95.11 (2.40, 2.49) 0.331
0.90, 0.80 1 94.96 (2.01, 3.03) 0.499 94.62 (2.06, 3.32) 0.519
0.90, 0.80 2 95.90 (1.51, 2.59) 0.447 95.60 (1.56, 2.84) 0.465
0.90, 0.70 1 95.26 (2.03, 2.71) 0.615 94.98 (2.09, 2.93) 0.638
0.90, 0.70 2 95.74 (1.58, 2.68) 0.564 95.38 (1.68, 2.94) 0.585
0.90, 0.60 1 95.17 (1.96, 2.87) 0.705 94.78 (2.04, 3.18) 0.730
0.90, 0.60 2 95.95 (1.71, 2.34) 0.659 95.60 (1.80, 2.60) 0.683
0.95, 0.95 1 94.94 (2.56, 2.50) 0.197 94.56 (2.78, 2.66) 0.206
0.95, 0.95 2 95.48 (2.31, 2.21) 0.176 95.14 (2.49, 2.37) 0.184
0.95, 0.85 1 95.38 (1.82, 2.80) 0.367 95.13 (1.85, 3.02) 0.382
0.95, 0.85 2 95.70 (1.74, 2.56) 0.335 95.52 (1.78, 2.70) 0.348
0.95, 0.75 1 95.36 (2.23, 2.41) 0.510 94.99 (2.31, 2.70) 0.530
0.95, 0.75 2 95.62 (2.05, 2.33) 0.479 95.24 (2.14, 2.62) 0.497
0.95, 0.65 1 95.24 (2.00, 2.76) 0.620 94.85 (2.08, 3.07) 0.642
0.95, 0.65 2 95.45 (2.10, 2.45) 0.590 95.12 (2.16, 2.72) 0.611

50 0.90, 0.90 1 94.71 (2.51, 2.78) 0.159 94.60 (2.58, 2.82) 0.161
0.90, 0.90 2 95.03 (2.30, 2.67) 0.134 94.97 (2.32, 2.71) 0.136
0.90, 0.80 1 95.48 (2.00, 2.52) 0.233 95.42 (2.02, 2.56) 0.236
0.90, 0.80 2 95.05 (2.51, 2.44) 0.207 94.98 (2.54, 2.48) 0.209
0.90, 0.70 1 95.08 (2.13, 2.79) 0.306 95.00 (2.14, 2.86) 0.310
0.90, 0.70 2 95.33 (1.96, 2.71) 0.279 95.28 (1.96, 2.76) 0.282
0.90, 0.60 1 95.00 (2.50, 2.50) 0.371 94.95 (2.50, 2.55) 0.375
0.90, 0.60 2 95.26 (2.06, 2.68) 0.345 95.16 (2.10, 2.74) 0.349
0.95, 0.95 1 95.00 (2.58, 2.42) 0.083 94.93 (2.64, 2.43) 0.084
0.95, 0.95 2 95.14 (2.22, 2.64) 0.069 95.08 (2.27, 2.65) 0.070
0.95, 0.85 1 94.97 (2.39, 2.64) 0.171 94.88 (2.42, 2.70) 0.173
0.95, 0.85 2 95.13 (2.23, 2.64) 0.154 95.01 (2.24, 2.75) 0.155
0.95, 0.75 1 95.26 (2.11, 2.63) 0.254 95.15 (2.14, 2.71) 0.257
0.95, 0.75 2 95.18 (2.31, 2.51) 0.237 95.08 (2.32, 2.60) 0.240
0.95, 0.65 1 95.11 (2.22, 2.67) 0.327 95.05 (2.25, 2.70) 0.330
0.95, 0.65 2 95.06 (2.15, 2.79) 0.312 94.90 (2.20, 2.90) 0.315

k1=k2=6

Fisher z-transformation F-distribution

Cover (L, R) per cent Width Cover (L, R) per cent Width

15 0.90, 0.90 1 94.92 (2.45, 2.63) 0.239 94.55 (2.62, 2.83) 0.214
0.90, 0.90 2 96.30 (1.83, 1.87) 0.172 94.68 (2.48, 2.84) 0.141
0.90, 0.80 1 94.74 (2.84, 2.42) 0.329 93.95 (2.16, 3.89) 0.299
0.90, 0.80 2 95.92 (2.96, 1.12) 0.247 95.35 (1.76, 2.89) 0.215
0.90, 0.70 1 95.01 (3.00, 1.99) 0.395 94.09 (2.09, 3.82) 0.367
0.90, 0.70 2 95.97 (3.05, 0.98) 0.314 95.79 (1.55, 2.66) 0.288
0.90, 0.60 1 94.97 (3.17, 1.86) 0.441 94.33 (2.00, 3.67) 0.416
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Table I. Continued.

0.90, 0.60 2 96.45 (2.69, 0.86) 0.364 95.93 (1.42, 2.65) 0.343
0.95, 0.95 1 94.90 (2.62, 2.48) 0.134 94.52 (2.81, 2.67) 0.119
0.95, 0.95 2 96.73 (1.60, 1.67) 0.095 94.54 (2.65, 2.81) 0.077
0.95, 0.85 1 95.31 (2.99, 1.70) 0.248 94.42 (2.07, 3.51) 0.227
0.95, 0.85 2 95.01 (4.23, 0.76) 0.199 95.20 (2.21, 2.59) 0.179
0.95, 0.75 1 95.14 (3.35, 1.51) 0.339 94.40 (2.13, 3.47) 0.316
0.95, 0.75 2 95.14 (3.93, 0.93) 0.289 95.53 (1.92, 2.55) 0.270
0.95, 0.65 1 94.66 (3.72, 1.62) 0.401 93.94 (2.40, 3.66) 0.381
0.95, 0.65 2 94.83 (4.23, 0.94) 0.356 95.35 (2.14, 2.51) 0.339

50 0.90, 0.90 1 94.74 (2.74, 2.52) 0.110 94.63 (2.79, 2.58) 0.106
0.90, 0.90 2 95.55 (2.22, 2.23) 0.070 95.13 (2.45, 2.42) 0.065
0.90, 0.80 1 94.95 (2.71, 2.34) 0.160 94.69 (2.35, 2.96) 0.155
0.90, 0.80 2 95.35 (2.86, 1.79) 0.114 95.13 (1.97, 2.90) 0.109
0.90, 0.70 1 95.10 (2.67, 2.23) 0.202 94.77 (2.14, 3.09) 0.197
0.90, 0.70 2 95.55 (2.81, 1.64) 0.157 95.52 (1.87, 2.61) 0.153
0.90, 0.60 1 95.24 (2.66, 2.10) 0.234 95.03 (2.20, 2.77) 0.230
0.90, 0.60 2 95.09 (3.21, 1.70) 0.191 95.05 (2.23, 2.72) 0.188
0.95, 0.95 1 94.60 (2.64, 2.76) 0.058 94.51 (2.67, 2.82) 0.056
0.95, 0.95 2 95.63 (2.24, 2.13) 0.037 94.92 (2.62, 2.46) 0.034
0.95, 0.85 1 94.80 (3.00, 2.20) 0.119 94.61 (2.29, 3.10) 0.116
0.95, 0.85 2 94.71 (3.76, 1.53) 0.094 94.79 (2.53, 2.68) 0.091
0.95, 0.75 1 94.68 (3.12, 2.20) 0.173 94.61 (2.32, 3.07) 0.170
0.95, 0.75 2 94.90 (3.61, 1.49) 0.148 95.23 (2.30, 2.47) 0.145
0.95, 0.65 1 95.17 (3.03, 1.80) 0.213 95.18 (2.28, 2.54) 0.210
0.95, 0.65 2 94.95 (3.53, 1.52) 0.190 95.20 (2.39, 2.41) 0.188

∗Value of 1 denotes �12=0.5(
√

�1�2−0.05) and 2 denotes �12=√
�1�2−0.05. Such �12 was used to ensure

positive definite variance–covariance matrix. +L: the interval lies completely below the parameter and R:
the interval lies completely above the parameter.

variance estimates from the confidence limits for a single ICC. In the spirit of score-type confidence
intervals, the method accounts naturally for the skewness of the sampling distributions of the
separate ICCs.

In addition to its use as a tool for primary data analysis, the method presented here can be
applied to secondary data analysis in which one does not have access to the raw data. This presents
an alternative to indirect procedures that are sometimes used such as judging significance at the
5 per cent level for a difference in reliability between two devices based on whether two 84
per cent confidence intervals overlap [21].

The method presented here may also be easily extend to unequal class sizes. Since the MOVER
derives its validity from that of confidence limits for a single ICC, all that needed then is to have
a reliable procedure for an ICC arising from unequal class sizes. For this purpose, Thomas and
Hultquist [22] have proposed using the harmonic mean of the class size and unweighted sum of
squares of class means in the calculations. Further research [23] has shown that this procedure
performs well for construction of confidence limits about a single ICC.

We stress that the validity of the MOVER relies on that of the confidence limits for single
ICCs, which in turn rests on the assumption of approximate normality. Thus, when this assump-
tion becomes unreasonable, alternative confidence interval methods should be considered. One
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Table II. Two-sided 95 per cent confidence intervals for a difference between intraclass correlation
coefficients constructed using the method of variance estimates recovery from four approaches to

single intraclass correlation coefficients.

L (�̂1−�̂2)
U

Method for single � l1 �̂1
u1 l2 �̂2

u2 by equation (7)

Example 1 [6, 8]
n=50,k1=k2=2, ĉorr(�̂1, �̂2)=0.246
Simple asymptotic 0.991 0.994 0.997 0.600 0.730 0.860 0.135 0.264 0.393
Fisher’s z 0.989 0.994 0.997 0.569 0.730 0.837 0.158 0.264 0.424
Arctanh 0.990 0.994 0.997 0.572 0.730 0.836 0.159 0.264 0.421
Modified Fisher’s z 0.990 0.994 0.997 0.599 0.730 0.838 0.157 0.264 0.414
F-distribution 0.989 0.994 0.997 0.570 0.730 0.837 0.158 0.264 0.423

Example 2 [7, 9]
n=34,k1=k2=5, ĉorr(�̂1, �̂2)=0.434
Simple asymptotic 0.972 0.982 0.992 0.921 0.948 0.975 0.013 0.034 0.055
Fisher’s z 0.969 0.982 0.990 0.913 0.948 0.969 0.019 0.034 0.064
Arctanh 0.969 0.982 0.989 0.913 0.948 0.969 0.019 0.034 0.064
Modified Fisher’s z 0.971 0.982 0.990 0.917 0.948 0.970 0.018 0.034 0.060
F-distribution 0.971 0.982 0.990 0.917 0.948 0.971 0.017 0.034 0.060

possibility is the bootstrap, although evaluation of this approach is beyond the scope of the present
study.
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a b s t r a c t

In comparative studies of rare events, fixing group sizes may result in groups with zero
events. To overcome this difficulty, one may adopt an inverse sampling design which
fixes the number of events, resulting in random variables following the negative binomial
distribution. This article presents a new approach to setting confidence intervals for effect
measures under inverse sampling, using the variance estimates recovered from exact
confidence limits for single negative binomial proportions. Exact numerical evaluation
results demonstrate that the proposed procedure performs well.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

In comparative studies of rare events, a conventional design of pre-specifying group sizes may result in 2 × 2 tables
with zero cell(s). As such data can complicate statistical inference, one may instead adopt an inverse sampling design in
which sampling is continued until a pre-specified number of events are seen (Haldane, 1945). Unlike conventional binomial
sampling, the numbers of non-events are random variables and follow negative binomial distribution.
Lui (2004) presents a comprehensive review of statistical inference procedures for inverse sampling throughout his text

on statistical estimation of epidemiological risks, focusing on confidence interval estimation. Recent work on this topic
includes confidence intervals for relative risk (Tian et al., 2008) and risk difference (Tang and Tian, 2009).
Most of these procedures rely explicitly on the likelihood function of a negative binomial distribution. Since the kernel

of likelihood function of a negative binomial is identical to that of a binomial distribution, these procedures fail to account
for the design explicitly. This falls right into the problem that ‘when analyzing data, not taking into account how they were
collected can lead to an inaccurate or erroneous conclusion’ (Hirji, 2006, p. 50).
To fully capture the feature of inverse sampling, I propose to use the negative binomial distribution in constructing

confidence intervals for common effect measures in 2 × 2 tables under inverse sampling. Specifically, I first obtain exact
confidence limits for each comparison group based on the F-distribution (Lui, 1995; Casella and Berger, 1990, p. 449), and
then use these limits to recover variance estimates needed for risk difference as done elsewhere (Zou and Donner, 2008;
Zou, 2008; Zou et al., 2009a). Since the relative risk and odds ratio can be parameterized as differences on the log scale, this
approach also lends itself naturally to these effect measures.
There is a widespread notion that exact confidence intervals for discrete distribution parameters are conservative,

as illustrated by the memorable title that ‘[a]pproximate is better than ‘‘exact’’ for interval estimation of binomial
proportions’ (Agresti and Coull, 1998). However, I show below that the exact confidence interval based on the negative
binomial distribution is always shorter than that from the binomial distribution. This implies that under inverse sampling,
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Table 1
Notation and definition of effect measures under an inverse sampling design.

Group Events Non-events Total Risk estimate

1 r1 Y1 ∼ N Bin(r1, p1) n1 = r1 + Y1 p̂1 =
r1
n1

2 r2 Y2 ∼ N Bin(r2, p2) n2 = r2 + Y2 p̂2 =
r2
n2

Risk difference p1 − p2
Relative risk p1/p2 = exp(log p1 − log p2)
Odds ratio p1/(1−p1)

p2/(1−p2)
= exp[log{p1/(1− p1)} − log{p2/(1− p2)}]

confidence intervals for effect measures obtained by recovering variance estimates using the exact confidence limits may
perform well.
The rest of the article is organized as follows. Section 2 presents the notation and terminology, followed by Section 3

where I present confidence interval procedures for single negative binomial proportions and risk difference, relative risk and
odds ratio. In Section 4, I conduct an exact numerical evaluation to compare the new approach to some existingmethods for
setting confidence intervals for risk difference. The evaluation criteria considered are overall coverage, balance of tail errors,
and confidence interval width. Section 5 presents an illustrative example. The article ends with a brief discussion.

2. Notation and terminology

Consider a study involving two comparative groups, with group 1 denoting exposed and group 0 unexposed. The key
feature of the inverse sampling design is that the number of events ri (i = 1, 2) is pre-specified. Let Yi denote the number
of non-events to ensure that ri pre-specified events are observed. The probability mass function of Yi is given by

fYi(yi) = Pr(Yi = yi|pi) =
(
yi + ri − 1

yi

)
prii (1− pi)

yi , yi = 0, 1, 2, . . . .

The observed data may be presented as in a 2× 2 table (Table 1). For the development in this article, I have also re-written
relative effect measures as differences on the log scale in Table 1. The kernel of the likelihood function in terms of p1 and p2
is given by

L = pr11 (1− p1)
y1pr22 (1− p2)

y2 ,

which can be recognized to be identical to that of a conventional binomial sampling design. In otherword, L does not capture
completely the fact that the last observation in group imust be an event in inverse sampling.

3. Confidence interval estimation

3.1. Single negative binomial proportion

Lui (2004, pp. 8–10) presents three procedures for constructing 100(1− α)% two-sided confidence intervals for a single
negative binomial proportion. The presentation here uses the notation in Table 1. Let zα/2 denote the upper α/2 quantile of
the standard normal distribution. The first procedure is the Wald method, given by

(lmi , u
m
i ) = p̂i ∓ zα/2

√
p̂2i (1− p̂i)

ri

= p̂i ∓ zα/2

√
p̂i(1− p̂i)
ni

,

which is identical to theWaldmethod for a single binomial proportion (Agresti and Coull, 1998). For caseswhere the interval
(lmi , u

m
i ) contains values outside the parameter space of (0, 1), the limits are usually truncated.

The second method is based on the uniformly minimum variance unbiased estimator (UMVUE), given by

(lui , u
u
i ) = p̂

u
i ∓ zα/2

√
p̂ui (1− p̂

u
i )

ni − 2
,

where

p̂ui =
ri − 1

ri + yi − 1
=
ri − 1
ni − 1

.

Note that this interval can only be calculated for ri > 2. Again, one must truncate the limits when inadmissible values are
contained in the interval.
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The third interval presented by Lui (2004, p. 9) is derived directly from the negative binomial distribution, using its
relationship with the binomial distribution (Lui, 1995; Casella and Berger, 1990, p. 449), and given by

lei =
1

1+ (yi + 1)/ri × F1−α/2,2(yi+1),2ri
and

uei =
1

1+ yi/ri × F1−α/2,2yi,2ri
,

where Fq,df 1,df 2 is the qth quantile of an F-distribution with degrees of freedom df 1 and df 2. For yi = 0, uei is set to 1.
Comparing (lei , u

e
i ) with the exact confidence interval for a binomial proportion from observed data of ri events and yi

non-events (Agresti and Coull, 1998; Newcombe, 1998b), one can see that the lower limits are the same, but uei here is
smaller than the upper limit of a binomial proportion, which is given by

u =
1

1+ yi/(ri + 1)× Fα/2,2yi,2(ri+1)
.

Note that u is the upper limit for the case when there are ri + 1 events and yi non-events under inverse sampling. This
property has previously been recognized for ri = 1 (George and Elston, 1993). The evaluation below shows that the exact
confidence interval for negative binomial proportions is very accurate in terms of coverage, in contrast to the case of binomial
proportions (Agresti and Coull, 1998).

3.2. Difference between two independent negative binomial proportions

For the data layout in Table 1, common effect measures are the risk difference, the relative risk and the odds ratio. As
shown in Table 1, all of them can be formed as a difference. Thus, I only focus on risk difference p1 − p2, after presenting a
general method for a difference.
Zou and Donner (2008) have presented a general approach to confidence interval construction for the difference

between two parameters. Specific applications of this approach have appeared in a variety of occasions, notably Method 10
of Newcombe (1998a). As shown by Zou and Donner (2008), the basis of this approach is to use readily available confidence
limits to recover variance estimates. Zou (2008) referred to it as the MOVER (method of variance estimates recovery), and
extended it to linear functions of parameters with dependent point estimates. With the exception of the increment in R2,
the coefficient of determination, in multiple linear regression (Zou, 2007), the MOVER has been successful in a wide range
of applications (Zou and Donner, 2008; Zou et al., 2009a,b).
We now present a summary for θ1− θ2, where the corresponding estimators θ̂i, i = 1, 2, are assumed to be independent.

By the duality of confidence interval estimation and hypothesis testing that the confidence interval (L,U) for θ1−θ2 contains
all parameter values that cannot be rejected at the α level, for reasonable sample size, L is the parameter value that satisfies

θ̂1 − θ̂2 − L√
v̂ar(̂θ1)+ v̂ar(̂θ2)

≈ zα/2

and U is the parameter value that satisfies

U − (̂θ1 − θ̂2)√
v̂ar(̂θ1)+ v̂ar(̂θ2)

≈ zα/2.

The performance of the confidence interval depends on how variance estimates are obtained. This is particularly important
when the variance is related to underlying parameter values, as in the case of a binomial proportion p̂, where var(̂p) =
p(1−p)/n. A common approach is to plug-in the point estimate in the variance formula, resulting in a symmetric confidence
intervalwhich is known to have inferior performance in finite samples. One can alternatively adapt the idea in Bartlett (1953,
p. 15) and estimate variances for L and U in the neighborhood of L and U . The idea of estimating variances at confidence
limits has also been endorsed by Efron (1987, p. 175).
Now, among all the plausible parameter values of θ1 provided by (l1, u1) and that of θ2 by (l2, u2), the distance between

l1 − u2 and L is smaller than that of θ̂1 − θ̂2 and L. Likewise, the distance between u1 − l2 and U is smaller than that of
θ̂1 − θ̂2 and U . Thus, one can obtain variance estimates needed for L at θ1 = l1 and θ2 = u2 and that for U at θ1 = u1 and
θ2 = l2. Compared with Bartlett (1953), the difference is that the variances here are estimated not exactly at, but in the
neighborhoods of L and U .
By again the general principle that (li, ui) contains all parameter values of θi that cannot be rejected at the α level, and

the central limit theorem,

θ̂i − li√
var(̂θi)

≈ zα/2 ⇐⇒ v̂ar(̂θi) ≈
(̂θi − li)2

z2α/2
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at θi = li and

ui − θ̂i√
var(̂θi)

≈ zα/2 ⇐⇒ v̂ar(̂θi) ≈
(ui − θ̂i)2

z2α/2
at θi = ui. With these variance estimates, the lower limit for θ1 − θ2 is given by

L ≈ θ̂1 − θ̂2 − zα/2
√
v̂ar(̂θ1)+ v̂ar(̂θ2)

= θ̂1 − θ̂2 − zα/2
√
(̂θ1 − l1)2/z2α/2 + (u2 − θ̂2)2/z

2
α/2

= θ̂1 − θ̂2 −

√
(̂θ1 − l1)2 + (u2 − θ̂2)2. (1)

Similar steps result in the upper limit as

U ≈ θ̂1 − θ̂2 +
√
(u1 − θ̂1)2 + (̂θ2 − l2)2. (2)

Note that the objective here is to construct a confidence interval for θ1 − θ2, not simultaneous confidence intervals for θ1,
θ2 and θ1 − θ2. The latter problem would require not the standard normal quantile zα/2, but quantile value, z ′α/2, from a
tri-variate normal distribution with mean vector (0, 0, 0) and variance–covariance given by1 0 var(̂θ1)/{var(̂θ1)[var(̂θ1 − θ̂2)]}1/2

· 1 −var(̂θ2)/{var(̂θ2)[var(̂θ1 − θ̂2)]}1/2

· · 1

 .
This is because cov(̂θ1, θ̂1 − θ̂2) = var(̂θ1) and cov(̂θ2, θ̂1 − θ̂2) = −var(̂θ2). It is interesting to note that the simultaneous
confidence interval for θ1 − θ2 still have the same form as Eqs. (1) and (2), with (li, ui) obtained using z ′α/2.
Substituting into Eqs. (1) and (2) point estimates and the confidence limits for single negative binomial proportions

discussed in Section 3.1 results in three procedures for p1 − p2. Specifically, with the maximum likelihood estimator for pi,
we have

(Lm,Um) ≈ p̂1 − p̂2 ∓ zα/2

√
p̂1(1− p̂1)
n1

+
p̂2(1− p̂2)
n2

,

which is identical to the MLE method in Lui (1999) for inverse sampling and the Wald method in Agresti and Caffo (2000)
for binomial sampling. Plugging in the UMVUE estimator for pi results in what Lui (1999) referred to as the UMVUE, i.e.,

(Lu,Uu) ≈ p̂u1 − p̂
u
2 ∓ zα/2

√
p̂u1(1− p̂

u
1)

n1 − 2
+
p̂u2(1− p̂

u
2)

n2 − 2
.

Despite Lui (1999) recommends the above two procedures, it is well-known that symmetrical confidence intervals in
general perform poorly (Newcombe, 1998a; Agresti and Caffo, 2000). In fact, it has been stated that ‘[t]hemost serious errors
made by standard intervals are due to their enforced symmetry’ (Efron and Tibshirani, 1993, p. 180). In response, Tang and
Tian (2009) proposed an asymmetric confidence interval procedure based on the score statistic. However, these confidence
limits must be obtained by an iterative algorithm, which could be the obstacle for its wide application. A similar comment
can also be made on the confidence interval based on likelihood ratio test. In addition, Tang and Tian (2009) has shown that
the likelihood ratio test based interval has inferior performance as compared to the score method. As an alternative, I apply
the MOVER with the exact confidence limits, resulting in the following closed-form confidence interval for p1 − p2L

e
≈ p̂1 − p̂2 −

√
(̂p1 − le1)2 + (u

e
2 − p̂2)2

Ue ≈ p̂1 − p̂2 +
√
(ue1 − p̂1)2 + (̂p2 − l

e
2)
2

where lei , u
e
i are the exact limits as given in Section 3.1.

3.3. Relative risk and odds ratio

Given a confidence interval for p, confidence intervals for log(p) and log{p/(1 − p)} are readily available with the
transformation principle (Daly, 1998). This principle states that given a confidence interval for θ as (l, u), the corresponding
confidence interval for f (θ) is [f (l), f (u)] if f (θ) is a monotone increasing function, or [f (u), f (l)] if f (θ) is a monotone
deceasing function.
With the transformation principle (Daly, 1998) and the limits from MOVER in Eqs. (1) and (2), it is straightforward to

obtain confidence intervals for the relative risk and the odds ratio. This is because both measures can also be formed as
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Fig. 1. Performance of 3 procedures in constructing two-sided 95% confidence intervals for single negative binomial proportions, based on exact numerical
evaluation with extreme right tail truncated at 1.0E-5. Bias (%) is defined by percentage of absolute difference between left and right tail errors in terms of
their sum. For the UMVUE, the evaluation was done for r > 2. p: event probability.

differences on the log scale (see Table 1). The performance of this approach to setting confidence limits for relative risk
under binomial sampling has been evaluated by Zou and Donner (2008).
Since confidence intervals for pi are a necessary step for effect measures, an additional advantage of the MOVER is that

it promotes the reporting of group risks and associated precision, and thus puts the interpretation of each effect measure in
its proper context.

4. Exact numerical evaluation

To evaluate the finite sample performance of the three confidence intervals for a single negative binomial proportion in
Section 3.1, I conducted numerical evaluation by considering overall coverage percentage (CV%), and tail errors in terms of
missing the parameter form its left (ML%) and right (MR%). I also computed the expect confidence interval width.
Given a confidence interval (li, ui), these were defined as

CV% = 100
∞∑
y=0

I[p ∈ (li, ui)]fYi(yi).

ML% = 100
∞∑
y=0

I[ui < p]fYi(yi)

MR% = 100
∞∑
y=0

I[li > p]fYi(yi).
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Fig. 2. Performance of 3 procedures in constructing two-sided 95% confidence intervals for single negative binomial proportions, based on exact numerical
evaluation with extreme right tail truncated at 1.0E-5. Bias (%) is defined by percentage of absolute difference between left and right tail errors in terms of
their sum. For the UMVUE, the evaluation was done for r > 2. p: event probability.

and

Width =
∞∑
y=0

(ui − li)fYi(yi),

where I[·] is an indicator function taking the value 1 if the condition in square brackets is satisfied, and 0 otherwise.
A similar approach was taken to evaluate the performance of the three procedures for p1 − p2 discussed in Section 3.2,

with fYi(yi) replaced by fY1(y1)× fY2(y2) in the above definitions.
Since it is impossible to sumupall possible values of yi, I truncated the extreme right tail so that the errors of the calculated

CV% are less than 0.00001 and 0.001 for single proportions and difference between proportions, respectively.
Figs. 1 and 2 show the performance of the three procedures for single negative binomial proportions for r = 1 to 20

by increments of 1 and p = 0.005, 0.01, 0.025, 0.05, 0.1, and 0.2. It is clear that, in addition to not being applicable to
cases of r = 1, 2, the UMVUE performs poorly, with under nominal coverage, unbalanced tail errors and no advantage of
interval width. The MLE (or Wald method) provides adequate coverage, but in a lop-sided fashion. In contrast to that of a
binomial proportion, the exact confidence interval performs very well, with coverage very close to the nominal level and
well-balanced tail errors.
Table 2 shows the comparative performance of confidence intervals for p1 − p2 when r1 = r2 = r = 1, 2, 3, 5, 10, using

three intervals for single proportions to recover variance estimates under 45 parameter combinations (3p1×3p2×5r). From
the observed coverage (%), and left and right tail errors (defined asmissing the parameter from the left or right, respectively),
as well as the expected interval width, it is clear that the MLE cannot be recommended for practical usage. On the other
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Table 2
Comparative performance of three procedures for setting a 95% confidence interval for risk difference p1 − p2 under inverse sampling, based on exact
numerical evaluation with extreme right tail truncated to ensure the coverage errors less than 0.001. The pre-specified numbers of events were set to
r1 = r2 = r .

p1 p2 r MLE UMVUE Exact
CV% (ML, MR) Width CV% (ML, MR) Width CV% (ML, MR) Width

0.05 0.025 1 99.86 (0.05, 0) 0.5955 95.88 (4.02, 0.0) 0.4915
2 98.93 (0.30, 0.67) 0.2710 94.53 (3.71, 1.66) 0.2572
3 99.03 (0.54, 0.33) 0.1823 99.00 (0.89, 0.01) 0.1608 94.59 (3.44, 1.88) 0.1780
5 97.64 (1.88, 0.39) 0.1201 97.77 (2.10, 0.04) 0.1107 94.72 (3.16, 2.03) 0.1190
10 96.31 (2.72, 0.87) 0.0755 96.32 (3.23, 0.35) 0.0725 94.85 (2.91, 2.15) 0.0753

0.050 1 99.90 (0, 0) 0.7098 98.69 (0.61, 0.61) 0.5824
2 98.68 (0.61, 0.61) 0.3398 95.85 (2.03, 2.03) 0.3218
3 99.24 (0.33, 0.33) 0.2312 99.88 (0.01, 0.01) 0.2066 95.45 (2.23, 2.23) 0.2259
5 98.85 (0.53, 0.53) 0.1527 99.78 (0.06, 0.06) 0.1414 95.23 (2.34, 2.34) 0.1515
10 97.32 (1.29, 1.29) 0.0958 98.29 (0.80, 0.80) 0.0921 95.11 (2.40, 2.40) 0.0957

0.750 1 99.90 (0, 0) 0.8029 97.63 (0, 2.28) 0.6526
2 98.05 (1.27, 0.58) 0.4065 95.49 (1.54, 2.88) 0.3820
3 98.89 (0.65, 0.37) 0.2828 99.84 (0.04, 0.02) 0.2584 95.17 (1.83, 2.90) 0.2750
5 98.21 (0.63, 1.07) 0.1897 99.44 (0.09, 0.37) 0.1774 95.07 (2.03, 2.80) 0.1878
10 96.77 (1.09, 2.04) 0.1201 97.47 (0.53, 1.90) 0.1159 95.03 (2.17, 2.70) 0.1198

0.10 0.05 1 99.87 (0.04, 0) 0.8819 96.34 (3.57, 0) 0.7096
2 97.18 (0.69, 2.04) 0.4685 95.12 (3.51, 1.27) 0.4366
3 97.91 (0.95, 1.04) 0.3334 99.00 (0.81, 0.09) 0.3124 94.92 (3.32, 1.67) 0.3223
5 97.02 (2.05, 0.84) 0.2276 97.66 (2.10, 0.14) 0.2155 94.92 (3.08, 1.91) 0.2246
10 96.05 (2.71, 1.13) 0.1457 96.25 (3.14, 0.51) 0.1413 94.96 (2.86, 2.08) 0.1452

0.10 1 99.91 (0, 0) 1.0296 99.70 (0.10, 0.10) 0.8237
2 96.55 (1.68, 1.68) 0.5750 96.59 (1.66, 1.66) 0.5334
3 97.85 (1.03, 1.03) 0.4161 99.74 (0.08, 0.08) 0.3985 95.87 (2.02, 2.02) 0.4015
5 97.90 (1.00, 1.00) 0.2865 99.48 (0.21, 0.21) 0.2737 95.48 (2.21, 2.21) 0.2827
10 96.83 (1.54, 1.54) 0.1837 97.93 (0.99, 0.99) 0.1787 95.25 (2.33, 2.33) 0.1832

0.15 1 99.91 (0, 0) 1.1426 98.21 (0, 1.69) 0.9051
2 95.81 (2.61, 1.48) 0.6695 96.47 (0.96, 2.48) 0.6155
3 96.97 (1.82, 1.13) 0.4965 99.59 (0.22, 0.10) 0.4930 95.72 (1.53, 2.66) 0.4761
5 97.00 (1.37, 1.53) 0.3492 98.91 (0.35, 0.64) 0.3397 95.41 (1.85, 2.65) 0.3434
10 96.22 (1.51, 2.17) 0.2270 97.12 (0.80, 1.97) 0.2226 95.22 (2.07, 2.61) 0.2262

0.20 0.10 1 99.88 (0.03, 0) 1.2333 97.07 (2.84, 0) 0.9673
2 95.61 (1.60, 2.70) 0.7507 96.36 (3.14, 0.41) 0.6839
3 95.43 (1.77, 2.71) 0.5688 98.96 (0.74, 0.22) 0.5877 95.55 (3.10, 1.25) 0.5421
5 95.70 (2.30, 1.91) 0.4089 97.23 (2.09, 0.58) 0.4065 95.33 (2.93, 1.65) 0.4009
10 95.48 (2.70, 1.72) 0.2702 96.06 (2.96, 0.89) 0.2676 95.20 (2.78, 1.93) 0.2691

0.20 1 99.92 (0, 0) 1.4056 99.92 (0, 0) 1.1014
2 94.38 (2.77, 2.77) 0.8941 97.93 (0.99, 0.99) 0.8113
3 94.79 (2.56, 2.56) 0.6912 99.28 (0.32, 0.32) 0.7389 96.69 (1.61, 1.61) 0.6565
5 95.89 (2.01, 2.01) 0.5049 98.41 (0.75, 0.75) 0.5099 95.96 (1.98, 1.98) 0.4941
10 95.88 (2.01, 2.01) 0.3364 97.13 (1.39, 1.39) 0.3352 95.56 (2.17, 2.17) 0.3350

0.30 1 99.92 (0, 0) 1.5246 99.00 (0, 0.92) 1.1886
2 94.77 (2.47, 2.67) 1.0023 98.14 (0.02, 1.76) 0.9047
3 93.54 (3.84, 2.53) 0.7901 99.52 (0.04, 0.36) 0.8916 96.86 (0.84, 2.22) 0.7478
5 94.57 (3.01, 2.34) 0.5910 97.29 (1.37, 1.25) 0.6155 96.09 (1.45, 2.37) 0.5776
10 95.13 (2.40, 2.38) 0.4022 96.30 (1.52, 2.09) 0.4066 95.60 (1.85, 2.47) 0.4008

hand, the confidence interval procedure based on the exact limits for single proportions performed very well, particularly
for r ≥ 3. Similar conclusion can be drawn for cases of r1 = r2/2 based on the results in Table 3.
The performance of the procedure based on UMVUE is less clear-cut. As shown in Table 2 for r1 = r2, it resulted in

coverage percentages that are greater than the nominal level. This is associated with narrower width when pi’s are small
and wider width when pi’s are large, relative to confidence intervals based on the exact limits for single proportions. When
r1 6= r2, results in Table 3 show that the coverage of the procedure based on UMVUE can range from 92.76% to 99.65%
for the parameter combination considered. Compared to the procedure based on exact limits for single proportions, this
procedure can result in narrower confidence intervals for small pi’s and wider intervals for large pi’s. In addition to its
restrictive applicability to only ri > 2, these simulation results do not support the recommendation of the procedure based
on UMVUE (Lui, 1999).
Further evaluations in terms of relative risk reached similar conclusion. Detailed results are available upon request.

5. Example

I now illustrate the methodology using an example from Hirji (2006, p. 134), which was analyzed by Tian et al. (2008)
in terms of relative risk and Tang and Tian (2009) in terms of risk difference. The study involved sampling until 5 events
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Table 3
Comparative performance of three procedures for setting a 95% confidence interval for risk difference p1 − p2 under inverse sampling, based on exact
numerical evaluation with extreme right tail truncated to ensure the coverage errors less than 0.001. The pre-specified numbers of events were set to
r1 = r2/2.

p1 p2 r2 MLE UMVUE Exact
CV% (ML, MR) Width CV% (ML, MR) Width CV% (ML, MR) Width

0.05 0.025 2 99.32 (0.59, 0) 0.4813 96.39 (3.52, 0) 0.4014
4 96.82 (2.36, 0.72) 0.2346 94.97 (3.11, 1.82) 0.2217
6 96.45 (3.11, 0.35) 0.1630 92.76 (7.13, 0.01) 0.1454 94.91 (2.95, 2.04) 0.1584
10 96.08 (3.42, 0.40) 0.1102 93.68 (6.19, 0.03) 0.1022 94.93 (2.80, 2.17) 0.1087
20 95.63 (3.41, 0.86) 0.0705 94.44 (5.16, 0.30) 0.0679 94.96 (2.67, 2.27) 0.0701

0.05 2 99.41 (0.50, 0) 0.5367 97.57 (1.93, 0.40) 0.4579
4 98.83 (0.39, 0.69) 0.2656 95.62 (2.21, 2.07) 0.2540
6 98.65 (0.90, 0.35) 0.1857 99.42 (0.47, 0.01) 0.1680 95.35 (2.28, 2.27) 0.1821
10 97.81 (1.62, 0.47) 0.1263 98.14 (1.72, 0.04) 0.1182 95.19 (2.33, 2.38) 0.1253
20 96.61 (2.20, 1.09) 0.0811 96.85 (2.57, 0.48) 0.0784 95.09 (2.37, 2.44) 0.0809

0.10 2 98.88 (1.03, 0) 0.5918 96.91 (1.37, 1.62) 0.5110
4 98.71 (0.53, 0.66) 0.3014 95.41 (1.78, 2.72) 0.2899
6 98.80 (0.74, 0.37) 0.2135 99.65 (0.24, 0.01) 0.1961 95.20 (1.91, 2.79) 0.2100
10 98.03 (1.18, 0.70) 0.1467 99.01 (0.82, 0.07) 0.1388 95.10 (2.03, 2.77) 0.1460
20 96.67 (1.70, 1.54) 0.0950 97.40 (1.59, 0.91) 0.0924 95.05 (2.15, 2.70) 0.0950

0.10 0.05 2 99.00 (0.91, 0) 0.7330 96.56 (3.34, 0) 0.5976
4 95.01 (2.55, 2.34) 0.4089 95.46 (3.02, 1.42) 0.3804
6 95.65 (3.13, 1.13) 0.2988 93.01 (6.79, 0.10) 0.2826 95.20 (2.89, 1.82) 0.2878
10 95.67 (3.36, 0.88) 0.2088 93.86 (5.91, 0.13) 0.1990 95.11 (2.76, 2.04) 0.2052
20 95.43 (3.33, 1.14) 0.1359 94.52 (4.95, 0.44) 0.1322 95.06 (2.64, 2.20) 0.1351

0.10 2 98.62 (1.29, 0) 0.8184 98.27 (1.62, 0.01) 0.6842
4 96.95 (0.93, 2.02) 0.4635 96.18 (2.08, 1.65) 0.4366
6 97.52 (1.29, 1.09) 0.3404 99.01 (0.81, 0.09) 0.3252 95.68 (2.18, 2.04) 0.3307
10 97.12 (1.83, 0.96) 0.2389 97.82 (1.92, 0.16) 0.2293 95.40 (2.26, 2.24) 0.2362
20 96.26 (2.28, 1.36) 0.1560 96.63 (2.63, 0.64) 0.1524 95.21 (2.33, 2.36) 0.1556

0.15 2 97.71 (2.20, 0) 0.8960 98.05 (0.93, 0.93) 0.7581
4 96.80 (1.31, 1.80) 0.5220 96.03 (1.60, 2.28) 0.4943
6 97.46 (1.30, 1.14) 0.3881 99.23 (0.59, 0.08) 0.3760 95.57 (1.79, 2.54) 0.3783
10 97.15 (1.54, 1.21) 0.2753 98.52 (1.15, 0.24) 0.2669 95.33 (1.95, 2.63) 0.2728
20 96.25 (1.90, 1.76) 0.1813 97.05 (1.80, 1.05) 0.1780 95.19 (2.09, 2.62) 0.1811

0.20 0.10 2 98.22 (1.69, 0) 1.0537 96.88 (3.03, 0) 0.8391
4 93.79 (2.80, 3.32) 0.6620 96.75 (2.89, 0.26) 0.6042
6 93.86 (3.10, 2.94) 0.5113 93.69 (6.13, 0.10) 0.5320 95.79 (2.76, 1.36) 0.4869
10 94.64 (3.22, 2.04) 0.3746 94.01 (5.35, 0.55) 0.3750 95.48 (2.66, 1.77) 0.3667
20 94.96 (3.16, 1.79) 0.2513 94.59 (4.52, 0.80) 0.2499 95.29 (2.57, 2.05) 0.2500

0.20 2 97.75 (2.17, 0) 1.1688 98.85 (1.07, 0) 0.9595
4 94.70 (2.03, 3.18) 0.7479 97.31 (1.80, 0.79) 0.6923
6 95.04 (1.99, 2.88) 0.5808 98.13 (1.55, 0.24) 0.6060 96.39 (1.98, 1.55) 0.5577
10 95.68 (2.18, 2.05) 0.4271 96.98 (2.32, 0.61) 0.4290 95.76 (2.14, 2.01) 0.4201
20 95.56 (2.42, 1.93) 0.2874 96.15 (2.75, 1.01) 0.2863 95.45 (2.25, 2.21) 0.2866

0.30 2 98.03 (1.89, 0) 1.2574 99.45 (0.10, 0.37) 1.0486
4 93.92 (2.86, 3.13) 0.8242 97.35 (1.20, 1.36) 0.7688
6 94.72 (2.43, 2.77) 0.6483 98.07 (1.60, 0.25) 0.6854 96.33 (1.49, 2.10) 0.6254
10 95.37 (2.28, 2.26) 0.4821 97.20 (1.96, 0.75) 0.4889 95.89 (1.72, 2.31) 0.4757
20 95.46 (2.29, 2.16) 0.3273 96.32 (2.26, 1.33) 0.3279 95.49 (1.98, 2.44) 0.3272

occurred in each comparison group. In the end, group 1 had 53 non-events while group 2 had 312 non-events. The data
and corresponding calculations are shown in Table 4. Both the MLE and UMVUE provide statistically non-significant results,
while the confidence intervals based on exact limits show clear evidence of a difference between the two comparison groups.
To further check on the validity of the three confidence intervals for risk difference, I conducted an evaluation study using

the same approach as in Section 4 for parameter values of p1 = 5/(5+53), p2 = 5/(5+312), and r1 = r2 = 5. The coverage
percentage (missing from left, missing from right) and expect confidence interval width forMLE andUMVUE are 94.92 (4.27,
0.71) 0.1759 and 91.79 (8.02, 0.09) 0.1656, respectively. It is clear that the MLE maintains an overall coverage close to the
nominal level of 95%, but through a lop-sided fashion, while the UMVUE cannot even deliver an adequate coverage, let alone
maintaining balanced tail errors. In contrast, the confidence interval based on the exact limits for single proportions yielded
coverage (tail errors) and expected width of 94.83 (3.08, 2.00) and 0.1725, which are very consistent with the results in
Section 4.

6. Discussion

I have presented a simple approach to setting asymmetrical confidence intervals for effect measures arising from an
inverse sampling design. The basis of this approach is to use confidence limits for single proportions based on a negative
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Table 4
Illustrative example of confidence interval estimation in a 2× 2 table arising from inverse sampling design.

Group r y Method p ⇒ log p logit = log{p/(1− p)}
l̂θu l̂θu l̂θu

1 5 53 MLE .0140.0862 .1584 −4.2687−2.4511−1.8426 −4.2546−2.3609−1.6702
UMVUE .0033.0702 .1371 −5.7138−2.6564−1.9870 −5.7105−2.5836−1.8396
Exact .0286.0862 .1700 −3.5543−2.4511−1.7720 −3.5253−2.3609−1.5856

2 5 312 MLE .0021.0158 .0295 −6.1658−4.1477−3.5234 −6.1637−4.1318−3.4934
UMVUE .0003.0127 .0250 −8.1117−4.3662−3.6889 −8.1114−4.3534−3.6636
Exact .0051.0158 .0321 −5.2785−4.1477−3.4389 −5.2734−4.1318−3.4063

⇓ ⇓ ⇓

Confidence interval for effect measures by the MOVER
L = θ̂1 − θ̂2 −

√
(̂θ1 − l1)2 + (u2 − θ̂2)2

U = θ̂1 − θ̂2 +
√
(u1 − θ̂1)2 + (̂θ2 − l2)2

⇓ ⇓ ⇓

p1 − p2 RR = exp(log p1 − log p2) OR = exp(logit1 − logit2)
MLE −.0031.0704 .1439 0.79835.4554 44.9002 0.79655.8761 50.2488
UMVUE −.0105.0575 .1255 0.24135.5279 248.3025 0.23885.8697 270.6266
Exact .0105.0704 .1549 1.47015.4554 20.4023 1.49035.8761 23.3566

binomial distribution to recover the variance estimates needed for functions of proportions. This is justifiable by the fact
that the exact confidence interval for a negative binomial proportion is very accurate, in contrast to the common belief that
exact confidence intervals are conservative (Agresti and Coull, 1998; Newcombe, 1998b; Agresti and Gottard, 2007).
I have also presented a unified framework for all three common effect measures, in contrast to previous work of focusing

on effect measures in a piecemeal fashion. See Lui (2004) for extensive literature, in addition to Tian et al. (2008) and Tang
and Tian (2009). Moreover, as a necessary step, the approach proposed here provides confidence intervals for each group
risk parameter. Rather than interpreting an effect measure in isolation, the proposed method helps to interpret different
effect measures in their proper contexts, and thus avoid using risk difference against relative risk (Lui, 1999; Tang and Tian,
2009).
I did not discuss hypothesis testing procedures for two reasons. First, Kang (2008) has recently presented exact

procedures for testing the three effect measures under inverse sampling. Further results can be found in Tang et al. (2007)
and Tang et al. (2008). Second, confidence interval construction encompasses hypothesis testing because by definition a
100(1− α)% two-sided confidence interval contains all parameter values that cannot be rejected at the α level.
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Assessment of risks by predicting
counterfactuals3

G. Y. Zoua,b,c∗†

Risk assessment is fundamental to most epidemiological and biomedical investigations. In this article, risks are assessed5
in terms of risk difference and risk ratio by predicting counterfactual outcomes. Models considered for binary outcomes
are probit, logistic, and extreme-value regressions. New confidence intervals for the effect measures are proposed using7
the method of variance estimates recovery, and evaluated by a simulation study. A SAS macro is provided for the
calculations. A risk ratio obtained using counterfactuals is also compared in the simulation with that directly estimated9
from the modified Poisson model to answer a recent concern about the validity of the latter approach. Two examples
are used to illustrate the methods. Copyright © 2009 John Wiley & Sons, Ltd.11

Keywords: causal effect; confounding; logistic regression; probit regression; odds ratio

13

1. Introduction

An ideal design to assess risk is to have all subjects in the entire study exposed to a risk factor of interest and the outcomes15
observed; then, turn back the clock, and observe the outcomes on the same subjects in the absence of the exposure. The risk
is then quantified by a within-subject contrast of outcomes under two conditions. In reality, however, we cannot turn back the17
clock. Consequently, we can never observe the outcomes under the exposure for the subjects in the unexposed group, nor can
we observe the outcomes in the absence of exposure for those subjects in the exposed group. These unobservable outcomes19
are referred to as counterfactuals.

With its formal roots in randomized controlled trials in agriculture, counterfactual theory, or the theory of potential outcomes,21
it has become a basis for causal inference in a wide range of disciplines [1], including epidemiology [2, 3] where confounding
can be defined unambiguously using this theory [4, 5].23

Counterfactual theory can also provide insight into effect measures. For example, although it is well known that the odds ratio
is misleading when it is interpreted as a risk ratio [6], only in light of counterfactual theory is it clearer that the odds ratio from25
logistic regression is a biased estimator for the causal odds ratio, except under the assumption that all subjects have identical
baseline risk [7, 8]. As a numerical example, consider 50 per cent of subjects in a study having a risk of 0.6 when exposed, and27
0.2 when unexposed, which gives an odds ratio of 6.0. Suppose the remaining 50 per cent subjects have a risk of 0.035 when
exposed. Under the assumption of constant individual odds ratio (the assumption of logistic regression), the risk when unexposed29
must then be 0.006. The overall risk for subjects in the entire study when exposed is 0.3175 (= (0.6+0.035) / 2) versus 0.103
(=0.20+0.006) / 2 when unexposed, yielding an odds ratio of 4.05, which is less than 6.0, a result that would have been obtained31
by logistic regression. The property that the overall odd ratio differs from the constant stratum odds ratio has also been referred
to as ‘noncollapsibility’ [5]. Applying the Zhang–Yu [9] formula will result in a risk ratio of 3.96, compared with 3.08 ( 0.3175

0.103 ). In33
contrast, with the assumption of constant individual risk ratio of 3.0, the second half of subjects when unexposed would have
risk of 0.035 / 3, resulting in an overall risk for all subjects when unexposed given by 0.1058 (= (0.2+0.035 / 3) / 2). Therefore, the35
overall risk ratio is given by 0.3175

0.1058 , identical to the constant individual risk ratio of 3.0. As this calculation is a special case of the
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modified Poisson regression [10], it is fair to conclude that this model can avoid the noncollapsibility problem inherent in using1
the logistic regression model to obtain an adjusted odds ratio.

We can also apply counterfactual theory to the analysis of binary outcomes from prospective studies. Specifically, we can first3
fit the observed binary data to a generalized linear model, and then predict event probabilities in the presence and absence
of exposure for each subject. Finally, we can use these predicted probabilities to construct estimates of parameters such as the5
risk difference and risk ratio. Although the odds ratio may also be constructed, we will avoid this practice on the grounds that
consumers could confuse this odds ratio with those obtained directly from logistic regression.7

The above steps have been adopted previously [11--14]. The method has also been termed model-based standard-
ization [15]. Although Wald-type confidence intervals (point estimate ±1.96 times standard error) for the resultant effect9
measures have been available [16, 17], the perceived complexity of this method has precluded wide application in prac-
tice. Recent literature has implemented the percentile bootstrap and bias-corrected percentile bootstrap [18--20]. To11
motivate the use of the percentile bootstrap, Ahren et al. [21, p. 1143] stated that ‘there is typically no straightfor-
ward analytic estimates of the standard error available’, which of course is false because the standard error based on13
the delta method has been available for quite some time [16, 17]. Moreover, without adequate evaluation following
the steps suggested by Efron [22], one would naturally doubt the reliability of the bootstrap approach in the present15
context, since it is well known that neither approach is reliable as a general tool for setting confidence intervals
[23, 24, Chapter 13].17

As an alternative, we extend the steps described by Lee in 1981 [12], who used a logistic regression model to predict
probabilities under counterfactual conditions. To predict counterfactuals, we considered the probit, logistic, and extreme-value19
regression models. In addition, closed-form confidence intervals for risk, risk difference, and risk ratio are proposed and evaluated
using a simulation study.21

We also examine the validity of the modified Poisson regression in estimating the risk ratio under the violation of the risk ratio
homogeneity assumption. This is useful because the model has been used in many occasions in practice, but serious concern23
about its validity has been raised [18].

A SAS macro implementing the methods is provided and illustrated using two examples from the literature, with the first one25
showing adjustment for confounding and the second for improving efficiency.

2. Methods27

2.1. Estimates of mean risks and their variances

Suppose we have information about the event status (Y :1=yes, 0=no), exposure status (E :1=expose, 0=unexposed), and p−129
covariates (x2,. . . , xp) that need to be adjusted for when assessing the effect of the exposure on the outcome. Assume that the
underlying probability of Yi =1 for subject i (i=1, 2,. . . , n) is related to the exposure and covariates through31

Pr(Yi =1)=F(lpi )=F(�0 +�1Ei +�2x2i +·· ·+�pixpi)

where F(·) is known as the link function, with the common choices of probit, logit, or cloglog. It can be recognized that these33
link functions corresponding to cumulative distribution functions (CDF) for the standard normal, logistic, and the extreme-value
distributions. The derivative of F(·) with respect to its argument is called the probability density function (PDF), denoted here as35
f (·). The explicit forms of F(·) and f (·) along with their implementation in the SAS package are given in Table I.

Having fit a generalized model to the data and obtained the beta-coefficient estimates (̂�0, �̂1,. . . , �̂p), we can obtain the37
estimates of the exposed linear predictor for all subjects, regardless of exposure status (i.e. Ei =1 for all i), as given by

l̂p1i = �̂0 +�̂1 ×1+�̂2x2i +·· ·+�̂pxpi39

Plugging l̂p1i into F(·) yields predicted risk for subject i when exposed. The average risk is then obtained by

p1 = 1

n

n1∑
i=1

F(l̂p1i)+
1

n

n0∑
i=1

F(l̂p1i)︸ ︷︷ ︸
Counter factuals

= 1

n

n∑
i=1

F(l̂p1i)

41

Table I. Function forms and implementation in SAS.

Link F(lpi) SAS function f (lpi)= �F(lpi )
�lpi

SAS function

Probit 1√
2�

∫ lpi−∞ exp(−x2 / 2)dx CDF(‘normal′, lpi)
1√
2�

exp(−x2 / 2) pdf(‘normal′, lpi)

Logit 1
1+exp(−lpi)

CDF(‘logistic′ , lpi)
exp(−lpi )

[1+exp(−lpi )]2 pdf(‘logistic′, lpi)

Cloglog 1−exp[exp(lpi)] Not yet available exp[lpi −exp(lpi)] Not yet available2
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where n is the size of the entire study. The predicted probabilities are counterfactuals for the n0 subjects whose exposure status1
are Ei =0. Similarly, we have (Ei =0 for all i)

l̂p0i = �̂0 +�̂1 ×0+�̂2x2i +·· ·+�̂pxpi3

and the average predicted risk when all subjects are not exposed is defined as

p0 = 1

n

n1∑
i=1

F(l̂p0i)︸ ︷︷ ︸
Counter factuals

+ 1

n

n0∑
i=1

F(l̂p0i)=
1

n

n∑
i=1

F(l̂p0i)

5

The predicted probabilities are counterfactuals for the n1 subjects whose exposure status are Ei =1.
Estimates for variances of p1 and p0, and their covariance are complicated by the fact that all terms in the expressions are

correlated since they are all functions of estimated beta-coefficients (̂�0, �̂1, �̂2,. . . , �̂p). The generalized estimating equations (GEE)
approach is not applicable because the whole data set has become one cluster and GEE requires a large number of clusters [25].
However, straightforward calculation using the delta method (also known as the method of propagation of errors) yields,

v̂ar(p1) = 1

n2

n∑
i=1

n∑
j=1

f (l̂p1i)f (l̂p1j )ĉov(l̂p1i , l̂p1j )

v̂ar(p0) = 1

n2

n∑
i=1

n∑
j=1

f (l̂p0i)f (l̂p0j )ĉov(l̂p0i , l̂p0j )

and7

ĉov(p1, p0)= 1

n2

n∑
i=1

n∑
j=1

f (l̂p1i)f (l̂p0j)ĉov(l̂p1i , l̂p0j)

using the fact that the derivative of a CDF equals its PDF. These variance and covariance estimates can be obtained with9
estimates of beta-coefficients and their variance–covariance matrix provided by standard software output. To reduce the tedious
and sometimes characterized as ‘difficult’ calculations [26, p. 276], we have developed a SAS macro (see the Appendix), which11
also implements the improved confidence intervals developed in the next section.

2.2. Confidence interval estimation13

A confidence interval is more informative than a P-value, which is confounded by sample size. Thus, confidence interval construction
has become a basic task for statistical inference. The Wald interval method of point estimate minus/plus a multiplier of standard15
error obtained using the delta method is known to perform poorly due to its enforced symmetry. In fact, Efron and Tibshirani [24,
p. 180] stated ‘exact intervals, when they exist, are often quite asymmetrical. The most serious errors made by standard intervals17
are due to their enforced symmetry.’

Instead of relying on the percentile bootstrap as did previous literature to obtain asymmetric intervals [18--21], we propose19
several alternatives for risk, risk difference, and risk ratio. In particular, we apply the MOVER, method of variances estimates
recovery [27, 28], for the risk difference and risk ratio, after obtaining the logit-transformed and the Wilson confidence intervals21
for risks [29].

As documented by Zou and Donner [28], confidence intervals similar to the MOVER have been in use for quite some time, with23
a book-length application on variance components [30]. However, previous authors tend to justify their procedures by assuming Q1
the limits are of a certain form and solving the limits by forcing the confidence coefficients to be exact under special conditions25
[31, 32]. ‘Square-and-add’ is another term when it was applied to proportions [33]. We prefer to use the term MOVER because it
reflects clearly that the key step of the method is to recover variance estimates needed for a linear combination of parameters.27

Two ideas went into the derivation of the MOVER [28]. First, confidence intervals constructed with variance estimates obtained
at or close to the limits in general perform better than those with variances estimated at the point estimates [22, p. 175].29
Respective examples are the Wilson method and the Wald method for a proportion. The idea of estimating variances at endpoints
is related to the restricted Wald method in Maldonald and Greenland [34, Equation 9]. An apparent advantage of the MOVER31
approach is that it can account for asymmetry of sampling distributions by recovering variance estimates separately from lower
and upper limits.33

The second idea used in the MOVER is that variance estimates needed for linear combination of parameters are contained in
the confidence limits for a single parameters and thus can be recovered. Zou and Donner [28] showed that the MOVER approach35
even outperforms many computational intensive methods, including six bootstrap methods for setting confidence limits for a
lognormal mean.37

The logit transformation, resulting in an asymmetric confidence interval, has previously been applied to risks [17] to provide
confidence limits given by39

l, u= ln
p

1−p
∓z

√
v̂ar

(
ln

p

1−p

)
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where z is the � / 2 upper quantile of the standard normal distribution. Anti-logit transformations of l and u yield confidence limits1
for p. The original Wilson method for a proportion inverts the approximate normal test that uses the standard errors estimated
at the lower and upper limits [29, 35]. This method has now become very popular [36, 37], and also has been recommended in3
an introductory epidemiologic text [2, p. 145]. Interestingly, the Wilson confidence limits can also be obtained using the logit
transformation [33] as5

l, u= ln
p

1−p
∓2·arsinh

[
z

2

√
v̂ar

(
ln

p

1−p

)]

where arsinh is the inverse hyperbolic sine function. Anti-logit transformations of l and u then yield confidence limits for p. It is7
shown that this interval is contained completely in that of the logit transformation [33].

One may also apply the log transformation to risk [16], yielding9

l, u= ln p∓z
√

var[ln(p)]

The anti-log transformation results in limits for p.11
Confidence interval estimation for the risk difference p1 −p0 starts with variance estimates for p1 and p0. It turns out that

these variance estimates can be recovered from confidence limits for risks [27, 28]. Based on the MOVER, the confidence limits
for p1 −p0 are given by

L = p1 −p0 −
√

(p1 − l1)2 +(u0 −p0)2 −2ĉorr(p1, p0)(p1 − l1)(u0 −p0)

U = p1 −p0 +
√

(u1 −p1)2 +(p0 − l0)2 −2ĉorr(p1, p0)(u1 −p1)(p0 − l0)

where (l1, u1) and (l0, u0) are confidence intervals for p1 and p0, respectively, and

ĉorr(p1, p0)= ĉov(p1, p0)√
v̂ar(p1)v̂ar(p0)13

The validity of the MOVER relies heavily on the method used to obtain confidence limits for risks. Moreover, substituting (l1, u1)
and (l0, u0) obtained by the Wald method will result in a Wald confidence interval.15

One can also obtain a confidence interval for �=p1 −p0 by applying the logit transformation to (1+�) / 2 [17]. This approach
is equivalent to applying Fisher’s z-transformation to �=p1 −p0 [38] since17

ln
(1+�) / 2

1−(1+�) / 2
= ln

1+�

1−�

While a confidence interval for the risk ratio can be obtained by applying the Wald procedure on the log scale, it can also be
obtained using the MOVER on the log scale [27]. A simulation study has shown that the MOVER outperforms the Wald procedure
in the case of simple proportions [27]. Briefly, denoting �1 = ln(p1) and �0 = ln(p0), confidence limits for p1 / p0 can be obtained
by taking the anti-log of L� and U� , where

L� = ln p1 − ln p0 −
√

(ln p1 − ln l1)2 +(ln u0 − ln p0)2 −2ĉorr(p1, p0)(ln p1 − ln l1)(ln u0 − ln p0)

U� = ln p1 − ln p0 +
√

(ln u1 − ln p1)2 +(ln p0 − ln l0)2 −2ĉorr(p1, p0)(ln u1 − ln p1)(ln p0 − ln l0)

Note that the correlation between ln p1 and ln p0 is equal to the correlation between p1 and p0.19

3. Simulation study

We conducted a simulation study to evaluate the performance of the above methods in setting confidence intervals for a single21
risk, risk difference, and risk ratio. The data generation process was similar to that used previously [17]. Specifically, for subject
i (i=1, 2,. . . , n) in each of 1000 simulation runs, we first generated three predictors (x1i , x2i , x3i) as trivariate standard normal with23
common correlation �. We then obtained the binary exposure (x1i =Ei) and a binary covariate (x2i) by dichotomizing the first
two variables at a mean of 0, and kept x3i as a continuous variable. The probability of an event was obtained according to the25
standard normal CDF for a given set of beta-coefficients, �(�0 +�1Ei +�2x2i +�3x3i). The outcome yi was then generated using a
Bernoulli distribution with parameter �i. These steps were repeated n times to obtain a data set which was analyzed using probit27
regression as implemented by proc genmod in SAS. Estimates of beta-coefficients and their variance-covariance estimates were
then used to obtain confidence intervals for a single risk, risk difference, and risk ratio.29

To check the concern raised previously [18], each data set was also analyzed using the modified Poisson regression for risk
ratio, which was implemented using sas proc genmod with a log link and ‘sandwich’ error estimator [10].31

All analyses were performed using the SAS macro as shown in the Appendix.

4
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Empirical coverage percentage was estimated by the relative frequency of 1000 intervals which contained the parameter. Tail1
errors were estimated by calculating the frequencies of intervals lying completely to the left of the parameter value and those
lying completely to the right of the parameter. Median width was also calculated.3

We considered 32 parameter combinations. Specifically, sample sizes n=100, 200, 500, and 1000, �=0.2, and 0.5, and four sets of
beta-coefficients: (−1.5, 0.5, −0.245, −0.4), (−1.2, 1.0, −0.245, −0.4), (−1.0, 0.5, −0.245, −0.4), and (−0.5, 1.0, −0.245, −0.4) were5
considered. These values were chosen to provide baseline risks ranging from 0.07 to 0.35 and risk ratios ranging from 1.87 to 3.34.

Table II shows simulation results for a single risk. These results indicate that the Wald procedure tends to provide coverage7
ranging from 89.9 to 94.0 per cent when the sample size is 100, and lop-sided errors even when the sample size is as large
as 1000, while the log transformation provides lop-sided intervals with large width. These problems are less severe for intervals9
obtained with the logit transformation. Overall, the Wilson interval performs well. Similar trends can be observed in the case of
the risk difference, as shown in Table III, which also demonstrates that the Fisher z-transformation for the risk difference performs11
well. Results in Table IV show that the Wald procedure applied on the log scale for the risk ratio has inferior performance as
compared with the MOVER using the Wilson interval for single risks. In particular, the former tends to provide wider intervals13
with slightly unbalanced tail errors.

Table IV also demonstrates that modified Poisson regression performs reasonably well, both in terms of point estimates and15
confidence intervals. In theory, tighter intervals could be obtained with the binomial regression. We did not compare the binomial

Table II. Comparative performance of methods based on counterfactual prediction using a probit regression model in
estimating risk and its 95 per cent two-sided confidence interval based on 1000 simulation runs∗.

n �† p
‡
0 Wald ln Logit Wilson

100 0.25 0.07 89.9 (9.3,0.8) 0.125 94.1 (1.4,4.5) 0.146 94.4 (1.4,4.2) 0.140 94.0 (1.6,4.4) 0.133
0.11 91.2 (8.1,0.7) 0.159 96.1 (0.7,3.2) 0.174 96.5 (0.9,2.6) 0.166 95.6 (1.5,2.9) 0.162
0.15 91.6 (6.7,1.7) 0.181 94.8 (1.1,4.1) 0.193 94.8 (1.5,3.7) 0.185 94.6 (1.7,3.7) 0.181
0.28 94.0 (4.4,1.6) 0.231 95.0 (0.9,4.1) 0.238 95.8 (1.7,2.5) 0.229 95.2 (2.1,2.7) 0.226

0.50 0.07 90.7 (9.0,0.3) 0.121 95.9 (0.5,3.6) 0.138 96.4 (0.5,3.1) 0.133 95.3 (1.4,3.3) 0.127
0.12 92.8 (6.5,0.7) 0.155 94.9 (1.1,4.0) 0.169 95.7 (1.2,3.1) 0.161 95.1 (1.7,3.2) 0.158
0.15 93.0 (5.9,1.1) 0.178 94.8 (1.0,4.2) 0.189 95.6 (1.1,3.3) 0.182 95.1 (1.3,3.6) 0.178
0.29 93.7 (3.7,2.6) 0.232 93.8 (1.6,4.6) 0.238 94.7 (2.1,3.2) 0.229 94.5 (2.2,3.3) 0.226

200 0.25 0.07 93.4 (5.4,1.2) 0.089 95.1 (0.7,4.2) 0.096 95.4 (0.9,3.7) 0.094 95.0 (1.2,3.8) 0.092
0.11 93.6 (5.1,1.3) 0.112 95.4 (1.3,3.3) 0.118 95.1 (2.1,2.8) 0.115 94.9 (2.2,2.9) 0.113
0.15 93.4 (4.8,1.8) 0.129 94.6 (1.6,3.8) 0.133 94.9 (2.0,3.1) 0.130 94.7 (2.0,3.3) 0.129
0.28 95.2 (3.3,1.5) 0.165 95.9 (1.6,2.5) 0.167 95.7 (2.2,2.1) 0.164 95.6 (2.2,2.2) 0.163

0.50 0.07 93.6 (5.6,0.8) 0.087 95.4 (1.0,3.6) 0.093 95.7 (1.2,3.1) 0.091 95.2 (1.6,3.2) 0.089
0.12 93.5 (5.2,1.3) 0.110 95.0 (1.9,3.1) 0.114 94.8 (2.3,2.9) 0.112 94.6 (2.5,2.9) 0.111
0.15 93.9 (4.9,1.2) 0.127 95.0 (1.7,3.3) 0.131 95.1 (2.2,2.7) 0.128 94.6 (2.4,3.0) 0.127
0.29 93.9 (4.5,1.6) 0.165 94.5 (2.5,3.0) 0.167 94.7 (3.0,2.3) 0.164 94.7 (3.0,2.3) 0.163

500 0.25 0.07 93.8 (4.8,1.4) 0.057 95.9 (1.2,2.9) 0.059 96.1 (1.3,2.6) 0.058 95.8 (1.6,2.6) 0.058
0.11 95.1 (3.2,1.7) 0.072 95.4 (1.1,3.5) 0.074 95.8 (1.2,3.0) 0.073 95.8 (1.2,3.0) 0.073
0.15 95.3 (3.1,1.6) 0.082 95.4 (1.5,3.1) 0.083 95.5 (1.9,2.6) 0.082 95.4 (2.0,2.6) 0.082
0.28 95.5 (2.8,1.7) 0.104 95.6 (2.1,2.3) 0.105 95.8 (2.4,1.8) 0.104 95.8 (2.4,1.8) 0.104

0.50 0.07 93.8 (4.8,1.4) 0.056 95.6 (0.9,3.5) 0.057 95.7 (1.0,3.3) 0.057 95.4 (1.3,3.3) 0.056
0.12 94.8 (3.6,1.6) 0.070 95.4 (1.6,3.0) 0.071 95.4 (1.7,2.9) 0.071 95.3 (1.7,3.0) 0.071
0.15 95.1 (3.0,1.9) 0.080 95.4 (1.5,3.1) 0.081 95.3 (1.7,3.0) 0.081 95.2 (1.8,3.0) 0.080
0.29 94.6 (3.7,1.7) 0.105 95.6 (2.4,2.0) 0.105 95.2 (3.0,1.8) 0.104 95.2 (3.0,1.8) 0.104

1000 0.25 0.07 95.5 (3.2,1.3) 0.041 95.3 (1.6,3.1) 0.041 95.3 (1.6,3.1) 0.041 95.3 (1.6,3.1) 0.041
0.11 95.5 (2.9,1.6) 0.051 95.6 (1.7,2.7) 0.051 95.8 (1.8,2.4) 0.051 95.7 (1.9,2.4) 0.051
0.15 94.7 (3.7,1.6) 0.058 95.6 (2.2,2.2) 0.058 95.5 (2.3,2.2) 0.058 95.5 (2.3,2.2) 0.058
0.28 95.7 (3.1,1.2) 0.074 96.0 (2.1,1.9) 0.074 95.9 (2.4,1.7) 0.074 95.9 (2.4,1.7) 0.074

0.50 0.07 95.4 (2.8,1.8) 0.039 95.5 (1.5,3.0) 0.040 95.6 (1.6,2.8) 0.040 95.6 (1.6,2.8) 0.040
0.12 96.1 (2.6,1.3) 0.050 95.6 (1.5,2.9) 0.050 95.5 (1.6,2.9) 0.050 95.5 (1.6,2.9) 0.050
0.15 95.5 (3.0,1.5) 0.057 95.7 (1.8,2.5) 0.057 95.8 (1.8,2.4) 0.057 95.7 (1.9,2.4) 0.057
0.29 95.2 (2.8,2.0) 0.074 95.2 (2.3,2.5) 0.074 95.2 (2.5,2.3) 0.074 95.2 (2.5,2.3) 0.074

∗Entries in columns 4–7 are in the format: estimated per cent coverage (per cent interval lying completely to the left, right
of the true parameter value) median interval width.

†Correlation coefficient used to generate standard trivariate normal for the three predictors.
‡Average true value of risk. Four sets of beta-coefficients were (−1.5, 0.5,−0.245, −0.4), (−1.2, 1.0,−0.245, −0.4),

(−1.0, 0.5, −0.245, −0.4), and (−0.5, 1.0, −0.245, −0.4).
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Table III. Comparative performance of methods based on counterfactual prediction using a probit regression model in
estimating risk difference and its 95 per cent two-sided confidence interval based on 1000 simulation runs∗.

MOVER

n �† d‡ Wald Logit Wilson Fisher z

100 0.25 0.08 93.8 (3.7,2.5) 0.241 96.4 (0.9,2.7) 0.265 95.3 (1.5,3.2) 0.254 94.2 (3.7,2.1) 0.240
0.27 94.5 (2.4,3.1) 0.307 96.0 (2.2,1.8) 0.311 95.0 (2.5,2.5) 0.305 94.8 (2.8,2.4) 0.305
0.13 92.6 (3.2,4.2) 0.309 94.1 (2.7,3.2) 0.314 93.4 (2.9,3.7) 0.308 93.4 (3.2,3.4) 0.307
0.35 94.4 (2.3,3.3) 0.346 94.4 (3.4,2.2) 0.341 94.2 (3.5,2.3) 0.336 94.3 (3.2,2.5) 0.343

0.50 0.08 93.7 (3.1,3.2) 0.265 96.0 (0.4,3.6) 0.288 95.2 (0.9,3.9) 0.277 93.9 (3.1,3.0) 0.263
0.27 93.7 (2.8,3.5) 0.326 94.7 (2.5,2.8) 0.328 94.2 (2.8,3.0) 0.322 94.2 (3.0,2.8) 0.323
0.13 94.1 (2.5,3.4) 0.330 95.3 (1.9,2.8) 0.334 94.7 (2.2,3.1) 0.327 94.7 (2.5,2.8) 0.327
0.35 92.4 (3.3,4.3) 0.358 93.6 (3.9,2.5) 0.353 93.1 (4.1,2.8) 0.348 93.5 (3.6,2.9) 0.355

200 0.25 0.08 94.6 (3.3,2.1) 0.171 96.1 (1.9,2.0) 0.179 95.8 (2.0,2.2) 0.176 94.6 (3.3,2.1) 0.170
0.27 95.5 (2.0,2.5) 0.218 96.1 (2.1,1.8) 0.219 96.0 (2.2,1.8) 0.217 96.1 (2.1,1.8) 0.217
0.13 93.7 (2.5,3.8) 0.220 94.2 (2.3,3.5) 0.221 94.0 (2.5,3.5) 0.219 94.0 (2.6,3.4) 0.219
0.35 94.7 (2.0,3.3) 0.245 95.0 (2.5,2.5) 0.243 94.9 (2.5,2.6) 0.241 95.2 (2.2,2.6) 0.244

0.50 0.08 95.9 (2.2,1.9) 0.189 96.3 (1.0,2.7) 0.197 95.9 (1.3,2.8) 0.193 95.7 (2.4,1.9) 0.189
0.27 95.2 (1.5,3.3) 0.232 95.6 (1.5,2.9) 0.232 95.6 (1.5,2.9) 0.230 95.6 (1.6,2.8) 0.231
0.13 94.1 (2.8,3.1) 0.235 94.8 (2.4,2.8) 0.237 94.4 (2.6,3.0) 0.235 94.5 (2.9,2.6) 0.234
0.35 94.5 (2.5,3.0) 0.253 94.2 (3.5,2.3) 0.251 93.8 (3.8,2.4) 0.250 94.4 (3.1,2.5) 0.252

500 0.25 0.08 94.7 (3.4,1.9) 0.109 95.3 (2.8,1.9) 0.111 95.1 (2.9,2.0) 0.110 94.7 (3.4,1.9) 0.108
0.27 95.5 (1.8,2.7) 0.139 95.5 (2.1,2.4) 0.139 95.4 (2.1,2.5) 0.139 95.4 (2.1,2.5) 0.139
0.13 94.1 (2.7,3.2) 0.139 94.1 (2.7,3.2) 0.140 94.1 (2.7,3.2) 0.139 94.1 (2.7,3.2) 0.139
0.35 93.3 (2.7,4.0) 0.155 93.4 (3.6,3.0) 0.154 93.4 (3.6,3.0) 0.154 93.2 (3.5,3.3) 0.155

0.50 0.08 95.5 (2.5,2.0) 0.120 95.3 (2.1,2.6) 0.122 95.1 (2.3,2.6) 0.121 95.5 (2.6,1.9) 0.119
0.27 96.3 (1.5,2.2) 0.147 96.4 (1.5,2.1) 0.147 96.2 (1.6,2.2) 0.147 96.3 (1.6,2.1) 0.147
0.13 95.2 (2.3,2.5) 0.149 95.4 (2.1,2.5) 0.150 95.3 (2.2,2.5) 0.149 95.1 (2.4,2.5) 0.149
0.35 93.2 (3.2,3.6) 0.160 92.8 (3.8,3.4) 0.160 92.8 (3.8,3.4) 0.159 93.0 (3.6,3.4) 0.160

1000 0.25 0.08 95.4 (2.6,2.0) 0.077 95.6 (2.3,2.1) 0.078 95.6 (2.3,2.1) 0.077 95.4 (2.6,2.0) 0.077
0.27 96.0 (2.1,1.9) 0.098 96.1 (2.2,1.7) 0.098 96.1 (2.2,1.7) 0.098 96.1 (2.2,1.7) 0.098
0.13 93.9 (3.0,3.1) 0.098 93.9 (3.0,3.1) 0.099 93.9 (3.0,3.1) 0.098 94.0 (3.0,3.0) 0.098
0.35 94.1 (3.1,2.8) 0.110 94.0 (3.3,2.7) 0.109 94.0 (3.3,2.7) 0.109 93.9 (3.3,2.8) 0.110

0.50 0.08 95.4 (2.2,2.4) 0.085 95.7 (1.6,2.7) 0.085 95.6 (1.7,2.7) 0.085 95.3 (2.3,2.4) 0.085
0.27 96.7 (1.6,1.7) 0.104 96.7 (1.7,1.6) 0.104 96.7 (1.7,1.6) 0.104 96.6 (1.8,1.6) 0.104
0.13 94.3 (2.9,2.8) 0.106 94.9 (2.4,2.7) 0.106 94.7 (2.5,2.8) 0.105 94.4 (3.0,2.6) 0.105
0.35 94.5 (2.7,2.8) 0.114 94.4 (3.1,2.5) 0.113 94.4 (3.1,2.5) 0.113 94.5 (3.0,2.5) 0.113

∗Entries in columns 4 to 7 are in the format: estimated per cent coverage ( per cent interval lying completely to the left, right
of the true parameter value) median interval width.

†Correlation coefficient used to generate standard trivariate normal for the three predictors.
‡Average true value of risk difference. Four sets of beta-coefficients were (−1.5, 0.5, −0.245, −0.4), (−1.2, 1.0, −0.245, −0.4),

(−1.0, 0.5, −0.245, −0.4), and (−0.5, 1.0, −0.245, −0.4).

regression model for the following reasons. First, previous simulation results have shown that both models perform similarly1
with categorical independent variables [10]. Second, the convergence problem has not been fixed entirely by the SAS macro of
Spiegelman and Hertzmark [39]. In fact, it is stated that ‘the modified Poisson estimates are used to start the iterations to obtain3
the log-binomial maximum likelihood estimates. These are the final estimates if convergence of the binomial likelihood is not
obtained’ [39, p. 200]. Third, it is not the purpose of this article to compare the efficiency between the modified Poisson and the5
log-binomial regression in estimating risk ratio. The purpose here is to provide an answer to the concern raised by Localio et al.
[18] of using the modified Poisson model when estimating risk ratios.7

Similar results (not shown) were obtained using the logistic regression as the predicting model for counterfactuals.

4. Illustrative examples9

As a first illustrative example, consider the data in Table V involving 40 subjects [12]. Besides therapeutic regimes x1 (with 1
indicating the new therapy and 0 the conventional therapy), information on the extent of disease (EOD with 0 denoting moderate11
and 1 severe) and age (years) are also available. The objective is to estimate the effect of a new therapy as compared with the

6
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Table IV. Comparative performance of counterfactual prediction using a probit regression model and the modified Poisson
regression in estimating risk ratio and its 95 per cent two-sided confidence interval based on 1000 simulation runs∗.

Size MOVER§

n �† RR‡ Wald (ln¶) Logit Wilson Modified Poisson

100 0.25 2.21-2.21-2.24 96.3 (1.9,1.8) 6.572 95.6 (2.4,2.0) 6.513 94.7 (2.8,2.5) 6.225 94.4 (4.9,0.7) 6.419
3.40-3.50-3.48 97.3 (1.8,0.9) 6.167 96.7 (1.9,1.4) 6.208 96.1 (2.0,1.9) 6.042 96.7 (2.4,0.9) 5.991
1.87-1.90-1.91 95.1 (2.6,2.3) 3.171 94.3 (2.9,2.8) 3.154 93.6 (3.1,3.3) 3.083 94.8 (2.9,2.3) 3.187
2.23-2.23-2.22 95.2 (3.2,1.6) 2.111 95.3 (2.7,2.0) 2.144 94.7 (2.8,2.5) 2.116 94.7 (3.4,1.9) 2.052

0.50 2.19-2.17-2.23 96.3 (1.3,2.4) 6.904 95.8 (1.5,2.7) 6.673 93.8 (2.4,3.8) 6.334 91.9 (5.2,2.9) 7.298
3.35-3.32-3.41 96.2 (2.3,1.5) 6.004 95.8 (2.3,1.9) 6.010 94.9 (2.8,2.3) 5.854 95.8 (2.5,1.7) 6.046
1.86-1.87-1.91 95.7 (2.0,2.3) 3.169 95.5 (2.2,2.3) 3.128 95.1 (2.4,2.5) 3.056 94.9 (2.2,2.9) 3.428
2.22-2.20-2.19 93.7 (4.3,2.0) 2.155 94.0 (3.7,2.3) 2.183 93.6 (4.0,2.4) 2.151 94.1 (3.6,2.3) 2.137

200 0.25 2.21-2.25-2.24 96.7 (2.3,1.0) 4.163 96.4 (2.5,1.1) 4.156 95.7 (2.7,1.6) 4.067 96.5 (2.3,1.2) 4.217
3.39-3.46-3.41 95.1 (3.1,1.8) 4.132 95.1 (3.1,1.8) 4.149 94.7 (3.1,2.2) 4.090 94.9 (3.2,1.9) 3.953
1.87-1.90-1.91 94.7 (2.6,2.7) 2.132 94.6 (2.7,2.7) 2.130 94.4 (2.8,2.8) 2.108 94.8 (2.4,2.8) 2.140
2.23-2.22-2.20 95.8 (2.1,2.1) 1.469 95.4 (2.0,2.6) 1.481 95.1 (2.2,2.7) 1.471 96.4 (2.0,1.6) 1.424

0.50 2.19-2.21-2.23 96.7 (1.2,2.1) 4.240 96.6 (1.2,2.2) 4.194 95.7 (1.7,2.6) 4.104 95.5 (1.8,2.7) 4.573
3.34-3.35-3.40 95.1 (2.4,2.5) 3.970 95.1 (2.3,2.6) 3.971 94.8 (2.4,2.8) 3.923 95.9 (1.7,2.4) 3.990
1.85-1.86-1.89 95.0 (2.2,2.8) 2.149 94.6 (2.6,2.8) 2.143 94.3 (2.7,3.0) 2.122 94.2 (2.2,3.6) 2.272
2.21-2.21-2.20 95.0 (3.1,1.9) 1.482 94.8 (2.8,2.4) 1.494 94.6 (2.9,2.5) 1.483 95.2 (2.6,2.2) 1.462

500 0.25 2.21-2.20-2.20 95.7 (2.9,1.4) 2.389 95.7 (2.9,1.4) 2.384 95.5 (3.0,1.5) 2.365 96.0 (2.3,1.7) 2.399
3.39-3.42-3.37 96.1 (2.4,1.5) 2.486 96.1 (2.3,1.6) 2.488 95.9 (2.4,1.7) 2.476 96.0 (2.8,1.2) 2.361
1.87-1.90-1.90 94.2 (2.8,3.0) 1.294 94.0 (2.8,3.2) 1.294 94.0 (2.8,3.2) 1.288 94.6 (2.9,2.5) 1.289
2.23-2.23-2.21 94.2 (3.3,2.5) 0.925 94.0 (3.2,2.8) 0.928 93.9 (3.2,2.9) 0.925 94.0 (3.9,2.1) 0.894

0.50 2.19-2.19-2.24 96.0 (1.9,2.1) 2.452 95.9 (1.9,2.2) 2.442 95.9 (1.9,2.2) 2.423 95.7 (1.7,2.6) 2.610
3.34-3.36-3.36 95.6 (2.4,2.0) 2.434 95.4 (2.4,2.2) 2.435 95.2 (2.4,2.4) 2.425 96.0 (2.4,1.6) 2.373
1.85-1.88-1.91 94.8 (3.1,2.1) 1.324 94.7 (3.2,2.1) 1.321 94.6 (3.2,2.2) 1.316 95.1 (2.2,2.7) 1.384
2.21-2.22-2.21 94.5 (3.1,2.4) 0.938 94.6 (2.9,2.5) 0.941 94.6 (2.9,2.5) 0.938 93.9 (3.6,2.5) 0.916

1000 0.25 2.21-2.24-2.24 96.0 (2.5,1.5) 1.662 96.0 (2.5,1.5) 1.662 96.0 (2.5,1.5) 1.655 96.1 (2.3,1.6) 1.659
3.40-3.42-3.37 95.8 (2.4,1.8) 1.745 95.7 (2.4,1.9) 1.746 95.7 (2.4,1.9) 1.742 94.9 (3.7,1.4) 1.668
1.87-1.89-1.88 94.2 (2.6,3.2) 0.905 94.1 (2.6,3.3) 0.905 94.1 (2.6,3.3) 0.903 94.1 (2.6,3.3) 0.897
2.23-2.23-2.21 95.3 (2.5,2.2) 0.655 95.3 (2.4,2.3) 0.656 95.3 (2.4,2.3) 0.655 94.3 (3.6,2.1) 0.631

0.50 2.19-2.19-2.24 96.4 (1.7,1.9) 1.691 96.2 (1.9,1.9) 1.687 96.2 (1.9,1.9) 1.681 96.0 (1.4,2.6) 1.783
3.34-3.35-3.35 96.4 (1.8,1.8) 1.716 96.5 (1.7,1.8) 1.716 96.4 (1.8,1.8) 1.712 96.1 (1.9,2.0) 1.669
1.86-1.88-1.91 95.1 (2.1,2.8) 0.930 95.0 (2.1,2.9) 0.929 95.0 (2.1,2.9) 0.927 94.1 (2.0,3.9) 0.967
2.22-2.22-2.21 95.1 (2.7,2.2) 0.663 95.1 (2.6,2.3) 0.664 95.1 (2.6,2.3) 0.663 95.3 (2.7,2.0) 0.644

∗Entries in columns 4 to 7 are in the format: estimated per cent coverage (per cent interval lying completely to the left, right
of the true parameter value) median interval width.

†Values of correlation among three predictors.
‡The first number is the average true value of risk ratio, followed by its estimates from methods of predicting counterfactuals

and the modified Poisson regression, respectively.
§These limits are obtained by applying delta method on the log scale.
¶These confidence limits are obtained by applying the method of variance recovery on the log scale.

conventional therapy with respect to recovery from the disease. As discussed in Lee [12], there is a need to adjust for confounding1
in estimating the effect of the new therapy.

Fitting the data to a probit model, we obtained �̂0 =1.3807 (intercept), �̂1 =1.2689 (therapy), �̂2 =−0.6764 (EOD), and3
�̂3 =−0.0603 (Age). To estimate the risk to be expected (p1) if all subjects had received the new therapy (regardless of their
actual therapy groups), we compute5

�(l̂p1i )=�(̂�0 +�̂1 ×1+�̂2 ×EODi +�̂3 ×Agei)

for all 40 subjects. As the first 20 subjects did not receive the new therapy, their predicted �(l̂p1i) are counterfactuals. The predicted7
counterfactual for the first subject is given by �[1.3807+1.2689−0.6764(0)−0.0603(20)]=0.9257, and the values for the remaining
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Table V. Illustrative example of estimating risks based on a probit regression model∗ .

Data Predicted probability (Recovery)

ID Therapy EOD Age Recovery If treated (̂p1i)
† If not treated (̂pi0)‡

1 0 0 20 1 0.9257 0.5697
2 0 0 23 1 0.8968 0.4979
3 0 0 22 0 0.9072 0.5219
4 0 0 26 0 0.8606 0.4262
5 0 0 29 0 0.8165 0.3569
6 0 0 34 0 0.7260 0.2520
7 0 0 32 1 0.7647 0.2920
8 0 0 30 0 0.8001 0.3347
9 0 0 38 0 0.6405 0.1816
10 0 0 37 0 0.6628 0.1980
11 0 0 38 1 0.6405 0.1816
12 0 1 25 1 0.6797 0.2112
13 0 1 24 0 0.7009 0.2291
14 0 1 25 0 0.6797 0.2112
15 0 1 29 0 0.5893 0.1484
16 0 1 32 0 0.5179 0.1105
17 0 1 34 0 0.4699 0.0894
18 0 1 37 0 0.3989 0.0636
19 0 1 40 0 0.3310 0.0440
20 0 1 40 0 0.3310 0.0440
21 1 0 20 1 0.9257 0.5697
22 1 0 24 1 0.8856 0.4739
23 1 0 28 1 0.8321 0.3796
24 1 0 30 1 0.8001 0.3347
25 1 0 32 1 0.7647 0.2920
26 1 0 33 0 0.7457 0.2716
27 1 0 38 1 0.6405 0.1816
28 1 0 36 0 0.6845 0.2152
29 1 1 24 0 0.7009 0.2291
30 1 1 26 1 0.6578 0.1942
31 1 1 29 1 0.5893 0.1484
32 1 1 34 0 0.4699 0.0894
33 1 1 32 0 0.5179 0.1105
34 1 1 34 1 0.4699 0.0894
35 1 1 33 1 0.4939 0.0995
36 1 1 36 0 0.4223 0.0715
37 1 1 38 0 0.3758 0.0564
38 1 1 39 0 0.3531 0.0499
39 1 1 38 1 0.3758 0.0564
40 1 1 40 1 0.3310 0.0440

�̂0 �̂1 �̂2 �̂3 p1 p0
1.3807 1.2689 −0.6764 −0.0603 0.6344 0.2230

∗Italic numbers are predicted counterfactuals.
†p̂1,1 =�[̂�0 +�̂1 +�̂1EOD+�̂3Age1]=�[1.3807+1.2689−0.6764(0)−0.0603(20)]=0.9257, and the values the remaining

39 subjects are computed similarly by substituting the corresponding EOD and age values, and p1= 1
40 (̂p1,1+p̂1,2 +·· ·+p̂1,40).

‡p̂0,1=�[̂�0+�̂1EOD+�̂3Age1]=�[1.3807−0.6764(0)−0.0603(20)]=0.5697, and the values the remaining 39 subjects are

computed similarly by substituting the corresponding EOD and age values, and p0= 1
40 (̂p0,1+p̂0,2+·· ·+p̂0,40).

39 subjects are computed similarly by substituting the corresponding EOD and age values with p1 = 1
40 (̂p1,1 +p̂1,2 +·· ·+p̂1,40)=1

0.6344.
To estimate the risk to be expected (p0) if all subjects had not received the new therapy (regardless of their actual therapy3

groups), we compute

�(l̂p0i)=�(̂�0 +�̂1 ×0+�̂2 ×EODi +�̂3 ×Agei)5

8
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Table VI. Illustrative example of estimating risks, risk difference, and risk ratio using the
method of counterfactual prediction and the modified Poisson regression.

Link function

Probit Cloglog Logit

�̂0 (Intercept) 1.3807 1.3304 2.2359
�̂1 (Therapy) 1.2689 1.5066 2.0701
�̂2 (EOD) −0.6767 −0.7625 −1.0767
�̂3 (Age) −0.0603 −0.0706 −0.0984

Log likelihood −21.9920 −22.0209 −22.0825

p1 0.6344 0.6316 0.6320
95 per cent CI Wald (0.4418, 0.8270) (0.4447, 0.8185) (0.4380, 0.8261)

ln (0.4683, 0.8594) (0.4698, 0.8491) (0.4649, 0.8592)
Logit (0.4307, 0.7992) (0.4343, 0.7928) (0.4272, 0.7983)

Wilson (0.4361, 0.7956) (0.4393, 0.7895) (0.4327, 0.7946)

p0 0.2230 0.2320 0.2262
95 per cent CI Wald (0.0578, 0.3882) (0.0620, 0.4020) (0.0598, 0.3927)

ln (0.1063, 0.4678) (0.1115, 0.4828) (0.1084, 0.4721)
Logit (0.0996, 0.4268) (0.1042, 0.4396) (0.1015, 0.4307)

Wilson (0.1026, 0.4188) (0.1073, 0.4315) (0.1045, 0.4227)

Risk difference 0.4114 0.3996 0.4058
95 per cent CI Wald (0.1568, 0.6660) (0.1479, 0.6512) (0.1487, 0.6630)

Logit (0.1222, 0.6180) (0.1144, 0.6045) (0.1146, 0.6148)
Wilson (0.1318, 0.6133) (0.1236, 0.6000) (0.1242, 0.6101)

Fisher z (0.1301, 0.6314) (0.1231, 0.6185) (0.1221, 0.6282)

Risk ratio 2.8445 2.7222 2.7941
95 per cent CI Wald(ln) (1.2751, 6.3459) (1.2379, 5.9862) (1.2546, 6.2227)

Logit (1.3328, 6.5881) (1.3014, 6.2436) (1.3096, 6.4558)
Wilson (1.3635, 6.3957) (1.3299, 6.0626) (1.3397, 6.2687)

Modified Poisson 2.7256 (1.2664, 5.8660)

for all 40 subjects. The last 20 subjects did receive the new therapy, implying their predicted �(l̂p0i ) are counterfactuals. The1
predicted counterfactual for subject 21 is given by �[1.3807−0.6764(0)−0.0603(20)]=0.5697, and the values the remaining
39 subjects are computed similarly by substituting the corresponding EOD and age values, with p0 = 1

40 (̂p0,1 +p̂0,2 +·· ·+p̂0,40)=3
0.2230.

Confidence intervals for p1, p0, p1 −p0 and p1 / p0 are obtained using the SAS macro and are presented in Table VI. We5
also fitted extreme-value and logistic regression models for comparison. Overall, there are no major differences among the
three models. Consistent with the simulation results, the Wald confidence intervals stand out as compared with the other7
methods.

It is also interesting to note that there are no material discrepancies between the modified Poisson regression method for9
estimating the risk ratio and the method of counterfactual prediction described above. This observation is consistent with the
simulation results.11

The same idea can also be applied to estimate a difference between two differences in proportions, i.e. interaction. As an
illustration, suppose we are interested in the interaction between therapy and EOD. Continuing with the probit model, we can
estimate risks of the following groups as

p11 = 1

40

40∑
i=1

�(̂�0 +�̂1 +�̂2 +�̂3 ×Agei)=0.5279

p10 = 1

40

40∑
i=1

�(̂�0 +�̂1 +0+�̂3 ×Agei)=0.7604

p01 = 1

40

40∑
i=1

�(̂�0 +0+�̂2 +�̂3 ×Agei)=0.1310
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and1

p00 = 1

40

40∑
i=1

�(̂�0 +0+0+�̂3 ×Agei)=0.3132

Thus, the interaction is given by3

Interaction=p11 −p10 −(p01 −p00)=−0.0503

Applying the MOVER with the Wilson interval for each of the four terms yields a 95 per cent confidence interval of (−0.1310, 0.0640),5
compared with that of (−0.1368, 0.0714), obtained from first applying the Fisher z-transformation to p11 −p10 and p01 −p00
separately, and second applying the MOVER approach.7

As a second example, consider the data arising from a randomized experiment designed to determine whether increased
reproduction reduces the longevity of male flies [40]. As done by previous authors [41], we focus here on comparing the risk9
of dying at 40 days between an experimental and a control group. In the experimental group, 25 males were provided with 8
receptive female flies every 2 days. In the control group, each of the 25 males was provided with 8 newly inseminated females11
every 2 days. A strong predictor for longevity is the length of thorax (in minimeters) which was well balanced by randomization.
The full data set can be found elsewhere [42]. With 13 flies dead in the experimental group and 3 in the control group, the13
unadjusted odds ratio is 7.94 (95 per cent CI 1.88 to 33.50), compared with 47.00 (95 per cent CI 3.50 to 631.82) adjusted for
length of thorax [41]. Note that the dramatic change in the odds ratio caused by adjusting balanced covariates is a well-known15
oddity of the odds ratio [43]. Application of the Zhang–Yu formula [9] in this case would result in two risk ratio estimates, resulting
in misleading conclusions. This is a vivid illustration that adoption of an odds ratio simply cannot quantify the magnitude of17
effect, even with data from well-conducted randomization trials [8].

In contrast, using the risk ratio or risk difference has no such difficulty. The unadjusted risk ratio is 4.33 (95 per cent CI 1.4019
to 13.37), which is similar to the adjusted risk ratio of 4.12 (95 per cent CI 1.56 to 10.86) obtained using the modified Poisson
model. Moreover, these results are comparable to the risk ratio of 4.14 (95 per cent CI 1.89 to 9.61), obtained by predicting21
the counterfactuals with a logistic regression model (SAS codes are presented in the Appendix). Despite the lack of material
differences between two risk ratio estimates, the narrower confidence interval of the adjusted estimate indicates efficiency gain.23
The estimated risk difference using the approach presented above is 0.39, with 95 per cent confidence intervals of 0.21 to 0.54
using the MOVER with the Wilson limits for separate risks, and 0.21 to 0.55 using the Fisher’s z-transformation.25

5. Discussion

This article has simplified the statistical calculations for risk assessment on the basis of counterfactual theory. Probit, logistic,27
and extreme-value regression models are discussed in the context of risk assessment. Using the method of variance estimates
recovery, asymmetric confidence intervals for risk, risk difference, and risk ratio are derived. Simulation results showed the29
improvement as compared with those based on the delta method. For ease of practical application, a SAS macro has been
developed. This should prove to be a useful alternative to the percentile bootstrap that was implemented by previous authors31
[18--21].

The advantage of assessing risks by predicting counterfactuals is that it does not require the homogeneity assumption. This33
approach has also been referred to as ‘standardization’ [14, 17]. An operational difficulty arises with the approach when the
exposure of interest is continuous.35

The simulation results have shown that applying the modified Poisson regression model in estimating the risk ratio is fairly
reliable, even without the assumption of constant parameter values. This provides an empirical answer to a previous concern37
about this model [18]. This observation was confirmed in a study of wound healing in which the exposure is ankle-brachial
index (high versus low) and the outcome is failure to heal in 24 months [18]. The modified Poisson model produced a risk ratio39
of 2.01 with 95 per cent confidence interval 1.51 to 2.67, compared with that of 2.04 (obtained by counterfactual prediction
with a logistic regression model) with the 95 per cent confidence interval of 1.47 to 2.75 obtained using the bootstrap [18,41
p. 878]. This result enforces the previous suggestion that the modified Poisson model be applied to binary outcomes if the
risk ratio is the parameter of interest [10, 39]. Further justification for the Poisson regression model may be found elsewhere43
[44].

We have also illustrated how to obtain the interaction alternative to that in previous literature, see, e.g. [2, Chapter 9]. We45
should note that the interaction here is defined as the difference of the differences in proportions, while previous literature
defines it as a linear function of risk ratios [28]. It would be interesting to compare the utility of these two approaches, although47
the details are beyond the scope of this article.

The logistic regression model is predominantly used as a tool to obtain an adjusted odds ratio estimate, which is shown to49
be handicapped as a meaningful effect measure [7, 8]. The difficulty is also demonstrated in the second example, where the
odds ratio leads to confusing results even in a well-controlled randomization trial. The property of the odds ratio changing with51
adjusting well-balanced factors is also referred to as ‘noncollapsibility’. More discussion on the issue can be found elsewhere
[5, 7, 44]. Although we deliberately downplayed the role of logistic regression model here, this is not to dismiss this model as53
a good tool in prediction problems. In fact, this type of application seems to be the primary goal in many classic articles that
adopt the logistic regression model [11, 45].55

1
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It would be misleading to conclude the article without emphasizing that, as for any modeling exercise, the approach presented1
above assumes that there are no unmeasured confounding variables. Otherwise, the counterfacturals could not be predicted
reliably, resulting in biased estimates. Therefore, wherever possible, rigorously executed randomized trials remain to be the gold3
standard in assessing effects or risks.

APPENDIX5

This section provide the SAS macro call used to carry out the simulations and the example, followed by the macro.

**Data created from Hanley and Shapiro (1994 Journal of Statistical Education 2(1) );7
data Flies;

input ID treatment thorax death40;9
cards;
1 0 0.64 111
2 0 0.68 1
3 0 0.68 013
4 0 0.72 0
5 0 0.72 015
6 0 0.76 1
7 0 0.76 017
8 0 0.76 0
9 0 0.76 019
10 0 0.76 0
11 0 0.80 021
12 0 0.80 0
13 0 0.80 023
14 0 0.84 0
15 0 0.84 025
16 0 0.84 0
17 0 0.84 027
18 0 0.84 0
19 0 0.84 029
20 0 0.88 0
21 0 0.88 031
22 0 0.92 0
23 0 0.92 033
24 0 0.92 0
25 0 0.94 035
26 1 0.64 1
27 1 0.64 137
28 1 0.68 1
29 1 0.72 139
30 1 0.72 1
31 1 0.74 141
32 1 0.76 1
33 1 0.76 043
34 1 0.76 0
35 1 0.78 145
36 1 0.80 1
37 1 0.80 147
38 1 0.82 1
39 1 0.82 049
40 1 0.84 1
41 1 0.84 151
42 1 0.84 0
43 1 0.84 053
44 1 0.88 0
45 1 0.88 055
46 1 0.88 0
47 1 0.88 057
48 1 0.88 0
49 1 0.88 059
50 1 0.92 0
;61
****************************************************************************
* Note: Always remember to change data set name as well as variable names *63
****************************************************************************;
%CounterFactual(data =Flies, /*data set to be analyzed*/65

yvar = death40, /*outcome variabe*/
trt = treatment, /* Exposure or treatment variable */67
xvar = thorax, /* independent variables to be adjusted */
link = logit, /* link function used by PROC GENMOD: logit, probit, cloglog */69
alpha=0.05); /* alpha level for confidence interval, default is 0.05*/



UN
CO

RR
EC

TE
D 

PR
O

O
F

G. Y. ZOU

%macro CounterFactual(data=, /*data set to be analyzed*/1
yvar =, /*outcome variabe*/
trt =, /* Exposure or treatment variable */3
xvar =, /* independent variables to be adjusted */
link =, /* link function used in PROC GENMOD: logit, probit, cloglog */5
alpha=0.05 /* alpah level for confidence interval, default is 0.05*/

);7

%if &link= probit %then %let dist=’normal’;9
%else %if &link=logit %then %let dist=’logistic’;
%else %if &link=cloglog %then %let dist=’extreme’;11

proc genmod desc data= &data;13
model &yvar = &trt &xvar/covb dist=bin link= &link;
ods output ParameterEstimates=est(keep=estimate)15

covB=cov(drop=rowname);
proc iml;17

start CI4P(Pest, Var, n);
%let z=probit(1-&alpha/2);19
*Wald;
W_L = pest - &z*sqrt(var) ;21
W_U = pest + &z*sqrt(var) ;

*log, usd by Flanders and Rhodes (1987 J Chron Dis 40: 697-704);23
lOG_L = pest*exp(- &z*sqrt(var)/(pest));
log_U = pest*exp(+ &Z*sqrt(var)/(pest));25
*logit;

varlgt = var/( pest*(1-pest))**2 ;27
l=log(pest/(1-pest)) - &z*sqrt(varlgt);

lgt_L = exp(l)/(1+exp(l));29
u=log(pest/(1-pest)) + &z*sqrt(varlgt);
lgt_U = exp(u)/(1+exp(u));31
*Wilson, based on Newcombe (2001 Am Stat 55: 200-202);
ll=log(pest/(1-pest)) - 2*arsinh( &z/2 * sqrt(varlgt));33
Wln_L = exp(ll)/(1+exp(ll));
uu=log(pest/(1-pest)) + 2*arsinh( &z/2 * sqrt(varlgt));35
Wln_U = exp(uu)/(1+exp(uu));

return(pest||W_L||W_U||log_L||log_U||lgt_L||lgt_U||wln_L||wln_U);37
finish CI4P;

39
start MOVER(p1, l1, u1, p2, l2, u2, corr);
**Baded on Zou (2008 Am J Epidemiol 162: 212-224);41
point = p1-p2;
L = p1- p2 - sqrt(max(0, (p1-l1)**2 -2*corr*(p1-l1)*(u2-p2) + (u2-p2)**2));43
U = p1- p2 + sqrt(max(0, (u1-p1)**2 -2*corr*(u1-p1)*(p2-l2) + (p2-l2)**2));
return(point||L||U);45
finish MOVER;

47
**Bring in data for prediction;

use &data;49
read all var{&xvar} into X;
n = nrow(X);51
m = ncol(X);

53
X1 = J(n,2,1)||X;
X0 = J(n,1,1)||J(n,1,0)||X;55

use cov;57
read all var _num_ into V;
use est;59
read all var _num_ into beta;
beta=beta[1:(m+2)];61

if &dist = ’extreme’ then do;63
p_1 = 1-exp(-exp(X1 * beta));

p_0 = 1-exp(-exp(X0 * beta));65
piece1 = exp(X1 * beta -exp(X1 * beta) )# X1;
piece0 = exp(X0 * beta -exp(X0 * beta) )# X0;67

end;
else do;69

p_1 = cdf(&dist, X1 * beta); **predicted prob, if exposed;
p_0 = cdf(&dist, X0 * beta); **predicted prob, if unexposed;71

piece1 = pdf(&dist, X1 * beta)# X1;
piece0 = pdf(&dist, X0 * beta)# X0;73

end;
75
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p1est = sum(p_1)/n;1
p0est = sum(p_0)/n;

3
V1=0; V0=0; COV =0;
do i =1 to n;5
do j=1 to n;
Xi1 = X1[i,]; Xj1 = X1[j,];7

Xi0 = X0[i,]; Xj0 = X0[j,];
if &dist = ’extreme’ then do;9

V1 = V1 + 1/N**2 * exp(Xi1 * beta - exp(Xi1 * beta) )*
exp(Xj1 * beta - exp(Xj1 * beta) )* (xi1*V*T(xj1));11

V0 = V0 + 1/N**2 * exp(Xi0 * beta - exp(Xi0 * beta) )*
exp(Xj0 * beta - exp(Xj0 * beta) )* (xi0*V*T(xj0));13

COV = cov + 1/N**2 * exp(Xi1 * beta - exp(Xi1 * beta) )*
exp(Xj0 * beta - exp(Xj0 * beta) )* (xi1*V*T(xj0));15

end;
else do;17

V1 = V1 + 1/N**2*pdf(&dist, xi1* beta) *
pdf(&dist, xj1* beta) * (xi1*V*T(xj1));19

V0 = V0 + 1/N**2*pdf(&dist, xi0* beta) *
pdf(&dist, xj0* beta) * (xi0*V*T(xj0));21

COV = COV + 1/N**2* pdf(&dist, xi1* beta)*
pdf(&dist, xj0* beta) * (xi1*V*T(xj0));23

end;
end; *END J;25
end; *END I;

27
ll = p1est-p0est - &z*sqrt(v1+v0-2*cov);
uu = p1est-p0est + &z*sqrt(v1+v0-2*cov);29

group1 = CI4P(p1est, V1, n); **CI for exposed risk;31
group0 = CI4P(p0est, V0, n); **CI for unexposed risk;

33
print ’==== CI for risks ===’;
name = {estimate Wald_L wald_U log_L log_U lgt_L lgt_U Wlsn_L Wlsn_U};35
print group1[colname=name],

group0[colname=name];37

**Confidenc einterval for difference;39
rho = COV/sqrt(V1*V0);
dWald = mover(group1[1], group1[2], group1[3], group0[1], group0[2], group0[3], rho);41
dlgt = mover(group1[1], group1[6], group1[7], group0[1], group0[6], group0[7], rho);
dWln = mover(group1[1], group1[8], group1[9], group0[1], group0[8], group0[9], rho);43

**The following is based on Zou and Donner (2004 Controlled Clin Trials 25: 3-12);45
vd = V1 + V0 - 2*cov;
d = p1est - p0est;47
F_LL = log( (1+ d)/(1-d) ) - &z *2*sqrt(vd)/(1- d**2);
F_L = (exp(F_LL) - 1)/(exp(F_LL) + 1);49
F_Uu = log( (1+ d)/(1-d) ) + &z *2* sqrt(vd)/(1-d**2);
F_U = (exp(F_uu) - 1)/(exp(F_uu) + 1);51
Fisher = d||F_L||F_U;

53
print ’===CI for difference==’;
print dwald, dlgt, dwln, Fisher;55

** CI for Ratio;57
**log-delta;
RRest = p1est/p0est;59

var = V1/p1est**2 + V0/p0est**2 - 2 * cov/(p1est*p0est);
Lower = RRest*exp(-&z*sqrt(var));61

Upper = RRest*exp(+&z*sqrt(var));
RlogDelta = RRest||lower||upper;63

* Zou and Donner (2008 Stat Med 27: 1693-1702);65
Rlgt = exp(mover(log(group1[1]), log(group1[6]), log(group1[7]),

log(group0[1]), log(group0[6]), log(group0[7]), rho));67
RWln = exp(mover(log(group1[1]), log(group1[8]), log(group1[9]),

log(group0[1]), log(group0[8]), log(group0[9]), rho));69

print ’=== CI for RR ===’;71
print RlogDelta, Rlgt, Rwln;
quit;73
%mend CounterFactual;
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