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Epid 9510: Biostatistical Research Methods 
 
 

Course Description: This course is meant to give graduate students in the 
biostatistical collaborated program an introduction to the necessary skills and 
knowledge for biostatistical research, focusing on the activities involved in writing 
thesis. The ultimate goal is to enable students to fully understand the strengths 
and limitations of new biostatistical methods developed by others, or develop 
new methods on their own.   
 
Instructors: GY Zou (gzou@robarts.ca) and  
                     YH Choi (yun-hee.choi@schulich.uwo.ca). 
 
Textbook: No textbooks. Reading materials provided. 
 
Class meetings: Tuesday 10:30 to 12:30, Thursday 10:30 to 12:00, Kresge 116. 
 
Grade: Assignment 1: 20%, manuscript 70%, Participation: 10%. 
 
 

Course outline 
 

 
Sept 15: Introduction 
Sept 17: Intro SAS 
  
Sept 22: Intro R (Choi) 
Sept 24: Intro LaTeX (Choi) 
  
Sept 29: Stat Inference (Choi) 
Oct 1: Stat Inference (Choi) 
 
Assignment 1: Derive var(ρA), var(ρFC), and var(ρP) in Zou and Donner (2004, 
Biometrics 60: 807-811). Use LaTeX for typing. 
 
Sept 6: Stat Inference (Choi) 
Oct 8: Stat Inference (Choi) 
 
Oct 13: How to select topic and Read 
Oct 15: How to Search 
 
Assignment 2: select a topic and literature list 
Assignment 1 due on Oct 9. 
 
Oct 20: Proportion as an example for reading and searching 
Oct 22: Reading Classical statistical papers 

mailto:gzou@robarts.ca
mailto:yun-hee.choi@schulich.uwo.ca


 
Oct 27: Bootstrap 
Oct 29: Bootstrap 
 
Assignment 2 due on Oct 23. 
 
Oct 3: Simulation by SAS 
Oct 5: Simulation by R (Choi) 
 
Nov 10: Writing paper using LaTeX 
Nov 12: Writing thesis using LaTeX 
 
Nov 17: Writing in English (with examples of Zou) 
Nov 19: Writing in English (cont) 
 
Nov 24: Writing slides with LaTeX 
Nov 26: Effective presentation 
  
Dec 1: Student presentation 
Dec 3: Student presentation 
 
 
Dec 17:  Manuscript due (to be Graded by Zou and Choi before Dec 20) 
 
 
 



Special Section:
Statistical Training and Curricular Revision

What Is Statistics?

Emery N. BROWN and Robert E. KASS

We use our experience in neuroscience as a source of defining
issues for the discipline of statistics. We argue that to remain
vibrant, the field must open up by taking a less restrictive view
of what constitutes statistical training.

KEY WORDS: Cross-disciplinary statistical research; Statisti-
cal paradigm; Statistical thinking.

1. SHORT SUPPLY

Our field faces fundamental challenges. The statistical needs
of science, technology, business, and government are huge and
growing rapidly, producing a shortfall in statistical workforce
production. In their summary of an National Science Founda-
tion workshop, The Future of Statistics, Lindsay, Kettenring,
and Siegmund (2004) reported that

Workshop participants pointed repeatedly to shortages in the
pipeline of students and unmet demand from key industries
and government laboratories and agencies. . . . The shortage may
prove quite damaging to the nation’s infrastructure.

The growth in demand for data analysis may be attributed in
large part to the exponential increase in computing power and
data collection capabilities. At the same time, there is a worri-
some tendency for quantitative investigators or technical staff
to attack problems using blunt instruments and naive attitudes.
Our discipline as a whole has been gloriously productive, mak-
ing available a wide variety of tools. But we have been less suc-
cessful in producing easy-to-master operating instructions and
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training programs. We have effectively created a supply side
of the problem: Statistical education has not been sufficiently
accessible. Curricula in statistics have been based on a now-
outdated notion of an educated statistician as someone knowl-
edgeable about existing approaches to handling nearly every
kind of data. Degrees in statistics have emphasized a large suite
of techniques, and introductory courses too often remain unap-
petizing. The net result is that at every level of study, gaining
statistical expertise has required extensive coursework, much
of which appears to be extraneous to the compelling scientific
problems students are interested in solving.

We also must acknowledge that some of the most innovative
and important new techniques in data analysis have come from
researchers who would not identify themselves as statisticians.
Computer scientists have been especially influential in the past
decade or so. The influx of methodology from outside the disci-
pline is not new; indeed, the field of statistics itself is relatively
young, with much foundational achievement predating the ad-
vent of departments of statistics. But an undeniable fear lurks in
the hearts of many statistics professors: As others leap daringly
into the fray, attempting to tackle the most difficult problems,
might statistics as we know it become obsolete?

The two of us recently co-organized the fourth international
workshop on statistical analysis of neural data. This series of
conferences has brought together quantitatively oriented exper-
imenters and cutting-edge data analysts working in the field of
neuroscience, offering new challenges for statistical science in
the process. We and others have found the high quality of sta-
tistical application gratifying and the articulation of new ideas
very stimulating. One of the reactions from readers of our grant
proposal to the National Science Foundation took us by sur-
prise, however. Only a relatively small minority of our speak-
ers and participants came from departments of statistics, and
as a result, some reviewers questioned whether the Division
of Mathematical Sciences should be supporting this activity.
Luckily, the program officers handled this issue adeptly, in part
by getting cosponsorship from Computational Neuroscience.
But the issue is an aspect of the existential identity crisis; the
reviewers were grappling with the vexing question, raised by in-
stitutional structures, of who should be counted as a statistician.

The participation in neuroscientific research of many non-
statisticians doing sophisticated data analysis is not surprising.
The brain is considered a great scientific frontier. Studying it
creates many technological challenges, and because neuronal
networks form electrical circuits, fundamental contributions to
neurophysiology have been made by physical arguments, in the
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form of differential equations. Furthermore, brain science is
where artificial neural network models arose, not as machines
for nonparametric multiple regression, but rather as descriptors
of cognitive mechanisms. For these reasons, neuroscience has
attracted many researchers trained in quantitative disciplines,
especially physics and engineering. Although their activities
might make some statisticians nervous when it comes to federal
grants and other resources, a more serious threat is a discipli-
nary attitude that contrasts strikingly with what we see among
many statisticians. Physicists and engineers very often become
immersed in the subject matter. In particular, they work hand in
hand with neuroscientists and often become experimentalists
themselves. Furthermore, physicists and engineers (and like-
wise computer scientists) are ambitious; when faced with prob-
lems, they tend to attack, sweeping aside impediments stem-
ming from limited knowledge about the procedures that they
apply. In seeing this, we often shudder, and we criticize this
cavalier attitude later in this article. But there is a flip side to our
reaction; in contrast, we find that graduate students in statistics
often are reticent to the point of inaction. Somehow, in empha-
sizing the logic of data manipulation, teachers of statistics are
instilling excessive cautiousness. Students seem to develop ex-
treme risk aversion, apparently fearing that the inevitable flaws
in their analysis will be discovered and pounced upon by sta-
tistically trained colleagues. Along with communicating great
ideas and fostering valuable introspective care, our discipline
has managed to create a culture that often is detrimental to the
very efforts it aims to advance.

We are worried. While we expect that in many institutions—
perhaps most—there may exist specific courses and programs
that are exemplary in certain respects, in the aggregate, we are
frustrated with the current state of affairs. The concerns that we
have articulated here are not minor matters to be addressed by
incremental improvement; rather, they represent deep deficien-
cies requiring immediate attention.

2. CHANGING TIMES

In making critical comments, we hope to stir discussion and
debate. We do not wish to be misunderstood, however; our most
fundamental loyalty is to the discipline of statistics. We appre-
ciate its role in technical advances over the past century, and
see even greater opportunities for essential contributions in the
future, as scientific investigations rely on more massive and in-
tricate data sets to examine increasingly complex phenomena.
Furthermore, besides utility, there is great beauty in the sub-
ject. We have spent considerable effort learning and trying to
advance neuroscience. But even after substantial exposure to
one of the most exciting and rapidly developing areas of sci-
ence, we still believe that statistics, with its unique blend of
real-world mathematics, epistemology, and computational tech-
nique, is the most deeply interesting and rewarding of all intel-
lectual endeavors. There are strong arguments to suggest that
much of cognition is based on pattern learning, and that hu-
mans have well-developed neural machinery for making infer-
ences implicitly, without conscious recognition. Perhaps part of
the pleasure that we get from statistical reasoning comes from
bringing a harmonious coherence to otherwise unappreciated

brain processes. Regardless of its biological explanation, how-
ever, there is certainly an inspiring aesthetic of statistics driven
in part by the emotional overlay of trying to tame uncertainty.
The problem is not with the nature of the discipline. There are
compelling reasons to love statistics and to pass on to others
both knowledge of its methods and appreciation of its powerful
logic.

So where have things gone wrong? We believe that the pri-
mary source of the current difficulties is an anachronistic, yet
pervasive conception of statistics. The problem is that depart-
ments of statistics often act as if they are preparing students
to be short-term consultants, able to answer circumscribed
methodological questions based on limited contemplation of
the context. This short-term consultant model relegates the sta-
tistician to a subsidiary position, and suggests that applied sta-
tistics consists of handling well-formulated questions, so as to
match an accepted method to nearly any kind of data. This no-
tion may have developed partly because—at least in the United
States—statistics evolved from mathematics with its lone inves-
tigator, and partly because a qualified statistician could know
the entire field. The large majority of senior statisticians began
their academic careers as math majors. Within statistics depart-
ments, mathematical thinking influenced both research and in-
frastructure, whereas the mathematics involved was relatively
limited, so that Ph.D. statisticians could master the technical
details in diverse areas of statistics. Graduate programs thus
emphasized mathematically thorough knowledge of multiple
branches of the field. At one time, this served a useful purpose.
But statistics has expanded and deepened, so that individuals
rarely have state-of-the-art, rigorous expertise in more than a
few well-developed subdomains. Furthermore, in today’s dy-
namic and interdisciplinary world, success in confronting new
analytical issues requires both substantial knowledge of a scien-
tific or technological area and highly flexible problem-solving
strategies. In neuroscience, for example, a statistician will have
far more impact once he or she is able to generate ideas for
scientific investigation. In other fields, the situation is surely
analogous. The discipline of statistics needs to recognize our
new situation and act accordingly. We suggest two overarching
principles of curricular revision.

3. A FOCUS ON STATISTICAL THINKING

According to syllabi and lists of requirements, statistics
courses and degree programs tend to emphasize mastery of
technique. But statisticians with advanced training and experi-
ence do not think of statistics as simply a collection of methods;
like experts in any field, they consider their subject highly con-
ceptual. This deserves emphasis, because it distinguishes a dis-
ciplinary approach from efforts that might be disparaged as the
work of amateurs. In neuroscience, we have seen many highly
quantitative researchers trained in physics and engineering, but
not in statistics, apply sophisticated techniques to analyze their
data. These often are appropriate and sometimes are inventive
and interesting. In the course of perusing many, many articles
over the years, however, we have found ourselves critical of
much published work. Starting with vague intuitions, particular
algorithms are concocted and applied, from which strong sci-
entific statements are made. Our reaction too often is negative;
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we are dubious of the value of this approach, believing that al-
ternatives are preferable. Or we may concede that a particular
method possibly may be a good one, but the authors have done
nothing to indicate that it performs well. In specific settings, we
often come to the conclusion that the science would advance
more quickly if the problems were formulated differently—in
a manner more familiar to trained statisticians. As an example,
neuroscientists developed the highly intuitive “spike-triggered
average” to identify an association between a neural spike train,
which may be considered a point process, and a continuous
stimulus. Point process analysis by a member of Columbia’s
Department of Statistics (Paninski 2003) has shown that spike-
triggered averaging can be inconsistent in some realistic set-
tings, but that consistent estimators may be constructed us-
ing generalized linear (or nonlinear) regression models, an ap-
proach first championed by Brillinger. (For related references
and other examples, see Brown, Kass, and Mitra 2004; Kass,
Ventura, and Brown 2005.)

The statistician’s perspective, missing from much analysis of
neural data, is the most important thing that we can provide.
Once students have it, they will be empowered in diverse sit-
uations. Thus, we suggest that the primary goal of statistical
training at all levels should be to help students develop statisti-
cal thinking.

What exactly do we mean by this? Different statisticians
would use somewhat different words to describe what defines
the essential elements of our discipline’s approach, but we be-
lieve there is general consensus about the substance, which can
be stated quite concisely. Statistical thinking uses probabilis-
tic descriptions of variability in (1) inductive reasoning and
(2) analysis of procedures for data collection, prediction, and
scientific inference. For instance, a prototypical description of
variability among data pairs (x1, y1), . . . , (xn, yn) is the non-
parametric regression model

Yi = f (xi) + εi,

in which each εi is a random variable. This may be used to sug-
gest methods of smoothing the data and to express uncertainty
about the result [both of which are part of item (1)] and also
to evaluate the behavior of alternative smoothing procedures
[item (2)]. One can dream up a smoothing method, and apply
it, without ever referencing a model—indeed, this is the sort
of thing that we witness and complain about in neuroscience.
Meanwhile, among statisticians there is no end of disagreement
about the details of a model and the choice among methods
(What space of functions should be considered? Should the εi

random variables enter additively? Independently? What class
of probability distributions should be used? Should decision-
theoretic criteria be introduced, or prior probabilities?). The es-
sential component that characterizes the discipline is the intro-
duction of probability to describe variation in order to provide a
good solution to a problem involving the reduction of data for a
specified purpose. This is not the only thing that statisticians do
or teach, but it is the part that identifies the way they think. We
provide a bit more discussion of this notion in the Appendix.

Currently, statistical thinking is internalized as a byproduct
of extensive statistical training. Elevating it to an overarching
goal allows curricula to be assessed according to the way in
which statistical thinking is engendered.

4. FLEXIBLE CROSS-DISCIPLINARITY

Contemporary students see before them a world dominated
by “big science,” with a host of exciting paths to participate in
progress. Many students recognize a fundamental role for sta-
tistics, and most see great value in learning statistical methods,
but they are increasingly motivated by a desire to solve impor-
tant problems. In this context, the very best quantitatively ori-
ented students often come from other quantitative disciplines,
including computer science, physics, and engineering, and they
have many options.

As an example, because of his involvement in computational
neuroscience at Carnegie Mellon, one of us (Kass) became
aware of an outstanding senior undergraduate, a young woman
majoring in computer science at one of the top liberal arts col-
leges, with nearly perfect GPA and GRE score. She was very in-
terested in computational aspects of neuroimaging and wanted
to pursue a Ph.D. However, she had never taken a statistics
course, and in fact had taken only one math course beyond cal-
culus. It had not occurred to her that statistics might be a good
option, and, from the standpoint of admission to a graduate pro-
gram in statistics, she presented logistic complications; it was
not clear exactly what she would study, or how many years it
would take to complete her degree. We must make room for
students like this and recruit them.

To attract students with nontraditional quantitative back-
grounds, statistics programs must guide these students toward
making important contributions in a timely manner. Cross-
disciplinary projects will have to play a major role. Once a
department accepts as its primary mission helping students de-
velop an ability to think like statisticians, it is freed from the
constraints of excessive content and can recognize alternative
ways that students can demonstrate their abilities and achieve-
ments. On the one hand, we see cross-disciplinary work as es-
sential to anyone with any kind of statistical credentials—and
thus to statistical training at every level. On the other hand, we
view cross-disciplinary research as an opening to students of
varied backgrounds—a way of welcoming them into the fold
and a mechanism for streamlining training, making programs
more manageable and the discipline more inviting.

To satisfy different kinds of students, programs also must al-
low multiple pathways toward degrees. Increasing the emphasis
on cross-disciplinarity goes hand in hand with reducing the im-
portance of particular courses and thereby decreases program-
matic rigidity. Flexibility is paramount. We do not wish to re-
move theoreticians from our midst; indeed, many nonmathe-
maticians will blossom in theoretical directions. Rather, our aim
is to allow a broader notion of who counts as a statistician.

5. IMPLICATIONS

If someone is able to (i) appreciate the role of probabilis-
tic reasoning in describing variation and evaluating alternative
procedures and (ii) produce a cutting-edge cross-disciplinary
analysis of some data, should we feel comfortable calling that
person a statistician? We think so, and we would like to see our
profession broaden its perspective to a sufficient degree to make
this possible.
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We further believe that it is consequential to declare (i) and
(ii) to be defining goals for a training program. In applying this
at the graduate level, however, we presume that to do “cutting
edge” work, along the way a trainee would have had to have
learned something about classical techniques, such as linear re-
gression, some area of modern statistics (e.g., nonparametric re-
gression, dimensionality reduction, graphical models), and also
general inferential tools, such as the bootstrap and Bayesian
methods. Furthermore, appreciation of probabilistic reasoning
comes from repeated exposure to it in varied contexts. Both of
these require mathematical and computational skills. Thus, we
are proposing variations on what is currently in place in training
programs throughout the country; each training program formu-
lates (explicitly or implicitly) a list of skills and units of knowl-
edge that are truly essential, and figures out how the items on
the list are to be taught and evaluated. What constitutes inculca-
tion of statistical thinking may be in the eye of the beholder—in
this case, the departmental training program. On the other hand,
we have argued that the status quo is unacceptable. Here are
four recommendations.

1. Minimize prerequisites to research. There are continual
disagreements about the stage at which trainees should do re-
search. We strongly favor making cross-disciplinary projects
widely available, even to those with minimal backgrounds. Al-
though advanced trainees will have more tools at their dis-
posal, talented quantitatively oriented students can quickly
learn how to apply and interpret statistical techniques without
formal coursework—indeed, we witness this repeatedly in neu-
roscience. There has been a tendency in statistics to have stu-
dents first understand, then do. But this sequence can be re-
versed, giving a statistical faculty supervisor the opportunity to
demonstrate in practice the value of knowing the theoretical un-
derpinnings of methodology. Perhaps most importantly, as we
stated earlier, students who want to solve real problems will
be attracted to cross-disciplinary research. At both the grad-
uate and undergraduate levels, exciting research opportunities
are likely to be among the best recruitment tools.

2. Identify ways of fostering statistical thinking. How
should we help our students internalize a principled approach to
data collection, prediction, and scientific inference? Apprecia-
tion of statistical thinking should begin in introductory courses.
Each instructor of a first course in statistics grapples with ideas
behind reasoning from data, and much effort has gone into texts
for such classes. Although we recognize the many great strides
taken by textbook authors, we are not entirely satisfied with
the typical content of introductory courses. For example, in
teaching young neurobiologists, we have found it helpful to
stress the value of probabilistic reasoning through propagation
of uncertainty via simulation methods—as in bootstrap confi-
dence intervals or Bayesian inference—and to emphasize “prin-
ciples” by including explicit discussion of mean squared error.
Both topics seem more advanced than what is usually found
in elementary texts. To be attracted to the subject, however, the
most gifted students must see it as deep, with serious theoretical
content. Courses tend to be categorized as either theoretically
oriented for math/statistics majors or method-oriented “service
courses” for other disciplines, and we find too little similarity

between the two. The main point here is that the first college-
level exposure to statistics matters. Although for pedagogical
purposes, central ideas must remain simple and approachable,
we believe that it is important to represent the discipline as be-
ing rich in profound concepts. More fundamentally, one goal of
every first course in statistics for quantitatively capable students
should be to interest some of the students in further study.

At the graduate level, existing curricula succeed in getting
students to think like statisticians, but focus on this goal is nec-
essary if programs are to be streamlined. Students will still need
exposure to statistical reasoning in multiple diverse settings,
together with emphasis on (a) the roles of heuristics, compu-
tational considerations, and/or generative models in producing
procedures and (b) theoretical performance, balanced by con-
venience, computational efficiency, and interpretability. Many
excellent books on such topics as nonparametric regression,
density estimation, time series analysis, and Bayesian methods
offer very good comparative discussions combining both theo-
retical and practical concerns. The only problem we see is that
they are designed for full-semester courses, whereas in many
cases the modern student may wish to devote only a couple of
weeks to each within formal course work. We believe that there
is an important place for courses, and texts, that give quick im-
pressions while reinforcing underlying principles.

We also take it for granted—but nonetheless believe it worth
mentioning— that training programs at every level should in-
clude many opportunities for trainees to interact with experi-
enced statisticians (in, e.g., journal clubs, informal seminars,
social events), partly to see how they think about problems, but
also to have role models reinforce the joys and benefits of pur-
suing statistics.

3. Require real-world problem solving. Experienced statis-
ticians spend much of their collaborative time trying to under-
stand the nature of the data collection process and its relation-
ship to scientific or technological issues. Some students, espe-
cially those with backgrounds in experimental science, tend to
be well prepared in this dimension, asking appropriate ques-
tions, digging up background material, and readily grasping the
big picture. Many others, however, have difficulty making con-
nections among scientific ideas, the resulting data, and appro-
priate analytic strategies. Having recognized this basic skill for
applied statistics, we must help our students develop it. Several
methods for doing so exist. Project courses, especially at the un-
dergraduate level, can be helpful. Extended research projects—
learning by doing—can of course be among the best ways to
develop problem-solving skills. An important caveat, however,
is that some projects are so well formulated that execution be-
comes straightforward, and little effort toward big-picture com-
prehension is needed. We come across students who in the
course of doing statistical analyses exhibit remarkably little cu-
riosity about the material they are analyzing. Most likely this
is because they have not been taught a systematic approach to
problem solving and do not appreciate the payoff from pursuing
it.

4. Encourage deep cross-disciplinary knowledge. In neu-
roscience, as elsewhere, statistical training can shape how data
lead to useful knowledge. Once the information obtainable from
an experiment is clearly understood, a new aspect of the scien-
tific landscape may come into view. Consequently, statisticians
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can make major contributions by redefining problems and redi-
recting data-collection efforts.

In this regard, we distinguish two alternative roles. The first
role has been played by both of us; like other senior statisticians
in varied domains, we have spent many years learning scien-
tific principles and methods and building collaborations with
colleagues, so that our suggestions for research problems and
approaches are taken seriously and often followed. The second
role requires a deeper commitment to cross-disciplinary train-
ing, however. One of us (Brown) became a practicing anesthe-
siologist in addition to being a statistician. As a result of his ex-
tensive physiological knowledge and expertise, he has been able
to create a laboratory and is undertaking a series of experiments
on brain activity to describe how anesthetic drugs produce the
state of anesthesia. Many others in the profession play a similar
“principal investigator” role. Two examples are John Quacken-
bush in the Biostatistics Department in the Harvard School of
Public Health and the Dana Farber Cancer Institute, who formu-
lates and executes experiments that use genomic and computa-
tional approaches to study networks and pathways in cancer de-
velopment and progression, and Wing Wong in the Department
of Statistics at Stanford University, who conducts experiments
on developmental genomics and signal transduction that are in-
formed by statistical considerations.

Faculty who run extradisciplinary experiments and con-
tribute to disciplinary methodology are becoming fairly com-
mon in engineering and physics, but not in statistics. The
change in attitude that we advocate should in time produce
more such people in departments of statistics. In addition to ac-
cepting the desirability of these appointments, however, more
joint training programs are needed. As models in neuroscience,
we can point to our own institutions. The Harvard/MIT Health
Sciences and Technology Ph.D. program trains students in
quantitative subjects while also having them take substantial
medical school courses and serve on rotations in the hospital
as a medical student would. Carnegie Mellon’s Ph.D. Program
in Neural Computation is similar, requiring mastery of a techni-
cal discipline (e.g., computer science or statistics) together with
multiple courses in the brain sciences, and rotation through ex-
perimental laboratories. Again, to attract large numbers of stu-
dents, course requirements in interdisciplinary programs must
be stripped down to manageable essentials. We would like to
see more such joint programs that offer credentials in statis-
tics.

6. DISCUSSION

The report by Lindsay, Kettenring, and Siegmund (2004) was
aimed at the general community of mathematical scientists.
Our discussion has been inward-looking, and critical. Although
there is much to be admired in statistical training programs
throughout the world, we accuse them of harboring obsolete
attitudes about the nature of statistics. Statistics is a wonderful
field, but the way in which statisticians view it must evolve. We
have suggested defining what our discipline brings to the table,
labeling the perspective that we believe to be so fundamentally
valuable “statistical thinking.” We also have advocated greater
encouragement of cross-disciplinary training. Deepening cross-

disciplinary involvement and welcoming more experimentalists
and other practitioners into the clan of statisticians need not di-
minish the importance of the theoretical core. Quite the con-
trary; those with hands-on knowledge of context-driven issues
can help identify methodological problems, prodding theory to
advance in productive new directions.

Our first main message is that training programs should have
a clearer notion of what they intend do. The second message
is that these programs generally need to strengthen and deepen
their commitment to cross-disciplinary work. In this, we follow
many others. We have emphasized the contrast between short-
term consulting and deeper, long-term engagement, which re-
quire different attitudes and skills. We are sympathetic to the
promise made by Birnbaum (1971) that “each student of sta-
tistics working with me at any level shall also work system-
atically with another study adviser representing a scientific or
technological research discipline of interest to the student,”
and we agree with Gnanedesikan (1990) that training should
focus less on defining the appropriate encompassing content
and more on instilling a relevant sense of cross-disciplinary
curiosity: “We need a switch turned on, a value established,
for impelling statisticians to be challenged intellectually and
through a desire to contribute to solving major problems in
other fields.”

The worth of cross-disciplinary work, and its essential role
in stimulating new statistical theory and methods, seems to be
much more widely appreciated now than in the past. We want
to push harder, partly because we feel that curricular ramifi-
cations have not been given sufficient attention, but also be-
cause the world needs more statistically oriented scientific prin-
cipal investigators. Such scientific leadership is, again, not just
a recent development. As one example, in the mid-1970s, Fred
Mosteller, a master at initiating interdisciplinary collaborations
on topics he deemed scientifically important, became interested
in the benefits of surgical therapies, which typically are not
studied using randomized controlled clinical trials. This led
to his formulation of a large research effort involving statisti-
cians, surgeons, anesthesiologists, and public health specialists
to investigate the costs, risks, and benefits of surgery (Bunker,
Barnes, and Mosteller 1977). Mosteller was not trained in
surgery, but he was clearly the intellectual leader of the project.
This kind of leadership is not limited in any way to areas in
which “principal investigator” has a literal meaning in a bio-
medical context. As emphasized by Keller-McNulty (2007),
many of today’s big challenges throughout society are tackled
by large teams, and these teams are in desperate need of sta-
tistical thinking at the very top levels of management. We sug-
gest that a way forward begins with a focus on the fundamental
goals of training, combined with a broad vision of the discipline
of statistics.

APPENDIX: WHAT IS STATISICAL THINKING?

Snee (1990) noted that “many of us talk about statistical
thinking but rarely define it.” Although the field is so broad
that a single notion of statistical thinking cannot possibly be
universally applicable, we provided above a succinct defini-
tion coming from our own experience that we believe articu-
lates a widely held consensus. We are, at least, in line with Ru-
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bin (1993) when he said that

The special training statisticians receive in mapping real prob-
lems into formal probability models, computing inferences from
the data and models, and exploring the adequacy of these infer-
ences, is not really part of any other formal discipline, yet is
often crucial to the quality of empirical research.

Similarly, Mallows (1998) wrote that

Statistical thinking concerns the relation of quantitative data to
a real-world problem, often in the presence of variability and
uncertainty. It attempts to make precise what the data has to say
about the problem of interest.

In combining these points of view, we wished to recognize the
centrality of probabilistic reasoning while distinguishing two
roles for it. First, there is the inductive movement from descrip-
tion of variation to expressions of knowledge and uncertainty.
A probabilistic description of variation would be “the proba-
bility of rolling a 3 with a fair die is 1/6,” whereas an expres-
sion of knowledge would be “I’m 90% sure that the capital of
Wyoming is Cheyenne.” These two sorts of statements, which
use probability in different ways, are sometimes considered to
involve two different kinds of probability, called “aleatory prob-
ability” and “epistemic probability.” Bayesians merge these, ap-
plying the laws of probability to go from quantitative descrip-
tion to quantified belief, but in every form of statistical infer-
ence, alleatory probability is used somehow to make epistemic
statements. This is the first role of probabilistic reasoning. The
second role is in evaluating procedures. We understand statis-
tical thinking to be based on these two roles for probabilistic
reasoning. This allows us to elaborate our definition of statisti-
cal thinking by stating that it involves two principles:

1. Statistical models of regularity and variability in data may
be used to express knowledge and uncertainty about a signal
in the presence of noise, via inductive reasoning.

2. Statistical methods may be analyzed to determine how well
they are likely to perform.

The downside of spelling out a definition is that it can be easy
to get sidetracked on the details. For starters, we intend “sig-
nal” to denote general underlying phenomena and relationships
of interest, whereas “noise” refers to sources of variation that
are being separated from the signal. We find these terms helpful
partly because the nonparametric regression model, where they
become explicit, is a useful archetype. Furthermore, we believe
that there is at least some modest historical evidence to support
the importance of such a basic dichotomy. Stigler (1999) con-
sidered why psychology adopted statistical methods so much
earlier than economics or sociology, and why astronomy did do
so even earlier. His answer was that the theory of errors, arising
in astronomy, was based on a conceptualization encapsulated
by “observation = truth + error,” and that psychophysics was
able to introduce this to psychology via careful experimental
design. Using our words, this suggests that the idea of consid-
ering data to be generated by combining signal and noise was
essential to the historical development of statistical thinking.

A related detail is that, just as there are disagreements about
the subtleties of the nonparametric regression model and its
application, there are important issues surrounding the role of
modeling in statistics. We intend to use “statistical model” very

broadly, with the only restriction being that probability is in-
volved, so that the notion covers models with relatively weak
assumptions, as in a two-sample permutation test, or strong as-
sumptions, as in many Bayesian multilevel hierarchical mod-
els. Our formulation cannot accommodate the perspective of
Breiman (2001), but we believe that it is entirely consistent with
the views given in discussions of that article by Cox (2001) and
Efron (2001). Here we are also remaining agnostic about the
extent to which a model may be “explanatory” or “empirical,”
as discussed by Cox (1990) and Lehmann (1990), recognizing
that “[these descriptions] represent somewhat extreme points of
a continuum” (Kruskal and Neyman 1956). Rather, we believe
that when Box (1979) stated that “all models are wrong, but
some are useful,” he was expressing a quintessential statistical
attitude.

[Received September 2008. Revised September 2008.]
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ABSTRACT We attempt to identify the 25 most-cited statistical papers, providing some brief
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Citations in General

There has been much discussion of the uses of citation counts in the literature, although

not with respect to the statistics literature with the exceptions of Stigler (1994),

Altman & Goodman (1994), and Theoharakis & Skordia (2003). Austin (1993) assessed

the reliability of citation counts in making tenure and promotion decisions in academia,

while Gilbert (1977) and Edge (1979) have considered citation counts as measures of

the influence of research. See also Cronin (1984).

Edge (1979) criticized citation counts as being overused to measure intellectual lin-

kages. Others have made similar criticisms. Despite such criticisms, however, the use

of citation counts seems to be increasing. The National Research Council, for example,

uses citation rates as one measure to rank PhD programmes in statistics and other

fields. In addition, citation counts appear to be increasingly used in promotion decisions

in academia, in addition to ranking scientific journals. Using ISI Journal Citation

Reports, for example, one can determine that among the 71 journals in the Statistics

and Probability category, Statistical Science ranked fifth in citation impact factor and

16th in the total number of citations received in 2002 with 1,051.

In attempting to determine the causal factors for highly cited papers, Donoho (2002)

gave a list of suggestions for writing papers that would receive a large number of citations.

At the top of his list was ‘Develop a method which can be applied on statistical data of a

kind whose prevalence is growing rapidly’. For example, if someone could develop ‘the’

approach to data mining, the paper would undoubtedly garner a huge number of citations.

Journal of Applied Statistics

Vol. 32, No. 5, 461–474, July 2005

Correspondence Address: W. H. Woodall, Department of Statistics, Virginia Tech, Blacksburg, VA 24061-0439,

USA. Email: bwoodall@vt.edu

0266-4763 Print=1360-0532 Online=05=050461–14 # 2005 Taylor & Francis Group Ltd
DOI: 10.1080=02664760500079373



There is generally a time lag of several years before new methodology is implemented in

software, so it is not surprising that number 2 on Donoho’s list was ‘Implement the method

in software, place examples of the software’s use in the paper, make the software of broad

functionality, and give the software away for free.’

Garfield (1998) reported that for the period 1945–1988 the majority of cited papers in

science were cited only once. In a controversial citation analysis, it was shown that 55% of

papers published during 1981–1985 received no citations within five years of their pub-

lication (Hamilton, 1990). From the same data, Hamilton (1991) broke down the 55%

of uncited papers and indicated that there was a huge variation across various disciplines,

ranging from 9.2% of papers uncited in atomic, molecular, and chemical physics, to 86.9%

in engineering. Pendlebury (1991), however, disagreed with Hamilton’s analysis and

reported that only 22.4% of science articles published in 1984 remained uncited by the

end of 1988.

Papers are cited at different rates in different fields. ScienceWatch (1999) reported that

for the years 1981–1997 a paper in mathematics needed at least 291 citations to rank in the

top 0.01%, while it took 1,823 citations for the corresponding ranking in molecular

biology and genetics.

What should we make of these numbers? A sceptic might contend that these studies

show that much research has little or no value. Indeed, it seems apparent that most pub-

lished papers do not influence the work of other researchers, although there have of

course been innumerable instances in which researchers have failed to acknowledge

related work. Overall, however, it seems clear that the distribution of papers in regard

to their impact has a huge amount of right skewness.

The 25 Most-Cited Papers

In this section we provide our list of the 25 most-cited statistical papers. We did not limit

ourselves to the primary statistical journals. We considered for inclusion only papers in

which the author(s) proposed a new statistical method, modified an existing statistical

method, or used an existing statistical method in a novel way to address an important

scientific problem. The application of this set of criteria is necessarily subjective to a

large extent. As discussed by Straf (2003), there is no generally accepted definition

of ‘statistics’.

The citation counts are those given on the Institute for Scientific Information (ISI) Web

of Science (as of 1 December 2003). Since the Web of Science does not include all scien-

tific journals, the counts are all undercounts. In addition, we did not attempt to make

adjustments for incorrect citation information, e.g., citations that had incorrect page or

volume numbers. Taking into account these factors could lead to some reordering of

the top 25 or even to some papers dropping off the list. A more significant issue,

however, is the fact that the ISI Web of Science citation counts does not include citations

before 1945. This is thus a problem for papers published well before then, and the problem

is compounded by the fact that it was more difficult for the early papers to accumulate cita-

tions since the number of scientific journals was much smaller at the time they were pub-

lished than is now the case. In addition, as a method becomes a generally accepted part of

statistics, e.g., the one-sample t-test, the citation rate of the paper in which the method was

initially proposed decreases. We also calculated a current annual citation rate for some

papers (reported in parentheses when available). This is a conservative value since it

was obtained by doubling the number of citations received during a period of less than

six months in the last part of 2003.
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Some very highly cited papers on fuzzy logic, such as the one by Zadeh (1965) with

5,022 citations (338 per year), were not considered to be statistical papers even though

there is a connection between fuzzy logic and statistics, as discussed by Laviolette

et al. (1995). Similarly, Hopfield (1982), on the topic of neural networks with 3,574 cita-

tions (156 per year), was not included. Reed & Muench (1938), with 10,974 citations (242

per year), was not included due to the simplicity of the proposed method. Wright (1931)

with 2,218 citations (144 per year) was not included since the method and results were

judged to be primarily probabilistic, not statistical. In addition, there are some highly

cited papers by well-known statisticians that we did not consider to be statistical

enough to warrant inclusion in our list, e.g., Cooley & Tukey (1965) with 2,872 citations

(78 per year) and Nelder & Mead (1965) with 5,635 citations (426 per year). Some of these

decisions are debatable since Cooley & Tukey (1965) was included by Kotz & Johnson

(1997) with an introduction written by I. J. Good.

It would not be surprising if some papers with significant statistical content have been

overlooked in our study. In addition, it might be argued that some of the papers on our list

should have been excluded for one reason or another. We welcome input on these issues

from the readers of our paper.

The following is our list with some brief commentary.

(1) With 25,869 citations (currently cited 1,984 times per year),

Kaplan, E. L. & Meier, P. (1958) Nonparametric estimation from incomplete observations,
Journal of the American Statistical Association, 53, pp. 457–481.

Kaplan & Meier (1958) proposed a non-parametric method for estimating the pro-

portion of items in a population whose lifetime exceeded some specified time t from cen-

sored survival data. This type of data is very common in medical studies. This paper not

only has by far the highest number of citations of all statistics papers, but it has also been

ranked among the top five most cited papers for the entire field of science. Based on data

from Journal Citation Reports, the total number of citations received by this paper exceeds

twice the number of citations received by all Journal of the American Statistical Associ-

ation papers in 2002. This paper appeared in Kotz & Johnson (1992b, pp. 311–338) as a

breakthrough paper in statistics with an introduction written by N. E. Breslow.

Kaplan (1983) reported that he and Meier had, in fact, each submitted separate manu-

scripts to the Journal of the American Statistical Association. Due to their similarity, the

editor recommended that their papers be combined into one manuscript. It took them four

years to resolve the differences between their approaches, during which time they were

concerned that someone else might publish the idea.

Interestingly, Garfield (1989) gave this paper as an example of one that was slow to

receive recognition. Indeed, Figure 3 in Garfield (1989) shows that the paper received

very few citations per year through the early 1970s (i.e., for the first 15 years after it

was published). It was cited only 25 times from 1958–1968. But, starting in 1975, the

number of citations per year began to increase sharply and continued to increase monoto-

nically through 1989, the last year covered by the graph. Meier is quoted in personal com-

munication that year as stating that the needs of applied researchers were ‘quite well met’

by the existing methodology, and it was not until the advent of computers and the increas-

ing mathematical sophistication of clinical researchers that the Kaplan–Meier method

grew in importance and eventually was recognized as the standard.

Despite its popularity, the Kaplan–Meier method has not been without controversy.

Miller (1983) wrote a paper entitled ‘What price Kaplan–Meier?’ in which he claimed
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that the Kaplan–Meier estimator was inefficient and suggested that analysts should use

some parametric assumptions whenever possible. Eighteen years later, Meier (2001)

responded to the paper with a talk entitled ‘The price of Kaplan–Meier.’ Meier believed

Miller’s (1983) conclusions were incorrect and initially believed that references to it

would taper off for that reason. His presentation was motivated in part by the number

of citations of Miller’s paper. Also, see Meier et al. (2004).

(2) With 18,193 citations (1,342 per year),

Cox, D. R. (1972) Regression models and life tables, Journal of the Royal Statistical Society,
Series B, 34, pp. 187–220.

The topic of this paper is the regression analysis of censored failure time data, which has

far-reaching applications in the biomedical sciences. Cox (1972) used a semiparametric

model for the hazard function, which has significant advantages over using parametric

models for the failure time.

This paper appeared in Kotz & Johnson (1992b, pp. 519–542) as a breakthrough paper

in statistics with an introduction written by R. L. Prentice. See Reid (1994) for some

interesting background on this paper from D. R. Cox. Interestingly, it is reported that a

key insight into the statistical analysis method first came to Professor Cox when he was

quite ill with the flu and was recalled later only with some difficulty. Cox (1986) also

provided some background on the paper.

(3) With 13,108 citations (256 per year),

Duncan, D. B. (1955) Multiple range and multiple F-tests, Biometrics, 11, pp. 1–42.

David Duncan presented his now-famous multiple range test for comparing the means

of several populations at the Joint Meetings of the Institute of Mathematical Statistics and

the Eastern North American Region of the Biometric Society in March of 1954. Although

Duncan also proposed multiple F-tests, and in fact this was his original emphasis, these

tests have not enjoyed the popularity of his multiple range test because they were more

cumbersome to use.

Duncan (1977) gave some historical background on this paper. He also recommended

that the methods in Duncan (1975) be used in place of his multiple range test.

(4) With 9,504 citations (488 per year),

Marquardt, D. W. (1963) An algorithm for least squares estimation of non-linear parameters,
Journal of the Society for Industrial and Applied Mathematics, 2, pp. 431–441.

The Marquardt algorithm proposed in this paper is used to estimate the parameters in a

nonlinear model. See Hahn (1995) and Marquardt (1979) for some interesting background

information on this paper.

(5) With 8,720 citations (114 per year),

Litchfield, J. T. & Wilcoxon, F. A. (1949) A simplified method of evaluating dose-
effect experiments, Journal of Pharmacological and Experimental Therapeutics, 96,
pp. 99–113.

The authors proposed a rapid graphical method for approximating the median effective

dose and the slope of dose-percent effect curves. Litchfield (1977) credited Wilcoxon’s
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intense interest in collaboration for the development of the proposed method. When Litch-

field joined the laboratories where Wilcoxon was working, the two were discussing the

method at Wilcoxon’s request even before Litchfield had seen his employer or checked

in with the personnel department.

(6) With 8,151 citations (1,590 per year),

Bland, J. M. & Altman, D. G. (1986) Statistical methods for assessing agreement between two
clinical measurements, Lancet, 1 (8476), pp. 307–310.

The authors described simple statistical methods and graphs originally proposed by

Altman & Bland (1983) for using paired data to assess the differences between measure-

ments obtained by two different measurement systems. (The paper is available online at

http://www.users.york.ac.uk/�mb55/meas/ba.htm) See Bland & Altman (1992) and

Bland & Altman (1995) for descriptions of the genesis and impact of this paper.

(7) With 6,788 citations (914 per year),

Felsenstein, J. (1985) Confidence limits on phylogenies: an approach using the bootstrap,
Evolution, 39, pp. 783–791.

The context of evolutionary biology is phylogeny, the connections between all groups

of organisms as understood by ancestor/descendant relationships. According to

I. Hoeschele (personal communication), the human genome project and sequencing pro-

jects for other organisms provide an unprecedented amount of data to which the

methods in this paper and those in Nei (1972), our Number 13 paper, can be applied.

The resulting information is immensely valuable in understanding questions in evolution

and in inferring the functions of genes. Phylogenetics is a very active area of research, in

particular in the context of comparative genome analysis and genome-scale adaptation of

methods. For more information on this topic, the reader is referred to Holmes (2003).

Felsenstein (1985) considered an application of the bootstrap method, whereas more

fundamental statistical issues were addressed in the bootstrap paper in Efron (1979),

which narrowly missed being in our list with 1,889 citations (156 per year). Efron

(1979) appeared in Kotz & Johnson (1992b, pp. 519–542) as a breakthrough paper in

statistics, with an introduction written by R. J. Beran.

(8) With 6,579 citations (126 per year),

Peto, R., Pike, M. C., Armitage, P., Breslow, N. E., Cox, D. R., Howard, S. V., Mantel, N.,
McPherson, K., Peto, J. & Smith, K. G. (1977) Design and analysis of randomized clinical
trials requiring prolonged observation of each patient. Part II. Analysis and examples,
British Journal of Cancer, 35, pp. 1–39.

Sir Richard Peto, the first author, and Sir David Cox and Nathan Mantel, who appear in

other places on this list, are among the distinguished group of co-authors of this paper. The

paper is the second of a two-part report to the UK Medical Research Council’s Leukemia

Steering Committee. This report was focused on efficient methods of analysis of data from

randomized clinical trials for which the duration of survival among different groups of

patients is to be compared.

(9) With 6,006 citations (422 per year),

Mantel, N. & Haenszel, W. (1959) Statistical aspects of the analysis of data from retrospective
studies of disease, Journal of the National Cancer Institute, 22, pp. 719–748.
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These authors proposed a chi-square test with one degree of freedom for testing the

association of disease incidence using 2 � 2 contingency tables.

(10) With 5,260 citations (300 per year),

Mantel, N. (1966) Evaluation of survival data and two new rank order statistics arising in its
consideration, Cancer Chemotherapy Reports, 50, pp. 163–170.

Mantel (1966) was also cited by Garfield (1989) as a paper that was slow to receive rec-

ognition. Mantel was apparently philosophical about this, stating in personal communi-

cation to Garfield in 1989, ‘Actually, slow initial rise characterizes nearly everything’,

and also reasoned that his method was slow to gain recognition by statisticians and epide-

miologists because it was published in a cancer journal.

(11) With 4,306 citations (492 per year),

Dempster, A. P., Laird, N. M. & Rubin, D. B. (1977) Maximum likelihood from incomplete
data via the EM algorithm (C/R: pp. 22–37), Journal of the Royal Statistical Society, Series B,
39, pp. 1–22.

The Expectation Maximization (EM) algorithm is used for maximum likelihood esti-

mation with data for which some variables are unobserved. Much has been written

about the algorithm, which coupled with its various applications, including those invol-

ving censored data and truncated data, helps to explain the large number of citations. A

well-regarded book by McLachlan & Krishnan (1997) has been written about the algor-

ithm. The name ‘EM’ was coined by Dempster, Laird & Rubin in this paper, but the

method was apparently used in some form much earlier by a few researchers, including

McKendrick (1926) and Hartley (1958), who introduced the procedure for calculating

maximum likelihood estimates for the general case of count data.

(12) With 3,819 citations (32 per year),

Wilkinson, G. N. (1961) Statistical estimations in enzyme kinetics, Biochemical Journal, 80,
pp. 324–336.

The author gave an account of the weighted linear and nonlinear regression methods

applicable to general problems in enzyme kinetics. The Michaelis–Menten model,

which is used frequently in enzyme kinetics, was used to illustrate aspects of nonlinear

regression.

(13) With 3,672 citations (142 per year),

Nei, M. (1972) Genetic distance between populations, The American Naturalist, 106,
pp. 283–292.

Nei (1972) proposed a measure of genetic distance based on the identity of genes

between populations. The measure can be applied to any pair of organisms.

(14) With 3,511 citations (118 per year),

Dunnett, C. W. (1955) A multiple comparison procedure for comparing several treatments
with a control, Journal of the American Statistical Association, 50, pp. 1096–1121.
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A very interesting article about Professor Dunnett and how his work on multiple

comparisons against a control evolved can be found at www.ssc.ca/main/about/history/

dunnett_e.html. Additionally, Professor Dunnett has been kind enough to provide us

with information relating to this paper and subsequent developments. His work with

Bob Bechhofer and Milton Sobel on ranking and selection led to development of the

multivariate-t distribution (Dunnett & Sobel, 1954, 1955), which fortuitously turned out

to be the appropriate distribution for making multiple comparisons involving a control.

Dunnett (1955) formulated the problem in terms of simultaneous confidence intervals,

which was the same approach that John Tukey and Henry Scheffé had taken in their work.

Because of the great extent to which multiple comparison procedures are used by

researchers outside the field of statistics, it is relevant to question the extent to which

more recent papers that have defined the current state-of-the-art may have been over-

looked. Indeed, Dunnett & Tamhane (1991, 1992) presented step-up and step-down

methods (somewhat analogous to forward selection and backward elimination in linear

regression) with these methods being superior to one-stage procedures in terms of maxi-

mizing power. Despite the superiority of these procedures, Dunnett & Tamhane (1991),

for example, has only 31 citations.

(15) With 3,444 citations (280 per year),

Akaike, H. (1974) A new look at the statistical model identification, IEEE Transactions on
Automatic Control, 19, pp. 716–723.

This is a paper in which Akaike proposed a criterion for estimating the dimensionality

of a model using the criterion now known as Akaike’s Information Criterion (AIC). This

paper has over three times as many citations as Akaike (1973), which was included in Kotz

& Johnson (1992a, pp. 599–624) as a breakthrough paper in statistics, with a discussion

written by J. de Leeuw.

(16) With 2,837 citations (376 per year),

Liang, K.-Y. & Zeger, S. (1986) Longitudinal data analysis using generalized linear models,
Biometrika, 73, pp. 13–22.

This paper was reprinted by Kotz & Johnson (1997, pp. 463–482) as a breakthrough

paper in statistics with a discussion by P. J. Diggle. Liang & Zeger (1986) dealt with longi-

tudinal studies in which the response measurement was a count. They derived a general-

ized estimating equations (GEE) methodology, which is now widely used.

(17) With 2,810 citations (22 per year),

Cutler, S. J. & Ederer, F. (1958) Maximum utilization of the life table method in analyzing
survival, Journal of Chronic Diseases, 8, pp. 699–712.

The authors presented the rationale and computational details of the actuarial or life-

table method for analysing data on patient survival. The method makes use of all survival

information accumulated up to the closing date of a study. Cutler (1979) reported that he

and Ederer were sharing a hotel room at a scientific meeting when the question leading to

the paper came to him at 5 a.m. He promptly woke Ederer to discuss his idea. Cutler (1979)

also stated that the paper did not represent a methodological breakthrough. The authors

demonstrated that the life-table method could be used to extract the maximum amount
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of information from the data being collected in the newly organized cancer reporting

system.

(18) With 2,764 citations (240 per year),

Geman, S. & Geman, D. (1984) Stochastic relaxation, Gibbs distributions, and the Bayesian
restoration of images, IEEE Transactions on Pattern Analysis and Machine Intelligence, 6,
pp. 721–741.

This paper was included by Kotz & Johnson (1997, pp. 123–126) as a breakthrough

paper with a discussion by P. J. Huber. Geman & Geman (1984) modified Markov

chain Monte Carlo methods and applied them to Bayesian models for the computation

of posterior probabilities.

(19) With 2,529 citations (120 per year),

Box, G. E. P. & Cox, D. R. (1964) An analysis of transformations, Journal of the Royal Stat-
istical Society, Series B, 26, pp. 211–243 (discussion pp. 244–252).

DeGroot (1987) provided some interesting background on this paper from an interview

with Professor Box. Box recounted, for example, that he and Cox were on a committee of

the Royal Statistical Society and several people suggested that they collaborate. Their

motivation and the idea of the paper sprung, to some extent, from the similarities of

their family names.

Box & Cox (1964) presented a very useful family of power transformations that have

typically been used to transform the dependent variable in a regression model so as to

try to meet the assumptions of homoscedasticity and normality of the error terms. The

right side of the model can then be transformed in the same manner so as to retrieve

the quality of the fit before the dependent variable was transformed.

(20) With 2,512 citations (76 per year),

Mantel, N. (1963) Chi-square tests with one degree of freedom: extensions of the Mantel–
Haenszel procedure, Journal of the American Statistical Association, 58, pp. 690–700.

The author extended the methods in Mantel & Haenszel (1959), Number 9 on our list, in

two ways, as it was recognized that the methods are not limited to retrospective studies and

the number of levels of the study factor of interest was allowed to be greater than two.

(21) With 2,456 citations (46 per year),

Dunnett, C. W. (1964) New tables for multiple comparisons with a control, Biometrics, 20, pp.
482–491.

In this paper, exact critical values are given for the method of Dunnett (1955), Number

14 on our list, when two-sided comparisons are made with a control.

(22) With 2,302 citations (42 per year),

Kramer, C. Y. (1956) Extension of multiple range tests to group means with unequal numbers
of replications, Biometrics, 12, pp. 307–310.

Kramer (1956) proposed an approximate method for extending multiple range tests to

cases for which the sample sizes are unequal. Kramer’s work was strongly related to the
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methodology proposed by John Tukey in 1953, whose work was not published. Never-

theless, because of the close connection, Kramer’s method for the unbalanced case is

known as the Tukey–Kramer procedure. (See Benjamini & Braun, 2002, for a discussion

of this issue.)

(23) With 2,248 citations (72 per year),

Fisher, R. A. (1953) Dispersion on a sphere, Proceedings of the Royal Society of London,
Series A, 217, pp. 295–305.

Fisher (1953) presented a theory of errors that is believed to be appropriate for measure-

ments on a sphere and derived a test of significance that was stated as being ‘the analogue

of “Student’s test” in the Gaussian theory of errors’. The paper can be viewed online at

http://www.library.adelaide.edu.au/digitised/fisher/249.pdf). According to Garfield (1977),

this paper had only 277 citations between 1961 and 1975, but was Fisher’s most frequently

cited paper during that time period.

(24) With 2,219 citations (240 per year),

Schwarz, G. (1978) Estimating the dimension of a model, Annals of Statistics, 6, pp. 461–464.

Schwartz’s Bayesian Information Criterion (BIC), introduced in this paper, is a criterion

for model selection that is often mentioned with Akaike’s AIC criterion.

(25) With 2,014 citations (382 per year),

Weir, B. S. & Cockerham, C. C. (1984) Estimating F-statistics for the analysis of population
structure, Evolution, 38(6), pp. 1358–1370.

As Professor Weir informed us, the number of citations of this paper has risen every

year since its publication as different groups of researchers have become interested in

genetic population structure. These groups include ecologists, conservationists and, inter-

estingly enough, forensic scientists.

Comments on the Top 25 List

The most-cited statistical papers fare well when compared to the most-cited papers in

science. Garfield (1990) ranked the 100 most-cited papers in the 1945–1988 Science

Citation Index. Duncan (1972), Litchfield & Wilcoxon (1949), Kaplan & Meier (1958),

Marquardt (1963), and Cox (1972) ranked Numbers 24, 29, 55, 92 and 94, respectively.

Kaplan & Meier (1958) and Cox (1972) had ‘only’ 4,756 and 3,392 citations, respectively,

in Garfield’s study.

All papers on our list were published prior to 1987. A dotplot of the publication years of

the 25 papers on our list is shown in Figure 1.

There is no question that the field of a paper is related to the number of citations. This is

evident from the number of papers in biostatistics on our list. Similarly, of the 27 ‘highly

cited authors in mathematics and statistics’ listed by Kruse (2002) in AmStat News, the

Figure 1. Dotplot of publication year for the 25 most cited papers
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four who would rank the highest in terms of the number of citations per paper (for papers

published during 1991–2001 and also cited during that period) are all biostatisticians.

If we traced the development of statistical methodology and theory (as Efron, 2001, did,

concentrating on 1950–1980), we would certainly expect that there would be a strong cor-

relation between the influence of a paper and its number of citations. The most influential

papers in statistics have large citation counts, but only a few have enough citations to make

our list. Efron (2001) listed non-parametric and robust methods first in impact, followed by

the Kaplan–Meier method and Cox’s method, with logistic regression and generalized

linear models (GLM) mentioned third, while stating that logistic regression has had a

huge effect on biostatistics. It has been known for some time that Kaplan & Meier

(1958) and Cox (1972) were the two most-cited papers in statistics. See, for example,

Stigler (1994).

Only a few of the most influential papers on the field of statistics are included on our list.

Only five are included in Kotz & Johnson (1992a, 1992b, 1997) as representing ‘break-

through papers in statistics’. Four of our most cited papers, Duncan (1955), Kramer

(1956), and Dunnett (1955, 1964) are on the topic of multiple comparisons. Multiple com-

parison methods are widely used in statistical practice, but without a major influence on

the field of statistics itself. Tukey (1991), for example, downplayed the importance of

the method of Duncan (1955) calling it a ‘distraction’. To more effectively measure

impact with respect to the field of statistics, it would be better to count only citations

that appeared in statistical journals.

It is interesting to note that Nathan Mantel was author or co-author on four of our

25 papers. For more information on his contributions to statistics, the reader is referred

to his obituary in AmStat News (July, 2002, pp. 35–36) or to http://members.aol.com/

savilon/nmantel.html. He did much of his work at the National Cancer Institute, retiring

from there in 1974. He was a very active consultant and undoubtedly many of his

major research contributions had their origins in his consulting work. Sir D. R. Cox

was author or co-author of three of the papers on our list. See Reid (1994) for information

on his background.

Most-cited Papers Published Since 1993

For a perspective on the changing emphases of statistics over time, we also studied the

most-cited statistical papers published in 1993 or later. Our list of the fifteen most-cited

papers was obtained by first obtaining citation counts for all papers written during this

time by the ten most-cited statisticians (for citations received for papers written and cita-

tions received between 1 January 1993 and 30 June 2003) listed in the November 2003

AmStat News (also see http://www.in-cites.com/top/2003/third03-math.html). These

were the following: David L. Donoho (1,354 citations), Iain M. Johnstone (1,203 citations),

Adrian E. Raftery (1,117 citations), Adrian F. M. Smith (866 citations), Peter Hall (827

citations), Donald B. Rubin (792 citations), Jianqing Fan (768 citations), Gareth

O. Roberts (725 citations), Robert E. Kass (723 citations), and Siddhartha Chib (708 cita-

tions). We then checked the citation counts for all papers published in 1993 or later in the

following statistical journals given by ISI Journal Citation Reports in the Statistics and

Probability category as having the most citations in 2002 (number of citations is in

parentheses): Journal of the American Statistical Association (11,318), Econometrica

(9,458), Biometrics (7,469), Biometrika (6,742), Annals of Statistics (5,566), Statistics

in Medicine (4,755), Journal of the Royal Statistical Society, Series B (4,755), and

Technometrics (2,514). (Note that Fuzzy Sets and Systems with 3,626 citations was not

included in our search.) It is possible that some papers were overlooked.
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The following is our list:

1. Breslow, N. E. & Clayton, D. G. (1993) Approximate inference in generalized linear

mixed models, Journal of the American Statistical Association, 88, pp. 9–25. (558

citations)

2. Tierney, L. (1994) Markov-chains for exploring posterior distributions, Annals of

Statistics, 22, pp. 1701–1728. (541 citations)

3. Kass, R. E. & Raftery, A. E. (1995) Bayes Factors, Journal of the American Statistical

Association, 90, pp. 773–795. (533 citations)

4. Donoho, D. L. & Johnstone, I. M. (1994) Ideal spatial adaptation by wavelet shrink-

age, Biometrika, 81, pp. 425–455. (480 citations)

5. Smith, A. F. M. & Roberts, G. O. (1993) Bayesian computation via the Gibbs sampler

and related Markov-chain Monte-Carlo methods, Journal of the Royal Statistical

Society, Series B, 55, pp. 3–23. (444 citations)

6. Green, P. J. (1995) Reversible jump Markov-chain Monte Carlo computation and

Bayesian model determination, Biometrika, 82, pp. 711–732. (479 citations)

7. Benjamini, Y. & Hochberg, Y. (1995) Controlling the false discovery rate – a prac-

tical and powerful approach to multiple testing, Journal of the Royal Statistical

Society, Series B, 57, pp. 289–300. (294 citations)

8. Donoho, D. L., Johnstone, I. M., Kerkyacharian, G. & Picard, D. (1995) Wavelet

shrinkage – asymptopia, Journal of the Royal Statistical Society, Series B, 57,

pp. 301–337. (293 citations)

9. Donoho, D. L. (1995) De-noising by soft thresholding, IEEE Transactions on

Information Theory, 41, pp. 613–627. (292 citations)

10. Grambsch, P. M. & Therneau, T. M. (1994) Proportional hazards tests and diagnostics

based on weighted residuals, Biometrika, 81, pp. 515–526. (261 citations)

11. Donoho, D. L. & Johnstone, I. M. (1995) Adapting to unknown smoothness

via wavelet shrinkage, Journal of the American Statistical Association, 90, pp.

1200–1224. (257 citations)

12. Bound, J., Jaeger, D. A. & Baker, R. M. (1995) Problems with instrumental variables

estimation when the correlation between the instruments and the endogenous

explanatory variable is weak, Journal of the American Statistical Association, 90,

pp. 443–450. (252 citations)

13. Albert, J. H. & Chib, S. (1993) Bayesian analysis of binary and polychotomous response

data, Journal of the American Statistical Association, 88, pp. 669–679. (246 citations)

14. Stock, J. H. & Watson, M. W. (1993) A simple estimator of cointegrating vectors in

higher-order integrated systems, Econometrica, 61, pp. 783–820. (244 citations)

15. Chib, S. & Greenberg, E. (1995) Understanding the Metropolis–Hastings algorithm,

The American Statistician, 49, pp. 327–335. (240 citations)

The most cited papers presented here tend to be on topics related to Bayesian methods

and wavelets, although the topics of multiple testing and proportional hazards modelling

are represented. It is interesting to note that it often takes quite a few years for the number

of citations of a paper to reach its maximum rate. A number of the 25 overall most-cited

papers are cited now at much higher rates than the most-cited papers of the last decade.

Conclusions

We find the study of citation counts to be very interesting. It is surprising that relatively

little research has been done on citation counts, rates and patterns in the field of statistics.
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Garfield (1979: 16) described early work in this area, including the Citation Index for Stat-

istics and Probability, ‘a cumulative one-time effort that covers the journal literature of the

field from its inception, early in the twentieth century, through 1966’. This was compiled

by John Tukey and published in 1973 as part of the ‘Information Access Series’ of R&D

Press. It provided comprehensive coverage of 40 statistics journals and selective coverage

of an additional 100 journals.

In our view it would be very interesting to examine a list of the most-cited papers in

each of the top statistics journals (see Campbell & Julious, 1994) or in different application

areas of statistics. Also, it would be useful to identify papers projected to enter the top 25

most-cited statistical papers and, more generally, ‘hot papers’ that have attained unusually

high citation rates shortly after publication. For more on this latter topic, the reader is

referred to Garfield (2000).
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General
Statistics and Ethics: Some Advice for Young Statisticians

Stephen B. VARDEMAN and Max D. MORRIS

We write to young statisticians about the nature of statistics and
their responsibilitiesas members of the statisticalprofession.We
observe that the practiceof the discipline is inherentlymoral and
that this fact has serious implications for their work. In light of
this, we offer some advice about how they should resolve to
think and act.

KEY WORDS: Graduate study; Integrity; Principle; Profes-
sional practice; Research; Teaching.

Dear Gentle Reader:

So, you are embarking on a career in statistics. Good. It is a
genuinely noble pursuit, though this may be hard to see as you
wrestle with new-to-you technical issues varying from “How
do I get this SAS job to run?” to “How do I show this thing is
UMVU?” and on occasion � nd yourselfwondering “What is the
point of all this?”

This last question about purpose is actually a very important
and quite serious one. It has implications that run far beyond
your present pain (and joy) of “getting started.” How you an-
swer it will affect not only you, but also the profession, and
human society at large. We write to offer some advice and en-
couragement, and to say how we hope you frame your answer
to this simultaneously practical and cosmic question.

What are this subject and this profession really all about?
And why are you doing what you are doing? For sure, there
are details to learn (and keep current on throughout a career).
There is everything from the seemingly uncountable number of
tricks of � rst year probability theory, to statistical computing,
to nonlinear models. It initially looks like “soup to nuts.” You
know that statistics is about collectingand handlingdata. That is
true, but incomplete; there is much more than that at work here.

The vital point is that this discipline provides tools, patterns
of thought, and habits of heart that will allow you to deal with
data with integrity. At its core statistics is not about cleverness
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and technique, but rather about honesty. Its real contribution
to society is primarily moral, not technical. It is about doing
the right thing when interpreting empirical information. Statis-
ticians are not the world’s best computer scientists, mathemati-
cians, or scienti� c subject matter specialists.We are (potentially,
at least) the best at the principledcollection,summarization, and
analysis of data. Our subject provides a framework for dealing
transparently and consistently with empirical information from
all � elds; means of seeing and portraying what is true; ways of
avoiding being fooled by both the ill intent (or ignorance) of
others and our own incorrect predispositions. The mix of the-
ory and methods that you are discovering is the best available
for achieving these noble ends. The more you practice with it,
the sharper will become your (fundamentally moral) judgments
about what is appropriate in handling empirical information.

Others from areas ranging from philosophy to physics might
well object that we have claimed too much, wrapping statistics
in a cloak of virtue to the apparent exclusionof other disciplines.
After all, thoughtful scientists and humanists from a variety of
� elds are engaged in the pursuit of truth. And any serious ed-
ucation has moral dimensions. Our point, however, is that the
particular role that the profession plays in science and society
shouldnot be viewed as amoral, and that this fact constrains how
we all must think and act as its members.

That society expects our profession to play this kind of role
can be seen in the place statistics has as arbiter of what is suf-
� cient evidence of ef� cacy and safety to grant FDA approval
of a drug, or enough evidence to support an advertiser’s claim
for the effectiveness of a consumer product. And it can be seen
in the fact that many disciplines have “statistical signi� cance”
requirements for results appearing in their journals.

Society also recognizes that when statistical arguments are
abused, whether throughmalice or incompetence,genuine harm
is done. How else could a book titled How to Lie With Statis-
tics (Huff 1954) have ever been published and popular? The
famous line (attributed by Mark Twain (1924) to Benjamin Dis-
raeli) “There are three kinds of lies: lies, damned lies, and statis-
tics” witnesses effectively to society’s distaste for obfuscation
or outright dishonesty cloaked in the garb of statistical technol-
ogy. Society disdains hypocrisy. It hates crooked lawyers, shady
corporate executives, and corrupt accountants, and it has con-
tempt for statisticiansand statisticalwork that lack integrity.But
young statisticians sometimes � nd themselves being “encour-
aged” to offer questionable interpretations of data. This pres-
sure can come even from well-meaning individualswho believe
that their only interest is in ensuring that their position is treated
“fairly.” Maintaining an independent and principled point-of-

c® 2003 American Statistical Association DOI: 10.1198/0003130031072 The American Statistician, February 2003, Vol. 57, No. 1 21



view in such contexts is critical if a statistician hopes to avoid
becoming a part of Disraeli’s third “lie.”

So, you are embarking upon a noble and serious business. We
take as given that you have a basic moral sense and a strong
desire to personally do good. We also take as self-evident that
integrity is a pattern of life, not an incident. Principled people
consistently do principled work, regardless of whether it serves
their short-termpersonal interests. Integrity is not somethingthat
is turned on and off at one’s convenience. It cannot be generally
lacking and yet be counted on to appear in the nick of time when
the greater good calls. This implies that what you choose to
think and do now, early in your career, are very good predictors
of what you will think and do throughout the whole of it. You
are setting patterns that will endure over a professional lifetime
and substantially in� uence the nature and value of what you can
hope to accomplish.

A fair amount has been written about professional ethics in
statistics and we do not propose to review it all or comment on
every issue that has been raised. For example, Deming’s (1986)
article is fundamentally a discussion of ethics. Both the Amer-
ican Statistical Association (1999) and the International Statis-
tical Institute (1985) have of� cial statements on ethical guide-
lines for statisticians.And in a more general setting, the National
Academy of Sciences (1995) has published a useful booklet that
is primarily about ethics in science and has implications for sta-
tistical practice.

Our more speci� c goal here is to suggest some things that
a high view of the discipline means for your present work and
attitudes. Aiming to speak to both statistics graduate students
and recent grads, we’ll begin with some implications for life in
graduate school, and then move on to implications for an early
career in the discipline.

ADVICE FOR STATISTICS GRADUATE STUDENTS

“Graduate student ethics” (or for that matter “professional
ethics”) is really just “plain ethics” expressed in a graduate stu-
dent (or professional)world. A discussion of it really boils down
to consideration of circumstances and issues that arise in a par-
ticular graduate student (or professional) setting. So an obvious
place to begin is with general student responsibilities. If you are
still in graduate school, we urge you to be scrupulous about your
conduct in the courses you take. Here are some speci� cs:

° Resolve to never accept credit for work that is not your
own. It should make no difference to you whether an exam is
proctored or unproctored.Whatever the homework policy of the
course, make it your practice to clearly note on your papers
places where you have gained from discussions with classmates
or consultingold problem sets of others. It’s simply right to give
others credit where it is deserved and it’s simply wrong to take
credit where it is undeserved.

° If course policy is that everyone is “completely on their
own,” resolve in advance to politely refuse to discuss with peers
topics that are off-limits, even if others violate the policy. It may
seem a small thing at the time, but you are setting life trajectories
that are bigger than the particular incidents.

° Determine to never take advantage of (or over) your peers.
If you join a group study session, be ready to make your fair
contribution, not just to bene� t from the input of others. If you
have legitimate access to old � les or notes or textbooks that are
helpful, let others know about them so that they can bene� t as
well.

What do these three points say? Simply that you should play
by the rules set out and be clear and honest about all contri-
butions made to the work you turn in. Why would anyone do
otherwise? Honestly, only to gain an undeserved advantage in a
course grade, or to avoid some effort. But a studentwilling to cut
corners for an A or a free weekend will have serious dif� culty
not cutting corners in later professional responsibilities when
the reward is a promotion or pay raise or a free weekend.

Some additional issues are related to the notion of “doing the
hard thing.” Everyone has things that come harder for them than
others. It’s human nature to want to avoid what is dif� cult and
to even convince ourselves that really, the easy thing is what is
important and the hard thing is worthless. But that is not only
obviously silly, it has moral implications. Here is some advice
for the student reader:

° Understand that acquiring an advanced education is a dif-
� cult enterprise, that there may be times when you feel like
complaining about this, but that it doesn’t really help to do so.
Whining wastes energy and can poison the learning atmosphere
for others.You are engagedin a noble, if dif� cult, pursuit.Give it
your best shot without complaining.After all, most things worth
doing are hard.

° Resolve to work on your weaknesses rather than excuse
them. Doing good statisticalwork is important, and demands the
best possible personal tool kit. The reasoning “I � nd methods
(theory) easier than theory (methods), so I’ll just do methods
(theory)” implicitly and quite wrongly assumes that one can do
good statistical work with half a tool kit.

° Decide not to denigrate the strengths of others. Give other
people credit for what they can do that you cannot. Find your
niche without minimizing the honest efforts and contributions
of others.

° Determine to take the courses that will enable you to be the
best-educated and most effective statistician you can be. These
are often academically demanding, and may not form a par-
ticularly easy route to a high GPA. While dif� culty, per se, is
not necessarily a measure of how often you will � nd the ma-
terial in a course useful, it is related to the mental discipline
you will develop. If you choose a course that covers material
you could easily pick up on your own or because it is taught
by a professor who demands little in exchange for an A, you’ve
cheated yourself. The choices you make about curriculum are
moral choices, not just choices of convenience. You have a lim-
ited time in graduate school : : : use it wisely. How effective you
will be as a professional depends on it. Besides, your choices
say something nontrivial about the personal character that you
are developing.

° Purpose to do what your thesis or dissertation advisor sets
for you to do, as independently as you can. While it may seem
that some assignments are arbitrary or unnecessary, remember
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that you do not have your advisor’s experience as a researcher or
educator.This person knows what you know, what your abilities
are, and the dif� culty of your problem. He or she is trying to
help you to develop as a responsible and independent member
of the profession, one accustomed to consistently working up to
your capabilities. Focusing your energy on the challenge of the
problem and the opportunity it represents will take you much
farther than wasting your energy in grumbling or in negotiating
to be led through every detail of a solution.

It is worth adding a further note related to this last point. The
advisor–advisee experience has the potential to be invigorat-
ing and rewarding (both professionally and personally) for both
parties. Think of the efforts you put into it not only as a require-
ment for the degree, but as the beginning of what may be one
of your most important and cherished long-term relationships.
Find someone to work with who you like and respect, and put
your energy into the enterprise.

Most statistics graduate students work as graduate assistants.
Assistants should remember � rst that an assistantship is not a
fellowship, but rather a job. And it is axiomatic that principled
people return honest effort for their pay. If you are working on a
faculty member’s grant, that person must produce quality work
in line with the interests of some outside entity. Do what you
can to help him or her. If you are a teaching assistant, there
are lectures to conscientiously prepare and deliver, papers to
carefully grade, and students to help. If you are a consultant,
people with real problems of data analysis will appear at your
door seeking aid. They need your best effort and advice. Let us
amplify a bit:

° If you are a research assistant it is understood that you have
“your own” class work and thesis or dissertation to attend to.
But some of your weekly hours are � rst committed to providing
the help (programming, library work, report writing, etc.) your
employer needs. There are important educational bene� ts that
accrue as you practice at these duties. But the most fundamental
reason to carry themout conscientiouslyand cheerfully is simply
that it is the right thing to do. (And it is wrong to think that cutting
corners now doesn’t say anythingabout later behavior. Life will
always be hectic and there is no reason to expect your work
habits after � nishing school to be better than the ones you are
developing now.)

° If you are a teaching assistant, purpose to make the best
of the fact that along with some conscientious, motivated, and
pleasant students, you will deal with some unpleasant, intention-
ally ignorant, lazy, and dishonest students. It simply comes with
the territory. For your part, make it a point to model integrityand
purpose for all of them. Do your best to convey that what you are
teaching them really does matter and how they do it matters as
well. Resolve that whatever your “style”/personality (from an-
imated to reserved) your body language will convey a genuine
willingness to help. The job takes patience—plan on it. Resolve
to treat all of your students well, whether or not their behavior
in any sense merits that. And it should go without saying that
although you want to be pleasant and approachable, propriety

and impartiality dictate that you are their instructor or TA, not
their pal.

° If your assignment is to help with statistical consulting,
you are already wrestling (at a “trainee” level) with some of the
serious issues faced by one segment of our profession. Carefully
consider and handle these now, as you begin to see how the
“human element” of statistical consulting requires thoughtful
and principled discipline. You’re going to have to argue with
yourself in conversations like:

— What looks to me like the thing that should be done would
take two hours to explain and several more hours of my
time to implement, while this client would be happy with
somethingless appropriate that I could explain in � ve min-
utes : : :

— This client really wants “A” to be true, but these data look
inconclusive : : :

— This looks pretty much OK except for that oddity over
there that the client doesn’t really want to discuss : : :

Graduate Student Reader, keep your eyes open during this
graduate student experience. Watch your faculty and emulate
the ones who take seriously what they do. There are some � ne
role models in our university statistics departments, excellent
members of the profession. Find them, and learn as much as you
can about what they think and how they practice statistics.

ADVICE FOR YOUNG PROFESSIONAL
STATISTICIANS

Many of the themes we’ve introduced in the context of grad-
uate study have their logical extensions to early professional
life. But there are also other matters that we’ve not yet raised.
We proceed to discuss some of the less obvious extrapolations
and further ethical issues faced by young statisticians, organiz-
ing our advice around the topics of (1) research/publication, (2)
teaching, and (3) professional practice.

If you have � nished a Ph.D., you have been introduced to
the craft of research in statistical theory or methods. You are
in a position to help develop the profession’s supporting body
of knowledge and to contribute to our journals. It’s important
to consider the corresponding responsibilities. These are tied
closely to a proper view of the purpose of publication in statis-
tics. Published statistical research should provide reliable and
substantial new theory or methodology that has genuine poten-
tial to ultimately help statisticians in the practice of the disci-
pline. Statistical publication should not be treated as a game. It
is, and should be treated as, a serious and moral business. Here
are some points of advice issuing from this high view of what
the research and publication activity is all about:

° Resolve that if you choose to submit work for publication,
it will be complete and represent your best effort. Submittingpa-
pers of little intrinsic value, half-done work, or work sliced into
small pieces sent to multiple venues is an abuse of an important
communicationsystem and is not honorablescholarship.It is not
the job of editors or referees to proofread or complete your pa-
pers, or to insist that you follow up on important issues that you
know exist. See the “Let’s just send it off and let the reviewers
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sort it out” impulse for what it is, a temptation to off-load your
work to someone else. And the “I’ll just submit this half-done
thing to an outlet that will print anything” strategy does nothing
of real value for anyone. It wastes time and effort of those in the
review system, and when “successful” it dilutes our literature.
This makes important work harder to � nd, and in the end calls
into question our very reason to exist as a profession.

° Purpose that when asked to do the job of a referee, you will
do it thoroughly, impartially, and in as timely a manner as possi-
ble. There is no obvious short-term payoff to doing what is right
here. But the integrity and currency of the scienti� c publication
process depend on competent and principled referees taking the
job seriously. Resolve never to do a shoddy/cursory review job,
or worse yet to let calculationsabout personalities (and personal
advantage) govern how you judge a piece of work. Even though
many statistics journals use a “double-blind” system, the pro-
fession is small, and you will � nd it increasingly rare that you
have no idea who authored a paper you receive for review. So
remember that the spirit of the blind review policy is honorable,
and that you have an obligation to conduct your review in this
spirit even when you cannot be completely“blind.”And do what
you can as an individual to help � x the widely recognized prob-
lem that the review process in statistics is presently much slower
than in many other disciplines.

° Decide to routinely take the advice of editors and referees
regarding papers that you submit for publication.Occasions are
rare where editors or referees have it all wrong or purposely treat
an author unfairly. Most often, the advice they offer is construc-
tive and when followed substantially improves an article. Until
an editor signals clearly that he or she has no further interest
in a piece you have submitted, you should almost always make
good faith efforts to revise your paper in accord with his or her
advice. Serial journal-shopping for a venue that will publish a
submission with essentially no revision may minimize the total
effort an author expends on a paper, but the practice wastes the
overall energy of the profession and has a negative effect on the
overall quality of what is published.

° Determine to be scrupulous about giving credit where it
is due. If another has contributed substantially to the content
of a paper, co-authorship is typically appropriate and should be
offered. (On the other hand, never list a colleague as co-author
of a paper until you have that person’s explicit permission to do
so.) And include acknowledgments of others deserving thanks
for less extensive, but real, help with an article.

° Resolve to acknowledge priority and the derivative nature
of your work with due humility. If after the fact of publication
you � nd that some of your results can be found in earlier work,
immediately send an acknowledgment to that effect to the jour-
nal where your paper appeared. In writing your papers in the
� rst place, we encourage you to be forthright and helpful about
what you know is already publishedon your subject, delineating
carefully what others have already said and where your new con-
tribution lies. (No one ever really “starts from scratch.” Don’t
fall prey to the temptation to leave unsaid what you know is
already known, thinking that to do so strengthens your own po-
sition.)And never borrow published/copyrightedwords, even of
your own authorship, without acknowledgment.To do so is pla-

giarism and is completely unacceptable. (This caution extends,
by the way, to thesis and dissertation work, even if that work is
never submitted to a journal for formal publication.)

A note related to this last point: Avoiding plagiarism places
an extra burden on students whose writing skills are not strong,
especially those struggling with English as a second language.
But it is essential to � nd one’s own words and not simply copy
or even paraphrase those of another (even for parts of a paper
that are background and obviouslydon’t purport to provide new
technical content). This is a very serious integrity issue.

Next, let’s consider issues relevant to teaching of statistics
as a professional. There are reasons to do this whether or not
you have plans for a career at a college or university. Teach-
ing/training is increasinglydone “in house” by corporationsand
consultants, and it could be argued that most professional pre-
sentationsare essentially teaching efforts. The logical extension
of the advice offered above to graduate teaching assistants is, of
course, relevant here. But there is an important extra dimension
to discuss, related to the freedom and responsibility that a pro-
fessional has in answering the question “What will govern what
and how I teach?” Will it be “What’s easy for me?” Or will it be
“What will get the best short-term reaction from the students?”
Or will it be “My best professional judgementas to what the stu-
dents need for the long term and my best understanding of how
to effectively convey that information?” This is a moral choice.
Here is some ampli� cation:

° Determine that you won’t fall into the trap of organizing
all courses around your technical specialty. This is an issue of
fundamental humility and recognition that none of us has put all
that is needed into our personal little package (to say nothing
about the matter of “truth in advertising!”). But we suspect that
you know what we are talking about, having seen people turn
every course they teach into a platform to show off their own
work.

° Purpose not to be governed by what is easy to do. This is
not an entirely separate issue from the previous one. But we are
also thinking about cases where the case is not so blatant or not
tied directly to one’s specialty. It’s a lot of work to learn new
methods and software to include in a course, to freshen exam-
ples, to develop new laboratories and assignments for students,
to replace outdated topics and means of presentation. And it’s
sometimes possible to “get by” without investing that effort. But
doing so is simply wrong. We urge you not to take that route.

° Resolve to do the best for your students,whether or not they
appreciateyourefforts in the short term. We live in a “consumer”
society.There is hugepressure on teachers in all contextstomake
students happy.But statistics is hard, and studentsDON’T know
what they need. You will. We hope that you opt to do your best to
provide that, not simply what will get the best crowd reaction.
Lots of jokes, little in the way of course demands, and high
grades can please many audiences. And leave students ignorant.
Of course we should aim to be engaging in our presentation of
our subject. But the point of teaching is to genuinely improve
subject matter knowledge and the reasoning powers of students.
It is not to produce feel-good experiences for them. (In this
regard, we were recently dismayed to see an Iowa community
college president quoted in the Des Moines Register (2001) as
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proudly saying “We are really a service organization � rst and an
educational institution second.” While that may in fact be true,
it is a terrible commentary on the state of the institution.)

Those of you beginningacademic careers will face enormous
demands for early success. Most universities require substantial
accomplishments in both research and teaching during the � rst
six years of employment, and some place the bar so high that
seemingly superhuman effort is required. If numbers of refereed
publicationsand instructorevaluationsare the “keys to success,”
can you afford to have real qualityas your primary goal? Is there
enough time in six short years to accomplishall that is required if
you takeour advice seriously?These are real and hard questions.
How you use your assistant professorship is critical to your long-
term professional success, and it is obvious that you must take
your institution’s expectations into account. But, we urge you
as you face these issues to remember that one who spends an
assistant professorship cutting corners is at best prepared to be
an associate professor who knows how to cut corners : : : not one
who has learned how to make a difference.

Turning � nally to the area of professional practice, we note
that most of what has been written about ethical guidelines for
statisticians concerns what is appropriate in public practice, in
lending aid to others in the impartial and ef� cient collectionand
analysis of their data. This is understandable, as (1) the disci-
pline’s whole reason to exist is ultimately to providesuch aid and
(2) this activity is both subtle and full of pitfalls. Both the ethi-
cal guidelines and public skepticism typi� ed in the “lies” quote
of Disraeli point to the fact that statistics can be used to form
highly technical and even technically correct support for state-
ments which are in fact not true. We might hope this could hap-
pen only when nonstatisticianspractice statistics without proper
technical understanding of the subject. But statistical lies are by
de� nition immoral uses of statistical arguments, whether techni-
cally correct or not, and stem from societal pressures that affect
statisticians and nonstatisticians alike. What then must you do
in society to preserve the discipline’s (and your own) integrity?

First, recognize that a professional statistician should never
behave like a courtroom lawyer. The practice of law is based
on an adversarial model in which each lawyer represents an as-
signed point of view—that which will yield the most positive
outcome for his or her client. While the use of lies and inten-
tionally misleading statements is prohibited in legal proceed-
ings, legal strategy certainly does involve the selective use of
evidence so as to present the truth (or some part of it) in the light
most favorable to a particular point of view. But a key aspect of
this model of litigationis that decisions are made by an unbiased
authority (a judge or jury) based not on the case presented by a
single side, but only after arguments presented by all parties are
heard.

Statisticiansusuallydo not operate in such well-controlledad-
versarial systems. If you do work in this kind of arena you must
keep absolutely clear the distinction between an objective ana-
lyst and an advocate, and never purport to be (or think yourself)
the � rst when you are the second. If you are employed by an or-
ganization(whether on a permanent basis or as a consultant)you
are by de� nition not disinterested in its well-being. And if you
are working “pro bono” for a cause you support, you are not dis-

interested in furthering the cause. In either case, it is axiomatic
that your professional judgment is potentially clouded by what
you (quite naturally) want to be true. And you will be no fair
judge of the extent to which this clouding has occurred. There
is real danger here. There is little that is more damning to the
discipline than for one of its professionals, implicitly claiming
some degree of objectivity,to be publiclyexposed as overstating
a statistical case in favor of his or her employer or cause.

More commonly, statisticians function as consultants to those
who must make decisions. We do this through careful and
thoughtful design of data collection mechanisms and analysis
of assembled data. But “careful and thoughtful” here are words
that acknowledge a critical fact: Statistical analysis of data can
only be performed within the context of selected assumptions,
models, and/or prior distributions. A statistical analysis is ac-
tually the extraction of substantive information from data and
assumptions. And herein lies the rub, understood well by Dis-
raeli and others skepticalof our work: For givendata, an analysis
can usually be selected which will result in “information” more
favorable to the owner of the analysis than is objectively war-
ranted.

The only “cure” for this dif� culty is statistical practice based
on assumptions embodying an informed, balanced, and honest
representation of what is known. “Known,” not “wished for,”
“desired,” “convenient,” or even “other-than-worst-fears.” This
has implications for how statisticiansmust be and act if they are
to be both effective and ethical.

° Statisticians must be knowledgeable about the system un-
der study. They should not present themselves as competent to
analyze data from systems about which they have no substantive
understanding. Real data are not “context-free.”

° On the other hand, statisticians must recognize and ac-
knowledge the limitations of their “subject matter” knowledge.
Data and variation are ubiquitous.Knowing how to handle them
can give you important and even uncommon insights in a variety
of contexts where you have limited subject matter credentials.
But the fact that you can make contributions in league with ex-
perts in a variety of � elds doesn’t substitute for credentials in
those � elds. The credibility of the statistical profession depends
upon its members being scrupulous about what they know and
what they don’t know. Never forget that you are not the context
expert.

° Statisticiansmust go out of theirway to see that their analy-
ses allow interpretationsof the availabledata which are tenable
but not popular in the statistician’s organization. This does not
mean “be a troublemaker,” but it does mean that you should
carefully think through how available data would be interpreted
by those with all possible rational points of view.

° Statisticiansmust write complete reports stating the results
of their entire informed thought processes—including what they
know, what they have assumed, what they have decided cannot
be assumed, and what conclusionstenableassumptions support.
Our reports should contain “complete and suf� cient” analyses
upon which any rational point of view can be argued. If you
come to the conclusion that one of the spectrum of sensible
interpretations is “best” in a particular application,make it your
goal to be absolutely transparent about your reasoning. People
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should be able to easily see your full set of model assumptions,
understandwhat methodologyyouhaveused to make inferences
in that model, and have access to diagnosticand robustnesswork
you have done. (This advice is sound in general. But it is perhaps
especially relevant to explicitly Bayesian analyses. A consumer
of a posteriordistributionhas a moral right to know how strongly
it depends upon the prior.) Honest statistical work has nothing
to hide. It says what it says. It doesn’t try to obscure points
where alternative conclusions are possible if other assumptions
are made or different analysis paths are followed, and admits
where model � ts are short of perfection or conclusionsare highly
model-dependent.

As a statistician,yourallegiancemustbe to � nding the conclu-
sions which can be supported by data and careful assumptions.
Does this make the business of assumption selection more dif� -
cult than it seemed in yourstatisticscoursework?Does it seem as
thoughyou must take these issues more personallyand seriously
thanour favorite semi-academicphrase “Let X1; X2; : : : ; Xn be
iid F : : : ?” Does it sound likeyour formulationof these assump-
tions may have more to do with nonmathematical values than
has been discussed in your textbooks?Yes, this and more is true.
Ethical statistical practice requires that you take responsibility
for acquiring substantive understanding, knowing all rational
points of view, and making decisions well beyond those based
entirely in data.

° You must examine yourself to see that you are not even
subconsciously leaning toward analyses which you believe will
“please the boss” or yourself, or simplify the problem unjusti-
� ably. This means that you cannot afford to think of yourself
as a data technician or a hired gun. You must be secure enough
to simultaneously separate any prior vested interest (yours or
others’) in the outcome from your analysis, and meld together
seamlessly everythingyou know about the subjectmatter of your
investigationwith the structure of your statisticalwork. You can-
not do this unless you have strength of character and integrity.

° You must not stop with the obvious or even the most likely
explanation of data, but � nd ways to examine them so that all
rational viewpoints can be informed. This means that you will
work harder and longer than anyone who reads your reports will
ever know. You will not rest until you know you understand
all the information contained in the data, where “information”

is de� ned by the context of your work across the spectrum of
rational viewpoints. You cannot do this unless you develop an
ethic of self-reliance, thoroughness, and hard work.

° You must understand fully what your assumptions say and
what they imply. You must not claim that the “usual assump-
tions” are acceptable due to the robustness of your technique
unless you really understand the implications and limits of this
assertion in the context of your application.And you must abso-
lutely never use any statisticalmethod without realizing that you
are implicitly making assumptions, and that the validity of your
results can never be greater than that of the most questionableof
these. You cannot do this unless you remain dedicated to being
the best technicalstatisticianyou can possiblybe, understanding
that this involves knowing and understanding the mathematical
arguments as well as the computationaltechniquesbehindevery
tool you need.

Well there it is, more than enough advice to keep a young
statistician busy for a career. We hope we don’t sound too much
like myopic cranks, � nding “serious ethical issues” to raise in
even the most mundane contexts. Instead, we hope that we have
argued effectively that ethical matters are central to our disci-
pline and provided some insight into issues that this raises. We
further hope that you determine to take the matter of principle
most seriously.

Carry on, Gentle Reader.

[Received April 2002. Revised November 2002.]
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Summary. We obtain closed-form asymptotic variance formulae for three point estimators of the intraclass
correlation coefficient that may be applied to binary outcome data arising in clusters of variable size. Our
results include as special cases those that have previously appeared in the literature (Fleiss and Cuzick, 1979,
Applied Psychological Measurement 3, 537–542; Bloch and Kraemer, 1989, Biometrics 45, 269–287; Altaye,
Donner, and Klar, 2001, Biometrics 57, 584–588). Simulation results indicate that confidence intervals based
on the estimator proposed by Fleiss and Cuzick provide coverage levels close to nominal over a wide range
of parameter combinations. Two examples are presented.

Key words: Agreement; Cluster-randomization trials; Common correlation model; Delta method; Ex-
changeability; Kappa; Reliability; Variance.

1. Introduction
The intraclass correlation coefficient (ICC), a quantitative
measure of the resemblance among observations within classes
(clusters), is one of the most widely applied and versatile in-
dices in applied research. For example, it is frequently used
to quantify the familial aggregation of disease in genetic epi-
demiological studies (Cohen, 1980; Liang, Qaqish, and Zeger,
1992). In reliability studies, the ICC is an index measuring
the level of interobserver agreement (Barto, 1966; Fleiss and
Cuzick, 1979; Kraemer, Periyakoil, and Noda, 2002), while in
health care delivery research, the ICC has been used to mea-
sure the efficiency of hospital staff (Gange et al., 1996). This
parameter is also critical for estimating the required size of a
cluster randomization trial (Cornfield, 1978).

Inference procedures for the ICC are well developed for
the case of continuous data under the assumption of multi-
variate normality, as summarized by Donner (1986). In con-
trast, techniques for binary data have been less well devel-
oped, with the emphasis primarily on point estimation (see
Ridout, Demétrio, and Firth [1999] for an excellent review).
Aside from some computationally intensive procedures (e.g.,
Feng and Grizzle, 1992), two popular approaches for such in-
ferences are based on generalized estimating equations (GEE)
and the beta-binomial (BB) distribution (Lui, Cumberland,
and Kuo, 1996). However, recent research has shown that the
GEE approach, which was not designed for inference concern-
ing the ICC, may result in confidence interval coverage which
is substantially below nominal (Evans, Feng, and Peterson,
2001). A disadvantage of the BB model is that it is too re-
strictive to be relied on for inferences concerning the ICC
when the class sizes are variable (Feng and Grizzle, 1992).

This approach is further limited by the assumption that “the
binary observations within a cluster are assumed to be a fi-
nite subset of an infinite exchangeable sequence of random
variables” (Bowman, 2001).

We also note that Mak (1988) has derived a formula for the
variance of an ICC estimator. However, the resulting expres-
sion is equivalent to that obtained using the GEE approach
in that the expectations of the third and fourth moments are
replaced by observed values (Shoukri and Martin, 1992).

In Section 2, we adopt the common correlation model
(Madsen, 1993) to derive explicit variance formulae for three
estimators of the ICC previously found to perform well in
terms of mean square error and bias by Ridout et al. (1999).
Confidence interval methods based on these formulae are de-
scribed in Section 3. In Section 4, we evaluate the performance
of these methods using Monte Carlo simulation. In Section 5,
we provide examples using data from two previously published
studies, one addressing familial aggregation of a respiratory
condition, and the other focusing on interrater agreement.
The article concludes with some final remarks in Section 6.

2. The Large Sample Variance
of the ICC Estimators

2.1 Assumptions and Point Estimators
Consider a random sample of k clusters of size ni (i = 1, 2, . . . ,
k), where the responses Xij (j = 1, 2, . . . ,ni ) in the ith class
are dichotomous with success and failure coded as 1 and 0,
respectively. The probability of success π is assumed to be
identical for all individuals, i.e., Pr(Xij = 1) = π for all i, j,
an assumption usually referred to as “exchangeability.” (Note
that when this assumption is in doubt, it may be tested; see
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Stefanescu and Turnbull [2003].) A second assumption is that
the observations from different clusters are independent, while
each pair of observations within the same cluster have a com-
mon correlation given by ρ = corr(Xij , Xil ), j �= l.

Under these assumptions, sample estimates for π and ρ are
readily available. An intuitive and simple estimator for π is
given by

π̂ =

k∑
i=1

Yi

N
,

where Yi =
∑

jXij is the total number of successes in class
i, and N =

∑
ni is the total number of observations in the

study. At least 20 different estimators for ρ have been pro-
posed in various areas of research, as reviewed by Ridout et
al. (1999). The simulation results reported by these authors
identified three of these as most accurate in terms of bias and
mean square error. The first two estimators are obtained by
applying formulae for continuous data directly to binary data
while the third is commonly used in the context of reliability
studies by Fleiss and Cuzick (1979).

The analysis of variance (ANOVA) estimator is given by

ρ̂A =
MSB − MSW

MSB + (nA − 1)MSW
, (1)

where

MSB =
1

k − 1


∑ Y 2

i

ni

−

(∑
Yi

)2

N

 ,

MSW =
1

N − k

{∑
Yi −

∑ Y 2
i

ni

}
,

and

nA =
1

k − 1

N −

∑
n2
i

N

 .

The Pearson pairwise estimator with constant weights is given
by

ρ̂P =
1

µ̂ (1 − µ̂)

∑Yi (Yi − 1)∑
ni (ni − 1)

− µ̂2

 , (2)

where

µ̂ =

∑
Yi (ni − 1)∑
ni (ni − 1)

.

Finally, the kappa-type estimator proposed by Fleiss and
Cuzick (1979) is given by

ρ̂FC = 1 −

∑
Yi(ni − Yi)/ni

(N − k)π̂(1 − π̂)
. (3)

Note that the Pearson estimator and the Fleiss–Cuzick esti-
mator are identical in the case of constant cluster size (Ridout
et al., 1999).

2.2 Variance Derivation
Under the common correlation assumption the exchangeable
model can be written (Madsen, 1993) as

Pr(Y = y) =


ρ(1 − π) + (1 − ρ)(1 − π)n, y = 0,(
n

y

)
(1 − ρ)πy(1 − π)n−y, 1 ≤ y ≤ n− 1,

ρπ + (1 − ρ)πn, y = n.

(4)

Note that for (4) to be a probability mass function, ρ must
satisfy

max

[
− (1 − π)n

(1 − π) − (1 − π)n
,− πn

π − πn

]
≤ ρ ≤ 1. (5)

A straightforward calculation yields the moment generating
function of Y as

MY (t) = ρ [1 − π {1 − exp(tn)}] + (1 − ρ) [1 − π + π exp(t)]n ,

which yields the lth moment as

EY l =
dl

dtl
MY (t)

∣∣∣∣
t=0

.

Noting that ρ̂A and ρ̂FC are functions of S1 =
∑

Yi and
S2 =

∑
Y 2

i/ni , it can be shown that (S1, S2) is distributed
asymptotically as bivariate normal with variance–covariance
matrix

Σ =

(
var(S1) cov(S1, S2)

cov(S1, S2) var(S2)

)

=

k∑
i=1

(
var(Yi) cov

(
Yi, Y

2
i

/
ni

)
cov
(
Yi, Y

2
i

/
ni

)
var
(
Y 2
i

/
ni

) ) . (6)

Application of the delta method (Agresti, 2002, p. 579) yields
the asymptotic distribution for ρ̂ as

√
k (ρ̂− ρ) → N

(
0,ΦTΣΦ

)
,

where

Φ =

 ∂ρ̂
∂S1

∂ρ̂
∂S2


is evaluated at ES 1 = Nπ and ES 2 = kπ(1 − π) + π(1 − π)
(N − k)ρ + Nπ2 for ρ̂A and ρ̂FC. After some straightforward
but tedious calculation, a consistent variance estimator for ρ̂A

is obtained as

var(ρ̂A) = [(k − 1)nAN(N − k)]2
/
λ4

×
{

2k +

(
1

π(1 − π)
− 6

)∑
n−1
i

+

[(
1

π(1 − π)
− 6

)∑
n−1
i − 2N +7k− 8k2

/
N

−2k(1 − k/N)

π(1 − π)
+

(
1

π(1 − π)
− 6

)∑
n2
i

]
ρ
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+

[
N 2 − k2

π(1 − π)
− 2N − k + 4k2/N

+

(
7 − 8k/N − 2(1 − k/N)

π(1 − π)

)∑
n2
i

]
ρ2

+

(
1

π(1 − π)
− 4

)(
N − k

N

)2(∑
n2
i −N

)
ρ3

}
,

(7)

where

λ = (N − k) [N − 1 − nA (k − 1)] ρ + N (k − 1) (nA − 1) .

Similar steps yield the estimated variance of ρ̂FC, given by

var(ρ̂FC) = (1 − ρ)

×
{[

1

π (1 − π)
− 6

] ∑
n−1
i

(N − k)2

+

[
2N + 4k − k

π (1 − π)

]
k

N (N − k)2

+

 ∑
n2
i

N 2π (1 − π)

−
(3N − 2k)(N − 2k)

∑
n2
i

N 2(N − k)2 − 2N − k

(N − k)2

ρ
+

[
4 − 1

π(1 − π)

]∑n2
i −N

N 2 ρ2

 , (8)

which reduces to the null variance derived by Fleiss and
Cuzick (1979) when ρ = 0.

Since ρ̂P is a function of S1 and S3 =
∑

Y 2
i , a similar deriva-

tion yields the variance of ρ̂P as

var (ρ̂P) =
(1 − ρ)[∑
ni (ni − 1)

]2

×
{

2
∑

ni (ni − 1) + ρ

[
1

π (1 − π)
− 3

]

×
∑

n2
i (ni − 1)2 + ρ2

[
4 − 1

π (1 − π)

]

×
∑

ni (ni − 1)3

}
. (9)

In the case of constant cluster size ni = n for all i, expressions
(8) and (9) simplify to

var(ρ̂) =
1 − ρ

k

[
2

n(n− 1)
−
{

3 − 1

π(1 − π)

}
ρ

+
n− 1

n

{
4 − 1

π(1 − π)

}
ρ2

]
, (10)

which is identical to the variance formula derived by Bloch
and Kraemer (1989) for n = 2 and to that derived by Altaye,
Donner, and Klar (2001) for n = 3.

3. Confidence Interval Construction
An obvious approach to constructing a confidence interval for
ρ is to obtain the large sample limits given by

ρ̂± zα/2

√
v̂ar(ρ̂),

where zα/2 is the α/2 upper quantile of the standard normal
distribution. However, several simulation studies have shown
that this procedure does not perform well with extreme values
of π and ρ or when k is small (e.g., Donner and Eliasziw,
1992; Altaye et al., 2001). Alternatively, one may attempt to
use Fisher’s z transformation to improve the normality of the
sampling distribution of ρ̂. Unfortunately it has been shown
that this transformation is of limited use when applied to
nonnormal data (Berry and Mielke, 2000).

We propose here to invert a modified Wald test, an ap-
proach which has been shown to provide accurate results when
computing confidence limits for the difference between two in-
traclass kappa coefficients (Donner and Zou, 2002). This ap-
proach is also conceptually straightforward since the above
variance formulae can be regarded as cubic functions of ρ.
Therefore, we may write

(ρ̂− ρ)2 = z2
α/2ṽar(ρ̂), (11)

where ṽar(ρ̂) is the appropriate variance expression with π̂
substituted for π. The confidence limits for ρ are then given
by the two admissible roots of this equation, which may be
found explicitly. For the ANOVA method, we replace ρ̂ with
ρ̂A and ṽar(ρ̂) with ṽar(ρ̂A) in equation (11). In a similar fash-
ion we may also obtain confidence limits for ρ using either the
Pearson estimator or the Fleiss–Cuzick estimator, which we
refer to as the Pearson and FC methods, respectively.

4. Simulation Study
A simulation study was performed to evaluate the coverage
levels of the three methods described above. For this pur-
pose, we generated variable cluster sizes from a truncated
negative binomial distribution with mean and variance given,
respectively, by 3.12 and 4.52, which correspond to the U.S.
sibship size distribution in 1950 (Brass, 1958; Donner and
Koval, 1987). Other parameter values considered were ρ =
0.1, 0.2, 0.3, 0.5, 0.8; π = 0.1, 0.3, 0.5; and k = 25, 50, 100,
200. For each of the 60 parameter combinations, 1000 data
sets were generated from the common correlation model given
by (4), followed by construction of a two-sided 95% confidence
interval using the methods described above.

The performance of these methods was evaluated in terms
of the observed percent coverage. Since negative values of ρ
are usually considered implausible in most application areas,
we truncated ρ̂ at 0 for any calculated negative value. All
programming was implemented using SAS IML.

Results in Table 1 show that the confidence interval based
on the Fleiss–Cuzick estimator for ρ is slightly conserva-
tive when π = 0.1 and k = 25, but maintains 95% nomi-
nal coverage level very well provided k ≥ 50. On the other
hand, the performance of the confidence interval based on
the ANOVA estimator is somewhat erratic, even though it is
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Table 1
Empirical coverage percent based on 1000 runs for three methods of constructing a 95% two-sided confidence interval

for the ICC with binary data

π

k = 25 k = 50 k = 100 k = 200

ρ Method 0.1 0.3 0.5 0.1 0.3 0.5 0.1 0.3 0.5 0.1 0.3 0.5

0.1 ANOVA 60.0 97.1 97.2 94.4 97.0 96.7 98.7 98.2 96.2 99.9 98.2 93.1
Pearson 97.4 96.7 97.3 96.6 96.6 97.5 96.4 97.1 96.5 98.1 96.5 95.6
FC 97.6 96.8 98.3 96.5 96.1 97.6 96.3 97.6 97.0 96.8 96.9 93.6

0.2 ANOVA 50.9 97.4 97.1 88.9 97.9 95.1 97.1 97.4 92.6 99.3 97.1 91.2
Pearson 98.6 97.1 98.1 97.4 97.2 97.9 97.6 96.7 96.5 98.1 95.9 95.1
FC 97.7 97.0 97.8 96.9 97.3 96.3 96.4 96.0 93.9 97.1 95.0 94.4

0.3 ANOVA 40.4 97.1 94.4 81.1 97.8 93.5 98.7 97.9 91.7 99.7 96.9 90.7
Pearson 99.2 98.7 97.9 98.8 98.1 96.5 98.6 97.2 95.6 97.8 96.3 95.8
FC 98.1 97.5 96.8 97.5 95.0 96.3 97.4 96.0 94.5 95.8 94.5 94.3

0.5 ANOVA 20.2 89.8 92.0 50.1 95.8 89.3 84.2 96.7 90.2 99.8 97.1 86.5
Pearson 100 97.8 96.5 99.5 95.8 95.7 99.1 95.9 95.5 97.0 95.7 95.1
FC 99.5 95.5 94.6 97.2 94.5 94.7 94.5 95.1 94.6 94.9 95.6 94.3

0.8 ANOVA 2.0∗ 56.2 54.4 3.0 77.0 49.3 7.1 91.6 39.5 22.2 96.3 35.1
Pearson 93.3∗ 92.8 93.8 91.1 95.1 94.6 91.0 95.5 93.8 93.4 94.9 94.6
FC 93.7∗ 95.8 95.2 94.0 95.6 95.4 93.0 95.9 93.7 94.5 95.4 93.7

∗Since in 3% of data sets generated in this case ρ̂ was undefined (π̂ = 0), the coverage was calculated over the remaining 970 runs. Cluster
sizes are generated according to a truncated negative binomial model with mean 3.12 and variance 4.52.

commonly recommended for point estimation. We also note
that the method based on the Pearson estimator performs
better than that based on the ANOVA estimator, but not
as well as that based on the Fleiss–Cuzick estimator. In par-
ticular, confidence interval construction based on the Pear-
son estimator tends to yield conservative limits unless ρ is
high (≥0.8).

5. Examples
As a first example, we analyze the data presented in Exam-
ple 3 of Liang et al. (1992), where the familial aggregation of
chronic obstructive pulmonary disease (COPD) is used as a
measure of how genetic and environmental factors may con-
tribute to disease etiology. The data involve 203 siblings from
100 families with size ranging from 1 to 6, with the binary
response of interest indicating whether a given sibling of a
COPD patient has impaired pulmonary function. We obtain
π̂ = 0.296, with the values of ρ̂A, ρ̂P, and ρ̂FC (standard errors)
given by 0.186 (0.129), 0.260 (0.131), and 0.180 (0.107), re-
spectively. The likelihood estimates (standard error) obtained
using a BB and a saturated exchangeable model as proposed
by Stefanescu and Turnbull (2003) are given by 0.270 (0.145)
and 0.200 (0.089), respectively. The corresponding 95% confi-
dence intervals using the modified Wald method are given by
(0, 0.441), (0.068, 0.523), and (0.008, 0.402).

As a second example, we consider the data presented by
Lipsitz, Laird, and Brennan (1994). In this data set, 26 pa-
tients with psychiatric disorders are classified by at least three
and at most six psychiatrists into two categories (neurosis ver-
sus other disorder). The value of π̂ is given by 0.401, and the
values (standard error) of ρ̂A, ρ̂P , and ρ̂FC by 0.422 (0.116),
0.408 (0.117), and 0.409 (0.114). Therefore the resulting 95%
confidence intervals are given by (0.217, 0.633), (0.205, 0.625),
and (0.210, 0.621), respectively. Note that the estimated stan-

dard error for ρ̂FC is in close agreement with simulation results
presented by Lipsitz et al. (1994, Table 4).

6. Final Remarks
As many as 20 different point estimators of the ICC have been
proposed across a diverse number of application areas. Rid-
out et al. (1999) provided a systematic review and evaluation
of these estimators, focusing on bias and mean square error.
We have extended their results by providing closed-form vari-
ance expressions for three of these point estimators, filling a
long-standing gap in the literature (e.g., see Fleiss et al., 1979;
Kraemer et al., 2002). The results of a simulation study lead
us to recommend a modified Wald method as having excellent
properties for confidence interval construction. Simulation re-
sults indicate that this method, used in conjunction with the
Fleiss–Cuzick estimator, performs very well in sample sizes of
50 or more.

The results in this article apply to studies involving a rea-
sonably large number of clusters, each of relatively small size.
Thus they are most applicable to family studies and other ap-
plication areas where these conditions apply. Our results also
depend on the assumption of a common correlation among
observations within the same cluster. Future research that
extends this model to accommodate more complex correla-
tion structures, such as arise in many genetic epidemiology
studies, would clearly be worthwhile.

The implementation of the recommended confidence in-
terval procedure using SAS IML and S plus is available from
the Biometrics website under the link “Data Sets/Computer
Code.”
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Résumé

Nous obtenons une formule de la variance asymptotique pour
trois estimateurs du coefficient de corrélation intra-classe qui
peut être utilisé à des données binaires issues de groupes de
taille variable. Nos résultats incluent les cas développés dans
la littérature (Fleiss et Cuzick, 1979, Applied Psychological
Measurement 3, 537–554; Bloch et Kramer, 1989, Biometrics
45, 269–287; Altaye, Donner et Klar, 2001, Biometrics 57,
584–588). Les résultats des simulations montrent que les in-
tervalles de confiance basés sur l’estimateur proposé par Fleiss
et Cuzick (1979) conduisent des niveaux de couverture proche
de la valeur nominale pour une large échelle de combinaisons
des paramètres. Deux exemples sont présentés.
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Two score and 10 years of score tests

C. Radhakrishna Rao
Department of Statistics, 325 Joab L. Thomas Bldg., Pennsylvania State University, University Park,

PA 16802, USA

S.J. Poti one of my co-workers at the Indian Statistical Institute in the early 1940s
was working on a practical problem where he had to test a null hypothesis on a single
parameter, H0: � = �0 (� has the given value �0), when it was known a priori that
the alternative �¿�0. He asked me whether an e0cient test could be constructed for
this purpose. I told him that Neyman and Pearson constructed what is called a locally
unbiased most powerful (LUMP) test for two-sided alternatives and a similar method
could be used to construct a locally most powerful one-sided (LMPOS) test. We need
only to 7nd a test (critical region of a given size) for which the power function has
the maximum slope at �0 on one side. If P(X; �) is the density at the value X in
the sample space, then an application of Neyman–Pearson lemma gives the critical
region as

w: P′(X; �0)¿�P(X; �0) (1)

or S(X; �0)¿� where S(X; �)=d logP(X; �)=d� is Fisher’s score function. The constant
� is determined such that the size of the critical region has a given value �. The result
was published as a short note (Rao and Poti, 1946). We also suggested that a two-sided
test such as |S(X; �0)|¿� would be a good competitor to LUMP test of Neyman and
Pearson. Of course, a critical region of the form

w: {S(X; �0)¿�1}
⋃
{S(X; �0)¡�2} (2)

would provide a better test.
In 1946, I was deputed to work on an anthropometric project in the Museum of

Anthropology and Ethnology at the Cambridge University, UK. I took this opportunity
of contacting R.A. Fisher who was then Balfour Professor of Genetics at the Cambridge
University and register for a Ph.D. degree in statistics under his guidance. Fisher agreed
but insisted that I should spend some time in his Genetics Laboratory where he was
breeding mice to map the chromosomes (i.e., locating the positions of various genes on
diCerent chromosomes). I thought that this would be a good experience and agreed to
work a few hours in his genetics laboratory every day in addition to my regular work at

E-mail address: ccrl@psu.edu (C. Radhakrishna Rao).
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the Museum. Fisher assigned to me the problem of mapping four genes on one of the
six chromosomes of mice, by estimating the linkages or recombination probabilities of
segments between genes. (Later I learnt that all his students were geneticists working
for a Ph.D. degree in genetics, and I was the only one who wrote a thesis in statistics
under his guidance.)

I started mating mice of diCerent genotypes to collect the necessary data. At the
same time, I started to develop the appropriate statistical methods for the analysis of
experimental data. Each experiment provided data containing independent information
on the same set of parameters (recombination probabilities in the various segments
of the chromosomes). The problem was one of meta analysis, i.e., of combining the
information from diCerent experiments for the estimation of parameters. In such cases, it
is often necessary to examine whether the parameters involved in diCerent experiments
are the same or not. My solution was as follows.

Let Xi be the observed sample, li(Xi; �i), the log likelihood, �i(Xi; �i) =
@li(Xi; �i)=@�i, the p-vector of scores for the vector parameter �i and I(�i), Fisher
information matrix for the ith experiment, i = 1; : : : ; k. To test the hypothesis

H0: �1 = · · · = �k : (3)

I suggested the statistic
k∑
i=1

[�i(Xi; �̂)]′[Ii(�̂)]−1[�i(Xi; �̂)]; (4)

where �̂ is the maximum likelihood estimate, under the assumption �1 = · · ·=�k , which
is obtained as a solution of the equation

k∑
i=1
�i(Xi; �) = 0: (5)

Statistic (4) is shown to be distributed as chi-square on p(k−1) degrees of freedom in
large samples. �̂ would be the appropriate estimate of the common parameter obtained
from the whole data if the value of (4) is not large. Otherwise, we have to examine
the nature of the diCerences between parameters in diCerent experiments.

I wrote a paper setting out the detailed steps for analyzing the data involving the
segregation of several factors in matings of diCerent genotypes. In an appendix to the
paper, I discussed the general theory of asymptotic tests based on scores from which
statistic (4) was derived. I showed the paper to Fisher. He thumbed through it and
said, “The paper is probably good but I would like to see numerical results”. He also
suggested that I should write a separate paper on the theoretical results.

After I acquired the data, I did the necessary computations and give him the revised
paper. He was pleased and asked me to submit the paper to the Journal of Heredity,
a new journal for reporting research work in genetics. The paper was accepted and
published in 1950 (see Rao, 1950). The theoretical portion of the paper appeared as a
separate publication in the Proceedings of the Cambridge Philosophical Society (Rao,
1948). In this paper, I considered the general problem of testing simple and composite
hypotheses concerning a vector parameter � based on the vector score function �(X; �)
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and information matrix I(�), where X is the observed sample. To test the simple
hypothesis H0: �= �0, the test statistic was de7ned as

max
a

[a′�(X; �0)]2

a′I(�0)a
= [�(X; �0)]′[I(�0)]−1[�(X; �0)]; (6)

where a is a p-vector of constants. It was shown that statistic (6) is asymptotically
distributed as �2 on p degrees of freedom. Note that when p = 1; a takes only two
values ±1, and test reduces to |�(X; �0)|¿� as discussed in Rao and Poti (1946). For
testing a composite hypothesis, the suggested statistic was

[�(X; �̂)]′[I(�̂)]−1[�(X; �̂)]; (7)

where �̂ is the maximum likelihood estimate of � under the restriction of the composite
hypothesis. Statistic (4) used in the analysis of genetic data is a special case of test (7).

I knew at the time I developed the score test, now referred to as RS (Rao’s score),
there were two alternative tests, the likelihood ratio L of Neyman and Pearson (1928)
whose asymptotic distribution was derived by Wilks (1938) and Wald’s (1943) W.
These three test statistics, L, W and RS which are referred as the “holy trinity” are
asymptotically equivalent under null as well as Pitman alternatives (see SerOing, 1980,
p. 156). The RS seemed to be attractive as it involved less computations and is invariant
for transformation of parameters. Further several well-known large sample tests like
Pearson Chisquare could be identi7ed as score tests. I mentioned as a conjecture in the
7rst edition of my book Linear Statistical Inference and its Applications (Rao, 1965,
Section 6:2) that RS is likely to be locally more powerful than L and W. Peers (1971)
showed that this conjecture is not true as stated. On the basis of his result which I
did not examine carefully, I omitted my conjecture in the second edition of my book
(Rao, 1973).

The score test went unnoticed for a number of years after it was introduced. It
was resurrected by the Indian School of Statisticians in the eighties, who studied its
optimum properties and showed that my conjecture holds with some modi7cations, and
in some respects it has more attractive features than L and W, contrary to what Peers
thought. For details of these developments, reference may be made to papers by Ghosh
(1991), Li (1999) and Mukherjee (1993).

I may also mention that I used the score function in deriving sequential tests of null
hypotheses (Rao, 1951) which has applications in quality control (Box and Ramirez,
1992) and clinical trials (Bradley, 1953).

It may be noted that a few years after my 1948 paper appeared, the same score test
was introduced by Silvey (1954) under the name Lagrangian multiplier test, and this
terminology appears in econometrics literature (see Byron (1968) who was probably the
7rst to introduce the RS statistic in econometrics). Neyman (1954, 1959) introduced
what is called C(�) test which is similar to the score test when there is one main
parameter and several nuisance parameters. Neyman used

√
n consistent estimates of

the nuisance parameters under the null hypothesis for the main parameter, instead of
ml estimates used by me (Rao, 1948) in the computation the score statistic. Hall and
Mathiason (1990) extended Neyman’s C(�) test to more than one main parameter using
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an argument similar to the one used in the derivation of the score test. The resulting
test was named by them as Neyman–Rao test.

I am glad to see that score type tests are beginning to be used in diCerent areas of
study and research. They have found applications in econometrics (see Amemiya, 1985,
pp. 142–146, 206–207, 469; Bera and Bilias, 1999; Bera, 1999; Bera and Mukherjee,
1999 for general surveys) and in survival analysis (Klein and Moeschberger, 1997,
pp. 407–410, 429–433). Score tests are discussed in books on asymptotic statisti-
cal inference (Lehman, 1999, pp. 451, 529, 532, 534, 539, 570; SerOing, 1980, pp.
155–160). Score type tests based on estimating equations have also been introduced
(Boos, 1992; Sen, 1982). Some other modulli on score tests are given in Rao (1961).

I would like to mention that I would not have thought of score tests if I had not
worked on a particular practical problem in genetics which Fisher asked me to in-
vestigate. I realized the importance of the score function in combining information
from diCerent independent sources and tried to develop a theory of inference based
primarily on scores. Score tests have some attractive features and I am glad to see that
my 1948 paper has been included in Breakthroughs in Statistics: 1890–1990, Vol. 3,
edited by Kotz and Johnson. A foreword to this paper by P.K. Sen contains a dis-
cussion of the merits and demerits of the score test. A special invited paper session
on 50 years of Rao’s score test was organized at the Joint Meetings of ASA, IMS,
SSC and BS held at Anaheim, August 10–14, 1997. I am glad to see the current
interest in score tests and their modi7cations and generalizations, and I wish to thank
A.K. Bera and R. Mukherjee for putting together papers on the current state of the art
for publication in a special issue of the Journal of Statistical Planning and Inference.
This would encourage further research into several unresolved problems in the applica-
tion of score tests. Of course, no known method in statistics is universally applicable
and it is important to know in which situations, a particular method is e0cient.

I may also mention that mathematical genetics I learnt by attending Fisher’s lectures
and talking to his students when I was in Cambridge had another bene7t. It enabled
me to guide students for the Ph.D. degree in mathematical genetics on my return to the
Indian Statistical Institute. At least two of my students who received the Ph.D. degree
are leading 7gures in statistical genetics today.
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I -INTRODUCTORY 

(a) General Remarks, JNotation, and Definitions 
We shall distinguish two aspects of the problems of estimation: (i) the practical 

and (ii) the theoretical. The practical aspect may be described as follows: 

(ia) The statistician is concerned with a population, nc, which for some reason or 
other cannot be studied exhaustively. It is only possible to draw a sample from 
this population which may be studied in detail and used to form an opinion as to 
the values of certain constants describing the properties of the population 7. For 
example, it may be desired to calculate approximately the mean of a certain character 

possessed by the individuals forming the population -r, etc. 
(ib) Alternatively, the statistician may be concerned with certain experiments 

which, if repeated under apparently identical conditions, yield varying results. 
Such experiments are called random experiments, (see p. 338). To explain or describe 
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the machinery of the varying results of random experiments certain mathematical 
schemes are drawn up involving one or more parameters, the values of which are 
not fixed. The statistician is then asked to provide numerical values of these 
parameters, to be calculated from experimental data and upon the assumption that 
the mathematical model of the experiments is correct. 

The situation may be exemplified by the counts of a-particles ejected by some 
radioactive matter. The physicists have here elaborated a mathematical model 
of the phenomenon involving only one numerical parameter, namely, the average 
duration of life of an atom, and the statistician is asked to use the results of the 
available observations to deduce the numerical value of this parameter. 

In both cases described, the problem with which the statistician is faced is the 
problem of estimation. This problem consists in determining what arithmetical 
operations should be performed on the observational data in order to obtain a result, 
to be called an estimate, which presumably does not differ very much from the true 
value of the numerical character, either of the population 7, as in (ia), or of the 
random experiments, as in (ib). 

(ii) The theoretical aspect of the problem of statistical estimation consists primarily 
in putting in a precise form certain vague notions mentioned in (i). It will be 
noticed that the problem in its practical aspect is not a mathematical problem, 
and before attempting any mathematical solution we must substitute for (i) another 
problem, (ii), having a mathematical sense and such that, for practical purposes, it 
may be considered as equivalent to (i). 

The vague non-mathematical elements in (i) are connected with the sentence 
describing the meaning of the word estimate. What exactly is meant by the 
statement that the value of the estimate " presumably " should not differ very much 
from the estimated number ? The only established branch of mathematics dealing 
with conceptions bearing on the word " presumably " is the calculus of probability. 
It therefore seems natural to base the precise definition of an estimate on conceptions 
of probability. It is easy to see that the connexion of the problem considered with 
the theory of probability does not stop here and that the conditions of the problem 
themselves are, mathematically, clear only if they are expressed in the same terms 
of probability. 

In (ia) we speak of a statistician drawing a sample from the population studied. 
It is known that if the sample is systematically selected and not drawn " at random " 
the conclusions concerning the population n formed on its basis are, as a rule, false 
and at the present state of our knowledge impossible to justify. On the other 
hand, we know that justifiable and frequently correct conclusions are possible only 
when the process of drawing the sample is " random ", though the randomness may 
be at times more or less restricted. I have put the word " random" in inverted 
commas because it is very difficult to define what is meant by it in practice.* We 
try to achieve randomness by more or less complicated devices, using roulette. 

* This point requires a longer discussion, which I hope to be able to publish in a separate paper. 
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dice, etc. Theoretically, however, the situation is clear: when we speak of a 
random sample we mean that it is drawn so that (1) the probability of each 
individual of the population being included in the sample is the same, and (2) separate 
drawings are mutually independent, except in the case of dependence resulting from 
the population being finite, when the individual drawn is not returned to the 
population before the next drawing. 

Leaving apart on one side the practical difficulty of achieving randomness and the 
meaning of this word when applied to actual experiments, I want to call attention 
to the fact that the conditions of the problem in (ia) may be mathematically described 
as follows. 

Denote X, Y, ..., Z, the characters of the individuals of the population rt, in 
which we are interested and by x,y, . .. . z, respectively the values of these characters 

corresponding to some particular individual. For example, if the population n 
consists of certain plants, X may mean the weight of the roots, Y the colour of the 
flowers, Z the weight of the seeds, etc. The method of random sampling adopted, 
together with the properties of the population nt, some of which may be known and 
others doubtful, determine the probability,* say P {E}, of the occurrence of any 
possible system, E, of values of X, Y, . . . ., Z in the individuals which may be drawn 
to form the sample. Denote by 0, the numerical character of the population n 
which it is desired to estimate : this, for example, may be the mean value of X, the 
regression coefficient of Z on X, the mean square contingency of Z and Y, etc. The 
probability P {E} will depend on the value of 01 and in most cases on the values of 
certain other parameters, say, 02, 03, . . ., etc. 

We see, therefore, that the problem with which the theoretical statistician is faced 
is as follows: 

Sampling randomly from the population T, it is possible to obtain samples, say 

E1, E ...... . . . .. (1) 

where each sample is described by means of values of the characters X, Y, . . ., Z, 
corresponding to each of the individuals forming the sample. The probability of 
any sample Ei, say P {E,I 01, 0, ... 0j, depends on a certain number, 1, of para- 
meters ,O, the values of which are unknown, describing the properties of the 
population t. The problem consists in determining how to use the sample which 
may be actually obtained in order to estimate 01. 

We see that the conditions of the problem in (ia) are expressed in terms of pro- 
bability. The same holds good with regard to the problem in (ib), which shows 
that the distinction between (ia) and (ib) is only superficial. In fact, random 
experiments differ from those which are not considered as random only by the cir- 
cumstance that the mathematical model devised for their description involves 

* If the population tn is finite. Otherwise the method of sampling and the properties of the 
population will determine the elementary probability law of X, Y, ..., Z considered as random 
variables. For the definitions of random variables and their probability laws, see p. 340 below. 

2 Z 2 
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probabilities. Each model of this kind determines the range of the possible results 
of random experiments and also the probability of each such result, depending upon 
one parameter or more, the numerical value of which is unknown. 

We come to the conclusion that both the conditions of the problem of estimation 
and the satisfactory solution sought, if expressed accurately, are expressed in terms 
of probability. Before we proceed to the final formulation of the problem, it will 
be useful to give a short review of the forms of some solutions which have been 
advanced in the past. For this we shall need to define the terms probability, random 
variable, and probability law. These definitions are needed not because I introduce 
some new conceptions to be described by the above terms, but because the theory 
which is developed below refers only to some particular systems of the theory of 
probability which at the present time exist,* and it is essential to avoid misunder- 
standings. 

I find it convenient to use the word probability in the following connexion : "the 
probability of an object, A, having a property B ". This may include as particular 
cases : " probability of a result, A, of a certain experiment having the property B of 
actually occurring " (= probability of the result A - for short) and " the probability 
of a proposition, A, of having the property, B, of being true ". All these ways of 
speaking could be shortened in obvious ways. 

I want to emphasize at the outset that the definition of probability as given below 
is applicable only to certain objects A and to certain of their properties B-not to all 
possible. In order to specify the conditions of the applicability of the definition of 
the probability, denote by (A) the set of all objects which we agree to denote by A. 
(A) will be called the fundamental probability set. Further, let (B) denote the set of 
these objects A which possess some distinctive property B and finally, ((B)), a certain 
class of subsets (B') , (B"), . . ., corresponding to some class of properties B', B", etc. 

It will be assumedt 
(1) that the class ((B)) includes (A), so that (A) s ((B)) and 

* It may be useful to point out that although we are frequently witnessing controversies in which 
authors try to defend one or another system of the theory of probability as the only legitimate, I am 
of the opinion that several such theories may be and actually are legitimate, in spite of their occasionally 
contradicting one another. Each of these theories is based on some system of postulates, and so long 
as the postulates forming one particular system do not contradict each other and are sufficient to 
construct a theory, this is as legitimate as any other. In this, of course, the theories of probability 
are not in any sort exceptional. 

Both Euclidean and non-Euclidean geometries are equally legitimate, but, e.g., the statement 
"the sum of angles in a linear triangle is always equal to 7t " is correct only in the former. In 
theoretical work the choice between several equally legitimate theories is a matter of personal taste 
only. In problems of application the personal taste is again the decisive moment, but it is certainly 
influenced by considerations of the relative convenience and the empirical facts. 

t The problem of the definition of measure in relation to the theory of probability has been 
recently discussed by -LOMNICKI and ULAM (1934), who quote an extensive literature. A systematic 
outline of the theory of probability based on that of measure is given by KOLMOGOROFF (1933). 
See also BOREL (1925-26) ; LEVY (1925) ; FRECHET (1937). 
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(2) that for the class ((B)) it was possible to define a single-valued function, 
m (B), of (B) which will be called the measure of (B). The sets (B) belonging to 
the class ((B)) will be called measurable. The assumed properties of the measure 
are as follows: 

(a) Whatever (B) of the class ((B)), m (B) _ 0. 

(b) If (B) is empty (does not contain any single element), then it is measurable and 
m (B) = 0. 

(c) The measure of (A) is greater than zero. 

(d) If (B1), (B2) ... (BJ) ... is any at most denumerable set of measurable subsets, 
then their sum, (B,i), is also measurable. If the subsets of neither pair (Bi) and 

00 

(Bj) (where i ^ j) have common elements, then m (ESB) = X m (B,). 
i-=1 

(e) If (B) is measurable, then the set (B) of objects A non-possessing the property 
B is also measurable and consequently, owing to (d), m (B) + m (B) = m (A). 

Under the above conditions the probability, P{BIA}, of an object A having the 

property B will be defined as the ratio P {BIA) = m (B) The probability P{BI|A}, m (A)' 
or P {B) for short, may be called the absolute probability of the property B . Denote 
by B1 B2 the property of A consisting in the presence of both B1 and B2. It is easy 
to show that if (B1) and (B2) are both measurable then (B1 B2) will be measurable 
also. If m (B2) > 0, then the ratio, say P {B JB2} =: m (B1B2)/m (B2), will be called 
the relative probability of B1 given B2. This definition of the relative probability 
applies when the measure m (B2) as defined for the fundamental probability set (A) 
is not equal to zero. If, however, m (B2) = 0 and we are able to define some other 
measure, say m', applicable to (B2) and to a class of its subsets including (B1 B2) such 
that m' (B2) > 0, then the relative probability of Bi given B2 will be defined as 
P{B1IB2} = m' (B1B2)/m' (B2). Whatever may be the case, we shall have P{B1B2} 

P{BI}P{B2IBB}= P{B2}P{B, IB2}. 
It is easy to see that if the fundamental probability set is finite, then the number of 

elements in any of its subsets will satisfy the definition of the measure. On the other 
hand, if (A) is the set of points filling up a certain region in n-dimensioned space, 
then the measure of Lebesgue will satisfy the definition used here. These two 
definitions will be used wherever applicable. 

If (A) is infinite but the objects A are not actually points (e.g., if they are certain 
lines, etc.), the above definition of probability may be again applied, provided it is 
possible to establish a one to one correspondence between the objects A and other 
objects A', forming a class of sets where the measure has already been defined. 
If (B) is any subset of (A) and (B') the corresponding subset of (A'), then the measure 
of (B) may be defined as being equal to that of (B'). It is known that a similar 
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definition of measure of subsets of (A) could be done in more than one way. Such 
is, for instance, the historical example considered by BERTRAND, POINCARE, and BOREL 

when the objects A are the chords in a circle C of radius r and the property B consists 
of their length, 1, exceeding some specified value, B. It may be useful to consider 
two of the possible ways of treating this problem. 

1. Denote by x the angle between the radius perpendicular to any given chord A 
and any fixed direction. Further, lety be the distance of the chord A from the centre 
of the circle C. If A' denotes a point on the plane with coordinates x andy, then 
there will be a one to one correspondence between the chords A of length 
0 1 < 2r and the points of a rectangle, say (A'), defined by the inequalities 
0 < x c 27t and 0 <Ky r. The measure of the set of chords A with lengths 
exceeding B could be defined as being equal to the area of that part of (A') where 
o < y /r2 - (?B)2. It follows that the probability in which we are interested is 
P{l > B) (r2 -(B)2) r-1 

2. Denote by x and y the angles between a fixed direction and the radii con- 
necting the ends of any given chord A. If A" denotes a point on a plane with 
coordinates x andy, then there will be a one to one correspondence between the 
chords of the system (A) and the points A" within the parallelogram (A") deter- 
mined by the inequalities 0 < x c 27, x - y c x + x. The measure of the set of 
chords A with their lengths exceeding B may be defined as being equal to the area of 
that part of (A") where 2r sin y > B. 

Starting with this definition P {I > B} - 1 -2 arc sin (B/2r) 7r-1. 
It is seen that the two solutions differ, and it may be asked which of them is correct. 

The answer is that both are correct but they correspond to different conditions of the 
problem. In fact, the question " what is the probability of a chord having its length 
larger than B " does not specify the problem entirely. This is only determined when 
we define the measure appropriate to the set (A) and its subsets to be considered. 
We may describe this also differently, using the terms "random experiments " and 
" their results ". We may say that to have the problem of probability determined, 
it is necessary to define the method by which the randomness of an experiment is 
attained. Describing the conditions of the problem concerning the length of a chord 
leading to the solution (1), we could say that when selecting at random a chord A, 
we first pick up at random the direction of a radius, all of them being equally 
probable, and then, equally at random, we select the distance between the centre of 
the circle and the chord, all values between zero and r being equally probable. 
It.is easy to see what would be the description in the same language of the random 
experiment leading to the solution (2). We shall use sometimes this way of speaking, 
but it is necessary to remember that behind such words, as e.g., " picking up at 
random a direction, all of them being equally probable ", there is a definition of the 
measure appropriate to the fundamental probability set and its subsets. I want to 
emphasize that in this paper the sentence like the one taken in inverted commas is 
no more than a way of describing the fundamental probability set and the appropriate 
measure. rThe conception of" equally probable " is not in any way involved in the 
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definition of probability adopted here, and it is a pure convention that the state- 
ment 

\ /" For the purpose of calculating the 
probabilities concerning chords 
in a circle, the measure of any set 

" In picking up at random a chord, (A1) of chords is defined as that of 
we first select a direction of radius, means no the set (A'1) of points with co- 
all of them being equally probable more and ordinates x and y such that for 
and then we choose a distance be- no less any chord A1 in (A1), x is the 
tween the centre of the circle and than direction of the radius perpendicu- 
the chord, all values of the distance lar to A1 andy the distance of A1 
between zero and r being equally from the centre of the circle. 
probable." . (A,) is measurable only if (A'1) is 

2 \SO.'e 

However free we are in mathematical work in using wordings we find convenient, 
as long as they are clearly defined, our choice must be justified in one way or another. 
The justification of the way of speaking about the definition of the measure within 
the fundamental probability set in terms of imaginary random experiments lies in 
the empirical fact, which BORTKIEWICZ insisted on calling the law of big numbers. 
This is that, given a purely mathematical definition of a probability set including 
the appropriate measure, we are able to construct a real experiment, possible to 
carry out in any laboratory, with a certain range of possible results and such that if 
it is repeated many times, the relative frequencies of these results and their different 
combinations in small series approach closely the values of probabilities as calculated 
from the definition of the fundamental probability set. Examples of such real 
random experiments are provided by the experience of roulette (BORTKIEWICZ, 
1917), by the experiment with throwing a needle* so as to obtainn an analogy to the 
problem of Buffon, and by various sampling experiments based on TIPPETT'S rables 
of random numbers (1927). 

These examples show that the random experiments corresponding in the sense 
described to mathematically defined probability sets are possible. However, 
frequently they are technically difficult, e.g., if we take any coin and toss it many 
times, it is very probable that the frequency of heads will not approach 1. To get 
this result, we must select what could be called a well-balanced coin and we have to 
work out an appropriate method of tossing. Whenever we succeed in arranging the 
technique of a random experiment, say E, such that the relative frequencies of its 
different results in long series sufficiently approach, i:n our opinion, the probabilities 
calculated from a fundamental probability set (A), we shall say that the set (A) 
adequately represents the method of carrying out the experiment E. The theory 
developed below is entirely independent of whether the law of big numbers holds 

* This is mentioned by BOREL (1910). I could not find the name of the performer of the 
experiment. 
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good or not. But the applications of the theory do depend on the assumption 
that it is valid. The questions dealt with in the present section are of fundamental 
importance. However, they do not constitute the main part of the paper and there- 
fore are necessarily treated very briefly. The readers who may find the present 
exposition not sufficiently clear may be referred for further details to the work 
of KOLMOGORFOFF (1933, see particularly p. 3 et seq.). I should state also that 
an excellent theoretical explanation of the experimental phenomena mentioned, 
connected with the previous work of POINCARE and SMOLUCHOWSKI, has been 

recently advanced by HOPF (1934). 
We shall now draw a few obvious but important conclusions from the definition 

of the probability adopted. 
(1) If the fundamental probability set consists of only one element, any probability 

calculated with regard to this set must have the value either zero or unity. 
(2) If all the elements of the fundamental probability set (A) possess a certain 

property Bo, then the absolute probability of Bo and also its relative probability 
given any other property B1, must be equal to unity, so that P {Bo}= P {BoIB} = 1. 

On the other hand, if it is known only that P {Bo} = 1, then it does not necessarily 
follow that P {BoIB1} must be equal to unity. 

We may now proceed to the definition of a random variable. We shall say that 
x is a random variable if it is a single-valued measurable function (not a constant) 
defined within the fundamental probability set (A), with the exception perhaps of 
a set of elements of measure zero. We shall consider only cases where x is a real 
numerical function. If x is a random variable, then its value corresponding to any 
given element A of (A) may be considered as a property of A, and whatever the real 
numbers a < b, the definition of (A) will allow the calculation of the probability, 
say P {a c x < b} of x having a value such that a c x < b. 

We notice also that as x is not constant in (A), it is possible to find at least one 

pair of elements, A1 and A2, of (A) such that the corresponding values of x, say 
x1 < x2, are different. If we denote by B the property distinguishing both A1 and A2 
from all other elements of (A) and if a < b are two numbers such that a < xl < b 
< x then P {a : x < bIB} 1. It follows that if x is a random variable in the 
sense of the above definition, then there must exist such properties B and such 

numbers a < b that 0 < P {a c x < bIB) < 1. 
It is obvious that the above two properties are equivalent to the definition of a 

random variable. In fact, if x has the properties (a) that whatever a < b the 
definition of the fundamental probability set (A) allows the calculation of the 

probability P {a c x < b}, and (b) that there are such properties B and such numbers 

a < b that 0 < P (a c x < bIB) < 1, then x is a random variable in the sense of the 
above definition. 

The probability P {a c x < b} considered as a function of a and b will be called 
the integral probability law of x. 

A random variable is here contrasted with a constant, say 0, which will be defined 
as a magnitude, the numerical values of which corresponding to all elements of the 

340 



STATISTICAL ESTIMATION 

set (A) are all equal. If 0 is a constant, then whatever a < b, and B, the probability 
P {a s 0 < blB} may have only values unity or zero according to whether 0 falls in 
between a and b or not. 

Keeping in mind the above definitions of the variables, in discussing them we shall 
often use the way of speaking in terms of random experiments. In the sense of the 
convention adopted above, we may say that x is a random variable when its values 
are determined by the results of a random experiment. 

It is important to keep a clear distinction between random variables and unknown 
constants. The 1000th decimal, Xo00o, in the expansion of r = 3 14159... is a 
quantity unknown to me, but it is not a random variable since its value is perfectly 
fixed, whatever fundamental probability set we choose to consider. We could say 
alternatively that the value that Xo000 may have does not depend upon the result 
of any random experiment. 

Similarly, if we consider a specified population, say the population r1935 of persons 
residing permanently in London during the year 1935, any character of this popula- 
tion will be a constant. In the sense of the terms used here, there will be no practical 
meaning in a question concerning the probability that the average income, say 
I1935, of the individuals of this population is, say, between $100 and J300. As the 
fundamental probability set consists of only one element, namely I1935, the value of 
this probability is zero or unity, and to ascertain it we must discover for certain 
whether C100 c 11935 < f300 or not. This is, of course, possible, though it might 
involve great practical difficulty, just as it is possible to find the actual value of 
Xl000, the 1000th figure in the expansion of Tr. Any calculations showing that 
P {100 5 11935 < 300} has a greater value than zero and smaller than unity must be 
either wrong or based on some theory of probability other than the one considered 
here. 

This is the point where the difference between the theory of probability adopted 
here and that developed by JEFFREYS (1931) comes to the front. According to the 
latter, previous economic knowledge may be used to calculate the probability 
P {a I11935 < blB} where a < b are any numbers and the result of the calculations 
may be represented by any fraction, not necessarily by zero or unity. 

The above examples must be contrasted with the following ones. We may con- 
sider the probability of a figure X, in the expansion of7r falling between any specified 
limits a < b and find it to be equal, e.g., to 1. This is possible when we first define 
a random method of drawing a figure out of those which serve to represent the 
expansion of 7. If this is done, then X is a random variable and the Xo000 previously 
defined will be one of its particular values. 

Similarly, it is probably not impossible to construct a more or less adequate 
mathematical model of fluctuations in the size of income, in which the yearly average 
income, I, of the permanent population of London will be a random variable. The 
I1935 previously defined will be a particular value of I, observed at the end of the 
year 1935. 

It is true that any constant, i, might be formally considered as a random variable 
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with the integral probability law P{a c i < b} having only values unity or zero 
according to whether i falls between a and b or not. If we pass from letters to 
figures this&will lead to formulae like P {1 ! 2 < 3} - 1, or P {3 s 2 < 4} = 0. 

Of course, in practice we shall have generally some unknown number f instead of 
2 in the above formulae and accordingly we shall not know what are the actual values 
of the probabilities. In order to find these values, it would be necessary to obtain 
some precise information as to the value of [. It follows that the consideration of 
such probabilities is entirely useless, since whatever we are able to express in using 
them, we can say more simply by means of equations or inequalities. 

For this reason, when defining a random variable, we require its probability law 
to be able to have values other than zero and unity. The other case may be set 
aside as trivial. 

In the following development we shall have to consider at once several random 
variables 

X1, X2, ... X . .... . ....... (2) 

It will be convenient to denote by E any combination of their particular values 
and to interpret each such combination E as a point (the sample point) in an n- 
dimensional space W (the sample space), having its coordinates equal to the 
particular values of the variables (2). If w denotes any region in W, then the 
probability, say P {Esw}, of the sample point falling within w considered as a function 
of w will be described as the integral probability law of the variables (2). 

We shall consider only cases where there exists a non-negative function 
p (E)-- p (x,..., xn) determined and integrable in the whole sample space W, 
such that for any region w 

P {Ew} - . p (E) dxi" ... dx. ..... .. (3) 
J Jw 

The function p (E) will be called the elementary probability law of the X's in (2). 
It is easy to show that when p (x,, .. ., xn_, x,) is known, then p (x,, .., x,,_) may be 
calculated by integrating p (x,,... xn) with regard to xn from - oo to + o. 

When dealing with several probability laws calculated in relation to probability 
sets depending on some variables, say y .. . y,, in order to avoid misunderstandings, 
we shall use the notation p (x . . . x,yyl ... ',) or p (E[y1 .. y ..m) If p (x, . .. Xk, 
Xk+l1 ... x.) is the probability law of x,, X.. . x., Xk+1,. . . Xn and if for a given system 
of the x's, p (xk, . . . xn) > 0 then, for that system, the relative probability law of 
X1, x2 .. . Xk given x+1, . .. x., denoted byp (x, ... . Jxk+l, .. x"), will be defined by 
the relation p (Xl, x2, . . . x .. .x) zp (xk+, . .. x) p (xl, ... XklXk+1, X. ). 

With the above definitions and notation we may now formulate the problem of 
estimation as follows: 
Let 

X1, X ... X ............ (4) 
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be a system of n random variables, the particular values of which may be given by 
observation. The elementary probability law of these variables 

p (xl . . . Xn1, 02, ? . 0) .......... (5) 

depends in a known manner upon I parameters 0 ... 01, the values of which are not 
known. It is required to estimate one (or more) of these parameters, using the 
observed values of the variables (4), say 

x 1 , x 2 * * X n ..* * * * * * * * * * (6) 

(b) Review* of the Solutions of the Problem of Estimation Advanced Hereto 

The first attempt to solve the problem of estimation is connected with the theorem 
of Bayes and is applicable when the parameters 01, 02, . . 6, in (5) are themselves 
random variables. The theorem of Bayes leads to the formula 

P (01, 02, ... 0. IX'1, X' 2, .. Xn) 

p (01, 02 . . . 0) p (x' , X 2, ... xni 01 . 0l) 

I. JP (0, 02, ... . ,) p (X'1, X' , .. X 
01'. , ... 0,) d . . . d,, (7). 

representing the probability law of 01, 02,... 0,, calculated under the assumption 
that the observations have provided the values (6) of the variables (4). Here 
p (01, ... 0,) denotes the probability law of the 0's, called a priori, and the integral 
in the denominator extends over all systems of values of the O's. The function 
p (01, 02, . . . 1x't1, x'2 ... x') is called the a posteriori probability law of 0's. In 
cases where the a priori probability law p (01, 02 ... 0 ) is known, the formula (7) 
permits the calculation of the most probable values of any of the O's and also of the 
probability that 0,, say, will fall in any given interval, say, a c 0i < b. The most 

v 

probable value of 0,, say 0,, may be considered as the estimate of 0, and then the 
probability, say v v 

v 

P{Oi--- A < 0i < 0i + A IE'}, ......... (8) 

will describe the accuracy of the estimate 0i, where A is any fixed positive number 
and E' denotes the set (6) of observations. 

It is known that, as far as we work with the conception of probability as adopted in 
this paper, the above theoretically perfect solution may be applied in practice only 
in quite exceptional cases, and this for two reasons: 

(a) It is only very rarely that the parameters 01, 02, ... 0, are random variables. 
They are generally unknown constants and therefore their probability law a priori 
has no meaning. 

* This review is not in any sense complete. Its purpose is to exemplify the attempts to solve the 
problem of estimation. 
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(b) Even if the parameters to be estimated, 01, 02, . . .0, could be considered as 
random variables, the elementary probability law a priori, p (01, 02, ... 0.), is 

usually unknown, and hence the formula (7) cannot be used because of the lack of 
the necessary data. 

When these difficulties were noticed, attempts were made to avoid them by 
introducing some new principle lying essentially outside the domain of the objective 
theory of probability. 

The first of the principles advanced involved the assumption that when we have 
no information as to the values of the O's, it is admissible to substitute in formula (7) 
some function of the O's selected on intuitive grounds, e.g., 

p (0 , 02,. . . 0) -- const. .......... (9) 
and use the result, say 

p, ( 1,... * I E') = - (xl,x2, : 
n^31 * ^^-----_ .... (10) 

.Jp (x'l, x'2 ... x'e 01,. . 0,) dOi ... dA 

as if this were the a posteriori probability law of the O's. 
This procedure is perfectly justifiable on the ground of certain theories of 

probability, e.g., as developed by HAROLD JEFFREYS, but it is not justifiable on the 
ground of the theory of probability adopted in this paper. In fact, the function 
Pi (01 ... . IE') as defined by (10) will not generally have the property serving as a 
definition of the elementary probability law of the O's. Its integral over any region 
w in the space of the O's will not be necessarily equal to the ratio of the measures of 
two sets of elements belonging to the fundamental probability set, which we call the 
probability. Consequently, if the experiment leading to the set of values of the x's 
is repeated many times and if we select such experiments (many of them) in which 
the observed values were the same, x1, x'2 ... x',, the assumed validity of the law 
of big numbers (in the sense of BORTKIEWIZ) will not guarantee that the frequency 

v v 

of cases where the true value of O, falls within Oi - A < O, < Oi + A will approach 
the value of (8), if this is calculated from (10). Moreover, if the 0's are 
constant, this frequency will be permanently zero or unity, thus essentially differing 
from (8). 

The next principle I shall mention is that advocating the use of the so-called 
unbiassed estimates and leading to the method of least squares. Partly following 
MARKOFF (1923), I shall formulate it as follows : 

In order to estimate a parameter 0, involved in the probability law (5), we should 
use an unbiassed estimate or, preferably, the best unbiassed estimate. 

A function, Fi, of the variables (4) is called an unbiassed estimate of Oi if its mathe- 
matical expectation is identically equal to ,O, whatever the actual values of 
0, 02,^... . Thus, 

(Fi,)- O ............. (11) 
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An unbiassed estimate F, is called the best if its variance, say 

VF,= (F,--,) , ........... (12) 

does not exceed that of any other unbiassed estimate of 0,. 
It is known that MARKOFF provided a remarkable theorem leading, in certain 

cases, to the calculation of the best of the unbiassed estimates which are linear 
functions of the variables (4). The advantage of the unbiassed estimates and the 
justification of their use lies in the fact that in cases frequently met the probability of 
their differing very much from the estimated parameters is small. 

The other principle, which is to a certain extent in rivalry with that of the 
unbiassed estimate, is the principle of maximum likelihood. This consists in con- 
sidering L const. X p (x'., x'2... x', 0 .. . 09), where x'i denotes the observed 
value of X,, as a function of the parameters 0,, called the likelihood. It is advocated 
that the values of L may serve as a measure of our uncertainty or confidence in the 
corresponding values of the O's. Accordingly, we should have the greatest con- 

A A A A 

fidence in the values, say, 01, 02, ... 0,, for which L is a maximum. 0O obviously is 
a function of x' ... x'; it is called the maximum likelihood estimate of O;. 

As far as I am aware, the idea of the maximum likelihood estimates is due to 
KARL PEARSON, who applied the principle in 1895 (see particularly pp. 262-265), 
among others to deduce the now familiar formula for estimating the coefficient of 
correlation. However, he did not insist much on the general applicability of the 
principle. This was done with great emphasis by R. A. FISHER, who invented the 
term likelihood, and in a series of papers (FISHER, 1925) stated several important 
properties of the maximum likelihood estimates, to the general effect that it is 
improbable that their values will differ very much from those of the parameters 
estimated. In fact, the maximum likelihood estimates appear to be what could be 
called the best " almost unbiassed " estimates. Many of FISHER'S statements, partly 
in a modified form, were subsequently proved by HOTELLING (1932), DOOB (1934), 
and DUGU, (1936). An excellent account of the present state of the theory is given 
by DARMOIS (1936). 

In certain cases the unbiassed estimates are identical with those of maximum 
likelihood; in others we know only the maximum likelihood estimate, and then 
there is no " competition " between the two principles. But it sometimes happens 
that both principles may be applied and lead to different results. Such is, for instance, 
the case when it is known that the variables (4) are all independent and each of them 
follows the same normal law, so that 

/ 1 \ _ s($i-) 

p(E, a) = v> e 2a2** (13) 

The maximum likelihood estimate of the variance, 2, is 

1I 1 
C2=1 2: (x,-X)2, x= . x;, .. ... . (14) nif =l n i . I 
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while the unbiassed estimate is, say, 
1 n 

C2 _ _ (X i-x) ........ ( j15) 
n - t X 1 

and the question arises which of them to use. Obviously this is a question of 

principle, and the arguments, like "you must use (15) because the expectation of C2 

is equal to c2 ", do not prove much by themselves. It is perhaps remarkable that 
some of the authors who, when discussing theory, advocate the use of the maximum 
likelihood estimate, use in practice the estimate (15). 

The formulae (14) and (15) may be used to illustrate the meaning of the expression 
" almost unbiassed" estimate, used above. Familiar formulae show that the 

expectation of 2 is 
? (c2) = (l )a2 .... ........ (16) 

thus showing a "negative bias," n-12. If we increase the number of observations, 

n, the bias tends to zero, which justifies the terms " almost unbiassed " or " con- 

sistent " estimate attached to (14). 

(c) Estimation by Unique Estimate and by Interval 

In the preceding pages we have described briefly three of the several important 
principles advanced for the calculation of estimates. All of them represent attempts 
to solve the problem which might be called the problem of a unique estimate of an 

unknown parameter which reduces to determining a function of the observations, 
the value of which presumably does not differ very much from that of the estimated 

parameter. 
We shall now call attention to the fact that apart from the problem of a unique 

estimate, the requirements of practical statistical work brought to the front another 

problem which we shall call the problem of estimation by interval. 
Denote generally by 0 the parameter to be estimated and by T its estimate, deduced 

from some principle or another. Whatever the principle, it is obviously impossible 
to assume that in any particular case T is exactly equal to 0. Therefore, the 

practical statistician required some measure of the accuracy of the estimate T. The 

generally accepted method of describing this accuracy consists in calculating the 

estimate, say ST, of the variance VT of T and in writing the result of all the calcula- 

tions in the form T ? ST. 
Behind this method of presenting the results of estimating 0, there is the idea that 

the true value of 0 will frequently lie between the value of T minus a certain multiple 
of ST and T plus perhaps some other multiple of ST. Therefore, the smaller ST the 

more accurate is the estimate T of 0. 
If we look through a number of recent statistical publications, we shall find that 

it is exceedingly rare that the values of unique estimates are given without the ? ST. 
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We shall find also that the comments on the values of T are largely dependent on 
those of ST. This shows that what the statisticians have really in mind in problems 
of estimation is not the idea of a unique estimate but that of two estimates having 
the form, say 

0 - -T -kST and = T + k ST,.... (17) 

where k1 and k2 are certain constants, indicating the limits between which the true 
value of 0 presumably falls. 

In this way the practical work, which is frequently in advance of the theory, 
brings us to consider the theoretical problem of estimating the parameter 0 by means 
of the interval (0, 0), extending from 0 to 0. These limits will be called the lower 
and upper estimates of 0 respectively. It is obvious that if the values of k1 and k2 
in (17) are not specified, then the real nature of the two estimates is not determined. 

In what follows, we shall consider in full detail the problem of estimation by 
interval. We shall show that it can be solved entirely on the ground of the theory 
of probability as adopted in this paper, without appealing to any new principles or 
measures of uncertainty in our judgements. In so doing, we shall try to determine 
the lower and upper estimates, 0 and 0, which assure the greatest possible accuracy 
of the result, without assuming that they must necessarily have the commonly 
adopted form (17). 

II-CONFIDENCE INTERVALS 

(a) Statement of the Problem 

After these somewhat long preliminaries, we may proceed to the statement of the 
problem in its full generality. 

Consider the variables (4) and assume that the form of their probability law (5) is 
known, that it involves the parameters 01, 02, . .., 0, which are constant (not 
random variables), and that the numerical values of these parameters are unknown. 
It is desired to estimate one of these parameters, say 01. By this I shall mean that 
it is desired to define two functions 0 (E) and 0 (E) z8 0 (E), determined and single 
valued at any point E of the sample space, such that if E' is the sample point deter- 
mined by observation, we can (1) calculate the corresponding values of 0 (E') and 
0 (E'), and (2) state that the true value of 01, say 01?, is contained within the limits 

H (E') c 01? c 0 (E'), .......... (18) 

this statement having some intelligible justification on the ground of the theory of 
probability. 

This point requires to be made more precise. Following the routine of thought 
established under the influence of the Bayes Theorem, we could ask that, given the 
sample point E', the probability of 01? falling within the limits (18) should be large, 
say, a = 0 99, etc. If we express this condition by the formula 

P{O (E') < 01? < 0 (EE') , ........ (19) 
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we see at once that it contradicts the assumption that 01? is constant. In fact, on 
this assumption, whatever the fixed point E' and the values 0 (E') and 0 (E'), the 
only values the probability (19) may possess are zero and unity. For this reason we 
shall drop the specification of the problem as given by the condition (19). 

Returning to the inequalities (18), we notice that while the central part, 01?, is a 
constant, the extreme parts 0 (E') and 0 (E') are particular values of random 
variables. In fact, the coordinates of the sample point E are the random variables 
(4), and if 0 (E) and 6 (E) are single-valued functions of E, they must be random 
variables themselves. 

Therefore, whenever the functions 0 (E) and 0 (E) are defined in one way or 
another, but the sample point E is not yet fixed by observation, we may legitimately 
discuss the probability of 0 (E) and 0 (E) fulfilling any given inequality and in 
particular the inequalities analogous to (18), in which, however, we must drop 
the dashes specifying a particular fixed sample point E'. We may also try to select 
8 (E) and 0 (E) so that the probability of 0 (E) falling short of 010 and at the same 
time of 0 (E) exceeding 01?, is equal to any number a between zero and unity, fixed 
in advance. If 01? denotes the true value of 01, then of course this probability must 
be calculated under the assumption that 01? is the true value of 01. Thus we can 
look for two function 0 (E) and 0 (E), such that 

P{ (E) ( E) ? 8} = . . . . ... (20) 

and require that the equation (20) holds good whatever the value 01? of 01 and 
whatever the values of the other parameters 02, 03, .., 0,, involved in the probability 
law of the X's may be. 

The functions 0 (E) and 0 (E) satisfying the above conditions will be called the 
lower and the upper confidence limits of 01. The value a of the probability (20) 
will be called the confidence coefficient, and the interval, say 8 (E), from 0 (E) to 
0 (E), the confidence interval corresponding to the confidence coefficient ct. 

It is obvious that the form of the functions 0 (E) and 0 (E) must depend upon the 

probability law p (E 01 ... . 0). 
It will be seen that the solution of the mathematical problem of determining the 

confidence limits 0 (E) and 0 (E) provides the solution of the practical problem of 
estimation by interval. For suppose that the functions 0 (E) and 0 (E) are deter- 
mined so that the equation (20) does hold good whatever the values of all the 

parameters 01, 2,. .. 0. may be, and ac is some fraction close to unity, say a = 0 99. 
We can then tell the practical statistician that whenever he is certain that the form 
of the probability law of the X's is given by the function p (El01, 2, ... 0,) which 
served to determine 0 (E) and 0 (E), he may estimate 01 by making the following 
three steps : (a) he must perform the random experiment and observe the particular 
values x1, X2, .. x. of the X's; (b) he must use these values to calculate the corre- 
spondingvalues of 0 (E) and 0(E) ; and (c) he must state that 0 (E) < 01? < 6 (E), 
where 1?0 denotes the true value of 01. How can this recommendation be 
justified ? 
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The justification lies in the character of probabilities as used here, and in the law 
of great numbers. According to this empirical law, which has been confirmed by 
numerous experiments, whenever we frequently and independently repeat a random 
experiment with a constant probability, cc, of a certain result, A, then the relative 
frequency of the occurrence of this result approaches cc. Now the three steps (a), 
(b), and (c) recommended to the practical statistician represent a random experiment 
which may result in a correct statement concerning the value of 01. This result may 
be denoted by A, and if the calculations leading to the functions 0 (E) and 0 (E) are 
correct, the probability of A will be constantly equal to cc. In fact, the statement (c) 
concerning the value of 01 is only correct when 0 (E) falls below 001 and 0 (E), 
above 01?, and the probability of this is equal to cc whenever 01? is the true value of 01. 
It follows that if the practical statistician applies permanently the rules (a), (b) and 
(c) for purposes of estimating the value of the parameter 0,, in the long run he will be 
correct in about 99 per cent. of all cases. 

It is important to notice that for this conclusion to be true, it is not necessary that 
the problem of estimation should be the same in all the cases. For instance, during 
a period of time the statistician may deal with a thousand problems of estimation and 
in each the parameter 01 to be estimated and the probability law of the X's may be 
different. As far as in each case the functions 0 (E) and 0 (E) are properly calculated 
and correspond to the same value of cc, his steps (a), (b), and (c), though different in 
details of sampling and arithmetic, will have this in common-the probability of their 
resulting in a correct statement will be the same, cc. Hence the frequency of actually 
correct statements will approach c. 

It will be noticed that in the above description the probability statements refer 
to the problems of estimation with which the statistician will be concerned in the 
future. In fact, I have repeatedly stated that the frequency of correct results will 
tend to a.* Consider now the case when a sample, E', is already drawn and the 
calculations have given, say, 0 (E') = 1 and 0 (E') -= 2. Can we say that in this 
particular case the probability of the true value of 01 falling between I and 2 is equal 
to a? 

The answer is obviously in the negative. The parameter 01 is an unknown constant 
and no probability statement concerning its value may be made, that is except for 
the hypothetical and trivial ones 

l if 1 _S 010 _s 2 
P{1 s< 06? _2} \ * . . (21) P {I1 

t 0o 2} =j0 if either 00 < 1 or 2 < 0, 
(21) 

which we have decided not to consider. 
The theoretical statistician constructing the functions Q (E) and 0 (E), having the 

above property (20), may be compared with the organizer of a game of chance in 
which the gambler has a certain range of possibilities to choose from while, whatever 

* This, of course, is subject to restriction that the X's considered will follow the probability law 
assumed. 
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he actually chooses, the probability of his winning and thus the probability of the 
bank losing has permanently the same value, 1 - a. 

The choice of the gambler on what to bet, which is beyond the control of the bank, 
corresponds to the uncontrolled possibilities of 01 having this or that value. The 
case in which the bank wins the game corresponds to the correct statement of the 
actual value of 01. In both cases the frequency of " successes " in a long series of 
future " games " is approximately known. On the other hand, if the owner of the 
bank, say, in the case of roulette, knows that in a particular game the ball has stopped 
at the sector No. 1, this information does not help him in any way to guess how the 
gamblers have betted. Similarly, once the sample E' is drawn and the values of 
0 (E') 0 and (E') determined, the calculus of probability adopted here is helpless to 
provide answer to the question of what is the true value of 01. 

(b) Solution of the Problem of Confidence Intervals 

In order to find the solution of the problem of confidence intervals, let us suppose 
that it is already solved and that 0 (E) and 0 (E) are functions determined and single 
valued in the whole sample space, W, and such that the equality (20) holds good 
whatever the true values of the parameters 01, ,.. . . . It will be convenient to 
interpret the situation geometrically. For this purpose we shall need to consider 
the space, G, of n + 1 dimensions which we shall call the general space. The points 
in this space will be determined by n + 1 coordinates xI, x2, . . . xn, 01, the first n of 
which are the particular values of the random variables (4) and thus determine the 
position of a sample point, E, in the n-dimensional space W, and the last coordinate 
01 is one of the possible values of the parameter 01 in the probability lawp (E I o... o,) 
which we desire to estimate. 

Consequently, if we consider any hyperplane, G (01) in G corresponding to the 

equation 01 = const., this may be interpreted as an image of the sample space W. 
We notice also that to any point E in the sample space W there will correspond in G 
a straight line, say L (E), parallel to the axis O06. If xI', x2' . . . x' are the co- 
ordinates of E', then the line L (E') will correspond to the equations xi = xi' for 
i = 1, 2, ... n. 

Consider now the functions 0 (E) and 0 (E). On each line L (E), they will 
determine two points, say B (E) and C (E) with coordinates 

x, x2... x,, 0 (E) . .. .... .. . (22) 
and 

XL, X2... Xn, (E) . . .. . . . .. . . (23) 

respectively, where xl, x2 ... x are the coordinates of the sample point E. The 
interval between B (E) and C (E) will be the image of the confidence interval 8 (E) 
corresponding to the sample point E. If we fix a value of 01 - 01' and a sample 
point E', then the hyperplane G (01') may cut or may not cut the confidence interval 
8 (E'). If G (0,') does cut 8 (E'), let a (01', E') denote the point of intersection. 
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The position is illustrated in fig. 1, in which, however, only three axes of co- 
ordinates are drawn, Ox1, Oxn, and 001. The line L (E') is represented by a dotted 
vertical line and the confidence interval 8 (E') by a continuous section of this line, 
which is thicker above and thinner below the point a (0'1, E') of its intersection with' 
the hyperplane G (01'). The confidence interval 8 (E") corresponding to another 

sample point, E", is not cut by G (01') and is situated entirely above this hyperplane. 
Now denote by A (01') the set of all points a (0'1, E) in G (0'1) in which this 

hyperplane cuts one or the other of the confidence intervals 8 (E), corresponding to 

any sample point. It is easily seen that the coordinate 01 of any point belonging to 
A (0'1) is equal to 0'1 and that the remaining 
coordinates xl, x, . . . x satisfy the inequalities IL(E") 

0(E) O'1 0 (E). . (24) 0 ,L(E) SE 

In many particular problems it is found that I 
E 

the set of points A (01) thus defined is filling C(El 

up a region. Because of this A ('1) will be v1) \ 
called the region of acceptance corresponding T B 
to the fixed value of 01 = . 0, . 

It may not seem obvious that the region of .. | 

acceptance A (01) as defined above must exist / 
(contain points) for any value of 01. In fact, O 6L(E) LE 
it may seem possible that for certain values of 
01 the hyperplane G (01) may not cut any of io 
the intervals 8 (E). It will, however, be seen 
below that this is impossible. 

As mentioned above, the coordinates xl, 
x2,... x, of any sample point E determine in FIG. I-The general space G. 
the space G the straight line L (E) parallel to 
the axis of 01. If this line crosses the hyperplane G (01) in a point belonging to 
A (01) it will be convenient to say that E falls within A (01). 

If for a given sample point E the lower and the upper estimates satisfy the 
inequalities 0 (E) : 0O' c 0 (E), where 0', is any value of 01, then it will be con- 
venient to describe the situation by saying that the confidence interval 8 (E) covers 
0'1. This will be denoted by 8 (E) CO'1. 

The conception and properties of the regions of acceptance are exceedingly 
important from the point of view of the theory given below. We shall therefore 
discuss them in detail proving separately a few propositions, however simple they 
may seem to be. 

Proposition I-Whenever the sample point E falls within the region of acceptance 
A (0',), corresponding to any fixed value O'% of 01, then the corresponding confidence 
interval 8 (E) must cover 0'. 

Proof-This proposition is a direct consequence of the definition of the region of 

3B 2 
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acceptance. Suppose it is not true. Then there must be at least one sample point, 
say E', which falls within A (0'9) and such that either 0 (E') c 0 (E') < 0'1 or 
0'Q < 0 (E') c 0 (E'). Comparing these inequalities with (24) which serve as a 
definition of the region of acceptance A (0'1), we see that E' could not fall within 
A (0'1), which proves the Proposition I. 

Proposition II-If a confidence interval 8 (E") corresponding to a sample point 
E" covers a value O'1 of 01, then the sample point E" must fall within A (0'1). 

Proof-If a (E") covers O'Q, then it follows that 0 (E") c 0'Q c 0 (E"). Com- 
paring these inequalities with (24) defining the region A (90'), we see that E" must 
fall within A (0'1). 

If we agree to denote generally by {BsA} the words " B belongs to A " or " B is 
an element of A ", then we may sum up the above two propositions by writing the 
identity 

{EeA (0'1)} ({ (E) C0'1}- _0 (E) 5 0'1 c 0 (E)}, . . (25) 

meaning that the event consisting in the sample point E falling within the region of 
acceptance A (0',) is equivalent to the other event which consists in Of' being covered 
by 8 (E). 

Corollary I-It follows from the Proposition I and II that whatever may be the 
true values O',, 0' . . . 0'. of the 0's, the probability of any fixed value 0"9 of 01 
being covered by 8 (E) is identical with the probability of the sample point E falling 
within A (0",). 

P {8 (E) COj 1 0', , 0'} = P {0 (E) 0" 1 < 0 (E)E 0' , 0'2... 0'1 

- P{E.A (0",) ', , '2, ...' 0'}. (26) 

Proposition III-If the functions 0 (E) and 0 (E) are so determined that whatever 
may be the true values of 01, 0, ... 01, the probability, P, of the true value of 01 

being covered by the interval 8 (E) extending from 0 (E) to 0 (E) is always equal to 
a fixed number o, then the region of acceptance A (0',) corresponding to any fixed 
value 0', of 0, must have the property that the probability 

P {EzA (0')1 ,0', 0, ,. 0} - - a, ....... (27) 

whatever may be the values of the parameters 02 , 03,... 01. 

Proof-Assume that 0'9 happens to be the true value of 01 and denote generally 
by O'i the true value of i0, for i = 2, 3,... 1. The probability P, as defined in 
conditions of the Proposition III, may be expressed by means of the formula 

P = P{_ (E) c 0', c 0 (E) ',, 0'2, .. '. 0 ..... (28) 

Owing to (26), which holds good for any 0',, 0'2,... e0', we may write also 

P - P {EAA (0'1,) 0'1, 0',... ',. ........ (29) 
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If P is permanently equal to o, then P {EeA (0') 1O'l, O'2,. . 0',} must be also 

equal to ca, whatever 0'1, ' . . . '. , which proves the proposition. 
Corollary II-It follows from the Proposition III that whatever the value 6'i of 

01, the region of acceptance A (0',) could not be empty. In fact, if for any value 
0', the region A (01') as defined above did not contain any points at all, then the 
probability P{EsA (0'1) j0', .. . 0'} would be zero, which would contradict the 
Proposition III. 

Proposition III describes the fundamental property of any single region of 
acceptance A (01) taken separately. We shall now prove three propositions con- 
cerning the whole set of the regions A (01) corresponding to all possible values of 01. 

Proposition IV-TIf the functions 0 (E) and 0 (E) 2: 0 (E) are single valued and 
determined for any sample point E, then whatever the sample point E', there will 
exist at least one value of 01, say 0'l, such that the point E' will fall within A (0',). 

Proof-Consider the values of 0 (E) and 0 (E) corresponding to the point E' and 
let 0', be any value of 01 satisfying the condition 0 (E') s 0'f 6 0 (E'). Com- 
paring these inequalities with (24), we see that E' must fall within A (0'"), which 
proves the proposition. 

Proposition V-If a sample point E' falls within the regions of acceptance A (0',) 
and A (0",) corresponding to O', and 0", > 0', respectively, then it will also fall 
within the region of acceptance A (0"',) corresponding to any 0"'" such that 
O1f < 0 I < 

f 
1. 

Proof-If the sample point E' falls within A (0') and A (0"1) then, owing to (24), 
it follows that 

0 (E') s O', < 0", 
f 0 (E'). ........ (30) 

Accordingly, whatever 0"', such that O', < 0"'i < 0",, it follows that 

0 (E') < "', < 0 (E'), ........ (31) 

which shows that E' falls within A (0"'). 
Proposition VI-If a sample point E' falls within any of the regions A (0,) for 

0'K < 0, < 0", where O', and 0", are fixed numbers, then it must also fall within 
A (0',) and A (0",). 

Proof-Suppose that the proposition is not true and that, for example, E' does not 
fall within A (0',). Then it follows that 

0', <0 (E') ............ (32) 

Let O"'" be a number exceeding 0', but smaller than either 0 (E') and 0", so that 
0' < 0"' < 6" and 0"' < 0 (E'). It follows from the definition (24) of A (01) 
that E' does not fall within A (0"'), contrary to the assumption that for any 01 such 
that 0'1 < 01 < 0", the point E' falls within A (0,). Similarly it is possible to 
prove that E' must fall within A (0"1). 
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The four propositions III, IV, V, and VI describe the necessary conditions which 
must be satisfied by the regions of acceptance A (01), either separately by each of 
them or collectively, if the functions 0 (E) and 0 (E) are determined and single 
valued in the whole sample space W and if the equation (20) holds good for any 
value of 01; that is to say when they determine the confidence intervals required. 

We shall now prove the reciprocal proposition, showing that if it is possible to select 
on each hyperplane G (01) a region A (01) having the properties as described in the 
conclusions of the propositions III to VI, then the system of these regions may be 
used to define the functions 0 (E) c 0 (E) which will be determined and single 
valued at any sample point E; further, their system will have the property that for 
any value 01? of 01 the equality (20) will hold good, whatever the values of the other 
parameters ,0, , ... 01. 

Suppose, therefore, that on each hyperplane G (01) there is defined a region, 
A' (01), such that 

(i) P {EsA' (01) 0 1} = a, whatever the values of 02, 03, ... 01. 

(ii) Whatever the sample point E, there exists at least one value O', of 01 such that 
E falls within A' (0'1). 

(iii) If a sample point E falls within A' (0',) and A' (0"1) where 0', < 0", then, 
whatever 0"', such that O'1 < 0"', < 0"1, the point E falls within A' (0"'"). 

(iv) If a sample point E falls within A' (01) for any 01 satisfying the inequalities 
0', < 01 < 60", then it falls also within A' (0'1) and A' (0",). 

Denote by 0' (E) the lower and by 0' (E) the upper bound of values of 01 for which 
a fixed sample point E falls within A' (01). 

Proposition VII-If the regions A' (01) satisfy the conditions (i), (ii), (iii), and (iv), 
then the functions 0' (E) and 0' (E) are the lower and the upper confidence limits of 
01, i.e., such that 

(a) they are determined and single valued at any point E and O' (E) c O' (E), 
(b) whatever the true value ,01 of 01, the probability 

P {0' (E) c 01? 0' (E) 10} =, ...... (33) 

independently of the values of the other parameters 02, 03, ... 01. 

Proof-The property (a) of functions 0' (E) and 0' (E) follows directly from the 
condition (ii) and the definition of O' (E) and O' (E). We may notice, however, 
that 0' (E) and 0' (E) are not necessarily finite. 

To prove the property (b), it will be sufficient to show that whatever 01? 

P {0' (E) c 010 c 0' (E)1 0?} = P {EsA' (i0?) 1 }, .... (34) 

and then refer to the condition (i). 
For this purpose we notice first that owing to the definition of O' (E) and 0' (E), 

whenever E falls within A' (,01), then it must follow that 0' (E) c 01? 0' (E). 
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It remains to show that inversely, if for any point E, 0' (E) 61 0 ' (E), then 
this point must fall within A' (01?). 

Suppose for a moment that this is not true and that there is a sample point E' not 
falling within A' (01?) and such that 0' (E') ' 01? ' 0' (E'). 

It is easily seen that in such a case, either 0' (E') -- 0 or 010 = ' (E') or both, if 
0' (E') 0 ' (E'). In fact, if 0' (E') < 010 < 6' (E'), then 0' (E') and 0' (E'), 
being the lower and the upper bounds of the values of 01 for which E' falls within 
A' (01), there would exist two values of 01, say 0'6 and 0",, such that E' is falling 
within A' (0'1) and A' (0"1) and 

0' (E') c 0'Q < 01? < 0" : 0' (E'). . .. (35) 

It would then follow from the condition (iii) that E' falls within A' (01?), contrary 
to the assumption. Therefore, we cannot assume that 0' (E') < 60? < 0' (E'). 

Now it is easy to see that if 

0' () 0 (E''))' (E ....... .. (36) 

then E' must fall within A' (01?). In fact, 0' (E') and 0' (E') are respectively the 
lower and the upper bounds of the values of 01 for which E' falls within A' (01). 
If they are both equal to 01,, then 01? must be the only value of 01 for which E' falls 
within A' (01). 

It remains to consider only such cases where either 0' (E') = 10 < 0' (E') or 
0' (E') < 0? = 0' (E'). In both cases 0' (E') < 0' (E'). We notice first that, 
whatever 01, within the limits 

0' (E') < 01 < 0' (E') ......... .. (37) 

the sample point E' must fall within A' (01). Otherwise either 0' (E') and O' (E') 
would not be respectively the lower and the upper bounds of values of 01 for which 
E' falls within A' (01), or else the condition (iii) would not be satisfied. Now it 
follows from (iv) that E' must fall both within A' (0 ') and A' (0 ") where 0' = 0 ' (E') 
and 0"' = 0' (E') and therefore within A' (01?), which completes the proof of the 
Proposition VII. 

Thus the problem of constructing the system of confidence intervals is equivalent 
to that of selecting on each hyperplane, G (01), regions A ( 1) satisfying the conditions 
(i)-(iv). Obviously, these regions will have the property of being regions of 
acceptance. 

Before going any further with the theory and discussing the problem of how to 
choose the most appropriate system of the regions of acceptance, we shall illustrate 
the results already reached on two examples. These have been selected so as to reduce 
to a minimum the technical difficulties in carrying out the necessary calculations 
which might easily conceal the essential points of the theory to be illustrated. It is 
obvious that under the circumstances the examples could hardly fail to be somewhat 
artificial. However, at the end of the paper the reader will find examples having 
direct practical importance. 
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(c) Example I 

Consider first the case where the probability law of the random variables con- 
sidered depends only upon one unknown parameter 0, which it is desired to estimate. 
Assume further, for simplicity, that the number of random variables, the particular 
values of which may be given by observation is n = 2 and that their elementary 
probability law p (x,, xO 0) is known to be 

p (, X210) 0-2 for 0< x1, 2 < 0 
and . (38) 

p (x1, x2 0) = 0 for any other system of values of x and x2 

!~~~/ ~The value of 0 is unknown and it is desired 
to construct a system of confidence intervals 

axj^ ]^^^\ / \^' ~ for its estimation. 
I, ~ '~~.- \ The sample space W is now of two dimen- 

- A-^^^^__ \ ssions, i.e., a plane. As the coordinates of the 
sample point must be positive, we may con- 

../ . | sider that W is limited by the conditions 
.....0 / O < x] and 0 < x. Denote by W+ (0) the 

part of W in which p (xl, x210) is positive. 

~~| 
"'6 ~~ \ Obviously W+ (0) is a square with its side 

equal to 0. 
e| 6'~ // ./% Fig. 2 represents the general space G with 

two planes G (0) on which the correspond- 
-O^s.~~ R_ > ing squares W+ (0) are marked. 

According to Proposition VII, the con- 
struction of the system of confidence intervals 
will be completed if we manage to select on 
each of the planes G (0) a region of accept- 
ance A (0) satisfying (i)-(iv). Now it is easily 

FIG. 2. seen that it is possible to suggest many systems 
of regions, some of which will and some of 

which will not satisfy all these conditions. We shall consider three systems, which 
will be denoted by SI, S2, and S3, and the particular regions forming these systems 
by AI (0), A2 (0), and A3 (0) respectively. 

(1) Fix any value of 0 and let the region of acceptance A1 (0) be defined by the 
inequalities 

0 < xi < 0 for i= 1,2, ......... (39) 

where P is a positive number less than unity and so selected as to satisfy the condition 

P {EsAI (0)10} s . . . . . . . (40) 
Obviously 

P {EA, (0)10}= (1 - )2, .. . . . .... (41) 

356 



STATISTICAL ESTIMATION 357 

and it follows that 
(- = 1 - o. . . ........... . (42) 

The regions A1 (0) defined by (39) will form the system S1. If 3 is selected as 
indicated in (42), they will satisfy the condition (i). Now it is easy to see that they 
will not satisfy the condition (ii) and that therefore the system S1 does not present a 
suitable choice of regions of acceptance which would determine the confidence 
intervals. 

To see this, take any sample point E' with coordinates x',, x'2, and see whether it 
is always possible to find a value of 0 -= ', such that E' will fall within A1 (0'). 
Owing to (39), such a value 0' should satisfy the inequalities 

P0' < x', x'2 < 0', . ........ (43) 

or, if I and L denote respectively the smaller and the greater of the numbers x'1 and 
x'2, then 

L < 0' < l-1. .. .......... (44) 

This shows that the value 0' such that E' falls within A1 (O'1) can be found only if 
L < 1f-1, or pL < 1. Now if 1= x', < x'2 L, then these inequalities lead to the 
condition x'2 < x',. If, on the contrary, 1= x'2 - x'l =L, then x'1 < x'2. 
Accordingly, none of the sample points E" with coordinates x", and x"2 such that 
either 

0 < x"2 < 'X"1 or 0 < x"' < x" . . . .. (45) 

will fall within any of the regions A1 (0) forming th;e system S, and it follows that 
they could not serve as regions of acceptance. Fig. 3 (i) illustrates the situation. 
Here cross-hatched areas correspond to (45). 

(2) The second system S2 of regions A2 (0) we shall consider might be suggested 
by intuition. It follows from the definition of the probability law p (x1, x2 (0) that 
xi and x2 are mutually independent and that they vary from zero to 0. Under these 
circumstances, the mean x = -1 (x1 + x2) will vary symmetrically about 0 and there- 
fore 2x = x + 2 - T could be considered as an estimate of 0 itself. 

Denote by A2 (0) a region in G (0) defined by the inequalities 

0 

- A X1l + X2 +5 0-t A, ........ (46) 

where A is so selected as to have P {EsA2 (0)10} = . Simple calculations give 

P {EA2 (0)l0} 1- ) --, ....... (47) 

and it follows that A 0 (1 - oa). Substituting this value in (46), we get 

0(1- (1 -- ) ) xl + x2 0(1 + (1 - )) ..... (48) 

as the final definition of the region A2 (0). Fig. 3 (ii) shows the form of the region. 
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It is easily seen that the system S, of regions thus defined satisfies all the conditions 

(i)-(iv) . 
For example, in order to check the condition (ii), we may notice that whatever 

the positive numbers x'1 and x'2, the value 

o i AI1 + X12 ** (49) , _ 1 -- X 2+ .. . . . . . . . (49) 

satisfies the inequalities (48) which means that the sample point E' with coordinates 

x'i and x'2 falls within A2 (0'). 
The other conditions (iii) and (iv) are checked equally easily. Thus the regions 

A2 (0) may be considered as regions of acceptance. Let us now see how they 
determine the lower and the upper confidence limits of 0, say 02 (E) and 02 (E). 
According to the definition, 02 (E) is the lower bound of the values 0' of 0 for which 
the sample point E falls within A2 (0'). If xl and x2 are the coordinates of E, then 
it follows from (48) that 0' could not be smaller than, but may be as small as, 
(xl + x2) (1 + (1 - o~))-1, which means that 

92 (E) x1 )-+ 
2 (50) 

Similarly we get from (48) that O' may be as large as, but could not exceed, 
(x1 + x) (1 - (1 - c)i)-1, which shows that 

_- X, + X2(51) 
02 (E) 1 - - * v ...... (51) 

Formerly we used the symbol 8 (E) to denote the confidence interval extending 
from 0 (E) to 0 (E). Now we shall use the same symbol to denote the length of the 
confidence interval. We shall have from (50) and (51), say 

8, (E) - 
0, (E) ( - (x + x) 2) ~ . . . (52) 

Now we may use (50) and (51) for estimating 0. If the observations provided the 
values of xl and x,, say x', and x'2, we should state that 

x 1 + XI 2 xtI + X 2 

l+(l .. - . -- '(53 

Whatever value of a may be fixed in advance, such that 0 < a < 1, we may be certain 
that the frequency of the statement in the form (53) being correct will, in the long 
run, approach a. 

The accuracy of estimation corresponding to a fixed value of oc may be measured 

by the lengths of the confidence intervals (52). 
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(3) The regions A3 (0) forming the third set, S3, will be defined by the inequalities 

qO L L < 0 . ........... . (54) 

where L denotes again the larger of the two numbers xl and x2, and q a number 
between zero and unity to be determined so as to satisfy the condition (i) 

P {EsA3 (0)10} 
- 

P{qO 5 L < 00} ---- . .... . (55) 

Fig. 3 (iii) shows the relationship between W+ (0) and A3 (0) which lies outside 
the square adjoining the origin of coordinates with its side equal to qO. 

(ii) 

FIG. 3. 

It may be useful to deduce the probability law of L for a more general case, when 
the number n of the x's considered is arbitrary, all of them being independent and 
following the same probability law 

p (xi) - 1/0 

p (xi) -= 

for 0 < xi< 

elsewhere f 
. ...... . (56) 

For this purpose we notice that for any positive constant L' c 0 

n L' LL n 

P{L < L'|0}= il P (xi) dx, - )" i 0 I \ 9 (57) 

Differentiating this expression with regard to L', we may obtain the elementary 
probability law of L. The probability in the left-hand side of (55) may be obtained 
directly from (57) and we have, for n = 2, 

P {q0o L < 010} 1f - q2 . . ...... (58) 
Hence 

q= (1 -a). ............ (59) 

Thus the inequality (54) defining the region A3 (0) becomes 

0(1--a) L< 0 ........... (60) 

302 
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It is easily seen that the system S3 satisfies the conditions (i)-(iv) and therefore may 
be considered as a system of regions of acceptance defining the lower and the upper 
confidence limits of 0 and hence the confidence intervals. In order to obtain the 
lower limit, 0 (E), fix any sample point E and consider (54). It is easily seen that if 
L is the larger of the coordinates of E, then the lower bound of the 8's for which E 
falls within A3 (0) is given by 

03 (E) - L. ............. (61) 

On the other hand, it is seen also from (54) that the upper bound of the same 0's is 
obtained from qO (E) = L, thus 

03 (E) = L (1 -- . .......... (62) 

It follows that the length of the confidence interval is, say, 

83 (E) 
1 (1. . . ...... (63) 

(1- a). 

The formulae (61) and (62) could be used to estimate 0, and in applying them we 
shall be correct, in the long run, in 100c per cent. of all cases. 

It is interesting to compare the two systems of confidence intervals (50) and (51), 
(61) and (62). For this purpose let us choose c - 3. The statements concerning 
the value of 0 using the two confidence intervals will be 

X cS 0 5 43, 82 (E) = 3, .. ... . (64) 
and 

L 0 c 2L, 83 (E) -L, .... ..... (65) 

where x is the arithmetic mean of x] and x2. Assume that in two different cases, 
A and B, the observations gave x'1 x' -= 1 and x" 0. 01, x"2 1 9 respectively. 
Then using (64) we shall get, in both cases, 

3 c 3 c 4, . .......... . . (66) 
while using (65) 

1 c 0 c 2 and 1.9 0 5 3-8 . (67) 

in cases A and B respectively. 
The two pairs of inequalities do not agree and a superficial examination may lead 

to the conclusion that there is some contradiction in the theory. 
It is perhaps not so bad with the sample A, for which the two confidence intervals 

(66) and (67) partly overlap but do not cover each other. But in the case of the 
sample B the interval (67) is entirely included within (66). Are these intervals 

equally reliable ? 
Before this question could be answered, it must be made more precise. What is 

exactly meant by the words " equally reliable ", and do they refer to the numerically 
defined intervals, viz., (4/3, 4) and (1 9, 3 8), or to the whole systems of intervals as 
given by (64) and (65) ? 
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The theory of confidence intervals as explained in preceding pages does give reasons 
for considering the systems (64) and (65) as "equally reliable". By this is meant 
that (1) if a random experiment determining the values of x1 and x2 is performed 
many times and (2) if the random variables xl and x2 follow the probability law (38) 
where the value of 0 > 0 in each experiment may be the same or different-without 
any limitation whatsoever-then the frequency of cases where the intervals (64) and 

(65) calculated for each experiment would actually cover the true value of 0 will be, 
in the long run, the same, namely, a - 3/4. 

On the other hand, if the words " equally reliable " in the above question refer 
to the numerical intervals (4/3, 4) and (1 9, 3 8), then the theory of confidence 
intervals does not give any reasons for judging them equally reliable or not. 

It may be useful to illustrate the above statements with a simple sampling experi- 
ment which the reader may wish to perform. 

Imagine that in a period of time the statistician is faced 400 times with the 

problem of estimating 0. The true value of 0 may be in all those 400 cases the same, 
or it may vary from case to case in an absolutely arbitrary manner. Assume, for 
instance, that in a set of 400 random experiments the distribution of 0 is as set up in 
the following table (or any other): 

True 0 Frequency 
1 155 
2 37 

10 8 
20 10 
30 190 

Next take TIPPETT'S random sample tables (1927) and consider each of the numbers 

composed of four digits as a decimal fraction. Write (lown from the table 400 couples 
of figures. The figures of the first 155 couples consider as particular values of x1 
and x2 determined by 155 experiments with true 0 = 1. The figures in the next 
37 couples multiply by 2 and consider the products as forming the results of 37 
further experiments where 0 = 2. The figures in the next 8 couples should be 

multiplied by 10, those in the next 10 couples by 20, and finally those in the remaining 
190 couples by 30. 

Substitute the obtained results in formulae (64) and (65) and see in each case 
whether the calculated interval covers the true value of 0, i.e., 1, 2, 10, 20, or 30, 
whichever the case may be. It will be seen that the relative frequency of cases where 
the confidence intervals either calculated from (64) or from (65) will actually cover 
the true 0 will be approximately equal to a = 0 75. Of course, there will be no 

perfect agreement with this figure, but it would be extremely surprising if the observed 

frequency fell outside the limits of 0* 69 and 0 81. This result is entirely independent 
of the distribution of true 0's, and the above table may be altered as desired, without 

any limitation. 
If there is little to choose between the two systems of confidence intervals (50) and 
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(51), and (62) and (63) from the point of view of probability of correct statements, 
there are other aspects which easily determine the choice. In problems of estimation 
by interval, it is natural to try to get as narrow confidence intervals as possible. 
Comparing again (66) and (67), we find that the latter interval is considerably 
shorter than the former. It is easy to see that this is a general rule. In fact, what- 
ever the mean, x, if both x1 and x2 are necessarily positive, then 

x _ L < 2x, . .......... .. *. (68) 

and it follows from (64) and (65) that 

(3/8) a2 (E) < (E) < (3/4) 2 (E), .....(69) 

showing that the length of the confidence interval determined by (62) and (63) is 

always less than 3/4 of that determined by (50) and (51). It is obvious, therefore, that 
the confidence intervals defined by (62) and (63) compared to the other system have 
definite advantages. These advantages, however, are independent of the conception 
of probability. 

Using again the analogy with the games of chance, we may say that while the rules 
of the two kinds of game, as described by the two pairs of inequalities (50) and (51), 
(62) and (63), assure the same probability of winning, the sums which could be won 
in each case are different, and this is the reason why we prefer the " game " (62) and 

(63).* 

(d) Example II 

Let us now consider an example in which the probability law of the random 
variables considered depends upon two parameters 01 and 0, our problem being to 
estimate the value of 01. In order to remove all technical difficulties which might 
screen the essential points of the theory, we shall again consider a simple case where 
the number of the random variables is n = 2. Suppose that it is known for certain 
that 

P (Xl X2|01, 02) = - - 6 - 02 + 3 o02 x for 0 < x1, x2 and x1 - x2 - 0j 
p (X,, X2| a, e) for any other system of values of the x's. (70) 

p (xl, x2101, 02) 
- 0 for any other system of values of the x's. j 

As to the parameters 1 and 02, it is known only that 01 > 0 and - 1 < 0 0 02 2. 

The sample space W is limited to the first quadrant of the plane of the x's, and its 

positive part, W+ (01), corresponding to any fixed value of 01, is formed by a triangle 
as suggested in fig. 4. 

In order to see at once the difficulties introduced by the fact that the probability 
law (70) depends upon two parameters, while we are interested in one only, let us 

try to solve the problem of confidence intervals by a guess. In Example I, the more 

* This point will be discussed later. See pp. 370 et seq. 
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satisfactory confidence intervals were determined by regions of acceptance belonging 
to S3, having their internal boundary similar to that of the external, the latter being 
also the external boundary of W+ (0). 

As the conditions of the problem in Example II present many features similar to 
those in Example I, let us try to use as regions of acceptance the regions A1 (01), 
constructed in the same manner as the more successful regions of acceptance in 

Example I. 
The region A1 (01) will be limited by the axes of coordinates, by the straight line 

x1 + x2 : 01 and by a parallel to that line, corresponding to the equation 
xI + x2 = a 01, where a < 1 will be a constant which we shall try to determine so as 
to satisfy the condition (i). 

0.I 

O- X- ,-B a, 3, 

FIG. 4-B C represents W4 (x',); D E represents w (x'1) 
We have 

P {EEA1 (01)101, 02} P {a01 : xl + x2 : l 0110,1 02} 
a9l 9 a9 -x 

-= I- dxl P1 p (x, xl 01,02) dx2 
o Jo 

-1 - a2 + -a2 (1 - a) 012 ..(71) 

Now it is easy to see that the regions A1 (01) cannot be used as regions of acceptance. 
In fact, it follows from the proposition III that the regions A1 (01) could only be 

used as regions of acceptance if, for any fixed value of 01 =- 0', the probability 
P {EsA1 (0'1) 1 '1, 02} were equal to a irrespective of what is the true value of 02. Looking 
at the last line of (71), we see that if a and 01 =- 0' are fixed, the probability 
P {EeA1 (0'1) 1'1,02} still depends on 02 and that, according to the value of this 
parameter, it may be smaller or larger than the prescribed a. 

We see, therefore, that in cases where the probability law of the x's depends upon 
some more parameters, say 0 2, 3,. . . 0, besides 01, which it is desired to estimate, 
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the choice of the regions of acceptance must be limited to those, A (01), for which 
the value of the probability P {EsA ( 1) 1, 02, ... 0 }Oj= c and is independent of 
the values of the parameters 02 .... 01. 

Regions of this type which have been considered elsewhere (NEYMAN and PEARSON, 

1933) are called similar to the sample space with regard to the parameters 02, 

3, ... 0t, and of size a. If certain limiting conditions are satisfied by the elementary 
probability law of the X's, it is known also how to construct the most general similar 
region. Therefore, under these conditions, we are able to select the regions of 
acceptance, not only satisfying the condition (i) but also some other conditions con- 
cerning the relative width of the confidence intervals which will be discussed below. 

The conditions under which we are able to construct the most general region 
similar to the sample space with regard to the parameter 02 are not satisfied by the 
probability law (70). Therefore, we are not able to construct any region similar to 
W with regard to 02. However, a few theoretical remarks which follow allow the 
construction of a rather broad family, say F, of such regions. It is just possible that 
an advance of our knowledge on the subject will show that the only regions similar 
to W with regard to 02 are those belonging to F. 

(e) Family of Similar Regions Based on a Sufficient System of Statistics 

Denote by p (El 01, 02, ... 0) the probability law of random variables X1, X2, . . . 
X, depending on I parameters 01, 02, ... 0, by W (T, T2, ... T,), or W (T) for 

short, the locus of points in the sample space W where some statistics* T1, T2, .. . T 
have certain constant values and finally by w (T1, T2, . . . T,), or w (T), a part of 
W (T) which may be defined in one way or another. We shall assume that the T's 

possess continuous partial derivatives with regard to the X's. We may now prove the 

following proposition. 

Proposition VIII-If the statistics T1, T2, ... T, form a sufficient set with regard 
to the parameters 02, 03 ... 0,, then the probability of the sample point E falling 
within w (T) calculated under the assumption that it has fallen within W (T) or 

P {Esw (T)[Es W (T)} ..........(72) 

is independent of 02, 0, ... 0 and is a function of 01 only. 
In proving this proposition, we shall start by expressing its conditions analytically. 

The condition that the statistics T1, T2, . . . T, form a sufficient system with regard 
to 02 03, ... 06 is equivalent to (i) that T1, T2, . T are algebraically independent 
and (ii) that the elementary probability law of the X's can be presented in the form 
of the product 

p (El01, 02, ... ,) -p (T1, T2, . .. Ts, 0, ,, ... ,0)f(E,01), . . (73) 

* For the definitions of the terms used in this section, see NEYMAN and PEARSON (1936, b). 
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where p (T1, T2, ...T,Ij 1, 0, .. ..0) means the elementary probability law of 
the T's andf (E 061) is a function of the x's and possibly of 01, but quite independent 
of 02, 03,... 01.* The word " equivalent" means that whenever T1, . .. T, form 
a sufficient set then both (i) and (ii) must hold good and that, inversely, whenever 
(i) and (ii) are true, then the statistics T1 ... Ts must form a sufficient set. 

Introduce a new system of n-variables T, T2, . . . TS, t, , ... t,, including the 
statistics T,, which form the sufficient set, and transforming the original space W 
of the x's into another n-dimensional space W'. As the T's are algebraically in- 
dependent, it is always possible to arrange so as to have a one to one correspondence 
between W and W', except perhaps for a set of points of measure zero. Denoting 
by E' the point in W' and using (73), we may write the probability law of the new 
variables in the form 

p (E'I 01, 02, . . . 0) p (T1, T2,... . T, 0,... 0) fi (E'j 01), . . (74) 

where again f (E' 01) does not depend upon 02, 03 ... 01. Dividing both sides of 
(74) by p (T, ... T| 01, 0, ... .0), we shall obtain the relative probability law of 
ts+1, t+2, . t , given T1, T2, .. T,, 

p (tS+,1 tS- 2, . . tnl1, .. . 0,, T1, ... Ts) -=f (E 01) .... (75) 

Now (72) represents the probability of E falling within w (T), calculated on the 
assumption that it fell on the hypersurface W (T). The image of W (T) in W' will 
be a prime, say W'(T), defined by T = const., i = 1, 2,... s, and the image of 
w (T) a part of W' (T), which we shall denote by w' (T). The position of the point 
E' on W' (T) corresponding to any fixed system of values of T1, T2, ... Ts is deter- 
mined by the coordinates ts+l, t, 2) ... tn, and it follows that the probability in (72) 
is equal to the integral of (75) with regard to ts4., ts+2, ... t extending over the 
region w' (T). 

As (75) is independent of 02, 03, ... 0,, so must be its integral taken over w' (T), 

P {Erw (T) IErW (T)} - P {E'w' (T) E'sW' (T)} 

= .|.. | p (ts+, .... tn|Ti, T2,.T) dt. .) . dtn 
w' (T) 

='i[ f1 (E'101) dts+1dts+2 ... dtn . . (76) 
w'(T) 

This completes the proof of the proposition VIII. We may remark that for any 
fixed value of 01 and a fixed system of T1, T2, ... . T for which p (T1, . . . T) > 0 
the region w (T) may be so selected as to ascribe to (76) any value between zero and 

unity which may be given in advance. It is also obvious that this could be done in 
an infinity of ways. 

* This proposition has been stated without proof by NEYMAN and PEARSON (1936, b), p. 121 It nmay 
be easily proved following the lines indicated by NEYMAN (1935, a), 
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Proposition IX-If T1, T2, . . . T, form a sufficient set of statistics with regard to 
02, 03, ... 0 and if for any system of values of the T's the region w (T) is so selected 

that, for a fixed value of 01 0' , 

P {Eew (T) EsW (T)} - ........ (77) 

where 0 < a < 1, then, for that value 01 =0 '1 the n-dimensional region w which 
would be obtained by combining together the regions w (T) corresponding to all 

possible systems of values of T,, T2, . .. T,, will be similar to the sample space W 
with regard to 02, 3, ... 06 and will have its size equal to c, so that 

P {E?wl 0'}=- , . .......... (78) 

whatever the values of 02, 03, ... . 01. 

In order to prove Proposition IX, denote by w' the image of w in W'. Obviously 
w' will be a combination of the regions w' (T) and also 

P {EEwj0'1} = P{E'w'|60'1}, ............. (79) 
and therefore 

P {ELw 0'1} - .. p (E'i 0',, 2, .. ..0) dT1 dT2 ... dt.. (80) 

Using (74) and denoting by W" the set of all possible systems of values ofT1, T2,... 
T,, we obtain further 

P {Ewl 0'} l ... pW{(Ti, T2, T ' 01, 0, ... 01) 

Jf... f(T) (E'l O') dtl+l... dt,, dTl ... dT . (81) 

Owing to (77), this equation reduces to 

P {E wi 0'} a ... w p (T1 .. T', 0'2, 0, . . 0. T) d . . . , = , (82) 

since the integral of p (T, . . . T,', l ... O.), taken over the set W" of all possible 
systems of values of the T's, must be equal to unity, whatever the values of 01, 02, 

... 06. This proves the Proposition IX. 
It follows that, whenever a system of statistics T,, T2, .. Ts sufficient with regard 

to the parameters 02, ... 01 exists, we may construct an infinity of regions w, all of 
which will be similar to the sample space W and will have the same size oc. To do so 
it is sufficient 

(a) To select on any hypersurface W (T) a region w (T) satisfying the condition 

(77). Owing to Proposition VIII, this is always possible and in an infinity 
of ways. 
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(b) To combine all the regions w (T) corresponding to all possible systems of 
values of the T's. 

The family of the regions similar to the sample space with regard to 0,,. 0.. 
which may be thus obtained may be called the family based on the sufficient system 
of statistics T1, T2, . . . T,. It is possible that in certain cases similar regions will 
exist which do not enter into such families based on sufficient systems of statistics. 

We may now go back to our Example II and see how the problem of confidence 
intervals could be solved. 

(f) Example IIa. 

Turning back to the probability law of xi and x2 as defined in (70), it is easy to 
see that x1 is a specific sufficient statistic with regard to 02. As a specific sufficient 
statistic with regard to one parameter is a particular case of a sufficient system of 
statistics, this fact, together with the Proposition IX, could be used in order to con- 
struct regions similar with regard to 02, which we require to serve us as regions of 
acceptance. 

In order to see that xl is a specific sufficient statistic with regard to 02, let us calculate 
its elementary probability law. Integrating (70) with regard to x2 between limits 
zero and 01 - x1, we easily obtain 

p (X1) = p (X1,x2, 02) (01 
- 

X1) for 0 < X1 : 01, . 
p (xl) = 0 for any other value ofx, 

It is seen that p (xl) depends both on 01 and 02 and therefore we shall denote it by 
p (x1lI002). Now we can write 

p (X1, X2101, 02) = p (Xl 01, 02)f(El0) , ...... (84) 

withf(E 01) defined as follows. For 0 < x1, x2 and xj + x2 o 0i 

f(E01) (01 - x)-1- , .......... (85) 

and at any other point f(EI 01) = 0. Asf(EI01) is independent of 02, it follows 
that xl is a specific sufficient statistic of 02. 

Using Proposition IX, we may now construct regions which, for a fixed value of 
01, will be similar to W with regard to 02. For this purpose we have to fix 016 = 0' 
(say) and also the value of the sufficient statistic x = x'l. Next we consider the 
locus W (x'1) where x = x' and select any part of it w (x') satisfying (77). 

The combination of w (x') corresponding to all values of x' between limits 
0 < x' c 0'1 will give us a region similar to the sample space with regard to 02. 

Now W (x'1) is a straight line parallel to the axis Ox2. In order to select its part 
w (x'), which may be represented by an interval, satisfying (77), we require the 
relative probability law of x,, given xl. Using the familiar relation 

p (l, X2) = p (x,)p (X2x), ......... (86) 

3 D 2 
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and comparing it with (84) and (85), we find that for 0 < x, _ 01 

p (x21l0, x1) = (01 - l)1 for 0 < x2 _ - 01 -- X1 

(87) 
p (x2l01, xl) 0 for other values of x2. 

It follows that the relative probability law of x2, given xl, is positive and constant for 
0 < x2 c 01 - x1 and is zero elsewhere on the line W (xl). Therefore the con- 
dition (77) concerning the interval w (x'1)* to be one of the elements of the similar 

region w reduces to the requirement that the length ofw (x') should be in a constant 

proportion cx to the length of the interval, say W? (x'1), on W (x'1), wherep (x,2 0,, x'1) 
is positive. 

We see that a number of regions similar to the sample space with regard to 02 

could be obtained as follows. (a) Fix a value of x x' < 01 and select on the line 
W (x'1) corresponding to 

X, = X'1 and 0 < x2 1 - x'1, . . . .... (88) 

any interval w (x',), the length of which is equal to a (0 - x',). (b) Combine all 
such intervals together to form w. 

We shall select as the regions of acceptance, A, (0,), the regions constructed as 

described in (a) and (b) with an additional limitation, that the intervals w (x,) 

corresponding to different values of x1 should be similarly situated on W+ (x,). 
Thus, for any 0 < x, < 01 we shall define the interval w (x1) by the inequalities 

b (01 - x,) < 2 < (b -+ ) (01 - x), ...... (89) 

where b is any positive number not exceeding 1 -- . Combining all such intervals, 
which obviously satisfy (a), we shall obtain the region A2 (01) which we shall use as 
a region of acceptance in estimating 01. As shown in fig. 4, the region A2 (01) is 
limited by the axis Ox2, and by two straight lines x2 - b (01 - x,) and x2 = (b + a) 
(01 - x1). It is easy to check that P {EsA2(0i,)0,} --- whatever the value of 02, 

so that the condition (i) required for A2 (01) to be a region of acceptance is satisfied. 
It is easily seen that the remaining conditions (ii)-(v) are also satisfied. 

Now we may determine the confidence intervals for 01 resulting from the regions 
of acceptance A2 (01). If x'l and x'2 are the coordinates of any sample point E' 

determined by observation, we see from (89) that the lower bound of values 0'1 of 
01 for which E'eA2 (0',) is 

(E' b .......... (90) 

* It is obvious that it is not necessary that w (x) should be one single interval on W+ (x'). It 

could be formed by several such intervals subject to the condition that the sum of their lengths is 

equal to a (01 - x'), etc. 
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The upper bound of 0', is found from the same inequalities (89), namely, 

(E') =x + b ...... . (91) 

These are two estimates of 01 determining the confidence interval a (E'). The 
length of this interval for any given sample point, E, is 

a (E)b (b + ***** (92) 

and depends upon the value of b chosen. The larger b, the smaller 8 (E) and 
therefore the more accurate estimation of 01. The confidence intervals giving the 

greatest accuracy correspond to b 1 -- ct. 
We see again that after having assured that the probability of our being correct 

in statements concerning the estimated parameter is equal to c, we can proceed 
further and satisfy some requirements concerning the accuracy of these statements 
as measured by the length of the confidence intervals. 

The above two examples are simple not only because they do not present any 
technical difficulties in calculating probability laws, etc., but also because the choice 
between the systems of confidence intervals suggested is easy, e.g., if we use alter- 

natively b '= 1 - a and b" < 1 - , all the confidence intervals as determined by 
(90) and (91) corresponding to b' will be shorter than those corresponding to b". 
There is therefore no doubt as to what value of b should be chosen. 

This, however, is not always the case, and in general there are two or more systems 
of confidence intervals possible corresponding to the same confidence coefficient a, 
such that for certain sample points, E', the intervals in one system are shorter than 
those in the other, while for some other sample points, E", the reverse is true. 

This point is of some importance and I advise the reader, as a useful exercise, to 
consider a system of regions of acceptance, A3 (01), defined as follows: 

(1) for 0 < xl 1/2 01 , A (01) contains all points in which 

(1 --a) (01 - X) ( X 01 -x x 1 ....... (93) 

(2) for 1/2 01 < xi < 0 , A3 (01) contains all points in which 

0<x < a(0-- x). .......... (94) 

It is easy to see that the regions A3 (01) thus defined may serve as regions of accep- 
tance. The reader will also easily find that for all sample points of the line x, = cxx1 
the confidence intervals as defined by regions A3 (01) will be shorter than those 
defined by (90) and (91) with b = 1 - a. On the contrary, the confidence intervals 
for all sample points lying on the line x2 = qx1 with 

0< < q 1-C c ) . . .. (95) 
1 - a +- a2 
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will be greater than those defined by (90) and (91). The position is illustrated in 
fig. 5. Here it is not so clear which of the two systems of confidence intervals to 
choose. The analysis of the situation is given in the next section. 

III-ACCURACY OF CONFIDENCE INTERVALS 

(a) Shortest Systems of Confidence Intervals 

If there are possible the systems of confidence intervals, say C1 and C2, such that 
for some sample points the intervals in C1 are shorter than those in C2, while for some 
other sample points the reverse is true, the choice between C1 and C2 may be based 
on the relative frequency or on the probability of having an interval of a given length. 

If using C1 we have short confidence in- 
Xz2 tervals more frequently than when using 

0Q C2, then the system C1 will be probably 
considered as more satisfactory. 

The above statement may appeal to 
intuition, but it is obviously too vague to 

! X2~///^^ ~be used in practice. 
:^^^^^^^^>A Consider the general problem when the 

number n of the variables X which we may 
observe is arbitrary and the probability 

^///////^\ law of the X's, p (E 01,... 0,) depends on 

,,/b (,A3(B,)^^ 1 parameters 01, ... 0,, the first of which, 
01, we desire to estimate. Denote by 010 

m,- tthe unknown true value and by 0', any 
other value of the estimated parameter. o t0 0,' x'-,| Denote further by ij (E) the confidence 

FIG. 5-Shaded area represents A, (01) interval for 0 corresponding to the sample 
point E and belonging to a particular 

system Cr , (i = 1, 2. ..) of the confidence intervals established at a fixed confidence 
coefficient o. Thus we assume that, as in the above examples, we have several 
systems of confidence intervals C1, C,, ... If all of them correspond to the same 
confidence coefficient o, then all of them satisfy the condition 

P { (E) C0100o?} -, , ...... ... (96) 

stating that, whatever 010 and whatever the values of other parameters 02, ... 1 
the probability that the interval should cover the true value 01?, is equal to a. 

This is the common property of the systems of confidence intervals considered. 
Now it is obvious that whilst it is desirable that the true value of 01 = 010 should 

be covered by the confidence interval 8 (E) determined by an observed sample point 
E, it is not so with any other value of 01- =0', 01?. In fact, the presence of the 
value 0'1 ? 0Q? within an interval 8 (E) containing 01? is unnecessary and may be 
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interpreted as an indication that this interval is " too broad ". It is clearly impossible 
to avoid altogether covering the values of 01 which are not true. But we may try 
to diminish the frequency of 8 (E) covering any value 0'1 \ 01? to a minimum. 
This leads us to the following definition of the shortest system of confidence intervals. 

If a system, Co, of confidence intervals ,o (E) has the property that whatever any 
other system C of intervals a (E) corresponding to the same confidence coefficient 
a, whatever the true value of 01 010 and whatever any other value 0', f 01? 

P {80 (E) CG0'1l010} 5 P {8 (E) C0'i110?}, ...... (97) 

then the system Co will be called the shortest system of confidence intervals. 
Thejustification of this terminology is clear. When using Co, the true value of 

01 = 0? will be covered with the prescribed frequency o and any other value 
0'61 010, with a frequency not exceeding that corresponding to any other system, 
C corresponding to the same confidence coefficient oc. This could be described by 
saying that the intervals 80 (E) are not unnecessarily broad. 

The problem of determining the shortest system of confidence intervals is 
immediately reduced to that of finding appropriate regions of acceptance. In fact, 
using the Proposition I and II or the Corollary I expressed by (26), we may rewrite 
the condition (97) as follows: 

P {EsAo( (0 '1) 01?0} P {EsA (0'i)l 0i0}, (98) 

where Ao (01) and A (01) denote the regions of acceptance leading to the systems 
of confidence intervals Co and C respectively. 

If Co is the shortest system, then (98) should hold whatever 01? and 0', and what- 
ever the regions of acceptance A (01), provided they correspond to the fixed confi- 
dence coefficient o. The condition (98) concerns the region of acceptance Ao (0'1), 
and it must be combined with that expressed by the Proposition III, namely that 

P {EsAo (0'1)I 0'1} =-P {EeA (0')1) } =, ...... (99) 

which must also hold for any O', and any values of the other parameters 0, ... .01 

We see that the problem of the shortest systems of confidence intervals correspond- 
ing to a confidence coefficient a is reduced to the following: 

(1) Fix any value of 01 = 0', and determine on the hyperplane G (60') a region 
A (60') similar to the sample space with regard to 02, ... 06 and of the size a. 

(2) Out of all such regions A (60') choose the one, Ao (60'), for which the 
probability P {EzA (0') 101?}, where 01? is any value of 01 different from 0'1, is 
minimum. 

(3) If the region Ao (0'1) so found does not lose its property of minimizing 
P {EsA (0') 1I ?} when the value 010 is changed, and if the whole system of the 
regions A, (0'1) corresponding to all possible values of 01 satisfies the conditions 
(i)-(iv) of p. 354, then it may be used as the system of regions of acceptance and will 
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determine the shortest system of confidence intervals. The problem as described in 
(1) and (2) has already been considered in connexion with the theory of testing 
statistical hypotheses (NEYMAN and PEARSON, 1933) and its solution is known. 
However, it is also known that the region, Ao (0',), satisfying the conditions (1) and 

(2) for a particular 61? does not always do so when that value of 01? is changed. 
It follows that the shortest systems of confidence intervals do not always exist. Still, 
they do exist occasionally. The reader acquainted with the joint paper mentioned 
will have no difficulty in checking that the confidence intervals determined by (61) 
and (62) in the case of the above Example I form the shortest system of confidence 
intervals. Applying the theory of the same paper, it is also easy to see that the 
confidence intervals defined by (90) and (91) with b = 1 - a form a system which is 
shortest of all those which could be constructed, using regions of acceptance belonging 
to the family based on the specific sufficient statistic x,. 

These, however, are rather rare cases. In order to emphasize this rareness, we 
shall prove the following proposition. 

Proposition X 

(1) If the probability law p (E 0) of the X's, depending upon one parameter 0, 
is continuous in the whole sample space W and if at any point of this space it admits 
a continuous derivative with regard to 0 not identically equal to zero, and admitting 
differentiation under the sign of the integral taken over W; 

(2) If A (0') is a region in the sample space W and 0' and 0" are two particular 
values of 0, such that 

P {E?A (0 ')O'} , .......... (100) 
and 

P {EsA (0')10"} c P {EsAj0"} ....... (101) 

where A is any other region in W such that P {EAI 0'} == ; 
(3) If on the boundary of A (0') there exists at least one point where p (Ej 0') is 

not zero, then there must exist a third value of 0 = "', and a region B in W, such 
that 

P{EsBIe'}= -- .......... (102) 

P {EsA (0')10'} > P {EzBI O"'}. ... ... . (103) 

It will be noticed that the Proposition X means that if the probability law of the 
X's satisfies the condition (1), then the shortest system of confidence intervals generally 
do not exist. It follows also that in such cases the uniformly most powerful tests of 

hypotheses specifying the value of 0 cannot exist. 
We shall prove the Proposition X, starting with the assumption that it is not 

correct and that whatever the value 0"', either smaller or larger than O', and what- 
ever the region B satisfying (102) it follows that 

P {EsA (0') 0"'} < P {EB| 0"'}. 
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It is known (NEYMAN and PEARSON, 1933) that in such a case, whatever the sample 
point E' within the region A (0'), then for any 0, 

p (E'[ 0) k (0)p (E' ') ......... (105) 

where k (0) depends only on 0 and not on the x's. At any point, E", outside A (0') 
we should have 

p (E"l(0) _ k (0)p (E"0') ......... (106) 

Owing to the continuity of the probability law p (E6 0) we shall have at any point 
E"' on the boundary of A (0',) 

p (E"'I ) = k (0)p (E"'eo')......... (107) 

We shall assume that p (E"'[0') > 0. As p (E"'oI) admits a derivative with regard 
to 0, it follows that k (0) must admit one. It follows also from (107) that if 0 ---> ' 

thenk (0) -- 1. Differentiating (107) with regard to 0, and putting 0 - 0' = A0, 
we can write the following expansion of k (0) 

k (0) = 1 + AO k' (o' + q AO) 
-1 + A p' (E"I'O + q A0)p-- (E"'0'),0 < q < 1, (108) 

where the dashes indicate differentiation with regard to 0. On the other hand, we 
can write also 

p (E'0) =p (E'll') + AOp' (E'l0' + - ), 0 < ) r < 1. . . (109) 

Substituting (108) and (109) in (105) and rearranging, we get 

ao ((p (E'eI' -+ rA) -' (E' + 0P (-E- i)) 0, . (110) p (E"'i0,') 

and this inequality must hold good at any point E' within A (0') and for any value 
of A 0. It follows that 

p' (E' O') _ p' (E"' 0O') p (E'l O') = 0 . ... (111) 
p (E"'I 0') 

at any point E' within A (0'). In fact, if the expression in the left-hand side of 

(111) were not zero, then, owing to the continuity ofp' (E 0), for sufficiently small 
values of A 0, the expression in brackets in (110) would not be zero and would have 
a constant sign. As A may be both positive and negative, the inequality (110) 
would not be satisfied. Using the inequality (106) holding good at any point 
outside A (0') and repeating the above argument, we could easily find that (111) 
must hold good also outside A (0') and therefore in the whole sample space W. 
Now it is easy to see that p' (El O') must be identically equal to zero, which contradicts 
the hypothesis (1) of the proposition X. 

VOL. CCXXXVI.-A 

373 

3 E 



J. NEYMAN 

To show this we consider the integral 

f... fp (El ) dxl ... dx ........ (112) 

Differentiating it with regard to 0 and putting 0 =- ', we get 

|... (E IE') dx . . dx,- 0. ....... . .(113) 

We can calculatep' (El ') from (111) and substitute into (113). Using again (112) 
we find 

p' (E"le[0') = 0 . ..... ... ( 4) 
p (E"'10') 

Substituting this again in (111) we find p' (E! 0') = 0, whatever the point E in W. 
This proves the Proposition X. 

As the majority of probability laws with which we deal in practice, e.g., the normal 

law, satisfy the conditions of Proposition X, it is seen that, for practical purposes, 
some other type of systems of confidence intervals is required, as the shortest systems 
generally do not exist. 

(b) One-sided Estimation 

The proof of the above proposition is based upon the circumstance that the left- 
hand side of the inequality (110) must not change its sign, while A 0 is both positive 
and negative. 

It is therefore obvious that if it were for some reasons required to determine regions 
of acceptance A0 (0) satisfying the conditions 

P {EsA (01) 01} -c, . . . . . . . ... (112) 

whatever the value of 01 and whatever the values of other unknown parameters 
involved in the probability law of the X's, and also the condition 

P {EA,0 (O't)lO"l} P {EsA (O'l) 11}, (...... (113) 

whatever any other region A (0'1) satisfying (112) and whatever O'1 and 0"1, 

provided, however, the difference between them 0'1 - 0", is either always positive or always 
negative, then the solution of this problem would exist more frequently than that of 
the problem of the shortest systems of confidence intervals. 

The application of the regions of acceptance having the above properties is found 
useful in problems which may be called those of one-sided estimation. In frequent 
practical cases we are interested only in one limit which the value of the estimated 

parameter cannot exceed in one or in the other direction. When analysing seeds, 
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we ask for the minimum per cent. of germinating grains which it is possible to 
guarantee. When testing a new variety of cereals we are again interested in the 
minimum of gain in yield over the established standard which it is likely to give. 
In sampling manufactured products, the consumer will be interested to know the 
upper limit of the percentage defective which a given batch contains. Finally, in 
certain actuarial problems, we may be interested in the upper limit of mortality 
rate of a certain society group for which only a limited body of data is available. 

In all these cases we are interested in the value of one parameter, say, 01, and it is 
desired to determine only one estimate of the same, either 0 (E) or 0 (E), which we 
shall call the unique lower and the unique upper estimate respectively. If 01 is the 

percentage of germinating seeds, we are interested in its lower estimate 0 (E) so as 
to be able to state that 0 (E) c 01, while the estimation of the upper bound 0 (E) 
is of much less importance. On the other hand, if it is the question of the upper 
limit of mortality rate, 0, then we desire to make statements as to its value in the 
form 02 C 0 (E), etc. 

These are the problems of one-sided estimation, and it is easy to see that their most 

satisfactory solution depends upon the possibility of constructing regions of acceptance 
satisfying (1) and (2), the latter with the restriction that the sign of the difference 
0'1 - 0 " is constant. 

The two problems of the unique lower and the unique upper estimates are very 
similar, so that it will be sufficient to treat only one of them, e.g., the first. Suppose, 
then, that we are interested in the unique lower estimate 0 (E) of a parameter 01. 
Treating the problem from the point of view of confidence intervals, we desire to 
define a function 0 (E) of the sample point E such that whatever may be the true 
value ,0, of 01, the probability 

P {Q (E) c 0 e 0l?e}O= ... (114) 

where a is the chosen confidence coefficient. Repeating the reasonings of the 

preceding sections, we find that this problem is equivalent with that of choosing 
appropriate regions of acceptance and that there is an infinity of solutions. Let us 
now specify the properties of a solution which would make it more desirable than any 
other. 

For that purpose denote by 01? the unknown true value of 01 and by 0', and 0"i 

any two other values such that 
0'l < 01? < 8", . ........... (115) 

It is obvious that if we are interested only in the unique lower estimate of 01 and 
want the probability of 0 (E) falling short of the true value 01? to be equal to a, we 
should not mind 0 (E) being smaller than 0"'. Therefore, when choosing the 
function 0 (E), we should not formulate any restriction concerning its satisfying the 

inequality 9 (E) < 0"1, provided the equation (114) is satisfied. The position witl 

regard to 0'1 is different. If (E) happens to be smaller than 0'i, then it will also be 

3E2 

375 



J. NEYMAN 

smaller than 01? and our statement concerning the value of 01 based on 0 (E) will 
be correct. However, it would also be correct if, say, 

e (E) - (0' + 010) > 0'1 . . .... (116) 

and in such a case it would be more accurate and would undoubtedly be judged more 
desirable. Generalizing the above conclusion, we could say that whenever we are 
interested in the unique lower estimate 0 (E) of a parameter 01, we should require 
it to have the property that whatever O'l < 01?, the chance of _ (E) falling short of 
0'i should be as small as possible, thus 

P {(E) < 0' 101 0} minimum ....... (117) 

for all values of 60' and 010 such that 6', < 010. This condition implies that the 
region of acceptance Ao (0'1) corresponding to any value of 01 = 0' should have the 
property 

P {EeAo (0'1)010?} P {EAI0o0 . ....... (118) 

whatever 01? > 0', and whatever any other region A such that 

P {EeAI0'} = P {EAo0 (0'1)10'l1} a. ...... (119) 

Similarly, if it were desired to find the unique upper estimate 0 (E) of 01, the most 
desirable solution would be determined by the regions of acceptance, A? (01) such 
that 

P {EeA? (0'1)I010} . P {EAIl 00} ....... (120) 

whatever 01? < O', and whatever the region A satisfying (119). 
If unique estimates determined by (118) and (119) or (120) and (119) exist, they 

will be called the best one-sided estimates of 01. 
Following the recent results (NEYMAN and PEARSON, 1933, 1936, a) concerning the 

theory of testing hypotheses, it is easy to establish formulae giving the best one-sided 
estimates in many important problems. Of these I shall mention one. 

(c) Example III 

Consider the case where the probability law of the X's is normal 

p (Eli) ( e . ........ (121) 

with unknown [ and a and where it is desired to estimate i. Following the lines 
indicated, it is easily found that the best one-sided estimates of are given by 

1(E) = x + ts } 
i~ ~~.(E)= -ts^ 

......... . (122) E(E) =x-ts ' 
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where 

l I (Xi - i 2 
x= = ........ (123) x n ix n (n - 1) 

and t may be taken from Fisher's tables corresponding to P = 2 (1 - a).* 

(d) Short Unbiassed Systems of Confidence Intervals 

We must now consider the important case where we are interested in the two- 
sided estimation in which the probability law of the X's is highly regular so that, 
owing to Proposition X, the shortest systems of confidence intervals do not exist. 
We must formulate the properties of confidence intervals which could be considered 
as particularly satisfactory. 

We shall start with the obvious remark that, if possible, the value of the estimated 

parameter which in a particular case happens to be true, should be covered by the 
confidence interval more frequently than any other value. 

Alternatively, we may express this by saying that for any given value of 01 = 010 
the probability of its being covered by the confidence interval 8 (E) should be greatest 
when 01? happens to be the true value of 01. Therefore, whatever 0'1 $ 010, it must 
be 

P{8 (E) C010e01,} P{ (E) C0o10 j}. ..... (124) 

We may express this in still another manner, considering the probability of 010 
being covered by the confidence interval 8 (E) as a function of that value of 01 which 
happens to be true, 

P {8 (E) C0103, } =f(e,). ......... (125) 

The formula (124) requires that the function (125) should be maximum for 01 = 01? 
and that that maximum should be equal to c. 

It seems to be obvious that if there are many systems of confidence intervals in 
which, whatever 10, the probability (125) considered as a function of 01, is maximum 
for 01 01?, we should choose the system by which this maximum is the steepest, so 
that, while the true value of 01 is being shifted away from 01?, the chance of 01? being 
covered by 8 (E) diminishes in the quickest way. 

These conditions may now be expressed in terms of equivalent conditions con- 
cerning the regions of acceptance. 

* The properties of the formulae (122) giving the best one-sided estimates of 5 were found by the 
author in about 1930. Subsequently, these properties, together with an outline of the theory of 
estimation, were included in his lectures first given at the University of Warsaw, then, from 1934, at the 

University College, London, and also in a course of lectures at the University of Paris in January, 
1936. References to these formulae may be found both in Polish and English statistical literature. See 
for instance: (1)W. PYTKOWSKI: "The Dependence of the Income of Small Farms upon their Area, the 

Outlay and the Capital Invested in Cows ". Warsaw, 1932. See particularly pp. 28-29; (2) CLOPPER 
and PEARSON (1934). 
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Let A (01?) be a region of acceptance corresponding to some value 01? of O1, so 
that 

P {EeA (0I?)1 0?}a .......... (126) 
whatever 01?. We have 

f(01) P {8 (E) C01?01}-= P {E(A (01?)l} .. . . . (127) 

and the above conditions concerning the confidence intervals appear to be equivalent 
with the condition that the right-hand side of (127), considered as a function of 01, 
should be a maximum for 0 = 01? and that this maximum should be as sharp as 
possible. 

In cases where the elementary probability law of the X's, integrated over any 
region, admits two differentiations with regard to 01 under the integral sign, this 
leads to the following : 

Whatever 010, and whatever the values of other unknown parameters, 02, 0 ... . , 

aP {EIA()0 0 - , (El01 )0l- X P (, =... o,) dx& ..d . d .. (128) aoo 01 - 
-010 A (010) 

a2P {EeA (O 0)l0 } | -- 

- 

IS p" (El ... 0 1 .. 0) dx ... dx= minimum, (129) 
a6 2 

0? = 0? J A (01?) 

where p' and p" denote the derivatives with regard to 01. 
The system of confidence intervals having the above properties will be called the 

short unbiassed system. The possibility of determining such systems depends on the 

possibility of determining the regions of acceptance satisfying (126), (128), and (129). 
This problem has been recently dealt with in the case where the number of the 
unknown parameters involved in the probability law of the X's is equal to one 

(NEYMAN and PEARSON, 1936, a) and to two (NEYMAN, 1935, b). 
In such cases as treated in the papers referred to, the construction of the short 

unbiassed systems of confidence intervals does not present any difficulties. 
In particular, if the. probability law of the X's is as in (121), then the short un- 

biassed system of the confidence intervals for i is given by the formula 

x-- ts c + ts ........ (130) 

where t should be taken from Fisher's tables for P = 1 - a. 

IV-SUMMARY 

The main problem treated in this paper is that of confidence limits and of confidence 
intervals and may be briefly described as follows. Let p (xl,... x . |1, 02,... 01) 

p (El 01, ... 06) be the elementary probability law of n random variables x ... xn 
depending on I constant parameters 01, 2, ... 06. The letter E stands here for 
x1, . . . x. Suppose that the analytical nature ofp (xi, ... xnl 0i, ... 60) is known but 
the values of the parameters 01, .. 0. are unknown. It is required to determine two 
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single-valued functions of the x's, 0 (E) and 0 (E) having the property that, what- 
ever the values of the O's, say 0'6, 0', .. . 0',, the probability of 0 (E) falling short of 
0', and at the same time of 0 (E) exceeding 0'6 is equal to a number a fixed in 
advance so that 0 < a < 1, 

P{ (E) (E) | ,0 ', (E)I0', 0 '2, ...' 0 = a. .... (131) 
It is essential to notice that in this problem the probability refers to the values of 

0 (E) and 0 (E) which, being single-valued functions of the x's, are random variables. 
O'1 being a constant, the left-hand side of (131) does not represent the probability of 
0'i falling within some fixed limits. 

The functions 0 (E) and 0 (E) are called the confidence limits for 01 and the 
interval (0 (E), 0 (E)) the confidence interval corresponding to the confidence 
coefficient a. 

The problem thus stated has been completely solved for the case where = 1, 
and it is found to possess an infinity of solutions. If 1 > 2 the solution obtained is 
limited to the case where there exists a sufficient set of statistics for 02, 03, ... 0 and 
then again there is an infinity of solutions. 

Methods were indicated by which it is possible to find among all possible solutions 
of the problem the one giving the confidence intervals which are shorter (in a sense 
defined in the text) than those corresponding to any other solution. 

The confidence limits 0 (E) and 0 (E) may be looked upon as giving a solution of 
the statistical problem of estimating 01 independent of any knowledge of probabilities 
a priori. Once 0 (E) and 0 (E) are determined corresponding to a value of a close 
to unity, say a = 0 99, the statistician desiring to estimate 01 may be recommended 
(1) to observe the values of the random variables xi,... x,, (2) to calculate the 
corresponding values of 0 (E) and 0 (E), and (3) to state that the value of the para- 
meter 01 is within the limits 0 (E) < 0 _< 0 (E). 

The justification of this recommendation lies in the fact that the three steps 
described are equivalent to a random experiment which may result either in a correct 
or in an erroneous statement concerning the value of 01, the probability of a correct 
statement being equal to ac = 0 99. Thus the statistician following the above recom- 
mendation is in a position comparable with that of a game of chance with the 
probability of winning being equal to oc = 0 99. 

The method followed to determine the confidence limits for a single parameter 
permits an obvious generalization for the case where the number of parameters to be 
estimnated simultaneously is greater than one. 

Three previous publications concerning the confidence intervals for which I am 
either partly or wholly responsible (NEYMAN, 1934, MATUSZEWSKI, NEYMAN, and 
SUPINSKA, 1935, NEYMAN, 1935, c) refer to the simplest case where the number of ran- 
dom variables and that of the parameters to be estimated are equal to unity. The prob- 
lem considered here is therefore far more general and also it is treated differently. 
Previously, the parameters to be estimated were considered as random variables 
following an arbitrary probability law which could be continuous or not and, even, 
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could reduce to unity just for one particular value of the parameter, being zero else- 
where. This arbitrariness of the probability law of the parameters served as an 
excuse, but the very assumption of its existence seemed to be an artificiality from which 
the present method of approach is entirely free. 

Subsidiary results obtained include a method of constructing similar regions which 
is more general than the one known previously and the Proposition X bearing on the 

theory of testing hypotheses. It emphasizes the rareness of cases where there exists 
a uniformly most powerful test. 
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PROBABLE INFERENCE, THE I,dW OF SUCCESSION, AND 
STATISTICAL 1NFli;RENCE 

BY EDWINB. KILSON,Hare'ard School of Publ ic  Health 

Probable Inference (I'sual). If there be observed a certain frequency 
or rate po in a population of n and if the corresponding standard devia- 
tion (poq0/n)l/2= go be computed, the common statement of probable 
inference is to say that: The probability that the true value of the 
rate p lies outside its limits po-Xu0 and po+Xuo is less than or equal to 
PA. I t  is assumed that Px decreases with an increase of X. If the 
criterion of Tchebycheff is used, Px is itself less than l/X2; but if the 
probability table is used, PAis the area under the probability curve 
beyond the ordinates *Xuo. The rule of Tchebycheff is exceedingly 
conservative in its estimate of PA, whereas the probability table gives a 
radical estimate. 

Strictly speaking, the usual statement of probable inference as given 
above is elliptical. Really the chance that the true probability p lies 
outside a specified range is either 0 or 1;for p actually lies within that 
range or does not. I t  is the observed rate po which has a greater or less 
chance of lying within a certain interval of the true rate p. If the 
observer has had the hard luck to have observed a relatively rare event 
and to have based his inference thereon, he may be fairly wide of the 
mark. 

Probable Inference (Improved). A better way to proceed is to reason 
as follows: There is some rate p. Its standard deviation is (pq/n)1/2 =u. 
The probability that an observation as bad as po will occur, where po 
lies outside the limits p-XU and p+Xa, is less than or equal to Px. 
This form of statement throws the emphasis upon the fallibility of a 
particular observation in respect to being typical of a general situation. 

I t  is still possible to state the criterion in terms of the observed rate 
po for the equation (po-p)? =X2pq/n, where q =1-p, is quadratic in p 
and may be solved to find p. If X2/n = t, the solution is 
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The rule then may be stated as: If the true value of the probability p 
lies outside the range 

--po+t/2 dpoqot +t2/4 and -PO+ t / 2  +<040t+t2/4 
1 

1 +t 1  +t 1  +t 1  +t 

the chance of having such hard luck as to have made an observation so 
bad as po is less or equal to Px. And this form of statement is not 
elliptical. I t  is the proper form of probable inference. 

Concerning the range indicated, it may be remarked that it  is not 
centered at the value po but a t  the value ( po+t /2 ) / ( 1  +t) which differs 
from po by being displaced toward the value 1 / 2  by the amount 

Moreover, the interval on either side of the mean is 

which is not identical with Xu0 computed from po nor with 
that value Xu, which might be computed from the central value 
( p o + t / 2 ) / ( l  +t) of the range indicated. In fact R <Xu, and Xu0 <Xuc, 
but R may be either less than or greater than Xuo-less if po lies between 
.067 and .933, greater if po lies outside those limits unless t =X2/nbe 
considerable compared with 2. The precise lines of division are 

Po= l * L d l - ( 2 + t ) - 2 .  
2 2 

The  Law of Szlccession. The law of sllccession of Laplace states that 
if we have experienced S successes and F failures out of S + F = n  trials, 
the chance of success on the (n+1)st trial is ( S +  l ) / ( n + 2 ) .  Thus the 
law of succession purports to give the probability from experience not 
as po=S / n  but as p = ( S +  l ) / ( n + 2 ) .  This chance is, however, not the 
true chance of success, because the chance of success p on every trial 
must be the same. The proof of the law depends on inverse proba- 
bilities and in particular on the assumption that all probabilities are 
a priori equi-probable. The proof has been much criticized, for it has 
been held that the experience po =S / n  does not permit the assumption 
that all probabilities are equi-probable, but indicates that those in the 
neighborhood of po must be much more probable than those remote 
from po. The simplest, if crudest, form of the argument of equi-
probability is found in interpreting the formula ( S + l ) / ( n + 2 )  as giving 
two new trials of which one is assumed to be a success and the other a 
failure. 



-- 
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If we apply the criterion in terms of the standard deviation as 
above developed we may state that the center of the range for p is 
(po+t/2)/(l+t). If we now replace t by P/n, and pon by 8, the center 
of the range becomes (S+X2/2)/(n+X3), and the probable inference is 
this: If the true probability lies outside the range 

s + v / 2  SF/n+h3/4 and -X+h3/?+Xd XF/n+h2/4 
7

n+X2 n + X2 n+X3 n+X3 

the chance of our having the hard luck to realize the observed value 
po= S/n is less than or equal to PA. As the distribution of the chances 
of an observation is asymmetric, it is perhaps unfair to take the central 
value of the range as the best estimate of the true probability; but this 
is what is actually done in practice. 

In  terms, therefore, of the practical criterion the forecasted value of 
the true probability is 

x+1 x x+X3/2.
not -, nor -, but -----, 

n+2  n n+X2 

and the value that should be assigned depends on the value of X, i. e., 
on our readiness to gamble on the typicalness of our realized experience. 
From this viewpoint, only those who believe that their experience is 
absolutely typical will set X=O and use as a forecast the realized fre- 
quency S/n. Those who use the law of succession, set h3 = 2  and allow 
a total variation in their experience of 2.8a, i. e., they wish to assert that 
they have not had an experience so rare that it or one less probable 
would arise, on the basis of the probability table as an estimate of PA, 
less than 16 times in 100. Those who make the usual allowance of 2u 
for drawing an inference would use (X+2)/(n+4) as a law of succession. 

A particularly interesting and instructive case is that in which there 
has been total failure, po = 0, uo = 0. Here clearly the first form of the 
inference, namely, that the true value of p must lie between po- Xu0 = 0 
and po+huo=O is out of the question. The true form states that the 
experience is not so unusual as PAif p is less than X2/(n+X3)n or if the 
expected number of instances is less than X2/(n+h2), which for n large 
is practically h2/n. If this were applied to the classic case of determin- 
ing the chance that the sun should fail to rise, one would take X very 
small compared to 1 because general considerations of astronomy make 
it highly probable that our past experience is very nearly typical. If 
the application were to the fact that there were no deaths from leprosy 
in Massachusetts (n=4,000,000) in 1924, X would also be taken small 
because leprosy is so rare, perhaps X =  2/3, meaning that we would take 
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an even chance. But in the case of paratyphoid fever, we might 
prefer to  use the ordinary criterion with =2 .  

Statistical Inference. This brings us to statistical inference which 
had best be differentiated from probable inference by requiring that  
something over and above the value of p~ be known, something that  
will motivate a choice among values for X i11 drawing the inference. It 
is well known that  some phenomena show less and some show more 
variation than that  due to  chance as determined by the Bernoulli 
expansion (p+y)". The value L of the Lexian ratio is precisely the 
ratio of the observed dispersion to  the value of (npy)l12 or (pq/n)l/3 as 
the case may be. If we have general information which leads us t o  
believe that the variation of a particular phenomenon be supernormal 
(L> I), we naturally shall allow for some value of L in drawing the 
inference. Thus if the Lexian ratio is presumed from previous analysis 
of similar phenomena to be in the neighborhood of 5,  we may use X =10 
as properly as we should use X =2 if the phenomenon were believed to 
be normal (Bernoullian) . 



Approximate Is Better than "Exact" for Interval Estimation of Binomial
Proportions

Alan Agresti; Brent A. Coull

The American Statistician, Vol. 52, No. 2. (May, 1998), pp. 119-126.

Stable URL:

http://links.jstor.org/sici?sici=0003-1305%28199805%2952%3A2%3C119%3AAIBT%22F%3E2.0.CO%3B2-S

The American Statistician is currently published by American Statistical Association.

Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at
http://www.jstor.org/about/terms.html. JSTOR's Terms and Conditions of Use provides, in part, that unless you have obtained
prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you may use content in
the JSTOR archive only for your personal, non-commercial use.

Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at
http://www.jstor.org/journals/astata.html.

Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed
page of such transmission.

JSTOR is an independent not-for-profit organization dedicated to and preserving a digital archive of scholarly journals. For
more information regarding JSTOR, please contact support@jstor.org.

http://www.jstor.org
Tue May 8 21:24:00 2007

http://links.jstor.org/sici?sici=0003-1305%28199805%2952%3A2%3C119%3AAIBT%22F%3E2.0.CO%3B2-S
http://www.jstor.org/about/terms.html
http://www.jstor.org/journals/astata.html


Approximate is Better than "Exact" for Interval Estimation 


Alan AGRESTI and Brent A. COULL 

For interval estimation of a proportion, coverage probabil- 
ities tend to be too large for "exact" confidence intervals 
based on inverting the binomial test and too small for the 
interval based on inverting the Wald large-sample normal 
test (i.e., sample proportion * z-score x estimated standard 
error). Wilson's suggestion of inverting the related score 
test with null rather than estimated standard error yields 
coverage probabilities close to nominal confidence levels, 
even for very small sample sizes. The 95% score interval 
has similar behavior as the adjusted Wald interval obtained 
after adding two "successes" and two "failures" to the sam- 
ple. In elementary courses, with the score and adjusted Wald 
methods it is unnecessary to provide students with awkward 
sample size guidelines. 

KEY WORDS: Confidence interval; Discrete distribu-
tion; Exact inference; Poisson distribution; Small sample; 

1. INTRODUCTION 

One of the most basic analyses in statistical inference is 
forming a confidence interval for a binomial parameter p. 
Let X denote a binomial variate for sample size n,and let 
5= Xjn denote the sample proportion. Most introductory 
statistics textbooks present the confidence interval based 
on the asymptotic normality of the sample proportion and 
estimating the standard error. This 100(1 -a)% confidence 
interval for p is 

where z,denotes the 1- c quantile of the standard normal 
distribution. This is called the Wald cor~jdence irztewnl for 
p, since it results from inverting the Wald test for p; that is, 
the interval is the set of po values having P value exceeding 
a in testing Ho : p = po against H, : p # po using the 
test statistic z = (6- d m .Historically, this 
is surely one of the first confidence intervals proposed for 
any parameter (see, e.g., Laplace 1812, p. 283). 

To avoid approximation, most advanced statistics text- 
books recommend the Clopper-Pearson (1934) "exact" con- 
fidence interval for p,based on inverting equal-tailed bino- 
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of Binomial Proportions 

mial tests of Ho : p = po. It has endpoints that are the 
solutions in po to the equations 

and 

except that the lower bound is 0 when x = 0 and the upper 
bound is 1 when z = n.This interval estimator is guar- 
anteed to have coverage probability of at least 1- a for 
every possible value of p. When x = 1 . 2 .  . . . . n - 1, the 
confidence interval equals 

n-z+l 

zFz2 ~(n-~+l),l-a/~1
-I 


where Fa,b denotes the 1 - c quantile from the F distri-
bution with degrees of freedom a and b. Equivalently, the 
lower endpoint is the a / 2  quantile of a beta distribution 
with parameters zand n - x -1,and the upper endpoint is 
the 1 - a / 2  quantile of a beta distribution with parameters 
x+1and n-z.Letters to the editor from J. Klotz and from 
L. Leemis and K. S. Trivedi in the November 1996 issue of 
this journal (p. 389) showed how simple it is to calculate 
this interval using Minitab or S-Plus. 

A considerable literature exists about these and other, 
less common, methods of forming confidence intervals for 
p. Santner and Duffy (1989, pp. 33-43) and Vollset (1993) 
reviewed a variety of methods. It has been known for some 
time that the Wald interval performs poorly unless n is 
quite large (e.g., Ghosh 1979, Blyth and Still 1983). The 
Clopper-Pearson exact interval is typically treated as the 
"gold standard (e.g., Bohning 1994; Leemis and Trivedi 
1996; Jovanovic and Levy 1997; and most mathematical 
statistics texts). However, this procedure is necessarily con- 
servative, because of the discreteness of the binomial distri- 
bution (Neyman 1935), just as the corresponding exact test 
(without supplementary randomization on the boundary of 
the critical region) is conservative. For any fixed parameter 
value, the actual coverage probability can be much larger 
than the nominal confidence level unless n is quite large, 
and we believe it is inappropriate to treat this approach as 
optimal for statistical practice. 

A compromise solution is the confidence interval based 
on inverting the approximately normal test that uses the 
null, rather than estimated, standard error; that is, its 
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endpoints are the po solutions to the equations ( p  -
p o ) / ~ p o ( l-p o ) / n  = &za12.This confidence interval, ap- 
parently first discussed by Edwin B. Wilson (1927), has the 
form 

& zo12, /[@(I  - p )  + e 1 2 / 4 n ] / n  ( 1- z 2 ) 

(2) 

This inversion of what is the score test for p is called the 
score corZfiderzce irztelvnl. (Score tests, and in particular 
their standard errors, are based on the log likelihood at the 
null hypothesis value of the parameter, whereas Wald tests 
are based on the log likelihood at the maximum likelihood 
estimate; see, e.g., Agresti 1996, pp. 88-95.) This article 
shows that the score confidence interval tends to perform 
much better than the exact or Wald intervals in terms of 
having coverage probabilities close to the nominal confi- 
dence level. It can be recommended for use with nearly all 
sample sizes and parameter values. In addition, we show 
that a simple adaptation of the Wald interval also performs 
well even for small samples. 

At first glance, the score confidence interval formula 
seems awkward to interpret, compared to (1). Letting z = 

z , ;~ ,  however, the midpoint of this interval is the weighted 
average 

which falls between ~6and 1/2, with the weight given to 
$ approaching 1 asymptotically. This midpoint shrinks the 
sample proportion towards .5, the shrinking being less se- 
vere as n increases. The coefficient of z in the term that 
is added to and subtracted from this midpoint to form the 
score confidence interval has square equal to 

This has the form of a weighted average of the variance 
of a sample proportion when p = @ and the variance of a 
sample proportion when p = 112, using n + z2  in place of 
the usual sample size n .  

2. COMPARING ACTUAL COVEKAGE 
PROBABILITIES TO NOMINAL 

CONFIDENCE LEVELS 

For a fixed value of a parameter, the actual coverage prob- 
ability of an interval estimator is the (a priori) probability 
that the interval contains that value. In many cases, s ~ ~ c h  
as with discrete distributions, this varies according to the 
parameter value. In statistical theory, the confidence coeffi- 
cient is defined to be the infimum of such coverage proba- 
bilities for all possible values of that parameter. Most practi- 
tioners, however, probably interpret confidence coefficients 
in terms of "average performance" rather than "worst pos- 
sible performance." Thus, a possibly more relevant descrip- 
tion of performance is the long-run percentage of times that 
the procedure is correct when it is used repeatedly for a va- 
riety of data sets in various problems with possibly different 
parameter values. 

For any confidence interval procedure for estimating p, 
the actual coverage probability at a fixed value of p is 

where I ( k .  p )  equals 1 if the interval contains p when X = k 
and equals 0 if it does not contain p. We summarize this, 
using the alternative description of performance, by aver- 
aging over the possible values that p can take. We obtained 
results C, = i;: C',(p)g(p)dp for three beta densities g ( p )  
for this averaging: (1) the uniform distribution (mean = .SO, 
std. dev. = 1 / m  = .29); (2) bell-shaped with values rel- 
atively near the middle (mean = .SO, std. dev. = . lo);  (3) 
skewed with values relatively near 0 (mean = . lo ,  std. dev. 
= .05) or, by symmetry, near 1. Due to space considerations, 
we report results here mainly for the first case, but similar 
results occurred in the other two cases. Though this eval- 
uation may suggest a Bayesian approach to inference, we 
restrict attention in this article to comparing the three stan- 
dard methods decribed previously, in which the user makes 
no assumption about such a distribution for p. 

Table 1 shows the mean of the actual coverage probabili- 
ties for the uniform averaging of the parameter values (i.e., 
C, with g ( p )  = 1. 0 < p < 1)  at various sample sizes, for 
nominal 95% Wald, score, and exact confidence intervals 
(the three other methods listed in that table are discussed 

Table 1.  Mean Coverage Probabilities of Nominal 95% Confidence Intervals for the Binomial Parameter p, with Root Mean 
Square Errors in Parentheses, for Sampling p from a Uniform Distribution 

Method n = 5  n =  15 n = 30 n = 50 n = 100 

Exact ,990 
j.041) 

Score ,955 
j.029) 

Wald ,641 
j.400) 

Wald with t ,664 
j.391) 

Mid-P ,978 
j.033) 

Continuity-corrected ,987 
Score j.039) 



in Section 4). The mean actual coverage probabilities for 
the Wald interval tend to be much too small. On the other 
hand, the exact interval is very conservative. For instance, 
for this method, C ,  = .990 when n = 5, .980 when n = 

15, and .973 when n = 30. By contrast, Cn for the score 
method is close to the nominal confidence level, even for n 
= 5 where it is ,955. Figure 1, which plots C,, as a function 
of n for the three interval estimators with the uniform and 
skewed beta weightings, illustrates their performance. Sim- 
ilar results were obtained with the bell-shaped weighting 
and using .90 nominal confidence coefficient, but are not 
reported here. 

To describe how far actual coverage probabilities typi- 
cally fall from the nominal confidence level, Table 1 also 

reports \/J,(c,( p )- .95)2dp, the uniform-weighted root 
mean squared error of those probabilities about that confi- 
dence level. These values indicate that the variability about 
the nominal level is much smaller for the score confidence 
interval than for the Wald or exact confidence intervals. The 
improved performance of the score method relative to the 
Wald method is no surprise and simply adds to other evi- 
dence of this type accumulated over the years (e.g., Ghosh 
1979; Vollset 1993). Some readers, though, may be sur-
prised at just how much better the score method does than 
the exact method. The exact interval remains quite conser- 
vative even for moderately large sample sizes when p tends 
to be near 0 or 1. The Wald interval is also especially inad- 
equate when p is near 0 or 1, partly a consequence of using 
$ as its midpoint when the binomial distribution is highly 
skewed. 

Even though the score intervals tend to have consider- 
ably higher actual coverage probabilities than the Wald in- 
tervals, they are not necessarily wider. In fact, unless the 
sample proportions fall near 0 or 1, they are shorter. Di- 

Coverage Probabil~ty 

rect comparison of the formulas for the two interval widths 
yields that the score interval is narrower than the Wald 
interval whenever p falls within J(n + z 2 ) / ( 8 n+ 1 z 2 ) of 
1/2. In particular, since this term decreases in the limit to- 
ward I/& = .35 as n increases or z /  decreases, the score 
interval is narrou er than the Wald interval whenever lj falls 
in (.15, .85) for any n and any nominal confidence level. 
See Ghosh (1979) for additional results about the relative 
lengths of the two types of interval. This comparison has 
limited relevance, since the actual coverage probabilities of 
the two methods differ. We mention this, however, to stress 
that the inadequacy of the Wald approach is not that the 
intervals are too short. 

For fixed n and p, the expected width of an interval es- 
timator is a useful measure of its performance. Figure 2 
illustrates the relative sizes of the expected widths for the 
nominal 95% Wald, score, and exact intervals by plotting 
them as a function of p, for n = 15. For small n, the score 
intervals tend to be much shorter than exact intervals. The 
narrowness of the Wald intervals as p approaches 0 or 1 
reflects the fact that when x = 0 or n, that interval is de- 
generate at 0 or at 1. By contrast, when z = 0, the score 
interval is [O. z 2 / ( n  + z 2 ) ] = [O, 3.84/(n + 3.84)] and the 
exact interval is [O, 1- ( . 0 2 5 ) ~ / " ] ,which is approximately 
[O, - l og ( . 025 ) / r~]= [O, 3.69/n]; the latter shows an exten- 
sion of the "rule of 3/nn (Jovanovic and Levy 1997) from 
the .95 upper confidence bound to .95 confidence limits. 

Is anything sacrificed by using the score intervals? Well, 
since they are not "exact," they are not guaranteed to have 
coverage probabilities uniformly bounded below by the 
nominal confidence level, and their actual confidence co- 
efficient (the infimum of such probabilities) is, in fact, well 
below it. Vollset's (1993) plots of the coverage probabilities 
as a function of p, for various methods, are illuminating for 

Coverage Probability 

Figure 1. Mean Coverage Probability as a Functlon of Sample Size for the Nom/nal95% Exact (E), Score (S), and Wald (W) Intervals, When p 
has (a) a Uniform (0, l )  Distribution and (b) a Beta Distribution with p = .10 and 5 = .05. 
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bility drops seriously below the nominal confidence level 
Expected W~dth ~ ' Exact 1~ is small. Table 2 illustrates. The proportion of the parame- 
06 - ter space for which the coverage probability of the nominal 

g:e 	 95% score interval falls below 9 0  is no more than . O l  when 
n > 20. That table also shows that the proportion of param- 
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Figure 2. A Comparison of Expected Widths for the Nominal 95% 
Exact, Wald, and Score lntervals When n = 15. 

describing the behavior of the methods. The score method 
has two very narrow regions of values for p, one near 0 and 
one near 1, at which the actual coverage probability falls 
seriously below the nominal confidence level, and this badly 
affects the actual confidence coefficient. These regions get 
closer to 0 and to 1 as n increases. For n = 10 with nominal 
95% confidence intervals. for instance, there is a minimum 
coverage of 3 3 5  at p = .018 and p = ,982, whereas at n = 

100, there is a minimum coverage of 338  at p = .002 and 
p = ,998. 

We now explain why this happens. There is a region 
of values [O. r )  for p that falls in the score confidence 
interval only when X = 0. The upper bound r of this 
region is the lower endpoint of the confidence interval 
when X = 1, which for large n is approximately ( 1 + 
x2 /2  - z J W / 2 ) / n .  The coverage probability just be- 
low r is approximately P ( X  = 0 )  = [l - (1 + x 2 / 2  -
z J W / 2 ) / n I n  = cxp{ - (1  + z 2 / 2 - x d W / 2 ) } . The 
analogous remark applies for values of p near 1. This lim- 
iting coverage probability is .800 for nominal 90% inter- 
vals. 338  for 95% intervals, and ,889 for 99% intervals. 
See Huwang (1995) for related remarks. In particular, the 
actual confidence level does not converge to the nominal 
level as n increases. 

Though this may seem problematic. the portion of the [O. 
11 parameter space over which the actual coverage proba- 

eter values for which the coverage probability is within .02 
of 95 is much higher for the score than the exact interval. 
In fact, the score coverage probability is closer than the ex- 
act coverage probability to .95 over more than 90% of the 
parameter space, for the sample sizes reported 

3. THE "ADD TWO SUCCESSES AND TWO 
FAILURES" ADJUSTED WALD INTERVAL 

The poor performance of the Wald interval is unfortu- 
nate, since it is the simplest approach to present in elemen- 
tary statistics courses. We strongly recommend that instruc- 
tors present the score interval instead. Santner (1998) makes 
the same recommendation. Of course, many instructors will 
hesitate to present a formula such as (2) in elementary 
courses. The shrinkage representation of the score approach 
suggests. however. that for constructing 95% confidence in- 
tervals (for which z2 = 1.96' = -land the midpoint of the 
score interval is ( X  + z 2 / 2 ) / ( n+ x 2 ) NN ( X  + 2 ) / ( n+ -1)) 
an instructor will not go far wrong in giving the following 
advice: "Add two successes and two failures and then use 
the Wald formula (I)." That is. this "adjusted Wald" interval 
uses the usual simple formula presented in such courses, but 
with ( n+4) trials and point estimate g = ( X  + 2 ) / ( n+4 ) .  

The midpoint of this interval, p = ( X  + 2 ) / ( n+ -1). is 
nearly identical to the midpoint of the 95% score interval. 
It is identical to the Bayes estimate (mean of the posterior 
distribution) for the beta prior distribution with parame- 
ters 2 and 2, which has mean .50 and standard deviation 
,224 and which shrinks the sample proportion toward .50 
somewhat more than does the uniform prior. This simple 
adjustment to the ordinary Wald interval changes it from 
highly liberal to slightly conservative, on the average. and 
a bit more conservative than the score method. Figure 3 il- 
lustrates, showing the mean actual coverage probability C, 
for the nominal 95% Wald and adjusted Wald intervals as a 
function of n , for the uniform and skewed weightings of p. 
The adjusted Wald confidence interval behaves surprisingly 
well. even for very small sample sizes. 

Figure 4 shows the actual coverage probabilities as a 
function of p for the Wald, adjusted Wald. and Clopper- 
Pearson exact intervals when n = 5 and n = 10. The im- 

Table 2. Proportion of Parameter Space for which (a) Nominal 95% Score Interval has Actual Coverage Probability 

Below .90; (b) Nominal 95% Score and Exact lntervals Have Actual Coverage Probabilities 


Between .93 and .97; (c) Actual Coverage Probability is Closer to .95 for Score Interval than Exact Interval 


Coverage Coverage closer 
Score coverage .93-.97 to .95 for Score 
Prob. below .90 Score Exact than Exact 
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Figure 3. Mean Coverage Probability as a Function of Sample Size for the Nominal 95% Wald (W) and Adjusted Wald (A) Intervals, When p 
has (a) a Uniform (0, 1) Distribution and (b) a Beta Distribution with p = .10 and u = .05. 

provement of the adjusted Wald interval over the ordinary ing spikes with seriously low coverage near p = 0 and 1. 
Wald interval is dramatic. The adjusted Wald interval also This is because this interval's rather crude bounds contain 
has the advantage, relative to the score interval, of not hav- 0 when X = 0 or 1 and contain 1 when X = n -1or n.  For 
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Figure 4. A Comparison of Coverage Probabilities for the Nominal 95% Wald, Adjusted Wald, and Exact Intervals. 
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instance, the minimum coverage probability for the nominal 
95% adjusted Wald interval is .917 for n = 10 and never 
falls below .92 for n > 10. The proportion of the parameter 
space for which the actual coverage probability falls within 
.02 of .95 is slightly less than reported in Table 2 for the 
score interval, but the proportion of times its actual cov- 
erage probability is closer to .95 than the exact interval is 
still at least .94 for the sample sizes reported in that table. 
See Chen (1990) for results about coverage properties of 
related intervals using Bayes estimates as midpoints. 

Introductory statistics textbooks have an awkward time 
with sample size recommendations for the Wald inter- 
val. Most simple recommendations tend to be inadequate 
(Leemis and Trivedi 1996). Our results suggest that if one 
tells students to add two successes and two failures be- 
fore they form the Wald 95% interval, it is not necessary to 
present such sample size rules, since the "add two successes 
and two failures" confidence interval behaves adequately 
for practical application for essentially any n regardless of 
the value of p .  

One can use the adjusted Wald interval without regard- 
ing its midpoint IJ  = ( X  + 2 ) / ( n+d )  as the preferred point 
estimate of p. However, this rather strong shrinkage toward 
.5 might often provide a more appealing estimate than p. 
The mean square error of @ equals [ n p ( l  - p )  - 1 6 ( p  -
. . 5 ) 2 ] / ( n+ which is smaller than that of 6when p is 
within d 3 n 2  + 8 n  + -1 / (6n + -1) of .5; this interval of val- 
ues of p decreases from (.113, .887) to (.211, .789) as n in-
creases. Interestingly, Wilson (1927) mentioned this shrink- 
age estimator as a reasonable alternative to the sample pro- 
portion or the Laplace estimator ( X  - l ) / ( n+ 2 ) .  Letting 
S denote X ,  the number of successes, Wilson stated, "As  
the distribution of chances of an observation is asymmet- 
ric, it is perhaps unfair to take the central value as the best 
estimate of the true probability; but this is what is actually 
done in practice.. . . Those who make the usual allowance 
of 20 for drawing an inference would use (S+ 2 ) / ( n- d)." 

In recognition of his pioneering work, predating the fa- 
mous articles by Neyman and Pearson on confidence inter- 
vals, we suggest that statisticians refer to @ = ( X  +2 ) / ( n+ 

Coverage Coverage 

Probab~l~ty Probability 

1 M - 1.00 

-1) as the Wilson point estimator of p and refer to the score 
confidence interval for p as the Wilson method. See Stigler 
(1997) for an interesting summary of Edwin B. Wilson's ca- 
reer. Other highlights included service as the first professor 
and head of the Department of Vital Statistics at Harvard 
School of Public Health in 1922, the Wilson-Hilferty nor-
mal approximation for the chi-squared distribution in 1931, 
and the Wilson-Worcester introduction of the median lethal 
dose (LD 50) in bioassay. 

4. OTHER INTERVAL ESTIR/IATION 
hIETHODS FOR p 

Although the focus of this article is comparison of the 
Wald, score, and exact intervals, which are the methods 
commonly presented in statistics textbooks, we next briefly 
discuss some alternative methods. Some elementary text- 
books (e.g., Siege1 1988), perhaps recognizing the poor per- 
formance of the Wald intervals, suggest using ordinary t 
confidence intervals for a mean for interval estimation of a 
proportion. These intervals are wider than the Wald inter- 
vals, of course, but we found that mean coverage probabil- 
ities are still seriously deficient. Table 1 illustrates for the 
uniform weighting. 

Other, more complex, methods exist for constructing ex- 
act confidence intervals, such as presented by Blyth and 
Still (1983) and Duffy and Santner (1987). Our evaluations 
of these intervals indicated that they perform better than the 
Clopper-Pearson intervals but not as well as the score in- 
tervals, still showing considerable conservatism. To reduce 
the conservativeness inherent in exact methods for discrete 
distributions, many authors recommend using tests and con- 
fidence intervals based on the mid-P value, namely half the 
probability of the observed result plus the probability of 
more extreme results (Lancaster 1961). The mid-P confi- 
dence interval is the inversion of the adaptation of the ex- 
act test that uses the mid-P value. Results in Vollset (1993) 
suggest that the mid-P interval tends to perform well but 
is somewhat more conservative than the score interval, typ- 
ically having actual coverage probability greater than (and 
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Figure 5. A comparison of Coverage Probabilities for the Nominal 95% Wald. Score, and Exact intervals for a Poisson Mean. 
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never much less than) the nominal confidence level. Our 
evaluations agreed with this, and are also illustrated in Ta- 
ble 1. We feel this is a reasonable method to use, especially 
if one is concerned that p may be very close to 0 or 1. It is 
more complex computationally than the score and adjusted 
Wald intervals, but like those intervals it has the advantage 
of being shorter than the exact interval. 

Yet another alternative method is a continuity-corrected 
version of the score interval, based on the normal continu- 
ity correction for the binomial. This interval approximates 
the Clopper-Pearson interval, however, and our evaluations 
and results in Vollset (1993, Fig. 2) suggest that it is often 
as conservative as the exact interval itself. Again, Table 1 
illustrates, and we do not recommend this approach. 

Finally, we mention two other methods that perform well. 
The confidence interval based on inverting the likelihood- 
ratio test is similar to the score interval in terms of how it 
compares with the exact interval, but it is more complex to 
construct. Not surprisingly, Bayesian confidence intervals 
with beta priors that are only weakly informative also per- 
form well in a frequentist sense (see, e.g., Carlin and Louis 
1996, pp. 117-123). 

In deciding whether to use the score interval, some may 
be bothered by its poor coverage for values of p just below 
the lower boundary of the interval when X = 1 and just 
above the upper boundary of the interval when X = n - 1. 
One could then use an adapted version that replaces the 
lower endpoint by - log(1 - a) /n  when X = 1 and the 
upper endpoint by 1 $log(l - a) /n  when X = n - 1. (e.g., 
at p = - log(1- n)/n. P ( X  = 0) = I1 + log(1- a)/nIn = 
1 - n.) This adaptation improves the minimum coverage 
considerably. For instance, the nominal 95% interval has 
minimum coverage probability converging to 395  for large 
n, which is the large-sample coverage probability at p just 
below the lower endpoint of the interval when X = 2. 

5. CONCLUSION AND EXTENSIONS 

The Clopper-Pearson interval has coverage probabilities 
bounded below by the nominal confidence level, but the 
typical coverage probability is much higher than that level. 
The score and adjusted Wald intervals can have coverage 
probabilities lower than the nominal confidence level, yet 
the typical coverage probability is close to that level. In 
forming a 95% confidence interval, is it better to use an ap- 
proach that guarantees that the actual coverage probabilities 
are at least .95 yet typically achieves coverage probabilities 
of about .98 or .99, or an approach giving narrower inter- 
vals for which the actual coverage probability could be less 
than .95 but is usually quite close to .95? For most appli- 
cations, we would prefer the latter. The score and adjusted 
Wald confidence intervals for p provide shorter intervals 
with actual coverage probability usually nearer the nominal 
confidence level. In particular, even though the score and 
adjusted Wald intervals leave something to be desired in 
terms of satisfying the usual technical definition of "95% 
confidence," the operational performance of those methods 

is better than the exact interval in terms of how most prac- 
titioners interpret that term. 

Results similar to those in this article also hold in other 
discrete problems. For instance, similar comparisons apply 
for score, Wald, and exact confidence intervals for a Pois- 
son parameter p, based on an observation X from that dis- 
tribution. Figure 5 illustrates, plotting the actual coverage 
probabilities when the nominal confidence level is .95. Here, 
the score interval for p results from inverting the approx- 
imately normal test statistic z = (X - p o ) / f i ,  the Wald 
interval results from inverting z = (X - p o ) / f i ,  and the 
endpoints of the exact interval, (1/2)(X;x,,025. x ~ ( ~ + ~ ) ,2 975), 

result from equating tail sums of null Poisson probabilities 
to .025 (Garwood 1936; for n independent Poisson obser- 
vations, XI. . . . .Xn, the same formulas apply if one lets 
X = E X ,  and p = E(X) = nE(X,)).For another discrete 
example, see Mehta and Walsh (1992) for a comparison of 
exact with mid-P confidence intervals for odds ratios or for 
a common odds ratio in several 2x 2 contingency tables. 

Exact inference has an important place in statistical infer- 
ence of discrete data, in particular for sparse contingency 
table problems for which large-sample chi-squared statis- 
tics are often unreliable. However, approximate results are 
sometimes more useful than exact results, because of the 
inherent conservativeness of exact methods. 
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Advanced Statistics: Bootstrapping Confidence
Intervals for Statistics with ‘‘Difficult’’ Distributions

Jason S. Haukoos, MD, MS, Roger J. Lewis, MD, PhD

Abstract
The use of confidence intervals in reporting results of
research has increased dramatically and is now required or
highly recommended by editors of many scientific journals.
Many resources describe methods for computing confidence
intervals for statistics with mathematically simple distribu-
tions. Computing confidence intervals for descriptive
statistics with distributions that are difficult to represent
mathematically is more challenging. The bootstrap is
a computationally intensive statistical technique that allows
the researcher to make inferences from data without making
strong distributional assumptions about the data or the
statistic being calculated. This allows the researcher to

estimate confidence intervals for statistics that do not have
simple sampling distributions (e.g., the median). The
purposes of this article are to describe the concept of
bootstrapping, to demonstrate how to estimate confidence
intervals for the median and the Spearman rank correlation
coefficient for non-normally-distributed data from a recent
clinical study using two commonly used statistical software
packages (SAS and Stata), and to discuss specific limitations
of the bootstrap. Key words: bootstrap; resampling; median;
Spearman rank correlation; SAS; Stata; NOSIC Score;
confidence intervals. ACADEMIC EMERGENCY MEDI-
CINE 2005; 12:360–365.

The use of confidence intervals in reporting the results
of biomedical research has increased dramatically
over the past several years. It is well known that
confidence intervals provide more information than
p-values, and editors of many scientific journals are
now requiring or highly recommending their use.1,2

While a number of articles report methods by which
to calculate confidence intervals , they primarily focus
on estimating confidence intervals for statistics with
mathematically simple distributions, at least when the
data themselves have a straightforward sampling
distribution (e.g., normal or binomial distribution).3–6

In a recent publication, Okada et al. reported confi-
dence intervals around Spearman rank correlation

coefficients.7 The primary objective of their study
was to develop and evaluate a neurologic outcome
measure, called the Neurologic Outcome Scale for
Infants and Children (NOSIC), for pediatric research
subjects with neurologic deficits. The NOSIC scale
ranges from 3 to 100 and was applied independently
by two clinical investigators to a cohort of patients in
order to assess its reliability. The first rater (rater 1)
applied the NOSIC to 157 patients and the second
rater (rater 2) applied it to 84 of the 157 patients. These
data are shown in Figures 1–3. It is evident from
Figures 1 and 2 that the distributions are highly
skewed, making reporting of the medians and Spear-
man rank correlation coefficient more valid than
reporting the means and Pearson correlation coeffi-
cient for characterizing each rater’s scores and the
interrater reliability.

The confidence intervals for the Spearman rank
correlation coefficients were estimated using the boot-
strap, a statisticalmethod based on resampling that can
beused toperformstatistical inference.8 Thepurpose of
this article is to describe the steps in bootstrapping, to
demonstrate how to estimate confidence intervals
using two commonlyused statistical softwarepackages
(SAS9 and Stata10) using the data from theOkada study,
and to briefly discuss some limitations of the technique.

BOOTSTRAPPING

Bootstrapping was introduced in 1979 as a computa-
tionally intensive statistical technique that allows
the researcher to make inferences from data without
making strong distributional assumptions.8,11 There
are two distributions to consider. The first is the
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underlying distribution of the data themselves, which
is frequently described as a probability function (e.g.,
normal, binomial, or Poisson) that shows all the
values that the variables can have and the likelihood,
or probability, that each will occur. The second is the

distribution of the statistic (e.g., the median) calcu-
lated from the data. Both the items of data and the
calculated statistic will vary in ways that can be
described mathematically under the assumption that
new sets of data were obtained or ‘‘sampled’’ and, for
each set of data, a new statistic was calculated. More
precisely, the statistic’s sampling distribution is the
probability of all possible values of the estimated
statistic calculated from a sample of size n drawn
from a given population.12 Bootstrapping uses resam-
pling with replacement (also known as Monte Carlo
resampling) to estimate the statistic’s sampling distri-
bution. The sampling distribution, if it can be de-
termined, may then be used to estimate standard
errors and confidence intervals for that particular
statistic.

The steps for estimating confidence intervals using
the bootstrap are as follows (Figure 4): First, one uses
resampling with replacement to create m resampled
data sets (also known as bootstrap samples) that
contain the same number of observations (n) as the
original data set. To perform resampling with replace-
ment, an observation ordata point is randomly selected
from the original data set and copied into the re-
sampled data set being created. Although that data
point has been ‘‘used,’’ it is not deleted from the original
data set or, using the usual terminology, is ‘‘replaced.’’
Another data point is then randomly selected, and the
process is repeateduntil a resampleddata set of size n is
created. As a result, the same observation may be
included in the resampled data set one, two, or more

Figure 1. Frequency histogram of scores using the Neurologic
Outcome Scale for Infants and Children (NOSIC) for rater 1
(n = 157). The mean value is 90 (standard deviation = 16) and
the median value is 97 (interquartile range: 92–100).

Figure 2. Frequency histogram of scores using the Neurologic
Outcome Scale for Infants and Children (NOSIC) for rater 2
(n = 84). The mean value is 95 (standard deviation = 10) and
the median value is 98 (interquartile range: 95–100).

Figure 3. Neurologic Outcome Scale for Infants and Children
(NOSIC) scores for rater 1 and rater 2 (n = 84). Data points are
‘‘smeared’’ using a normally-distributed random number
generator to improve the representation of exactly overlap-
ping data. As a result, some data points exceed 100. The
Pearson correlation coefficient is 0.97 and the Spearman
correlation coefficient is 0.77.
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times, or not at all. Second, the descriptive statistic of
choice is computed for each resampled data set. Third,
a confidence interval for the statistic is calculated from
the collection of values obtained for the statistic. At this
point in the analysis, there are several options for
computing confidence intervals, including the normal
approximation method, the percentile method, the
bias-corrected (BC) method, the bias-corrected and
accelerated (BCa) method, and the approximate boot-
strap confidence (ABC) method.8

Each bootstrap sample should have the same sam-
ple size as the original data set. If the bootstrap sample
sizes differ from the sample size of the original data
set, the calculated estimation for the confidence in-
terval may be biased.13 A correction for this bias has
been described, although there seems to be no practi-
cal advantage gained by performing the analysis in
this manner.14

The normal approximation method computes an
approximate standard error using the sampling dis-
tribution resulting from all the bootstrap resamples.
The confidence interval is then computed using the
z-distribution (original statistic 6 1.96 3 standard
error, for a 95% confidence interval). The percentile
method uses the frequency histogram of the m
statistics computed from the bootstrap samples. The
2.5 and 97.5 percentiles constitute the limits of the
95% confidence interval. The BCa method adjusts for
bias in the bootstrapped sampling distributions rela-
tive to the actual sampling distribution, and is thus
considered a substantial improvement over the per-
centile method.8 The BCa confidence interval is an
adjustment of the percentiles used in the percentile
method based upon the calculation of two coeffi-
cients called ‘‘bias correction’’ and ‘‘acceleration.’’
The bias correction coefficient adjusts for the skew-
ness in the bootstrap sampling distribution. If the
bootstrap sampling distribution is perfectly symmet-
ric, then the bias correction will be zero.8 The

acceleration coefficient adjusts for nonconstant var-
iances within the resampled data sets.8 The ABC
method is an approximation of the BCa method that
requires fewer resampled data sets than the BCa

method.8

As a general guideline, 1,000 or more resampled
data sets should be used when calculating a BCa

confidence interval.11 As a result of not having to
calculate bias correction, a smaller value, in the range
of 250, can be used when using the percentile method
for estimating a confidence interval.13 As the number
of resampled data sets decreases, more variability is
introduced into the confidence interval estimation
(i.e., the variability is inversely related to the number
of resampled data sets).8,13

Example 1: Determining a Confidence Interval
around a Median Value. A median value is defined
as the observation at the 50th percentile in a set of
data ordered from the lowest value to the highest
value.15 This measure of center for a set of values
is commonly reported and is considered a more valid
definition of center when the frequency distribution
of the variable is skewed (i.e., not symmetric around
its center). Unlike the mean, there is no simple method
for calculating the 95% confidence interval (95% CI)
for the median, and it is not valid to use a 95% CI
calculated from the standard error to represent the
95% confidence for the median value, unless the
distribution of the underlying data is normal. As a
result, the bootstrap can be used to estimate the
sampling distribution of the median. The central limit
theorem states that as the number of resampled data
sets increases, the distribution of the resulting statistic,
in this case the median, will become approximately
normal.15 This subsequently allows for a relatively
unbiased estimation of the confidence interval.

The steps required to bootstrap the 95% CI for
a median value are: 1) to resample with replacement
from the original data set, creating m bootstrapped
data sets; 2) to independently compute the median
value for each bootstrapped data set; and 3) to
compute the 95% CI from the set of computed median
values from the bootstrapped data sets using either
the normal approximation method, the percentile
method, the BC method, the BCa method, or the
ABC method.

These steps can be accomplished using the SAS
software program (SAS Institute, Inc., Cary, NC) as
follows. The SAS macro JACKBOOT, which can be
obtained from the SAS Web site, must be invoked
prior to performing a bootstrap analysis in SAS.16 A
‘‘macro’’ is a program that can be executed by SAS
and that may be modified by the user, while a SAS
procedure is a ‘‘fixed’’ program that performs a spe-
cific statistical calculation or other task. The JACK-
BOOT macro requires another macro (called ANALYZE)
to be written that provides it with the procedure

Figure 4. Schematic depiction of the steps in the bootstrap.
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whose result (e.g., the median of the original data set)
requires bootstrapping. The univariate procedure
(PROCUNIVARIATE) in SAS is used to compute themedian
value for a group of observations. The following is the
ANALYZE macro, modified to bootstrap a 95% CI around
a median value for the variable ‘‘normscr1’’ (NOSIC
score for rater 1):

%macro analyze (data=, out=);
proc univariate noprint data=&data;
output out=&out (drop=_freq_ _type_)
median=median;
var normscr1;
%bystmt;

run;
%mend;

In SAS, the ‘‘%macro’’ term indicates the beginning
of a macro, and is followed by its title (i.e., ‘‘analyze’’).
The ‘‘%mend’’ term indicates the end of a macro, and
all text between ‘‘%macro’’ and ‘‘%mend’’ is called
macro text. In this example, PROCUNIVARIATE is invoked
with the ‘‘noprint’’ option. The ‘‘data=&data’’ term
references the original data set through the JACKBOOT

macro using the ‘‘%boot’’ term (see below). The
‘‘output’’ statement directs SAS to create a temporary
output file for only the median values, as indicated
by the term ‘‘median=median,’’ for the variable
‘‘normscr1.’’ The ‘‘%bystmt’’ term references a macro
within the JACKBOOT macro that computes a statistic (in
this case, the median) for the original data set and for
each resampled data set.
The ANALYZE macro is followed immediately by the

following bootstrap commands:

%boot (data=temp, samples=2500);
%bootci (percentile);
%bootci (bca);

In this example, the ANALYZE macro is used by the
JACKBOOT macro to apply the statistical procedure (PROC

UNIVARIATE) to the original data set (data=temp, refer-
enced in the ‘‘%boot’’ statement). The ‘‘%boot’’ com-
mand invokes the bootstrap procedure, resulting in
2,500 bootstrapped samples, and the ‘‘%bootci’’ com-
mand invokes the bootstrap confidence interval pro-
cedure. The first ‘‘%bootci’’ command uses the
percentile method to compute a 95% CI for the median
and the second ‘‘%bootci’’ command uses the BCa

method to compute a 95% CI for the median of the
variable ‘‘normscr1.’’ The median value was 97 [inter-
quartile range (IQR): 92–100, range 32–100], and the
95% CIs for the median were 96–98 (percentile) and 97
to 98 (BCa).
Using Stata (Stata Corporation, College Station, TX)

to perform the same calculations is substantially
simpler. The following Stata commands compute the
median value for the variable ‘‘normscr1’’ and boot-
strap the 95% CIs using the normal, percentile, and
BCa methods using 2,500 resamples17:

centile normscr1
bs ‘‘centile normscr1’’ ‘‘r(c_1)’’,
rep(2500)

The ‘‘centile’’ command calculates the median value
for the variable ‘‘normscr1.’’ The ‘‘bs’’ command
calculates a bootstrapped confidence interval for the
medianvalue for the variable ‘‘normscr1.’’ The primary
code appears in the first quotations, ‘‘�r(c_1)’’ refers to
the reference statistic for which the 95% CI will be
calculated, and ‘‘rep(2500)’’ indicates the number of
resampled data sets. After the primary command has
been executed, the command ‘‘return list’’ can be used
to display the codes for each of the resulting statistics
for the primary command. In this example, ‘‘c_1’’ is the
code that refers to the median value calculated by the
‘‘centile’’ command.

Example 2: Determining a Confidence Interval
around a Spearman Rank Correlation Coefficient.
The Spearman rank correlation coefficient is the non-
parametric counterpart to the parametric Pearson
correlation coefficient.15 The Pearson correlation co-
efficient is a valid statistical technique for determining
correlation between two normally-distributed contin-
uous variables. On the other hand, the Spearman rank
correlation coefficient is a valid statistical technique
for determining correlation between two non-normally-
distributed continuous variables.

The PROC CORR procedure in SAS is used to
compute the Pearson correlation coefficient, and
there are two methods for computing the Spearman
rank correlation coefficient. The first method simply
involves incorporating the option ‘‘spearman’’ into
the PROC CORR statement. The second method involves
ranking the data, using PROC RANK, prior to using
PROC CORR.

The following illustrates the ANALYZE macro used
by the JACKBOOT macro to perform the bootstrap in SAS:

%macro analyze (data=, out=);
proc rank data=&data out=tempdata;

var normscr1 normscr2;
%bystmt;

proc corr noprint
data=tempdata
out=&out (rename=(_type_=stat
_name_=with));
var normscr1 normscr2;
%bystmt;

run;
%mend;

The macro text in this example includes the PROC

RANK command for variables ‘‘normscr1’’ and
‘‘normscr2.’’ This command is followed by the PROC

CORR command, which performs correlation of the two
ranked variables for each resampled data set. The
‘‘out=tempdata’’ term writes a temporary output file
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of all ranked resampled data sets. This is read as an
input file using the term ‘‘data=tempdata’’ in the PROC

CORR command.
Again, the ANALYZE macro is followed immediately

by the bootstrap commands:

%boot (data=temp, id=stat with,
samples=2500);
%bootci (percentile, id=stat with);
%bootci (bca, id=stat with);

In this example, 2,500 bootstrapped samples were
created, and the percentile and BCamethodswere used
to compute 95% CIs for the Spearman rank correlation
coefficient between the variables ‘‘normscr1’’ and
‘‘normscr2’’ (NOSIC score for rater 2). The Spearman
rank correlation coefficient was 0.77 for the original
data set and the 95% CIs were 0.62–0.88 (percentile)
and 0.62–0.87 (BCa).

Again, it is simpler to perform this calculation using
Stata. The following Stata commands compute the
Spearman rank correlation coefficient between
‘‘normscr1’’ and ‘‘normscr2,’’ and bootstrap the 95%
confidence intervals using the normal, percentile, and
BCa methods using 2,500 resamples:

spearman normscr1 normscr2
bs ‘‘spearman normscr1 normscr2’’
‘‘r(rho)’’, rep(2500)

The ‘‘spearman’’ command calculates the Spearman
rank correlation coefficient for ‘‘normscr1’’ and
‘‘normscr2.’’ The primary code appears in the first
quotations, ‘‘r(rho)’’ refers to the reference statistic for
which the 95% CI will be calculated, and ‘‘rep(2500)’’
indicates the number of resampled data sets.

Limitations of the Bootstrap. Although the idea of
the bootstrap has been around for nearly two centu-
ries, theoretical work on the bootstrap is relatively
recent and, therefore, the limitations of the bootstrap
are not entirely understood.11 The bootstrap is a tool
used, in part, to calculate confidence intervals for
point estimates of descriptive statistics. The bootstrap
should not be used to compute point estimates
themselves, however. The sampling distribution of
the bootstrapped statistics is frequently not symmet-
ric. Thus, computing point estimates in this manner
may reflect, as opposed to alleviate, biased estimation
from the samples.11 The extent of bias can be
estimated but is subject to high variability, making
bias correction infeasible.8

The most important limitation of the bootstrap is
the assumption that the distribution of the data
represented by the sample is a reasonable estimate
of the population distribution function from which
the data are sampled. In other words, the sample
must reflect the variety and range of possible values
in the population from which it was sampled. If the
distribution of data from the sample does not reflect

the population distribution function, then the random
sampling performed in the bootstrap procedure may
add another level of sampling error, resulting in
invalid statistical estimations.18 This emphasizes the
importance of obtaining quality data that accurately
reflect the characteristics of the population being
sampled.

Additionally, the smaller the original sample, the
less likely it is to represent the entire population.
Thus, the smaller the sample, the more difficult it
becomes to compute valid confidence intervals. The
bootstrap relies heavily on the tails of the estimated
sampling distribution when computing confidence in-
tervals, and using small samples may jeopardize the
validity of this computation.18

Random sampling performed in the bootstrap pro-
cedure also adds another level of potential sampling
error. This, as mentioned previously, is reflected in
the variation and bias estimates commonly performed
during a bootstrap analysis.

CONCLUSIONS

The bootstrap is a relatively simple statistical concept
that requires computationally intensive procedures
to implement. Modern statistical software packages
now allow researchers to employ relatively simple
programming to compute confidence intervals for
statistics with inconvenient or unknown sampling
distributions.

The authors gratefully thank Pamela J. Okada, MD, and Kelly D.
Young, MD, MS, for providing the original NOSIC data, and
Stephen P. Wall, MD, MPH, for providing programming sugges-
tions in Stata.
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SUMMARY

Simulation studies use computer intensive procedures to assess the performance of a variety of statistical
methods in relation to a known truth. Such evaluation cannot be achieved with studies of real data alone.
Designing high-quality simulations that reflect the complex situations seen in practice, such as in prognostic
factors studies, is not a simple process. Unfortunately, very few published simulation studies provide
sufficient details to allow readers to understand fully all the processes required to design a simulation
study. When planning a simulation study, it is recommended that a detailed protocol be produced, giving
full details of how the study will be performed, analysed and reported. This paper details the important
considerations necessary when designing any simulation study, including defining specific objectives of the
study, determining the procedures for generating the data sets and the number of simulations to perform.
A checklist highlighting the important considerations when designing a simulation study is provided.
A small review of the literature identifies the current practices within published simulation studies.
Copyright q 2006 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Simulation studies use computer intensive procedures to test particular hypotheses and assess the
appropriateness and accuracy of a variety of statistical methods in relation to the known truth. These
techniques provide empirical estimation of the sampling distribution of the parameters of interest
that could not be achieved from a single study and enable the estimation of accuracy measures,
such as the bias in the estimates of interest, as the truth is known [1]. Simulation studies are
increasingly being used in the medical literature for a wide variety of situations, (e.g. References
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[2–4]). In addition, simulations can be used as instructional tools to help with the understanding
of many statistical concepts [5, 6].

Designing high-quality simulations that reflect the complex situations seen in practice, such as
in randomized controlled trials or prognostic factor studies, is not a simple process. Simulation
studies should be designed with similar rigour to any real data study, since the results are expected
to represent the results of simultaneously performing many real studies. Unfortunately, in very few
published simulation studies are sufficient details provided to assess the integrity of the study design
or allow readers to understand fully all the processes required when designing their own simulation
study. Performing any simulation study should involve careful consideration of all design aspects of
the study prior to commencement of the study from establishing the aims of the study, the procedures
for performing and analysing the simulation study through to the presentation of any results
obtained. These are generic issues that should be considered irrespective of the type of simulation
study but there may also be further criteria specific to the area of interest, for example survival data.

It is important for researchers to know the criteria for designing a good quality simulation study.
The aim of this paper is to provide a comprehensive evaluation of the generic issues to consider
when performing any simulation study, together with a simple checklist for researchers to follow
to help improve the design, conduct and reporting of future simulation studies. The basic concepts
underpinning the important considerations will be discussed, but full technical details are not pro-
vided and the readers are directed towards the literature (e.g. References [7, 8]). General considera-
tions are addressed rather than the specific considerations for particular situations where simulations
are extremely useful, such as in Bayesian clinical trials designs (e.g. Reference [9]), sample size
determination (e.g. References [3, 10]), or in studies of missing data (e.g. Reference [4]). A small
formal review of the current practice within published simulation studies is also presented.

2. ISSUES TO CONSIDER WHEN DESIGNING A SIMULATION STUDY

When planning any simulation study, as with randomized controlled trials, a detailed protocol
should be produced giving full details of how the study is to be performed, analysed and reported.
The protocol should document the specific objectives for the simulation study and the procedures
for generating multivariate data sets and, if relevant, with censored survival times. The choices for
the different scenarios to be considered, for example different sample sizes, and the methods that
will be evaluated should also be included in the protocol together with the number of simulations
that will be performed. It is also important to give careful consideration to which data and results
will be stored from each run, and which summary measures of performance will be used. If an aim
of the study is to judge which is the best of two or more methods, then the criteria should be pre-
specified in the protocol, where possible. The rationale behind all the decisions made throughout
the design stage should be included in the protocol.

Each of the preceding considerations will be discussed in more detail in the following sections.
A checklist of the important issues that require consideration when designing a simulation study
is provided in Figure 1.

2.1. Clearly defined aims and objectives

Establishing clearly defined aims for the simulation study prior to its commencement is an essential
part of any research. This focuses the study and avoids unnecessary repetition and time wasting
from having to repeat simulations when new aims are conceptualized.

Copyright q 2006 John Wiley & Sons, Ltd. Statist. Med. 2006; 25:4279–4292
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0. Detailed protocol of all aspects of the simulation study

2. Simulation procedures 

a. Level of dependence between simulated datasets 

b. Allowance for failures 

c . Software to perform simulations 

d. Random number generator to use 

3. Methods for generating the datasets 

4. Scenarios to be investigated 

5. Statistical methods to be evaluated 

6. Estimates to be stored for each simulation and summary
    measures to be calculated over all simulations  

7. Number of simulations to be performed 

8. Criteria to evaluate the performance of statistical methods for different     
     scenarios   

a. Assessment of bias

b. Assessment of accuracy

c . Assessment of coverage 

9. Presentation of the simulation results 

a. Justifications for all the decisions made

1. Clearly defined aims and objectives

e . Specification of the starting seeds

Figure 1. Important considerations when designing any simulation study.

2.2. Simulation procedures

Once the aims and objectives have been formalized, the procedures for performing the simulations
can be considered including the level of dependence between simulations, the allowance for failures,
the choice of random number generator, starting seeds and the software package to be used. The
statistical software package must be able to handle the complexities involved in the proposed
simulation study and have a reliable random number generator.

All simulation studies involve generating several independent simulated data sets. These gener-
ated data sets should also be completely independent for the different scenarios considered, such
as different sample sizes. However, when more than one statistical methodology is being inves-
tigated, there is an added complication of determining the level of dependence of the simulated
data sets for the different methods, although still retaining independent data sets for each scenario
studied. Two feasible simulation strategies are possible. Firstly, fully independent simulated data
sets involve generating a completely different set of independent data sets for each method and
scenario considered. Secondly, moderately independent simulations use the same set of simulated

Copyright q 2006 John Wiley & Sons, Ltd. Statist. Med. 2006; 25:4279–4292
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independent data sets to compare a variety of statistical methods for the same scenario, but a
different set of data sets is generated for each scenario investigated. These moderately dependent
samples are like a matched pair design where the within sample variability is eliminated and
therefore are sensitive to detecting any differences between methods. The relationship between the
generated samples should form an important consideration when designing the study.

The simulation procedures should have some allowance for failing to estimate the outcome or
parameter of interest, e.g. due to rare events or lack of convergence of models, to avoid premature
stopping of the study. The simulations can be set up so that a failed sample is discarded and the
whole process is repeated. The number of failures that occur should be recorded to gauge how
likely this could happen in practice in order to judge whether the applied statistical procedure
can reliably be used in the situation being investigated. If many failures occur for a particular
scenario causing the early termination of the simulation study, researchers must consider whether
in their situation the failures would lead to bias, and hence unacceptable results, or unbiased but
imprecise results in order to determine the usefulness of the results from the partial set of completed
simulations. Failures for some simulations may result in a post hoc change of the protocol to omit
scenarios, which cannot be simulated reliably.

2.2.1. Random number generation. A fundamental part of any simulation study is the ability
to generate random numbers. The many different types of random number generator have been
detailed elsewhere [11, 12]. Any random number generator should be long in sequence before
repetition and subsets of the random number sequence should be independent of each other [13].
A variety of statistical tests for randomness exist, including Marsaglia’s Diehard battery of tests
for randomness [14], which each random number generator must pass before it can be reliably
adopted as a means of generating random numbers.

A random number generator must be able to reproduce the identical set of random numbers
when the same starting value, known as a seed, is specified [13]. This is also essential when
performing simulation studies to enable the generated data sets and hence results to be reproduced,
if necessary, for monitoring purposes. The specification of the starting seed also facilitates the
choice of simulation strategy. The simulations will be fully independent if completely different
starting seeds are used to generate the data sets for each scenario and method combination con-
sidered or moderately independent if the same starting seeds are used to compare various methods
for the same scenario but different seeds are employed for alternative scenarios. Any simulation
strategy involves running several independent simulations for the same scenario, known as par-
allel simulations, which require independent sequences of random numbers. Random numbers
can be generated for parallel simulations by setting different starting values for the individual
simulations that are greater than the number of random numbers required for each simulation,
which reduces the possibility of correlations between samples [13]. For example, if each sim-
ulated data set had a sample size of 500, then each of the 250, say, simulations would require
500 random numbers, therefore the starting seed for each simulation should be separated by at
least 500.

2.3. Methods for generating the data sets

The methods for obtaining simulated data sets should be carefully considered and a thorough
description provided in both the protocol and any subsequent articles published. Simulating data
sets requires an assumed distribution for the data and full specification of the required parameters.

Copyright q 2006 John Wiley & Sons, Ltd. Statist. Med. 2006; 25:4279–4292
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The simulated data sets should have some resemblance to reality for the results to be generalizable
to real situations and have any credibility. A good approach is to use a real data set as the motivating
example and hence the data can be simulated to closely represent the structure of this real data
set. The actual observed covariate data could be used and only the outcome data generated or just
certain aspects, such as the covariate correlation structure, could be borrowed. Alternatively, the
specifications could be arbitrary, but the generated data set may be criticized for not resembling
realistic situations. The rationale for any choices made regarding the distributions of the data,
parameters of any statistical models and the covariate correlation structure used to generate the
data set should accompany their specifications. The generated data should be verified to ensure
they resemble what is being simulated, for example using summary measures for the covariate
distributions, Kaplan–Meier survival curves for survival data or fitting appropriate regression
models.

2.3.1. Univariate data. Simple situations may involve generating a vector of random numbers
sampled from a known distribution. Demirtas [15] provides procedures for obtaining a variety of
univariate distributions from initial values generated from the uniform distribution, if the required
distribution is unavailable within the statistical package.

2.3.2. Multivariate data. Generating multivariate data involves the additional specification of cor-
relations between covariates unless the covariates are assumed fully independent, which is unlikely
in practice. The specification of the means and associated covariance matrix is more straightforward
if based on real data, especially with a large number of covariates, and the generated data will
reflect reality. Conversely, the choice of the correlations between covariates can be arbitrary but it
is often problematic to determine what are valid relationships. The simplest approach to generate
multivariate covariate data with a specified mean and correlation structure is to assume a multi-
variate normal distribution. Any continuous but non-normally distributed variables in the real data
should be transformed to make the assumption of normality more appropriate. Binary variables can
be generated as latent normal, i.e. generated as continuous variables and then dichotomized, but
the covariate correlation structure used to generate the continuous variable needs to be adjusted to
provide the correct correlation with the resulting binary variable [16]. For example, the correction
factor for a continuous variable that is to be dichotomized with a 50:50 split is 0.80, suggesting
that the correlation between a continuous variable and a binary variable is 20 per cent less than
the correlation between two continuous variables [16].

2.3.3. Time to event data. When the outcome is time to an event, such as in prognostic modelling,
several additional considerations must be addressed. The simulations require the specification of
a model for the multivariate covariate data and a distribution for the survival data, which may be
censored. In order to simulate censored survival data, two survival distributions are required, one
for the uncensored survival times that would be observed if the follow-up had been sufficiently
long to reach the event and another representing the censoring mechanism.

The empirical survival distribution from a similar real data set would provide a reasonable
choice for the survival distribution. The uncensored survival distribution could be generated to
depend on a set of covariates with a specified relationship with survival, which represents the true
prognostic importance of each covariate. Time-dependent covariates could also be simulated and
incorporated following the procedures described by Mackenzie and Abrahamowicz [17]. Bender
et al. [18] discuss the generation of survival times from a variety of survival distributions including
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the exponential for constant hazards, Weibull for monotone increasing or decreasing hazards and
Gompertz for modelling human mortality, in particular for use with the Cox proportional hazards
model.

Random non-informative right censoring with a specified proportion of censored observations
can be generated in a similar manner to the uncensored survival times by assuming a particular
distribution for the censoring times, such as an exponential, Weibull or uniform distribution but
without including any covariates. Determining the parameters of the censoring distribution given
the censoring probability is often achieved by iteration. However, Halabi and Singh [10] pro-
vide formulas for achieving this for standard survival and censoring distributions. The censoring
mechanism can also be extended to incorporate dependent, informative censoring [19].

The survival times incorporating both events and censored observations are calculated for each
case by combining the uncensored survival times and the censoring times. If the uncensored
survival time for a case is less than or equal to the censored time, then the event is considered
to be observed and the survival time equals the uncensored survival time, otherwise the event is
considered censored and the survival time equals the censored time.

2.4. Scenarios to be investigated and methods for evaluation

Simulation studies usually examine the properties of one or more statistical methods in several
scenarios defined by values of various factors such as sample size and proportion of censoring.
These factors are generally examined in a fully factorial arrangement. The number of scenarios
to be investigated and the methods for evaluation must be determined and justifications for these
choices provided in the protocol. The scenarios investigated should aim to reflect the most common
circumstances and if possible cover the range of plausible parameter values. The number of
scenarios and statistical methods to investigate will depend on the study objectives but may be
constrained by the amount of time available, the efficiency of the programming language and the
speed and availability of several computers to run simulations simultaneously [20].

2.5. Estimates obtained from each simulation

It is essential to plan how the estimates will be stored after each simulation. Storing estimates
enables consistency checks to be performed and allows for the identification of any errors or
outlying values and the exploration of any trends and patterns within the individual simulations
that may not be observed from the summary measure alone. Storing estimates also allows different
ways of summarizing the estimates to be calculated retrospectively, if necessary, without the need
to repeat all the simulations. A thorough consideration at the design stage of the possible estimates
that may be of interest can ensure that all the required estimates are included, analysed and the
results stored, and will avoid the risk of needing to repeat simulations. The estimate of interest, �̂i ,
could include the mean value of a variable, the parameter estimate after fitting a regression model,
the log hazard ratio for survival models or the log odds ratios for logistic regression models. An
associated within simulation standard error (SE) for the estimate of interest, SE(�̂i ), is generally
required.

It is also important to establish how to summarize these estimates once all simulations have
been performed. Many published simulation studies report the average estimate of interest over

the B simulations performed, e.g. �̂= ∑B
i=1 �̂i/B as a measure of the true estimate of interest.

Simulations are generally designed to mimic the results that could have been obtained from a
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single study and therefore an assessment of the uncertainty in the estimate of interest between
simulations, denoted SE(�̂), is usually the empirical SE, calculated as the standard deviation of

the estimates of interest from all simulations,
√

[1/(B − 1)] ∑B
i=1 (�̂i − �̂)2. Alternatively, the

average of the estimated within simulation SE for the estimate of interest
∑B

i=1 SE(�̂i )/B could
be used. The empirical SE should be close to the average of the estimated within simulation SE
if the estimates are unbiased [21] and therefore, it may be sensible to consider both estimates of
uncertainty. Alternatively, if using the mean and SE of the estimates over all simulations is not
considered appropriate then non-parametric summary measures using quantiles of the distribution
could be obtained.

2.6. Number of simulations required

The number of simulations to perform can be based on the accuracy of an estimate of interest, e.g.
a regression coefficient, as with determining the sample size for any study [22, 23]. The number
of simulations (B) can be calculated using the following equation:

B =
(
Z1−(�/2)�

�

)2

(1)

where � is the specified level of accuracy of the estimate of interest you are willing to accept, i.e.
the permissible difference from the true value �, Z1−(�/2) is the 1− (�/2) quantile of the standard
normal distribution and �2 is the variance for the parameter of interest [22, 23]. A realistic estimate
of the variance may be obtained from real data if the simulations are based on a real data set
and are trying to maintain the same amount of variability. If the variance is unknown or cannot
be estimated reliably then it may be possible to perform an identical simulation study to obtain
realistic estimates for the variance or consider the measure of accuracy as a percentage of the SE.
For example, if the variance from fitting a single covariate in a Cox regression model was 0.0166,
then the number of simulations required to produce an estimate to within 5 per cent accuracy of
the true coefficient of 0.349 with a 5 per cent significance level would be only 209. To estimate
the regression coefficient to within 1 per cent of the true value would require 5236 simulations.
Alternatively, the number of simulations could be determined based on the power (1−�) to detect
a specific difference from the true value as significant [22], such that

B =
(

(Z1−(�/2) + Z1−�)�

�

)2

In fact, this formula is equivalent to equation (1) if the power to detect a specified difference is
assumed to be 50 per cent.

The number of simulations to perform is thus dependent on the true value of the estimate of
interest, the variability of the estimate of interest, and the required accuracy. For example, more
simulations are needed if the regression coefficient is small or the estimate has little variability.
Increasing the number of simulations will reduce the SE of the simulation process, i.e. SE(�̂)/

√
B,

but this can be computational expensive and therefore variance reduction techniques could be
employed [24]. The rationale for the number of simulations to perform should be included in the
protocol.
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2.7. Evaluating the performance of statistical methods for different scenarios

After the simulations have been performed, the required estimates stored after each replication and
summary measures calculated, it is necessary to consider the criteria for evaluating the performance
of the obtained results from the different scenarios or statistical approaches being studied. The
comparison of the simulated results with the true values used to simulate the data provides a measure
of the performance and associated precision of the simulation process. Performance measures that
are often used include an assessment of bias, accuracy and coverage. Collins et al. [4] emphasized
the importance of examining more than one performance criterion such as mean square error
(MSE), coverage and width of the confidence intervals in addition to bias, as results may vary
across criteria. In general, the expectation of the simulated estimates is the main interest and hence
the average of the estimates over all simulations is used to calculate accuracy measures, such as
the bias. When judging the performance of different methods, there is a trade-off between the
amount of bias and the variability. Some argue that having less bias is more crucial than producing
a valid estimate of sampling variance [25]. However, methods that result in an unbiased estimate
with large variability or conversely a biased estimate with little variability may be considered of
little practical use. The most commonly used performance measures are considered in turn. Table I
provides a summary of the most applicable performance measures and formulas.

Table I. Performance measures for evaluating different methods.

Evaluation criteria Formula

BIAS

Bias �= �̂ − �

Percentage bias

⎛
⎝ �̂ − �

�

⎞
⎠ ∗ 100

Standardized bias

⎛
⎝ �̂ − �

SE(�̂)

⎞
⎠ ∗ 100

ACCURACY

Mean square error (�̂ − �)2 + (SE(�̂))2

COVERAGE Proportion of times the 100(1 − �)% confidence interval
�̂i ± Z1−�/2SE(�̂i ) include �, for i = 1, . . . , B.

Average 100(1 − �)%

∑B
i=1 2Z1−�/2SE(�̂i )

B
confidence interval length

Key: � is the true value for estimate of interest, �̂= ∑B
i=1 �̂i/B, B is the number of

simulations performed, �̂i is the estimate of interest within each of the i = 1, . . . , B

simulations, SE(�̂) is the empirical SE of the estimate of interest over all simulations,
SE(�̂i ) is the SE of the estimate of interest within each simulation and Z1−(�/2) is the
1 − (�/2) quantile of the standard normal distribution.
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2.7.1. Assessment of bias. The bias is the deviation in an estimate from the true quantity, which can
indicate the performance of the methods being assessed. One assessment of bias is the difference

between the average estimate and the true value, i.e. � = �̂ − � (Table I). The amount of bias that
is considered troublesome has varied from 1

2SE(�̂) [21] to 2SE(�̂) [26]. Another approach is to
calculate the bias as a percentage of the true value (Table I), providing the true value does not equal
to zero. The percentage bias could have a detrimental effect on the results if the bias is greater
than the amount specified when determining the number of simulations required. Alternatively, the
bias as a percentage of the SE(�̂) (Table I) can be more informative, as the consequence of the
bias depends on the size of the uncertainty in the parameter estimate [4]. A standardized bias of
greater than 40 per cent in either direction has been shown to have noticeable adverse impact on
the efficiency, coverage and error rates [4].

Testing the significance of the amount of bias in the estimates [27] or obtaining a 95 per cent

confidence interval using the average parameter estimate, �̂, seem counterintuitive, since these

statistics are based on the number of simulations through the SE(�̂) =SE(�̂)/
√
B and hence these

statistics can be improved or penalized by changing the number of simulations performed (see
Section 2.6). Collins et al. [4] warned that with a large number of simulations, the bias may be
deemed statistically significant but not be practically significant. Therefore do not rely solely on
the p-value but consider the amount of bias as well.

2.7.2. Assessment of accuracy. The MSE provides a useful measure of the overall accuracy
(Table I), as it incorporates both measures of bias and variability [4]. The square root of the
MSE transforms the MSE back onto the same scale as the parameter [4].

2.7.3. Power, type I and II errors. The empirical power of a test, where relevant, can be determined
as the proportion of simulation samples in which the null hypothesis of no effect is rejected at the
nominal, usually 5 per cent, significance level, when the null hypothesis is false (e.g. References
[3, 28]). Hence the empirical type II error rate is 1-power. The empirical type I error can be
calculated as the proportion of p-values from testing the null hypothesis of no difference on
each simulated sample that are less than the nominal 5 per cent significance level, when the null
hypothesis is true (e.g. Reference [29]).

2.7.4. Assessment of coverage. The coverage of a confidence interval is the proportion of times
that the obtained confidence interval contains the true specified parameter value (Table I). The
coverage should be approximately equal to the nominal coverage rate, e.g. 95 per cent of samples
for 95 per cent confidence intervals, to properly control the type I error rate for testing a null
hypothesis of no effect [4]. Over-coverage, where the coverage rates are above 95 per cent, suggests
that the results are too conservative as more simulations will not find a significant result when
there is a true effect thus leading to a loss of statistical power with too many type II errors. In
contrast, under-coverage, where the coverage rates are lower than 95 per cent, is unacceptable
as it indicates over-confidence in the estimates since more simulations will incorrectly detect
a significant result, which leads to higher than expected type I errors. A possible criterion for
acceptability of the coverage is that the coverage should not fall outside of approximately two
SEs of the nominal coverage probability (p), SE(p) = √

p(1 − p)/B [27]. For example, if 95
per cent confidence intervals are calculated using 1000 independent simulations then SE( p̂) is
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0.006892 and hence between 936 and 964 of the confidence intervals should include the true
value.

The average length of the 95 per cent confidence interval for the parameter estimate �̂ (Table I)
is often considered as an evaluation tool in simulation studies (e.g. References [4, 30]). If the
parameter estimates are relatively unbiased then narrower confidence intervals imply more precise
estimates, suggesting gains in efficiency and power [30].

2.8. Presentation of the simulation results

Simulation studies can generate a substantial amount of results that need to be summarized and
displayed in a clear and concise manner for the conclusions to be understood. The appropriate
format is highly dependent on the nature of the information presented and hence there is a lack of a
consistency in the literature. Structuring a report of any simulation study using separate subheadings
for the objectives, methods, results and discussion provides clarity and can aid interpretation.

3. REVIEW OF CURRENT PRACTICE

A small formal review of articles published during 2004 in the Statistics in Medicine journal that
included ‘simulation’ in the title, abstract or as a keyword was carried out to identify the current
practices within published simulation studies. Of all 270 articles published in 2004, 58 (21 per cent)
were identified as reporting a simulation study; their characteristics are summarized in Table II.

The specifics of the random number generator and the choice of starting seeds were generally
omitted from the publications. Only one of the 58 articles explicitly stated the random number
generator that was used; drand48 on the Unix/LINUX system [31]. Twenty-two articles gave some
indication of the software package that was being used to generate the data or for the analysis,
but it was unclear in the remaining 36 articles what statistical package was used to conduct
the simulations. The relationship between generated samples was rarely stated within published
simulation studies. Only one article stated that the simulations started with different seeds [32],
whilst two other articles reported that independent samples were generated but did not explicitly
mention anything about the starting seeds.

The number of simulations performed varied from 100 to 100 000 replications, with the most
common choices being 1000 (19 articles) and 10 000 (12 articles) replications. It was unclear in
four articles how many simulations were performed. Only six of these 58 articles provided any
justification for the number of simulations performed. Three articles based their justifications on
the expected SE given the number of simulations [33–35]. Two articles provided a justification
in terms of the power to detect differences of a specified level from the true value as statistically
significant [36, 37]. The last considered the chosen number of simulations to be sufficient, as they
were not aiming to estimate any quantities with high accuracy [38].

The distributions and parameter specifications for generating the data were based on a real data
set in eight of the simulation studies. In a further 16 articles, the simulated data intended to be
typical of real data, although not explicitly based on a particular data set. The remaining 34 articles
had no clear justification for the choices of parameters for the specified models used to generate
the simulated data sets.

Generally the results from only a small proportion of the scenarios investigated were reported
in an article, probably due to the limited space available. The choice of results to publish is fairly

Copyright q 2006 John Wiley & Sons, Ltd. Statist. Med. 2006; 25:4279–4292
DOI: 10.1002/sim



DESIGNING SIMULATION STUDIES 4289

Table II. Summary of results from review of 58 articles.

Criteria Frequency

Random number generator
drand48 on the Unix/LINUX system 1
Not stated 57

Statistical Software used for analysis
Splus 6
SAS 6
R 3
STATA 1
Mathematica 1
BUGS 1
MLWIN 1
MATLAB 1
Standalone package 2
Not stated 36

Dependence of samples/starting seed
Samples independent 2
Different seeds used 1
Not stated 55

Number of simulations
100 6
200 3
400 1
500 8

1000 19
5000 2

10 000 13
50 000 1

100 000 1
Unclear 4

Any justification for number of simulations
Yes 6
No 52

Justification for data generation
Based on a real data set 8
Typical of real data 16
Not stated 34

arbitrary and can depend on the important conclusions to be portrayed. However, one article has
made available the full set of simulation results, which can be downloaded from a website specified
in the article [3].

4. DISCUSSION

The advances in computer technology have allowed simulation studies to be more accessible.
However, performing simulations is not simple. In any simulation study, many decision are required
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prior to the commencement of simulations, but there is generally no single correct answer. The
choices made at each stage of the simulation process are open to criticism if not supplemented
with thorough justifications.

Monte Carlo methods encompass any technique of statistical sampling employed to give
approximate solutions to quantitative problems. They include, in addition to simulations, the Monte
Carlo Markov chain methods such as Gibbs sampling, which are explicitly used for solving com-
plicated integrals [39, 40]. This paper discusses simulation studies where data sets are formulated
to imitate real data. Resampling studies [41, 42], where multiple data sets are sampled from a large
real data set, require the same rigorous planning as simulation studies, differing from simulation
studies only in terms of the generation of the data sets. Hence, similar considerations as discussed
throughout this manuscript are relevant. Simulations are also useful in decision-making and engi-
neering systems, where computer experiments are used to model dynamic processes in order to
assess the effects over time and of varying any inputs (e.g. Reference [43]). Specific considerations
for designing these studies in terms of formulating the problem, defining and designing the model
and the choice of inputs and outputs have been discussed elsewhere (e.g. References [43, 44]).

This paper has discussed the important considerations when designing a simulation study. They
include the choice of data to simulate and the procedures for generating the required data. Choices
of distributions, parameters of any models, and covariate correlation structures used to generate
the data set should be justified. Before commencing simulations, careful consideration should be
given to the identification of the estimates of interest, the appropriate analysis, the methods for
comparison, the criteria for evaluating these methods, the number of situations to consider, and
the reporting of the results. In addition, every simulation study should have a detailed protocol,
documenting the specific objectives and providing full details of how the study will be performed,
analysed and reported. Modifications of the simulation processes, such as altering the number
of simulations or collecting additional parameters or choices of scenarios, as a consequence of
emerging data are possible, but can be time-consuming if they require all simulations to be rerun.
Therefore, thorough planning at the start of any simulation study can ensure that the simulations
are performed efficiently and only the necessary criteria and scenarios assessed. This paper has
provided a concise reference (Figure 1) for researchers to follow when designing simulation studies.

A small review of published articles in one journal has suggested that the majority of simulation
studies reported in the literature are not providing sufficient details of the simulation process to allow
exact replication or clear justifications for the choices made. Future published simulation studies
should include details of all the simulation procedures to enable the results to be reproduced. Using
separate subheadings for the objectives, methods, results and discussion, irrespective of whether
it is the main focus of the article, as in Reference [33], provides clarity and can aid interpretation.
In addition, encouraging researcher to consider the suggested criteria (Figure 1) might encourage
more sound and reliable simulation studies to be performed and reported with credible results.
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ABSTRACT 
A partial biography of the writer is given. The inadequate abstract is discussed. What should be 

covered by an abstract is considered. The importance of the abstract is described. Dictionary definitions 
of "abstract" are quoted. At the conclusion a revised abstract is presented. 

For many years I have been annoyed by the 
inadequate abstract. This became acute while I 
was serving a term as editor of the Bullet in of 
The American Association of Petroleum Geolo- 
gists. I n  addition to returning manuscripts to au- 
thors for rewriting of abstracts, I also took 30 
minutes i'n which to lower my ire by writing, "A 
Scrutiny of the Abstract."I This little squib has 
had a fantastic distribution. If only one of my 
scientific outpourings would do as well! Now the 
editorial board of the Association has requested a 
revision. This is it. 

The inadequate abstract is illustrated at  the 
top of the page. The passive voice is positively 
screaming a t  the reader! I t  is an outline, with 
each item in the outline expanded into a sentence. 
The reader is told what the paper is about, but 
not what it  contributes. Such abstracts are mere- 
ly overgrown titles. They are produced by writers 
who are either (1) beginners, (2) lazy, or (3) 
have not written the paper yet. 

To  many writers the preparation of an abstract 
is an unwanted chore required at  the last minute 
by an editor or insisted upon even before the 
paper has been written by a deadline-bedeviled 
program chairman. However, in terms of market 
reached, the abstract is the  m o s t  important  part 
of the  paper. For every individual who reads or 

listens to your entire paper, from 10 to 500 will 
read the abstract. 

If you are presenting a paper before a learned 
society, the abstract alone may appear in a pre- 
convention issue of the society journal as well as 
in the convention, program; it  may also be run by 
trade journals. The abstract which accompanies a 
published paper will most certainly reappear in 
abstract journals in various languages, and per- 
haps in company internal circulars as well. It is 
much better to please than to antagonize this 
great audience. Papers written for oral presenta- 
tion should be completed prior t o  the  deadline 
for t h e  abstract, so that the abstract can be pre- 
pared from the written paper and not from raw 
ideas gestating in the writer's mind. 

My dictionary describes an abstract as "a sum- 
mary of a statement, document, speech, etc. . . ." 
and that which concentrates in itself the  es- 
se~ztial in format ion  of a paper or article. The 
definiti'on I prefer has been set in italics. May all 
writers learn the art (it is not easy) of preparing 
an abstract containing the essential information 
in their compositions. With this goal in mind, I 
append an abstract that should be an improve- 
ment over the one appearing a t  the beginning of 
this discussion. 

ABSTRACT 
The abstract is of utmost importance, for it is read by 10 to 500 times more people than hear or 

read the entire article. I t  should not be a mere recital of the subjects covered. Expressions such as 
' i s  discussed" and "is described" should never be included! The abstract should be a condensation and 
concentration of the essential information in the paper. 

'Revised from I<. K. Landes' "A Scrutiny of the and Publication of Abstracts" to give Bulletin authors 
Abstract," first published in the B u l l e t i  in 1931 two viewpoints on the writing of abstracts. 
(Bulletin, v. 35, no. 7 ,  P. 1660). Manuscript re- 

2professor of geology and mineralogy, University ceived, June 3, 1966; accepted, June 10, 1966. 
Editor,s note: this abstract is published together of Michigan. Past editor of the Bulletin. 

lvith The Royal Society's "Guide for Preparation 



A scrutiny of the introduction 

By JON F. CLLERBOUT 
Stanford University 
Stanford, California 

Abstract 

The introduction to a technical paper should be an in- 
vitation to readers to invest their timereading it. Typically 
this invitation has three parts (1) the review, (2) the claim, 
and (3) the agenda. In the claim, he author should say why 
the paper’s agenda is a worthwhile extension of its histori- 
cal revkw. Personal pronouns should be used in the claim 
and anywhere else the author expresses judgment, opinion, 
or choice. 

Introduction 

T hroughout the years, I have participated in reading committees 
of more than a hundred doctoral dissertations. Additionally, 
reports of the Stanford Exploration Project contain about 60 papers 
a year, and I am nominally in charge of making them presentable. 
In all this activity, I have seen many poor abstracts and, in each 
case, I have spared myself and the author much struggle by refer- 
ring to the short paper A scruriny of the abstract by Kenneth Lan- 
des (MPG Bulktin 1966, MO), which was formerly diibuted 
by the SEG to all its aspiring authors. I rarely rewrite authors’ ab- 
stracts any more-it’s usually enough to have them read Landes’ 
paper and rewrite it themselves. Landes’ own abstract is worth 
quoting: 

The abstract is of the utmost importance, for it is read by 10 
to 100 times more people than hear or read the entire article. It 
should not be a mere recital of subjects covered. Expressions such 
as “is discussed” and “is described” should never be included. 
The abstract should be a condensation and concentration of the 
essential information in the paper. 

Introductions are not easy to write either. I am pleased to report 
that in recent years, I have developed a formula for the introduc- 
tion. With this paper expounding my formula, I am hoping to 
reduce the need for one-on-one tutoring. You might be able to 
produce a good introduction without following my formula but if 
you have trouble producing one thatpleases otherpeople (and you 
would like to finish it and get on with your life), then I suggest 
you follow my formula. 

First, I describe the three essential parts of an introduction and 

then I offer some tips on overall organization. You will see why 
introductions are so difficult to write once you understand how in- 
troductions depend on that most embarrassing of all words, “I.” 

The body of an introduction 

M y formula for an introduction is a sequence of three parts. 
They are (1) the review, (2) the claim, and (3) the agenda. 

The review. Pick out about 3-10 papers providing a back- 
ground to your research and say something about each of them. 
You could paraphrase a sentence or two from each abstract. The 
review is not intended to be a hisron’& review going back to New- 
ton or Descartes. Try to find a few papers by your office mates, 
your advisor, your predecessors, or other associates. That way 
you might find somebody to give you helpful criticism! 

Anyone can follow these instructions and write a review that 
looks presentable. Where intelligence and skill are required is in 
organizing the review so that it leads up to something, namely 
your claim. 

The claim. The most important part of the introduction is 
buried in the middle. It is the dnim. The claim is where you claim 
your work is a worthwhile extension of the review you just wrote. 
If someone says your writing is “unmotivated,” they aren’t in- 
sulting your humanity, it just means they can’t find your claim. 

In your claim, you should use the personal pronoun “I” (or 
“we” if you aren’t the sole author). The word “I” tells people 
where common knowledge runs out and your ideas begin. If you 
are writing a doctoral disse.rtation or an article for a refed jour- 
nal, then you should be making a new contribution to existing 
knowledge. Your paper is noi acceptable without an identifiable 
claim. 

Whether your ideas arc solid as bedrock or speculative as 
clouds, you need first-person pronouns. Where your ideas are 
speculative, the pronouns signal a disclaimer. Where your ideas 
are solid, the pronouns signal that yore may be credited for them. 
When your friends see your personal pr0110u11s, they will know 
just where they should offer their questions and suggestions. 

You may use personal pronouns elsewhere in your paper, too. 
Generally, you should use. a personal pronoun whenever you are 
expressing an opinion or exercising judgment. Another timeto use 
“I” is whenever there is a simple matter of choice. For example, 
“TO test the theory, I selected some data,” or “To examine the 
theory, I programmed the equations,” or “To evaluate the hypod~- 
esis, I made some synthetic seismograms. ” 

Good scientific papers contain many types of statements rang- 
ing from ancient axioms to common knowledge to speculations 

&n&y continued on p. 41) 
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(Scn&‘ny conrinued from p. 39) 

and outright guesses. It is the writer’s fault if a casual reader can- 
not distinguish these types of statements. Personal pronouns are 
good words to keep the distinctions clear. Other good words for 
this purpose are “should. could, would, might, may, can, is, 
does...” Use them all and pick the best for each purpose. 

Some editors of scientific papers mechanically introduce the 
personal pronoun “1” to avoid the passive voice. I don’t agree 
with them. For example, such editors will change “Substitution 
of equation (1) into equation (2) gives. . . ” into “Substituting equa- 
tion (1) into equation (2). I find. ..” The first wording states a 
simple fact but the second wording hints that someone else might 
get a different result. 

The agenda. An agenda is found at the end of many introduc- 
tions. It summarixes what you will show the reader as your paper 
progresses. Your agenda will be dull if it is merely a recital of the 
topics you will cover. Instead, it should tell how your paper works 
to fulfill your claim. In this way, your agenda should clarify your 
claim. 

The agenda is not as important as the review and the claim. 
Keep it short. 

Occasionally, you will be fortunate enough to be writing about 
something in which some of your conclusions can be made in 
simple statements. If so, state them early, right after your agen- 
da. You aren’t trying to write a mystery! Many more people will 
begin reading your paper than will$rrtinish reading it. Motivate them 
to finish! Unfortunately, many technical papers do not lend them- 
selves to early conclusions. 

After the introduction 

0 f course, you want people to read beyond your introduction, 
too. So think carefully about the order of your material and how 
you say things. (Notice this tiny paragraph is a small abstract of 
what follows.) 

Order of material. You could write your paper so that each 
part builds on earlier parts. Like the axiomatic approach to 
geometry, you could refuse to refer to things not yet proven. But, 
rather than write your paper that way, it is wiser to maximize your 
readership. Since many more people will begin your paper than 
will plow through all the way to the end, try to state results before 
you prove them. Put off complicated derivations and digressions 
until the end. Complicated mathematical derivations, especially if 
marginal to your main thesis, should be relegated to appendices. 

What is central and what is peripheral? In your paper, you 
might want to include digressions, possible applications, etc. 
That’s nice. But be sure to h&de language that labels them as 
peripheral. If you don’t, you may find people (and not just critics 
and enemies) missing your main point. 

Conclusion 

T his short article is not a typical technical paper, but you might 
like to look back at the introduction to see if I follow my own 
advice. E 
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SUMMARY

The lognormal distribution has frequently been applied to approximate environmental data, with inference focusing
on arithmetic means. Confidence interval estimation involving lognormal means in small to moderate sample sizes
has received much attention over the years without a simple procedure in sight. We therefore propose a closed-form
procedure for constructing confidence intervals for a lognormal mean and a difference between two lognormal
means. The advantage of our procedure is that it only requires confidence limits for a normal mean and variance.
The results of a numerical study show that our method performs as well as the generalized confidence interval (GCI)
approach, which relies completely on computer simulation. Two real datasets are used to illustrate the methodology.
Copyright © 2008 John Wiley & Sons, Ltd.

key words: generalized confidence interval; log-normal; coverage; bootstrap

1. INTRODUCTION

It has become a tradition to fit the lognormal distribution to empirical data in environmental sciences
(e.g., El-Shaarawi and Viveros, 1997; El-Shaarawi and Lin, 2007), due largely to the multiplicative
central limit theorem (Limpert et al., 2001) in the sense that multiplication of a large number of random
variables will result in a composite variable which can be approximated by the lognormal distribution.

A simple approach to analyzing lognormal data would be to log-transfer the data prior to employing
standard statistical methods. The resultant inference would then be in terms of the median, which is less
than the mean, and thus may provide substantial underestimates if the mean is the parameter of interest.

Inference in terms of lognormal means has received widespread attention in the literature, with two
volumes devoted to the topic (Aitchison and Brown, 1957; Crow and Shimizu, 1988). Statistical methods
for inference involving lognormal means have also appeared frequently in this journal, ranging from

∗Correspondence to: G. Y. Zou, Department of Epidemiology and Biostatistics, Schulich School of Medicine and Dentistry,
University of Western Ontario, London, Ontario, Canada N6A 5C1.
†E-mail: gzou@robarts.ca
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Copyright © 2008 John Wiley & Sons, Ltd. Accepted 2 March 2008
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computationally intensive methods such as the Gibbs sampler and bootstraps (Wild et al., 1996) to a
t-distribution-based method (El-Shaarawi and Lin, 2007). It seems evident that the results for single
lognormal means are not entirely satisfactory. Furthermore, there has not been much discussion on
methods of comparing two lognormal means.

The purpose of this paper is to present a closed-form confidence interval procedure for a single
lognormal mean and a difference between two lognormal means. We show that this closed-form proce-
dure, requiring only confidence limits for a normal mean and variance, performs at least as well as the
generalized confidence interval (GCI) approach which relies entirely on computer simulation.

The rest of the paper is structured as follows. Section 2 presents the new procedure, after summarizing
the GCI (Krishnamoorthy and Mathew, 2003) and the modified Cox method (Armstrong, 1992; El-
Shaarawi and Lin, 2007). In Section 3, we perform simulation studies to compare the performance of
our method with previous ones. Two real datasets in an environmental context are used to illustrate the
methods in Section 4. The paper closes with a discussion.

2. METHODS

Let Y1, Y2, . . . , Yn be independent and identically distributed (iid) as lognormal with parameters µ and
σ2. This is to say that the log-transformed variables X1 = ln Y1, X2 = ln Y2, . . . , Xn = ln Yn are iid
normal, denoted here as N(µ, σ2). It is well known that the lognormal mean is M = E(Y ) = exp(µ +
σ2/2), estimated by

M̂ = exp
(
x̄ + s2/2

)
where x̄ and s2 are the sample mean and variance obtained using the log-transformed observations. Note
that x̄ and s2 are independent of each other.

2.1. Confidence interval for a single lognormal mean

2.1.1. Existing methods. Land (1971) proposed an exact confidence interval by inverting the uniformly
most powerful unbiased test. The procedure is computationally tedious and requires extensive tables.
Thus, Land (1972) searched for simple approximate approaches and ended up with the one suggested by
DR Cox in a personal communication showing promising performance. This method uses the property
that x̄ and s2 are independent, with respective variances given by s2/n and s4/[2(n − 1)]. Thus, as n
becomes large, the 100(1 − α)% confidence limits for µ + σ2/2 are given by

[
x̄ + s2/2

]± z1−α/2

√
s2/n + s4/[2(n − 1)]

where z1−α/2 is the 1 − α/2 quantile of the standard normal distribution. These limits can then be
exponentiated to obtain a confidence interval for exp(µ + σ2/2).

As pointed by Land (1972), this method is not entirely satisfactory, particularly in the case of small n
or large σ2. To improve the performance in small samples, Armstrong (1992) and El-Shaarawi and Lin
(2007) suggested replacing z1−α/2 with critical values from the t-distribution. This approach ignores
the fact that the sampling distribution for s2, which is distributed as chi-squared, is right-skewed.

Copyright © 2008 John Wiley & Sons, Ltd. Environmetrics 2009; 20: 172–180
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Recently, a computer simulation-based method termed GCI appeared to perform very well. Krish-
namoorthy and Mathew (2003) provide an algorithm as follows:

1. Obtain x̄ and s2 from log-transformed data.
2. Compute

T = exp

(
x̄ − Z

U/
√

n − 1
· s√

n
+ s2

2U2/(n − 1)

)

where Z and U2 are random numbers generated independently from the standard normal and chi-
square distribution with n − 1 degrees of freedom, respectively.

3. Repeat step 2 a large number (m) of times.
4. Sort the values of T. The m(α/2)th and m(1 − α/2)th values are the 100(1 − α)% confidence limits

for exp(µ + σ2/2).

2.1.2. The proposed method. Before presenting our method for a single lognormal mean, we propose
a general approach to setting confidence limits for a sum of two parameters, θ1 + θ2.

The conventional 100(1 − α)% two-sided limits are

θ̂1 + θ̂2 − z1−α/2

√
var(θ̂1) + var(θ̂2)

and

θ̂1 + θ̂2 + z1−α/2

√
var(θ̂1) + var(θ̂2)

assuming θ̂1 and θ̂2 are independent of each other. Besides the application of the central limit theorem,
these limits are immediate results of assuming θ̂i (i = 1, 2) and var(θ̂i) are statistically independent of
each other. Except for a normal mean x̄, this is unlikely to hold in general.

Our idea is to exploit the dependence between θ̂i and var(θ̂i) in confidence interval construction.
Specifically, we strive to estimate the variance of θ̂1 + θ̂2 in the vicinity of the limits (L, U) for θ1 + θ2.

By the duality between hypothesis testing and confidence interval construction, we recognize L as
the minimum and U as the maximum value of θ1 + θ2 such that

[
θ̂1 + θ̂2 − (θ1 + θ2)

]2
var(θ̂1) + var(θ̂2)

≈ z2
1−α/2 (1)

Thus, we should estimate the variances for θ̂1 and θ̂2 in the vicinity of min(θ1 + θ2) for L and that of
max(θ1 + θ2) for U.

Now suppose the confidence limits for θi are readily obtained as (li, ui), for i = 1, 2. Among the
plausible values provided by the two pairs of confidence limits (l1, u1) and (l2, u2), the plausible mini-
mum is l1 + l2 and the plausible maximum is u1 + u2. This implies that to obtain L, we need to estimate
var(θ̂1) + var(θ̂2) under the condition θ1 = l1 and θ2 = l2. Similarly, to obtain U, we need to estimate
var(θ̂1) + var(θ̂2) under the condition θ1 = u1 and θ2 = u2.

Copyright © 2008 John Wiley & Sons, Ltd. Environmetrics 2009; 20: 172–180
DOI: 10.1002/env



INTERVALS FOR LOGNORMAL MEANS AND THEIR DIFFERENCES 175

Again by the duality between hypothesis testing and confidence interval construction, li is min(θi)
satisfying

(
θ̂i − li

)2

var(θ̂i)
≈ z2

1−α/2

which results in the estimated variance v̂ar(θ̂i) under the condition θi = li of

v̂arl(θ̂i) ≈
(
θ̂i − li

)2

z2
1−α/2

Similarly, the estimated variance v̂ar(θ̂i) under the condition θi = ui is

v̂aru(θ̂i) ≈
(
ui − θ̂i

)2

z2
1−α/2

Substituting these variance estimates back into Equation (1) yields the confidence limits (L, U) for
θ1 + θ2 as

L = θ̂1 + θ̂2 −
√

(θ̂1 − l1)2 + (θ̂2 − l2)2

U = θ̂1 + θ̂2 +
√

(u1 − θ̂1)2 + (u2 − θ̂2)2
(2)

These limits can now be applied in the current context, where θ1 = µ and θ2 = σ2/2, with re-
spective confidence intervals given by (l1, u1) = (x̄ − z1−α/2

√
s2/n, x̄ + z1−α/2

√
s2/n) and (l2, u2) =[

(n−1)s2

2χ2
1−α/2,n−1

,
(n−1)s2

2χ2
α/2,n−1

]
. Exponentiation of these limits yields a confidence interval for the lognormal

mean. Specifically, the limits (LL, UL) are given by

LL = M̂ exp

−
z2

1−α/2s
2

n
+
(

s2

2
− (n − 1)s2

2χ2
1−α/2,n−1

)2
1/2

 (3)

and

UL = M̂ exp


z2

1−α/2s
2

n
+
(

(n − 1)s2

2χ2
α/2,n−1

− s2

2

)2
1/2

 (4)
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The Cox method can be obtained the same way by replacing the confidence interval for σ2/2 with

(l2, u2) =
(

s2

[
1

2
− z1−α/2

√
1

2(n − 1)

]
, s2

[
1

2
+ z1−α/2

√
1

2(n − 1)

])

This is equivalent to treating the confidence interval of σ2 as symmetric, indicating that for n < 8 a
95% confidence interval contains negative variance values. Replacing z1−α/2 with the t-value will not
reduce the problem since the t1−α/2,n−1 is larger than that of a Normal distribution.

2.2. Confidence intervals for a difference between two lognormal means

Denoting a difference between two lognormal means as

� = exp(µ1 + σ2
1/2) − exp(µ2 + σ2

2/2)

the correspondent estimator is

�̂ = exp(x̄1 + s2
1/2) − exp(x̄2 + s2

2/2)

with (x̄1, s
2
1) and (x̄2, s

2
2) computed from the log-transformed observations from two independent

samples.

2.2.1. Generalized confidence interval approach. Krishnamoorthy and Mathew (2003) proposed the
following algorithm for obtaining a 100(1 − α)% confidence interval for �:

1. Compute (x̄1, s
2
1) and (x̄2, s

2
2).

2. Compute

T� = exp

(
x̄1 − Z1

U1/
√

n1 − 1
· s1√

n1
+ s2

1

2U2
1/(n1)

)

− exp

(
x̄2 − Z2

U2/
√

n2 − 1
· s2√

n2
+ s2

2

2U2
2/(n2)

)

where Zi and U2
i are random numbers generated independently from the standard normal and chi-

squared distribution with ni − 1 degrees of freedom from two independent samples (i = 1, 2);
3. Repeat step 2 a large number of, say m, times.
4. Sort the T� values from step 3. The confidence limits are given by the m(α/2)th and m(1 − α/2)th

T� values.

2.2.2. The proposed method. Our alternative is first to obtain confidence limits for M1 = exp(µ1 +
σ2

1/2) and M2 = exp(µ2 + σ2
2/2) using Equations (3) and (4), then to treat M1 as θ1 and −M2 as θ2 in

the application of Equation (2). Note here that the limits for M2, obtained using Equations (3) and (4),
must be multiplied by −1 and then switched positions before plugging into Equation (2).

Copyright © 2008 John Wiley & Sons, Ltd. Environmetrics 2009; 20: 172–180
DOI: 10.1002/env



INTERVALS FOR LOGNORMAL MEANS AND THEIR DIFFERENCES 177

Straightforward algebra yields the 100(1 − α)% confidence interval (L�, U�) for the difference
between two lognormal means as

L� = M̂1 − M̂2 −
√

(M1 − LL1)2 + (UL2 − M2)2

and

U� = M̂1 − M̂2 +
√

(UL1 − M1)2 + (M2 − LL2)2

where

LLi = M̂i exp

−
z2

1−α/2s
2
i

ni

+
(

s2
i

2
− (ni − 1)s2

i

2χ2
1−α/2,ni−1

)2
1/2


and

ULi = M̂i exp


z2

1−α/2s
2
i

ni

+
(

(ni − 1)s2
i

2χ2
α/2,ni−1

− s2
i

2

)2
1/2


for i = 1, 2.

3. SIMULATION

The confidence interval procedures described above are all asymptotic, meaning that their performance
such as average percentage and tail errors may depend on sample size and parameter values. Before
making any recommendations, we must evaluate their performance in finite sample sizes. For this
purpose, we use Monto Carlo simulations to compare the procedures for the 95% confidence interval
in terms of the percentage of times the interval contains the parameter value (coverage%). For a given
parameter value, we assess the performance of a procedure using the percentage of times the confidence
interval lies completely below or above the parameter value, termed left and right tail errors, respectively.
We used 10 000 replicates for each parameter combination, with 10 000 resamples for the GCI approach.
Using two standard errors of the nominal coverage rate as the criterion, we regarded coverage as within
(.95 ± 2

√
0.95 × 0.05/10 000), or (94.6–95.4) as adequate.

The second criterion is the balance between left and right tail errors (Jennings, 1987; Efron, 2003). We
used confidence width as the third criterion to distinguish procedures satisfying the first and second cri-
teria equally. Without loss of generality (Land, 1972, p. 147), we set µ = −σ2/2 in the simulation study.

For a single lognormal mean, we considered n = 10, 15, 25, and 50; σ2 = 0.1, 0.5, 1.0, 1.5, and 2.0.
The performance of the modified Cox method, our proposed method, and the generalized confidence
interval are shown in Table 1. These results indicate that all three methods have acceptable coverage
percentages. As expected, the modified Cox method has unbalanced tail errors, while the other two
methods deliver reasonably balanced tail errors, with the proposed method showing consistently
narrower average width.
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Table 1. Comparative performance of three procedures for constructing a 95% two-sided confidence interval for
a lognormal mean with µ = −σ2/2 based on 10 000 runs

n = 10 n = 15 n = 25 n = 50

σ2 Method Cover (ML , MR) W Cover (ML , MR) W Cover (ML , MR) W Cover (ML , MR) W

0.1 MCox 95.23 (3.31, 1.46) 0.46 95.33 (3.03, 1.64) 0.36 94.90 (3.15, 1.95) 0.27 95.08 (2.88, 2.04) 0.18
Proposed 93.27 (3.87, 2.86) 0.44 93.85 (3.53, 2.62) 0.34 94.13 (3.32, 2.55) 0.26 94.55 (2.96, 2.49) 0.18
GCI 95.10 (2.20, 2.70) 0.50 95.00 (2.27, 2.73) 0.37 94.88 (2.38, 2.74) 0.27 94.92 (2.33, 2.75) 0.19

0.5 MCox 94.88 (4.48, 0.64) 1.29 94.93 (4.29, 0.78) 0.94 94.84 (3.87, 1.29) 0.68 94.44 (3.97, 1.59) 0.46
Proposed 94.50 (3.24, 2.26) 1.67 94.54 (3.30, 2.16) 1.05 94.79 (2.97, 2.24) 0.71 94.54 (3.20, 2.26) 0.47
GCI 94.84 (1.94, 3.22) 1.90 94.76 (2.33, 2.91) 1.14 95.03 (1.95, 3.02) 0.75 94.57 (2.62, 2.81) 0.48

1.0 MCox 93.99 (5.82, 0.19) 2.53 94.44 (5.17, 0.39) 1.67 94.69 (4.70, 0.61) 1.14 94.89 (3.89, 1.22) 0.73
Proposed 94.68 (3.39, 1.93) 5.36 94.89 (3.12, 1.99) 2.28 95.02 (3.18, 1.80) 1.30 94.87 (2.80, 2.33) 0.77
GCI 94.49 (2.40, 3.11) 6.12 94.42 (2.23, 3.35) 2.49 94.86 (2.42, 2.72) 1.37 94.77 (2.29, 2.94) 0.79

1.5 MCox 93.76 (6.19, 0.05) 4.84 94.24 (5.58, 0.18) 2.60 94.07 (5.40, 0.53) 1.63 95.00 (4.05, 0.95) 1.01
Proposed 95.37 (2.94, 1.69) 24.34 95.28 (2.89, 1.83) 4.48 94.74 (3.08, 2.18) 2.06 94.99 (2.64, 2.37) 1.11
GCI 94.89 (2.06, 3.05) 27.52 95.18 (2.04, 2.78) 4.91 94.53 (2.34, 3.13) 2.17 95.04 (2.11, 2.85) 1.14

2.0 MCox 93.32 (6.65, 0.03) 10.63 93.71 (6.16, 0.13) 4.14 94.58 (5.02, 0.40) 2.27 94.72 (4.50, 0.78) 1.31
Proposed 95.15 (2.98, 1.87) 497.08 94.83 (3.09, 2.08) 9.84 95.24 (2.73, 2.03) 3.19 94.82 (2.70, 2.48) 1.49
GCI 94.71 (2.15, 3.14) 899.26 94.38 (2.41, 3.21) 10.80 95.07 (2.14, 2.79) 3.38 94.64 (2.41, 2.95) 1.53

MCox, the modified Cox method; GCI, generalized confidence interval; ML, the confidence interval lies completely below the
parameter; MR, the confidence interval lies completely above the parameter; W, average interval width.

For a difference between two lognormal means, we considered n1 = 10, 15, 20, 25, and 50; n2 =
10, 20, 25, and 50; σ2

1 = 0.1, 0.5, 1.0, 1.5, 2.0; σ2
2 = 0.5, 1.5, and 2.0. The performance of the gen-

eralized confidence interval method and the proposed method with modified Cox method for single
means for these 300 parameter combinations are presented using summary statistics (Table 2). These
results clearly show that the Modified Cox method provides severely unbalanced tails with coverage
percentage ranging from 93.17 to 98.11%. Our proposed method is very competitive with the computer
simulation-based GCI, both having coverage rates outside the range of 94.6 to 95.4% when n ≤ 15.

Table 2. Comparative performance of three procedures for constructing a 95% two-sided confidence interval for
a difference between two lognormal means with µi = −σ2

i /2, i = 1, 2 (summary of 300 parameter combinations
with 10 000 runs for each combination)

Method Mean Min 10th pctl 25th pctl 50th pctl 75th pctl 90th pctl Max

MCox Cover 95.57 93.17 94.55 95.09 95.63 96.13 96.52 98.11
ML 1.86 0.04 0.25 0.66 1.50 2.85 3.98 6.19
MR 2.57 0.07 0.49 1.09 2.42 3.86 4.90 6.76
Width 2.36 0.49 1.05 1.46 2.11 2.96 3.90 8.25

Proposed Cover 95.32 94.26 94.92 95.13 95.32 95.52 95.75 96.32
ML 2.28 1.74 1.97 2.12 2.27 2.42 2.59 3.17
MR 2.40 1.69 2.06 2.19 2.36 2.59 2.84 3.42
Width 4.11 0.49 1.13 1.73 2.92 5.32 9.54 29.67

GCI Cover 95.25 94.29 94.86 95.03 95.23 95.48 95.71 96.18
ML 2.40 1.76 2.04 2.18 2.35 2.59 2.83 3.40
MR 2.34 1.82 2.06 2.16 2.32 2.51 2.68 3.25
Width 4.47 0.51 1.18 1.83 3.07 5.91 10.81 33.10

MCox, the modified Cox method; GCI, generalized confidence interval; ML, the confidence interval lies completely below the
parameter; MR, the confidence interval lies completely above the parameter.
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4. ILLUSTRATIVE EXAMPLES

As an example of a simple lognormal mean, we consider air lead levels (� g/m3) of n = 15 sites at
the Alma American Labs, Fairplay, Colorado on 23 February 1989 (Krishnamoorthy et al., 2006): 200,
120, 15, 7, 8, 6, 48, 61, 380, 80, 29, 1000, 350, 1400, 110. The lognormal distribution was found to fit
the data well. Log-transformation of the data yields x̄ = 4.333 and s = 1.739. Therefore, we have the
95% confidence limits for θ1 = µ given by [4.333 − 1.96 × 1.739/

√
15, 4.333 + 1.96 × 1.739/

√
15],

i.e., (3.452584, 5.213141) and that for θ2 = σ2/2 given by:

1

2

[
(15 − 1) × 1.7392

χ2
0.975,14

,
(15 − 1) × 1.7392

χ2
0.025,14

]

that is, (0.8108892, 3.762765). Substituting these limits into Equations (3) and (4) yields the 95% two-
sided confidence interval for exp(µ + σ2/2) as (112, 3873), comparable with the GCI of (122, 4280)
based on 100 000 simulations.

As an example for a difference between two lognormal means. We consider a dataset from the
Data and story Library (http://lib.stat.cmu.edu/DASL). In April–May 1993, an oil refinery near San
Francisco submitted n = 31 daily CO emission measurements from its stacks to the Bay Area Air
Quality Management District for establishing a baseline. It was of interest to see whether the refinery
had over-measured CO emission, as compared to nine measurements taken by the Management District
person between September 1990 to March 1993. The data are given as:

Refinery (n1 = 31): 45, 30, 38, 42, 63, 43, 102, 86, 99, 63, 58, 34, 37, 55, 58, 153, 75, 58, 36, 59,
43, 102, 52, 30, 21, 40, 141, 85, 161, 86, 71.

District management (n2 = 9): 12.5, 20, 4, 20, 25, 170, 15, 20, 15.
Recognizing the temporal dependence among the measurements, we nevertheless treat them as

independent for illustration purposes. The lognormal distribution fits both dataset well (Krishnamoorthy
and Mathew, 2003), with x̄1 = 4.074252, s2

1 = 0.252081, x̄2 = 2.963333, and s2
2 = 0.949618. Using

our approach, the estimated mean and 95% confidence interval of the refinery data are given by
66.70583 (55.57714, 81.69155) and that of the district Management data are given by 31.12906
(15.66019, 128.6178). Application of our procedure yields the difference and 95% confidence interval
of 35.58 (−62.55, 57.11). Again, comparable with those from the GCI (−79.15, 57.47) based on
100 000 simulations.

5. DISCUSSION

We have presented a simple approach to confidence interval estimation concerning lognormal means.
The resultant procedures for a single lognormal mean and a difference between two lognormal means
are in closed-form, requiring only methods found in introductory textbooks. The performance of
our procedure has been shown to do at least as well as the GCI approach, which relies on com-
puter simulation. Moreover, although exact in theory, even with the same dataset the latter approach
may result in different answers from different analysts or the same analyst performing analyses at
different times.

We note that the method we described here can be readily applied to lognormal regression mod-
els (Bradu and Mundlak, 1970; El-Shaarawi and Viveros, 1997; El-Shaarawi and Lin, 2007). Exten-
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sions and applications of this method in other contexts can be found elsewhere (Zou, 2007; Zou and
Donner, 2008).

We did not consider bootstrap methods for lognormal data, as it has been revealed that such methods
fail even for a normal variance (Schenker, 1985). It is then inevitable for bootstrap to fail for the
lognormal mean because it is a function of the normal mean and variance. We refer to Zhou and Dinh
(2005) for simulation results showing that bootstrap methods fail terribly in the case of lognormal data.
Interestingly, many papers have appeared by merely implementing a bootstrap method, as if it is the gold
standard. This practice is a result of overlooking the fact that bootstrap is also asymptotically reliable
and requires evaluation on a case-by-case basis (DiCiccio and Efron, 1996).
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a b s t r a c t

The Wilson score confidence interval for a binomial proportion has been widely applied
in practice, due largely to its good performance in finite samples and its simplicity in
calculation.We propose its use in setting confidence limits for a linear function of binomial
proportions using the method of variance estimates recovery. Exact evaluation results
show that this approach provides intervals that are narrower than the ones based on the
adjusted Wald interval while aligning the mean coverage with the nominal level.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

There exists a large literature on confidence interval estimation involving binomial proportions. For a single proportion,
there are several choices. The first is given by adding to and subtracting from themaximum likelihood estimator the standard
normal quantilemultiplied by its estimated standard error. This procedure is commonly referred to as theWaldmethod. The
second is the interval based on inverting the approximate normal test that uses the standard errors estimated at the lower
and upper limits. This procedure is commonly referred to as Wilson score method (Wilson, 1927). The score confidence
interval has now become very popular, especially after the expositions by Agresti and Coull (1998) and Newcombe (1998b).
With an attempt to ease classroom teaching, Agresti and Coull (1998) suggested an adjusted Wald method by adding two
successes and two failures and then using theWald formula. Despite the terminology, the adjustedWaldmethod is actually
an approximation of the score method.
The superior performance of the Wilson method has been carried over to cases of a difference between two

proportions (Newcombe, 1998a) and a difference between two differences (Newcombe, 2001). It is interesting to note that
this seemingly ad hoc procedure has become more popular than the rigorous score interval for a difference between two
proportions (Mee, 1984; Miettinen and Nurminen, 1985; Gart and Nam, 1990), caused largely by the computation involved
in obtaining the latter.
Due to its important practical value, confidence interval construction for a linear function of binomial proportions has

received some attention recently (Price and Bonett, 2004; Tebbs and Roths, 2008). The purpose of this note is to extend the
argument of Zou and Donner (2008) to a linear function of parameters, and in particular to binomial proportions. Since our
main idea is to recover variance estimates from readily available confidence limits for single parameters, we refer to the
approach as the MOVER, the method of variance estimates recovery. As shown below, the MOVER will not only shed some
light to Newcombe (1998a) and Newcombe (2001) but also provide an alternative to Price and Bonett (2004) who proposed

∗ Corresponding address: Robarts Clinical Trials, Robarts Research Institute, P. O. Box 5015, 100 Perth Drive, London, Ontario, Canada N6A 5K8. Tel.: +1
519 663 3400x34092; fax: +1 519 663 3807.
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a procedure for a linear function of proportions based on the adjustedWald interval for single proportions (Agresti and Coull,
1998). We will show that the confidence interval for a linear function of binomial proportions based on the Wilson method
is narrower than that of Price and Bonett (2004). We will not consider the approach by Tebbs and Roths (2008) because of
its inherent drawbacks such as involved computation, restriction in parameter ranges, and undercoverage.

2. The MOVER and its application to linear functions of binomial proportions

Supposewewish to construct an approximate 100(1−α)% two-sided confidence interval for θ1+θ2, where the estimates
θ̂1 and θ̂2 are assumed to be independent. By the central limit theorem, the lower limit (L) is given by

L = θ̂1 + θ̂2 − zα/2
√
var(̂θ1)+ var(̂θ2). (1)

Inspired by the score method for interval estimation (Bartlett, 1953; Gart and Nam, 1990), we can estimate the variance
needed for L at θ1 + θ2 = L. This has at least one disadvantage that it is in general an iterative procedure, which can be an
obstacle to wide application in practice as what happened to the score interval for a difference between two proportions.
Therefore, we proceed with estimating the variance in the neighborhood of L.
Now, suppose that the 100(1−α)% two-sided confidence intervals (li, ui) for single parameters θi, i = 1, 2 are available.

Note that there is no need to specify the approaches taken to obtain (li, ui). Among all the plausible parameter values of θ1
provided by (l1, u1) and that of θ2 provided by (l2, u2), l1 + l2 is usually closer to L than θ̂1 + θ̂2. As a result, for L, we can
estimate var(̂θ1) at θ1 = l1 and var(̂θ2) at θ2 = l2.
Furthermore, we can recover the required variance estimates from θ̂i(li, ui), i = 1, 2, as follows. By the central limit

theorem and letting zα/2 be the upper α/2 quantile of the standard Normal distribution, we have

li = θ̂i − zα/2
√
v̂ar(̂θi),

which gives a variance estimate for θ̂i at θi = li as

v̂arl(̂θi) = (̂θi − li)2/z2α/2
and

ui = θ̂i + zα/2
√
v̂ar(̂θi),

which gives a variance estimate at θi = ui as

v̂aru(̂θi) = (u1 − θ̂i)2/z2α/2.

Note that the recovered variance estimates v̂arl(̂θi) and v̂aru(̂θi) are different, exceptwhen the interval (li, ui) is symmetric
about θ̂i. Symmetric intervals are known to perform poorly in finite samples for most problems in practice. In fact, it was
stated (Efron and Tibshirani, 1993, p. 180) that symmetry is the most serious error in confidence interval construction. The
Wald interval for a binomial proportion is a perfect example. In contrast, theWilson interval is asymmetric as a consequence
of estimating variances at the lower and upper limits separately.
Plugging the recovered variance estimates into Eq. (1) results in

L = θ̂1 + θ̂2 − zα/2
√
var(̂θ1)+ var(̂θ2)

= θ̂1 + θ̂2 − zα/2
√
(̂θ1 − l1)2/z2α/2 + (̂θ2 − l2)2/z

2
α/2

= θ̂1 + θ̂2 −

√
(̂θ1 − l1)2 + (̂θ2 − l2)2.

Analogous steps with the notion that u1 + u2 is in the vicinity of U yield the upper limit U as

U = θ̂1 + θ̂2 +
√
(u1 − θ̂1)2 + (u2 − θ̂2)2.

Rewriting θ1−θ2 as θ1+(−θ2) andnoting that the confidence limits for−θ2 are given by (−u2,−l2), we obtain confidence
limits for θ1 − θ2 as

L = θ̂1 − θ̂2 −
√
(̂θ1 − l1)2 + (u2 − θ̂2)2

and

U = θ̂1 − θ̂2 +
√
(u1 − θ̂1)2 + (̂θ2 − l2)2.
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This confidence interval, apparently first presented by Howe (1974), has been applied by Newcombe (1998a) and
by Newcombe (2001) to binomial proportions. There has been no analytic justification for its general applicability until
recently (Zou and Donner, 2008).
Regarding θ1 + θ2 and θ1 − θ2 as c1θ1 + c2θ2, where c1 and c2 are constants, we can rewrite the intervals as

L = c1θ̂1 + c2θ̂2 −
√
[c1θ̂1 −min(c1l1, c1u1)]2 + [c2θ̂2 −min(c2l2, c2u2)]2

and

U = c1θ̂1 + c2θ̂2 +
√
[c1θ̂1 −max(c1l1, c1u1)]2 + [c2θ̂2 −max(c2l2, c2u2)]2.

For a 100(1− α)% confidence interval for
∑g
i=1 ciθi, where g > 2, an application of mathematical induction results in

L =
g∑
i=1

cîθi −

√√√√ g∑
i=1

[
cîθi −min(cili, ciui)

]2
U =

g∑
i=1

cîθi +

√√√√ g∑
i=1

[
cîθi −max(cili, ciui)

]2
.

(2)

Because L and U are derived using the recovered variance estimates, we can refer to the method as the MOVER, standing
for method of variance estimates recovery. A further extension of the MOVER to incorporate dependence between θ̂i and θ̂j
(i 6= j) has been applied to measures of additive interaction in epidemiology (Zou, 2008).
We can now apply the confidence interval in (2) to linear functions of binomial proportions. Since there are at least

three intervals for a single proportion, i.e., Wald, adjustedWald (Agresti and Coull, 1998) andWilson, we end up with three
procedures for linear functions of binomial proportions.
Specifically, let Yi (i = 1, 2, . . . , g) be independent binomial variates with parameters (ni, pi), and let p̂i = Yi/ni be

the sample estimates for pi. A linear function of binomial proportions may be defined as
∑g
i=1 cipi, where the ci are known

constants. Using the equations in (2), the 100(1− α)%Wald confidence interval can be obtained by setting θ̂i = p̂i = Yi/ni,
li = p̂i − zα/2

√̂
pi(1− p̂i)/ni, and ui = p̂i + zα/2

√̂
pi(1− p̂i)/ni.

The Wilson interval for
∑g
i=1 cipi may be obtained by setting θ̂i = p̂i = Yi/ni,

li, ui =
(̂
pi + z2α/2/(2ni)∓ zα/2

√
[̂pi(1− p̂i)+ z2α/2/(4ni)]/ni

)
/(1+ z2α/2/ni).

The adjusted Wald interval for
∑g
i=1 cipi (Price and Bonett, 2004) may be obtained by setting θ̂i = p̃i = (Yi + 2/k)/(ni +

4/k) (where k is the number of nonzero elements in ci), li = p̃i− zα/2
√
p̃i(1− p̃i)/ni, and ui = p̃i+ zα/2

√
p̃i(1− p̃i)/ni. Note

that the adjusted Wald method for a single proportion is an approximation of the Wilson score method for 95% interval,
see Agresti and Coull (1998) for its motivation and derivation. We also must point out that this method has the potential to
provide confidence limits that are out of parameter space.
It is fair to say that the superior performance of Newcombe (1998a) originates from that of theWilsonmethod for a single

proportion (Agresti and Coull, 1998; Newcombe, 1998b). On the same token, we can postulate that applyingWilson interval
for cases of more than two binomial proportions will be very competitive to that of Price and Bonett (2004).
To evaluate this claim, we conducted a numerical study to compare the performance of these two procedures in finite

samples for 90%, 95%, and 99% two-sided confidence intervals, in terms of mean coverage, minimum coverage, and mean
interval width as defined here.
For a 100(1− α)% interval (L,U) for

∑g
i=1 cipi, the coverage is defined by

Coverage = 100
n1∑
y1=0

· · ·

ng∑
yg=0

g∏
i=1

(
ni
yi

)
pyii (1− pi)

ni−yi I
(
L <

∑
cipi < U

)
,

where I(.) is an indicator function which takes values of 1 or 0 as the event in the brackets is true or not.
The expected interval width is defined as

Width =
n1∑
y1=0

· · ·

ng∑
yg=0

g∏
i=1

(
ni
yi

)
pyii (1− pi)

ni−yi(U − L).

We conducted the evaluation by first randomly sampling 1000 sets of pi’s from the uniform (0,1) distribution, and then
applied the above two definitions to each set.We did not arbitrarily truncate the adjustedWald confidence limits when they
fell out of the parameter space. With respect to each method, we obtained the mean coverage, minimum coverage, and the
mean interval width using these 1000 sets of values for coverage and width.
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Table 1
Performance of the method of variance estimates recovery in constructing two-sided confidence intervals (CI) for a linear function of binomial parameters,∑3
i=1 cipi , using confidence limits for single proportions obtained by the adjusted Wald and Wilson methods. Entries in each row are based on 1000 sets

of pi ’s randomly sampled from uniform (0,1), and each set evaluated by exact calculation.

Group sizes 90% CI 95% CI
n1/n2/n3 Adjusted Wald Wilson Adjusted Wald Wilson

c = (1/3, 1/3, 1/3)
5/5/5 92.04 (80.18, 0.32)∗ 90.58 (82.60, 0.31) 96.12 (91.24, 0.38) 94.99 (86.34, 0.36)
5/5/10 91.65 (83.59, 0.29) 90.45 (85.36, 0.29) 95.95 (88.12, 0.35) 95.07 (89.55, 0.33)
5/10/15 91.53 (84.60, 0.25) 90.69 (87.42, 0.25) 95.86 (92.93, 0.30) 95.26 (90.65, 0.29)
5/10/20 91.63 (86.89, 0.25) 90.80 (87.37, 0.24) 95.88 (92.51, 0.29) 95.31 (91.02, 0.28)
5/15/20 91.57 (84.34, 0.23) 90.80 (84.39, 0.23) 95.83 (90.95, 0.28) 95.30 (90.51, 0.27)
5/20/20 91.53 (83.99, 0.23) 90.72 (87.15, 0.22) 95.73 (84.97, 0.27) 95.27 (91.50, 0.26)

c = (1,−1/2,−1/2)
5/5/5 92.29 (80.22, 0.67) 90.82 (85.45, 0.65) 96.19 (86.68, 0.79) 95.14 (89.23, 0.75)
5/5/10 91.97 (84.26, 0.64) 90.84 (84.63, 0.62) 95.91 (89.26, 0.77) 95.27 (89.48, 0.72)
5/10/15 92.00 (82.28, 0.60) 91.06 (86.44, 0.58) 95.87 (86.43, 0.72) 95.31 (91.04, 0.67)
5/10/20 92.00 (82.74, 0.60) 91.06 (85.77, 0.57) 95.83 (87.82, 0.71) 95.33 (91.62, 0.66)
5/15/20 92.00 (82.28, 0.59) 91.06 (86.34, 0.56) 95.75 (88.50, 0.70) 95.27 (91.63, 0.65)
5/20/20 92.13 (81.69, 0.58) 91.13 (85.68, 0.55) 95.80 (86.75, 0.69) 95.27 (91.15, 0.64)

c = (−1, 1/2, 2)
5/5/5 92.08 (79.06, 1.25) 90.94 (86.88, 1.20) 95.91 (86.89, 1.49) 95.19 (89.05, 1.39)
5/5/10 91.52 (85.49, 1.00) 90.67 (86.58, 0.98) 95.81 (91.28, 1.19) 95.24 (89.05, 1.15)
5/10/15 91.33 (85.15, 0.88) 90.64 (87.14, 0.87) 95.66 (91.82, 1.05) 95.29 (88.53, 1.02)
5/10/20 91.35 (85.32, 0.82) 90.72 (87.51, 0.81) 95.71 (92.89, 0.98) 95.32 (90.85, 0.95)
5/15/20 91.29 (82.82, 0.81) 90.65 (87.98, 0.80) 95.67 (92.39, 0.97) 95.23 (91.42, 0.94)
5/20/20 91.29 (85.58, 0.81) 90.65 (86.88, 0.80) 95.66 (90.11, 0.96) 95.30 (90.18, 0.93)

c = (1, 1,−1)
5/5/5 92.04 (80.36, 0.95) 90.56 (81.21, 0.93) 96.19 (92.21, 1.13) 95.15 (86.22, 1.08)
5/5/10 91.74 (85.12, 0.88) 90.64 (85.70, 0.86) 95.96 (89.78, 1.04) 95.18 (89.86, 1.00)
5/10/15 91.49 (84.88, 0.76) 90.71 (87.33, 0.74) 95.78 (87.97, 0.90) 95.26 (90.45, 0.87)
5/10/20 91.49 (85.56, 0.74) 90.76 (86.80, 0.72) 95.80 (92.41, 0.88) 95.29 (90.54, 0.84)
5/15/20 91.42 (85.05, 0.70) 90.69 (86.68, 0.69) 95.70 (90.10, 0.84) 95.20 (91.24, 0.80)
5/20/20 91.59 (85.28, 0.68) 90.82 (87.43, 0.66) 95.82 (88.32, 0.81) 95.26 (90.77, 0.78)

∗Mean coverage % (minimum coverage %, mean confidence interval width) based on 1000 sets of proportion parameters randomly sampled from uniform
(0,1) distribution.

For linear functions of 3 binomial proportions, results in Table 1 show consistently that the intervals for linear functions
based on the Wilson score method have mean coverage closer to the nominal levels, with narrow average width. For group
sizes considered, theminimum coverage for the adjustedWald can be as low as 79.06% for 90% nominal level, and 84.97% for
95% nominal level. For confidence interval based on theWilson method, the minimum coverage can be as low as 81.21% for
90% nominal level, and 86.22% for 95% nominal level. Results from constructing confidence intervals for linear functions of
4 binomial proportions in Table 2 show again that the procedure based on Wilson score method performed better in terms
of mean coverage and interval width, as well as minimum coverage. For example, the minimum coverage for the adjusted
Wald can be as low as 77.16% for 90% nominal level, compared to that of 83.23% for Wilson score method. Similar trends
were observed with nominal level of 99% (results not shown). One possible explanation for our results is that the adjusted
Wald method was proposed to approximate theWilson score method at 95% level, on the rationale that the middle point of
Wilson interval is a weighted average of p̂ and 0.5, and that 1.962 ≈ 4 (Agresti and Coull, 1998, p. 122).

3. Examples

In the light of the above numerical results, we now compare confidence intervals using two examples from Price and
Bonett (2004).

Example 1. This data set arose from a study in which rats are fed with different types of diets. The diets are controlled by
two factors, namely fiber and fat. Each rat is observed to determine if it has developed a tumor during the study period.
The outcome of the experiment is summarized in Table 3 (each group had 30 rats). It is of interest to construct confidence
intervals for the main effects of fiber and fat, as well as their interaction. Here we can obtain the 95% confidence intervals
using the MOVER for the linear functions of proportions. The results are shown in Table 3, which shows that the intervals
obtained using the Wilson method for single proportions are narrower than those using the adjusted Wald method for
single proportion. This is consistent with the results in our evaluation study. In fact, the Wilson method based intervals are
all contained in that based on the adjusted Wald method for single proportions in this moderate size study.

Example 2. This example arose from the Framingham heart study. As an alternative to conventional generalized linear
model with logistic link function, Price and Bonett (2004) approached the problem with a linear function of binomial
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Table 2
Performance of the method of variance estimates recovery in constructing two-sided confidence intervals (CI) for a linear function of binomial parameters,∑4
i=1 cipi , using confidence limits for single proportions obtained by the adjusted Wald and Wilson methods. Entries in each row are based on 1000 sets

of pi ’s randomly sampled from uniform (0,1), and each set evaluated by exact calculation.

Group sizes 90% CI 95% CI
n1/n2/n3/n4 Adjusted Wald Wilson Adjusted Wald Wilson

c = (1/4, 1/4, 1/4, 1/4)
5/5/5/5 91.27 (81.65, 0.28)∗ 90.24 (83.23, 0.27) 95.63 (92.16, 0.33) 94.86 (88.56, 0.31)
5/5/10/10 91.03 (87.49, 0.24) 90.33 (85.65, 0.24) 95.48 (93.03, 0.29) 95.07 (90.18, 0.28)
5/5/15/15 91.01 (87.61, 0.23) 90.53 (86.71, 0.22) 95.45 (92.91, 0.27) 95.13 (91.33, 0.26)
5/5/15/20 91.11 (88.33, 0.22) 90.67 (87.18, 0.22) 95.50 (93.10, 0.26) 95.25 (91.75, 0.26)
5/10/15/20 90.84 (86.26, 0.20) 90.57 (87.66, 0.20) 95.33 (90.52, 0.24) 95.27 (91.64, 0.23)

c = (−1, 1,−1, 1)
5/5/5/5 91.33 (85.72, 1.10) 90.29 (82.48, 1.08) 95.70 (92.91, 1.31) 95.09 (88.82, 1.25)
5/5/10/10 91.03 (83.19, 0.96) 90.37 (85.96, 0.95) 95.49 (92.68, 1.15) 95.09 (90.56, 1.11)
5/5/15/15 91.11 (87.96, 0.91) 90.67 (86.77, 0.89) 95.50 (92.51, 1.08) 95.24 (91.47, 1.04)
5/5/15/20 91.08 (87.41, 0.89) 90.71 (87.05, 0.88) 95.50 (92.45, 1.06) 95.26 (91.74, 1.02)
5/10/15/20 90.86 (87.58, 0.81) 90.51 (87.68, 0.80) 95.37 (91.86, 0.97) 95.17 (91.40, 0.94)

c = (1/3, 1/3, 1/3, 1)
5/5/5/5 91.33 (77.16, 0.63) 90.87 (86.18, 0.61) 95.29 (84.48, 0.75) 95.15 (89.89, 0.70)
5/5/10/10 90.82 (86.51, 0.49) 90.52 (87.43, 0.49) 95.23 (90.73, 0.59) 95.16 (91.24, 0.57)
5/5/15/15 90.64 (87.56, 0.44) 90.29 (87.33, 0.43) 95.22 (93.25, 0.52) 95.10 (91.60, 0.51)
5/5/15/20 90.74 (88.44, 0.40) 90.25 (86.91, 0.40) 95.34 (93.10, 0.48) 95.07 (90.91, 0.47)
5/10/15/20 90.48 (88.76, 0.39) 90.29 (87.89, 0.38) 95.12 (93.65, 0.46) 95.15 (92.17, 0.45)

c = (−3,−1, 1, 3)
5/5/5/5 91.34 (83.03, 2.44) 90.89 (83.44, 2.38) 95.49 (90.28, 2.90) 95.20 (89.81, 2.76)
5/5/10/10 90.94 (83.95, 2.14) 90.80 (87.55, 2.10) 95.23 (88.85, 2.55) 95.32 (91.50, 2.44)
5/5/15/15 91.01 (82.16, 2.01) 90.80 (87.95, 1.96) 95.24 (86.35, 2.40) 95.22 (90.66, 2.29)
5/5/15/20 90.92 (83.77, 1.96) 90.77 (88.24, 1.90) 95.13 (86.91, 2.33) 95.19 (91.50, 2.22)
5/10/15/20 91.08 (83.32, 1.91) 91.02 (88.56, 1.86) 95.15 (85.88, 2.27) 95.36 (91.06, 2.16)
∗ Mean coverage % (minimum coverage %, mean confidence interval width) based on 1000 sets of proportion parameters randomly sampled from uniform
(0,1) distribution.

Table 3
Confidence intervals for effects of factors in the diet–tumor study.

Fiber Fat p̂i ci
Fiber× Fat Fiber Fat

Yes High 20/30 1 1/2 1/2
Low 14/30 −1 1/2 −1/2

No High 27/30 1 −1/2 1/2
Low 19/30 −1 −1/2 −1/2

Interval for
∑
cipi:

Adj Wald −0.3806, 0.2516 −0.3516, 0.0355 0.0677, 0.3839
Wilson −0.3790, 0.2386 −0.3459, 0.0375 0.0691, 0.3773

Table 4
Framingham heart study.

Systolic BP Number of subjects Number with heart disease

115 156 3
121 252 17
131 284 12
141 271 16
151 139 12
161 85 8
176 99 16
190 43 8

proportions. Specifically, if the population proportion of heart disease is considered a linear function of systolic blood
pressure, the slope is

∑
cipi, which is a linear function of the proportions pi of heart disease of systolic blood pressure

groups, where ci = (xi −
∑
xi/g)/

∑
(xi −

∑
xi/g)2 and xi is the value of the quantitative factor in group i. Using the data

in Table 4, we obtained the 95% confidence interval for the population slope using the adjusted Wald method as 0.0010 to
0.0032, comparable to that of using the Wilson method as 0.0012 to 0.0034 in such a large study.
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4. Concluding remarks

The confidence interval for a general linear function of binomial proportions introduced here is a simple application of
a more general idea presented by Zou and Donner (2008). The basic idea is to recover variance estimates needed for linear
functions of proportions from the confidence limits for single proportions. Since the Wilson interval procedure has been
strongly recommended for single proportions (Agresti and Coull, 1998; Newcombe, 1998b; Santner, 1998), it is thus natural
to extend it to linear functions of binomial proportions. By use of theMOVER,wehave provided a very competitive procedure
to that of Price and Bonett (2004), whose procedure can be seen as an application of theMOVER based on the adjustedWald
method for single proportions. The MOVER has also provided an analytic justification for Newcombe (1998a, 2001).
It should also be noted that the derivation of the MOVER relies only on the validity of confidence limits for single

parameters such that variance estimates can be recovered by normal distributions. The direct implication is that one can
apply the MOVER to linear functions of other discrete distribution parameters, e.g., Poisson rates (Stamey and Hamilton,
2006; Tebbs and Roths, 2008), and linear functions of normal mean and variance, e.g., lognormal means (Zou and Donner,
2008).
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Giving an Effective Presentation
David Giltinan (ENAR), Member of the Local Organizing Committee of IBC2000

Introduction
Several articles in the statistical litera-
ture contain tips on giving an effective
statistical presentation. An excellent re-
cent example, by Becker and Keller-
McNulty, appears in The American Statis-
tician (1996, pages 112-115). So why did
I agree to attempt another essay on this
topic, for speakers intending to present
at IBC2000? In part, because my experi-
ence at recent statistical meetings
strongly suggests that most of us could
benefit from a reminder of the common
pitfalls that can mar a presentation.
While I have been lucky to attend some
excellent talks at recent meetings, these
have not been in the majority. None of
the following advice is novel, but I hope
that a short review of common presen-
tation mistakes may be helpful. If there
is one essential message, it can be

summarized in this exhortation to speak-
ers — “always be considerate of your
audience”.

To avoid a monotonous litany of “do’s
and don’ts”, I have tried to inject some
humor into the following remarks. This
does not mean that I think the generally
low prevailing standard of statistical pre-
sentations is not a serious matter. On
the contrary, I believe effective presen-
tation is one of the most important chal-
lenges facing any statistician. Until clear
communication becomes a top priority,
we cannot hope to achieve the degree
of influence, or make the type of effec-
tive contribution, that society needs
from our profession.

Today’s airport bookshop is typically
stocked with a plethora of titles along

the lines of “Jesse Ventura’s eight secrets
for charismatic communication” or “Darth
Vader’s seven steps to effective leadership”.
It appears that the modern business pro-
fessional expects advice to be packaged
in snappy bite-sized nuggets, suitable for
digestion on a plane. Accordingly, this
essay follows the organizational struc-
ture: “Ten tips for a truly dreadful presen-
tation”. Those who aspire to the status
of truly dreadful presenter (abbreviated
as TDP from here on) should try to
implement as many of these tips as pos-
sible. Speakers interested in improving
the quality of their presentations, on the
other hand, would be better served by
rigorous avoidance of the types of mis-
behavior described in this essay.

I have grouped these into categories, only
one of which is specific to statistical pre-
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sentations. For concreteness, illustra-
tions below assume use of overhead
transparencies; however, most points
apply equally to other types of visual aids.

Ten tips for a truly
dreadful presentation
Sensory deprivation

1. Small is beautiful
A key component of this technique is
information overload. Here, the defin-
ing characteristic is to cram as many
words/numbers/symbols onto each
overhead as possible. Audience members
will be delighted by the wealth of detail
and the resulting chance to practice their
speed-reading skil ls. Handwritten
overheads should aspire to a cramped,
wobbly, style that evokes the drama of
an airplane flying through extreme tur-
bulence. This effect is harder to achieve
using presentation software, but much
can be accomplished by creative use of
novel font styles and tiny font sizes.

2. Confusion through color
For handwritten overheads, the optimal
choice of pen color is clearly yellow, as
it can generally be relied on to yield text
which is not just unreadable, but also
virtually invisible. Other color options
may achieve a similar effect, though some
experimentation may be needed to find
the best combination (light and pastel
shades hold the most promise). If forced
to use dark-colored pens when prepar-
ing overheads, the experienced TDP will
know to choose non-waterproof pens,
sometimes known as “smudgies”. The re-
sulting combination of densely written
material, ambient humidity and/or per-
spiration during presentation virtually
guarantees enhanced illegibility through
smudging. Initially, this option might seem
to be available only for handwritten
overheads. However, trial and error
should reveal the potential of one’s soft-
ware package to generate color combi-
nations for which distinguishing text
from background is an impossibility. No
self-respecting TDP will leave this poten-
tial unrealized.

3. The human shield
Occasionally, one may be provided with
clear, legible presentation aids, prepared
by someone else. Without some neutral-
izing tactic, this carries a genuine risk of

conveying information clearly to the au-
dience. A simple countermeasure in this
situation is the “human shield” approach,
wherein the presenter blocks all visibil-
ity by standing directly in front of the
projector while speaking. Static imple-
mentation of this tactic can be challeng-
ing, as it may be hard to ignore the pro-
gressively louder bleats of protest from
the audience. A preferred alternative is
thus the so-called “random Wimbledon”
variation, in which the speaker darts ran-
domly from one blocking position to
another. This has the added benefit of
keeping audience members alert, while
giving a good calisthenic workout to
their neck muscles.

Audience alienation

4. Cultural insensitivity
Opening with a sexist joke can usually
be relied on to alienate most of the au-
dience. An alternative tactic is the con-
sistent use of gendered language to per-

petuate some demeaning stereotype of
women’s roles and abilities; for further
discussion, see the 1997 article by Ham-
mer (The American Statistician, pages 13-
18). “Humor” that reinforces some other
negative cultural stereotype or ethnic
prejudice may be effective in offending
remaining audience members.

5. Avoid eye contact
Making eye contact with individual audi-
ence members is discouraged for sev-
eral reasons. It could be taken as indi-
cating a genuine desire to communicate.
Worse, it could provide a real-time check
on audience reaction to the presenta-
tion, which, if acted upon, could slow
progress through the remaining
overheads. Finally, it is particularly criti-
cal to avoid eye contact with the ses-
sion chair, who may be actively trying to
put a premature end to your presenta-
tion.

Mental Health Services Research
The Centers for Mental Healthcare Research at the
University of Arkansas for Medical Sciences offers
VA- and NIMH-sponsored fellowships in mental health
services research.  The training program is designed
to prepare Ph.D. and M.D. fellows for independent
investigation in the areas of access, utilization, qual-
ity of care, outcomes assessment and cost effective-
ness.  Centers research is concentrated in five clini-
cal areas: dementia, depression, schizophrenia, sub-
stance abuse and comorbidity.  Annual stipends are
$36,000.  Supplemental funding is made available for
research ($7,000) and travel expenses ($1,000).

Applicants are requested to submit (1) a current cur-
riculum vitae; (2) a brief overview of their areas of
research interest, short-term (fellowship) objectives
and long-term (career) goals; and (3) three letters of
recommendation.  To be eligible, an individual must
be a United States citizen.

Both the Department of Veterans Affairs
and the University of Arkansas are

Equal Opportunity Employers.

For further information please contact:
John Fortney, Ph.D.

VA HSR&D CeMHOR (152/NLR)
2200 Fort Roots Drive

North Little Rock, AR 72114
Telephone: (501) 257-1727

Email: fortneyjohnc@ exchange.uams.eduFE
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6.The illiterate audience
A tactic which never fails to amuse is to
present certain overheads in a manner
which conveys the obvious belief that
members of the audience can’t read. Typi-
cally, this calls for the speaker to read
aloud each and every word of text
shown overhead, at an excruciatingly
slow pace, adopting the tone of a par-
ticularly conscientious kindergarten
teacher. Clearly, the audience irritation
potential of this tactic is quite wasted if
it is deployed simultaneously with the
human shield technique described above.
Judicious alternation of the two meth-
ods, on the other hand, may have the
potential for a superadditive irritant ef-
fect.

Presentation style

7. Keep them on their toes
• Give no context, background, or moti-

vation for the problem you discuss. You
don’t want to deprive your audience
of the fun of trying to puzzle it out.

• Similarly, provide no clues about the
relative importance of different parts
of your talk. Alert listeners should be
able to distinguish the important from
the trivial without your help.

• Waste no time on ‘signposting’ devices
such as a presentation outline, or sub-
division of your talk into sections.
They’ll know you have finished when
you sit down.

• Adopt a variable pacing strategy, alter-
nating between vastly accelerated and
excruciatingly slow delivery. Devote
least time to the overheads with the
highest density of content.

8. Rehearsal is for amateurs
Conscientious amateurs, worried about
such petty trivia as time restrictions,
abstract notions of “fairness” towards
the session chair and other speakers, and
consideration for the audience, may feel
impelled to practice their presentations
several times beforehand. Some fanatics

have even been known to seek input
from colleagues on issues such as em-
phasis, organization, clarity, length, poten-
tial “early stopping points”, etc. This type
of weakness is for lesser mortals – re-
member, you are a professional. Noth-
ing as mundane as rehearsal should be
allowed to interfere with the delightful
spontaneity which is the hallmark of your
oratory. As for time constraints, these
are imposed with other, less experienced,
speakers in mind. The session chair
should understand that they do not ap-
ply to you. If not, simply cease to ac-
knowledge the chair’s existence.

Statistical specialties

9. The power of notation
Although most audiences are familiar
with the conventional deployment of
Greek symbols in statistics, the experi-
enced TDP still has no difficulty in har-
nessing the full power of notation to
bewilder and confuse. This is possible,
even when sticking to notational con-

Giving an Effective Presentation
Continued from p. 8
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ventions which are technically legitimate.
Strategies sure to amuse and challenge
one’s audience include

• Refusal to be bound by conventions of
“standard” usage. General recognition
of a particular choice of symbols as
conventional does not make alterna-
tive choices invalid. There’s nothing il-
legal about denoting the mean by s and
the standard deviation by µ.

• Giving equal time to the lesser-known
Greek letters. Consider using your talk
as a vehicle for pursuing the rehabilita-
tion of ζ, ξ, ϖ, ψ, and ν, as partial re-
dress for years of neglect.

• Including each and every detail of the
technical conditions needed for your
main convergence result, especially
those ugly higher-moment assumptions.
After all, the audience deserves noth-
ing less than the complete story.

• Subtly changing the symbol for a key
parameter half-way through your pre-
sentation.

10. Tables and graphs
When deciding how to summarize in-
formation for one’s presentation, it may
be helpful to remember these general
points about communicating information
intelligibly

• The more densely packed with infor-
mation, the harder a table is to assimi-
late, particularly if displayed for a maxi-
mum of 30 seconds.

• Mislabeling, or failure to label, rows and
columns of a tabular display can greatly
enhance audience confusion.

• Most simulations defy clear, concise
summarization. Their potential for au-
dience confusion thus greatly exceeds
that of real data examples.

• Graphs generally provide more audi-
ence-friendly summaries than tables.

• The potential superiority of graphical
displays to communicate information
is easily sabotaged by techniques such
as (i) mislabeling axes (ii) omitting axis
labels altogether (iii) using a micro-

scopic font for axis labels (iv) mislead-
ing choice of scale (v) confusing choice
of symbols, connecting lines, shading
patterns etc. This list is in no way ex-
haustive.

• Including lots of irrelevant detail makes
both tables and graphs harder to un-
derstand.

• Use of the “show ‘n whisk” presenta-
tion style to tease audience members
(for instance, by limiting display time
for information-laden overheads to 30
seconds) can greatly reduce their
chances of assimilating the information
displayed, whether summarized in tabu-
lar or graphical form.

Presenting effectively
Giving an effective presentation can in-
deed be difficult. However, if you can
resist the temptation to misbehave in the
various ways described in this essay, you
will be well on your way. Looking for-
ward to some truly excellent talks at
IBC2000!
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For a more detailed description of the natbib package, LATEX the source file natbib.dtx.

Overview

The natbib package is a reimplementation of the LATEX \cite command, to work with both author–year
and numerical citations. It is compatible with the standard bibliographic style files, such as plain.bst, as
well as with those for harvard, apalike, chicago, astron, authordate, and of course natbib.

Loading

Load with \usepackage[options]{natbib}. See list of options at the end.

Replacement bibliography styles

I provide three new .bst files to replace the standard LATEX numerical ones:

plainnat.bst abbrvnat.bst unsrtnat.bst

Basic commands

The natbib package has two basic citation commands, \citet and \citep for textual and parenthetical

citations, respectively. There also exist the starred versions \citet* and \citep* that print the full author
list, and not just the abbreviated one. All of these may take one or two optional arguments to add some
text before and after the citation.

\citet{jon90} ⇒ Jones et al. (1990)
\citet[chap.~2]{jon90} ⇒ Jones et al. (1990, chap. 2)

\citep{jon90} ⇒ (Jones et al., 1990)
\citep[chap.~2]{jon90} ⇒ (Jones et al., 1990, chap. 2)
\citep[see][]{jon90} ⇒ (see Jones et al., 1990)
\citep[see][chap.~2]{jon90} ⇒ (see Jones et al., 1990, chap. 2)

\citet*{jon90} ⇒ Jones, Baker, and Williams (1990)
\citep*{jon90} ⇒ (Jones, Baker, and Williams, 1990)

Multiple citations

Multiple citations may be made by including more than one citation key in the \cite command argument.

\citet{jon90,jam91} ⇒ Jones et al. (1990); James et al. (1991)
\citep{jon90,jam91} ⇒ (Jones et al., 1990; James et al. 1991)
\citep{jon90,jon91} ⇒ (Jones et al., 1990, 1991)
\citep{jon90a,jon90b} ⇒ (Jones et al., 1990a,b)

1
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Numerical mode

These examples are for author–year citation mode. In numerical mode, the results are different.

\citet{jon90} ⇒ Jones et al. [21]
\citet[chap.~2]{jon90} ⇒ Jones et al. [21, chap. 2]

\citep{jon90} ⇒ [21]
\citep[chap.~2]{jon90} ⇒ [21, chap. 2]
\citep[see][]{jon90} ⇒ [see 21]
\citep[see][chap.~2]{jon90} ⇒ [see 21, chap. 2]

\citep{jon90a,jon90b} ⇒ [21, 32]

Suppressed parentheses

As an alternative form of citation, \citealt is the same as \citet but without parentheses. Similarly,
\citealp is \citep without parentheses.

The \citenum command prints the citation number, without parentheses, even in author–year mode, and
without raising it in superscript mode. This is intended to be able to refer to citation numbers without
superscripting them.

\citealt{jon90} ⇒ Jones et al. 1990
\citealt*{jon90} ⇒ Jones, Baker, and Williams 1990
\citealp{jon90} ⇒ Jones et al., 1990
\citealp*{jon90} ⇒ Jones, Baker, and Williams, 1990
\citealp{jon90,jam91} ⇒ Jones et al., 1990; James et al., 1991
\citealp[pg.~32]{jon90} ⇒ Jones et al., 1990, pg. 32
\citenum{jon90} ⇒ 11
\citetext{priv.\ comm.} ⇒ (priv. comm.)

The \citetext command allows arbitrary text to be placed in the current citation parentheses. This may
be used in combination with \citealp.

Partial citations

In author–year schemes, it is sometimes desirable to be able to refer to the authors without the year, or vice
versa. This is provided with the extra commands

\citeauthor{jon90} ⇒ Jones et al.
\citeauthor*{jon90} ⇒ Jones, Baker, and Williams
\citeyear{jon90} ⇒ 1990
\citeyearpar{jon90} ⇒ (1990)

Forcing upper cased names

If the first author’s name contains a von part, such as “della Robbia”, then \citet{dRob98} produces “della
Robbia (1998)”, even at the beginning of a sentence. One can force the first letter to be in upper case with
the command \Citet instead. Other upper case commands also exist.
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when \citet{dRob98} ⇒ della Robbia (1998)
then \Citet{dRob98} ⇒ Della Robbia (1998)

\Citep{dRob98} ⇒ (Della Robbia, 1998)
\Citealt{dRob98} ⇒ Della Robbia 1998
\Citealp{dRob98} ⇒ Della Robbia, 1998
\Citeauthor{dRob98} ⇒ Della Robbia

These commands also exist in starred versions for full author names.

Citation aliasing

Sometimes one wants to refer to a reference with a special designation, rather than by the authors, i.e. as
Paper I, Paper II. Such aliases can be defined and used, textual and/or parenthetical with:

\defcitealias{jon90}{Paper~I}

\citetalias{jon90} ⇒ Paper I
\citepalias{jon90} ⇒ (Paper I)

These citation commands function much like \citet and \citep: they may take multiple keys in the
argument, may contain notes, and are marked as hyperlinks.

Selecting citation style and punctuation

Use the command \setcitestyle with a list of comma-separated keywords (without spaces) as argument.

Citation mode: authoryear or numbers or super
Braces: round or square or open={char},close={char}
Between citations: semicolon or comma or citesep={char}
Between author and year: aysep={char}
Between years with common author: yysep={char}
Text before post-note: notesep={text}

Defaults are authoryear, round, comma, aysep={;}, yysep={,}, notesep={, }

Example 1, \setcitestyle{square,aysep={},yysep={;}} changes the author–year output of

\citep{jon90,jon91,jam92}

into [Jones et al. 1990; 1991, James et al. 1992].

Example 2, \setcitestyle{notesep={; },round,aysep={},yysep={;}} changes the output of

\citep[and references therein]{jon90}

into (Jones et al. 1990; and references therein).

Other formatting options

Redefine \bibsection to the desired sectioning command for introducing the list of references. This is
normally \section* or \chapter*.

Define \bibpreamble to be any text that is to be printed after the heading but before the actual list of
references.

Define \bibfont to be a font declaration, e.g. \small to apply to the list of references.
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Define \citenumfont to be a font declaration or command like \itshape or \textit.

Redefine \bibnumfmt as a command with an argument to format the numbers in the list of references. The
default definition is [#1].

The indentation after the first line of each reference is given by \bibhang; change this with the \setlength

command.

The vertical spacing between references is set by \bibsep; change this with the \setlength command.

Automatic indexing of citations

If one wishes to have the citations entered in the .idx indexing file, it is only necessary to issue \citeindextrue
at any point in the document. All following \cite commands, of all variations, then insert the corresponding
entry to that file. With \citeindexfalse, these entries will no longer be made.

Use with chapterbib package

The natbib package is compatible with the chapterbib package which makes it possible to have several
bibliographies in one document.

The package makes use of the \include command, and each \included file has its own bibliography.

The order in which the chapterbib and natbib packages are loaded is unimportant.

The chapterbib package provides an option sectionbib that puts the bibliography in a \section* instead
of \chapter*, something that makes sense if there is a bibliography in each chapter. This option will not
work when natbib is also loaded; instead, add the option to natbib.

Every \included file must contain its own \bibliography command where the bibliography is to appear.
The database files listed as arguments to this command can be different in each file, of course. However,
what is not so obvious, is that each file must also contain a \bibliographystyle command, with possibly
differing arguments.

As of version 8.0, the citation style, including mode (author–year or numerical) may also differ between
chapters. The \setcitestyle command can be issued at any point in the document, in particular in
different chapters.

Sorting and compressing citations

Do not use the cite package with natbib; rather use one of the options sort, compress, or sort&compress.

These also work with author–year citations, making multiple citations appear in their order in the reference
list.

Long author list on first citation

Use option longnamesfirst to have first citation automatically give the full list of authors.

Suppress this for certain citations with \shortcites{key-list}, given before the first citation.
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Local configuration

Any local recoding or definitions can be put in natbib.cfg which is read in after the main package file.

Options that can be added to \usepackage

round (default) for round parentheses;

square for square brackets;

curly for curly braces;

angle for angle brackets;

semicolon (default) to separate multiple citations with semi-colons;

colon the same as semicolon, an earlier mistake in terminology;

comma to use commas as separators;

authoryear (default) for author–year citations;

numbers for numerical citations;

super for superscripted numerical citations, as in Nature;

sort orders multiple citations into the sequence in which they appear in the list of references;

sort&compress as sort but in addition multiple numerical citations are compressed if possible (as 3–6, 15);

compress to compress without sorting, so compression only occurs when the given citations would produce
an ascending sequence of numbers;

longnamesfirst makes the first citation of any reference the equivalent of the starred variant (full author
list) and subsequent citations normal (abbreviated list);

sectionbib redefines \thebibliography to issue \section* instead of \chapter*; valid only for classes
with a \chapter command; to be used with the chapterbib package;

nonamebreak keeps all the authors’ names in a citation on one line; causes overfull hboxes but helps with
some hyperref problems.



Words and expressions: Less is more

July 15, 2009
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a considerable amount of → much
a great deal of → much
absolutely essential → essential
accounted for by the fact → because
adjacent to → near, next to
along the lines of → like
as a consequence of → because
as a matter of fact → in fact
as a result of → because
as to → about
at present → now
based on the fact that → because
because of the fact that → because
by means of → by, with
causal factor → cause
cognizant → aware of
completely full → full
contingent upon → depend on
despite the fact that → although
due to the fact that → because
during the course of → during, while
elucidate → explain
employ → use
end result → result
endeavor → try
fabricate → make
facilitate → help
first of all → first
firstly → first
for the purpose of → for
for the reason that → because

1Compiled from How to write and publish a scientific
paper (6th ed) by Day and Gastel, 2006

from the point of view of → for
give an account of → describe
give rise to → cause
has been engaged in a study → has studied
has the capability of → can
has the potential to → can, may
have the appearance of → look like, resemble
in case → if
in close proximity to → close, near
in light of the fact that → because
in only a small number of cases → rarely
in order to →to
in relation to → toward, to
in respect to → about
in terms of → about
in the absence of → without
in the event that → if
in this day and age → today
in view of the fact that → because
inasmuch as → for, as
initiate → begin, start
it has been reported by Smith → Smith reported
it is apparently that → apparently, clearly
it is believed that → I think
it is my understanding that → I understand that
it is often the case → often
it is worth pointing out in this context that →
note that
it may be that → I think
it may, however, be noted that → but
join together → join
lacked the ability to → could not
met with → met
needless to say
new initiative → initiative

1



no latter than → by
of great theoretical and practical → useful
on behalf of → for
on the basis of → by
on the grounds that → because
owing to the fact that → because
perform → do
pooled together → pooled
referred to as → called
so as to → to
take into consideration → consider
the reason is because → because
the vast majority of → most, almost all
there is reason to believe → I think
through the use of → by, with
utilize → use
we wish to thank → thank
whether or not → whether
with a view to → to
with regard to → concerning, about
with respect to → about
with the exception of → except
with the result that → so that

2
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