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Epid 9510: Biostatistical Research Methods

Course Description: This course is meant to give graduate students in the
biostatistical collaborated program an introduction to the necessary skills and
knowledge for biostatistical research, focusing on the activities involved in writing
thesis. The ultimate goal is to enable students to fully understand the strengths
and limitations of new biostatistical methods developed by others, or develop
new methods on their own.

Instructors: GY Zou (gzou@robarts.ca) and
YH Choi (yun-hee.choi@schulich.uwo.ca).

Textbook: No textbooks. Reading materials provided.
Class meetings: Tuesday 10:30 to 12:30, Thursday 10:30 to 12:00, Kresge 116.

Grade: Assignment 1: 20%, manuscript 70%, Participation: 10%.
Course outline
Sept 15: Introduction

Sept 17: Intro SAS

Sept 22: Intro R (Choi)
Sept 24: Intro LaTeX (Choi)

Sept 29: Stat Inference (Choi)
Oct 1: Stat Inference (Choi)

Assignment 1: Derive var(pa), var(prc), and var(pp) in Zou and Donner (2004,
Biometrics 60: 807-811). Use LaTeX for typing.

Sept 6: Stat Inference (Choi)
Oct 8: Stat Inference (Choi)

Oct 13: How to select topic and Read
Oct 15: How to Search

Assignment 2: select a topic and literature list
Assignment 1 due on Oct 9.

Oct 20: Proportion as an example for reading and searching
Oct 22: Reading Classical statistical papers
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Oct 27: Bootstrap
Oct 29: Bootstrap

Assignment 2 due on Oct 23.

Oct 3: Simulation by SAS
Oct 5: Simulation by R (Choi)

Nov 10: Writing paper using LaTeX
Nov 12: Writing thesis using LaTeX

Nov 17: Writing in English (with examples of Zou)
Nov 19: Writing in English (cont)

Nov 24: Writing slides with LaTeX
Nov 26: Effective presentation

Dec 1: Student presentation
Dec 3: Student presentation

Dec 17: Manuscript due (to be Graded by Zou and Choi before Dec 20)




Special Section:
Statistical Training and Gurricular Revision

Emery N. BROWN and Robert E. KASS

We use our experience in neuroscience as a source of defining
issues for the discipline of statistics. We argue that to remain
vibrant, the field must open up by taking a less restrictive view
of what constitutes statistical training.

KEY WORDS: Cross-disciplinary statistical research; Statisti-
cal paradigm; Statistical thinking.

1. SHORT SUPPLY

Our field faces fundamental challenges. The statistical needs
of science, technology, business, and government are huge and
growing rapidly, producing a shortfall in statistical workforce
production. In their summary of an National Science Founda-
tion workshop, The Future of Statistics, Lindsay, Kettenring,
and Siegmund (2004) reported that

Workshop participants pointed repeatedly to shortages in the
pipeline of students and unmet demand from key industries
and government laboratories and agencies. ... The shortage may
prove quite damaging to the nation’s infrastructure.

The growth in demand for data analysis may be attributed in
large part to the exponential increase in computing power and
data collection capabilities. At the same time, there is a worri-
some tendency for quantitative investigators or technical staff
to attack problems using blunt instruments and naive attitudes.
Our discipline as a whole has been gloriously productive, mak-
ing available a wide variety of tools. But we have been less suc-
cessful in producing easy-to-master operating instructions and
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What Is Statistics?

training programs. We have effectively created a supply side
of the problem: Statistical education has not been sufficiently
accessible. Curricula in statistics have been based on a now-
outdated notion of an educated statistician as someone knowl-
edgeable about existing approaches to handling nearly every
kind of data. Degrees in statistics have emphasized a large suite
of techniques, and introductory courses too often remain unap-
petizing. The net result is that at every level of study, gaining
statistical expertise has required extensive coursework, much
of which appears to be extraneous to the compelling scientific
problems students are interested in solving.

We also must acknowledge that some of the most innovative
and important new techniques in data analysis have come from
researchers who would not identify themselves as statisticians.
Computer scientists have been especially influential in the past
decade or so. The influx of methodology from outside the disci-
pline is not new; indeed, the field of statistics itself is relatively
young, with much foundational achievement predating the ad-
vent of departments of statistics. But an undeniable fear lurks in
the hearts of many statistics professors: As others leap daringly
into the fray, attempting to tackle the most difficult problems,
might statistics as we know it become obsolete?

The two of us recently co-organized the fourth international
workshop on statistical analysis of neural data. This series of
conferences has brought together quantitatively oriented exper-
imenters and cutting-edge data analysts working in the field of
neuroscience, offering new challenges for statistical science in
the process. We and others have found the high quality of sta-
tistical application gratifying and the articulation of new ideas
very stimulating. One of the reactions from readers of our grant
proposal to the National Science Foundation took us by sur-
prise, however. Only a relatively small minority of our speak-
ers and participants came from departments of statistics, and
as a result, some reviewers questioned whether the Division
of Mathematical Sciences should be supporting this activity.
Luckily, the program officers handled this issue adeptly, in part
by getting cosponsorship from Computational Neuroscience.
But the issue is an aspect of the existential identity crisis; the
reviewers were grappling with the vexing question, raised by in-
stitutional structures, of who should be counted as a statistician.

The participation in neuroscientific research of many non-
statisticians doing sophisticated data analysis is not surprising.
The brain is considered a great scientific frontier. Studying it
creates many technological challenges, and because neuronal
networks form electrical circuits, fundamental contributions to
neurophysiology have been made by physical arguments, in the
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form of differential equations. Furthermore, brain science is
where artificial neural network models arose, not as machines
for nonparametric multiple regression, but rather as descriptors
of cognitive mechanisms. For these reasons, neuroscience has
attracted many researchers trained in quantitative disciplines,
especially physics and engineering. Although their activities
might make some statisticians nervous when it comes to federal
grants and other resources, a more serious threat is a discipli-
nary attitude that contrasts strikingly with what we see among
many statisticians. Physicists and engineers very often become
immersed in the subject matter. In particular, they work hand in
hand with neuroscientists and often become experimentalists
themselves. Furthermore, physicists and engineers (and like-
wise computer scientists) are ambitious; when faced with prob-
lems, they tend to attack, sweeping aside impediments stem-
ming from limited knowledge about the procedures that they
apply. In seeing this, we often shudder, and we criticize this
cavalier attitude later in this article. But there is a flip side to our
reaction; in contrast, we find that graduate students in statistics
often are reticent to the point of inaction. Somehow, in empha-
sizing the logic of data manipulation, teachers of statistics are
instilling excessive cautiousness. Students seem to develop ex-
treme risk aversion, apparently fearing that the inevitable flaws
in their analysis will be discovered and pounced upon by sta-
tistically trained colleagues. Along with communicating great
ideas and fostering valuable introspective care, our discipline
has managed to create a culture that often is detrimental to the
very efforts it aims to advance.

We are worried. While we expect that in many institutions—
perhaps most—there may exist specific courses and programs
that are exemplary in certain respects, in the aggregate, we are
frustrated with the current state of affairs. The concerns that we
have articulated here are not minor matters to be addressed by
incremental improvement; rather, they represent deep deficien-
cies requiring immediate attention.

2. CHANGING TIMES

In making critical comments, we hope to stir discussion and
debate. We do not wish to be misunderstood, however; our most
fundamental loyalty is to the discipline of statistics. We appre-
ciate its role in technical advances over the past century, and
see even greater opportunities for essential contributions in the
future, as scientific investigations rely on more massive and in-
tricate data sets to examine increasingly complex phenomena.
Furthermore, besides utility, there is great beauty in the sub-
ject. We have spent considerable effort learning and trying to
advance neuroscience. But even after substantial exposure to
one of the most exciting and rapidly developing areas of sci-
ence, we still believe that statistics, with its unique blend of
real-world mathematics, epistemology, and computational tech-
nique, is the most deeply interesting and rewarding of all intel-
lectual endeavors. There are strong arguments to suggest that
much of cognition is based on pattern learning, and that hu-
mans have well-developed neural machinery for making infer-
ences implicitly, without conscious recognition. Perhaps part of
the pleasure that we get from statistical reasoning comes from
bringing a harmonious coherence to otherwise unappreciated
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brain processes. Regardless of its biological explanation, how-
ever, there is certainly an inspiring aesthetic of statistics driven
in part by the emotional overlay of trying to tame uncertainty.
The problem is not with the nature of the discipline. There are
compelling reasons to love statistics and to pass on to others
both knowledge of its methods and appreciation of its powerful
logic.

So where have things gone wrong? We believe that the pri-
mary source of the current difficulties is an anachronistic, yet
pervasive conception of statistics. The problem is that depart-
ments of statistics often act as if they are preparing students
to be short-term consultants, able to answer circumscribed
methodological questions based on limited contemplation of
the context. This short-term consultant model relegates the sta-
tistician to a subsidiary position, and suggests that applied sta-
tistics consists of handling well-formulated questions, so as to
match an accepted method to nearly any kind of data. This no-
tion may have developed partly because—at least in the United
States—statistics evolved from mathematics with its lone inves-
tigator, and partly because a qualified statistician could know
the entire field. The large majority of senior statisticians began
their academic careers as math majors. Within statistics depart-
ments, mathematical thinking influenced both research and in-
frastructure, whereas the mathematics involved was relatively
limited, so that Ph.D. statisticians could master the technical
details in diverse areas of statistics. Graduate programs thus
emphasized mathematically thorough knowledge of multiple
branches of the field. At one time, this served a useful purpose.
But statistics has expanded and deepened, so that individuals
rarely have state-of-the-art, rigorous expertise in more than a
few well-developed subdomains. Furthermore, in today’s dy-
namic and interdisciplinary world, success in confronting new
analytical issues requires both substantial knowledge of a scien-
tific or technological area and highly flexible problem-solving
strategies. In neuroscience, for example, a statistician will have
far more impact once he or she is able to generate ideas for
scientific investigation. In other fields, the situation is surely
analogous. The discipline of statistics needs to recognize our
new situation and act accordingly. We suggest two overarching
principles of curricular revision.

3. AFOCUS ON STATISTICAL THINKING

According to syllabi and lists of requirements, statistics
courses and degree programs tend to emphasize mastery of
technique. But statisticians with advanced training and experi-
ence do not think of statistics as simply a collection of methods;
like experts in any field, they consider their subject highly con-
ceptual. This deserves emphasis, because it distinguishes a dis-
ciplinary approach from efforts that might be disparaged as the
work of amateurs. In neuroscience, we have seen many highly
quantitative researchers trained in physics and engineering, but
not in statistics, apply sophisticated techniques to analyze their
data. These often are appropriate and sometimes are inventive
and interesting. In the course of perusing many, many articles
over the years, however, we have found ourselves critical of
much published work. Starting with vague intuitions, particular
algorithms are concocted and applied, from which strong sci-
entific statements are made. Our reaction too often is negative;



we are dubious of the value of this approach, believing that al-
ternatives are preferable. Or we may concede that a particular
method possibly may be a good one, but the authors have done
nothing to indicate that it performs well. In specific settings, we
often come to the conclusion that the science would advance
more quickly if the problems were formulated differently—in
a manner more familiar to trained statisticians. As an example,
neuroscientists developed the highly intuitive “spike-triggered
average” to identify an association between a neural spike train,
which may be considered a point process, and a continuous
stimulus. Point process analysis by a member of Columbia’s
Department of Statistics (Paninski 2003) has shown that spike-
triggered averaging can be inconsistent in some realistic set-
tings, but that consistent estimators may be constructed us-
ing generalized linear (or nonlinear) regression models, an ap-
proach first championed by Brillinger. (For related references
and other examples, see Brown, Kass, and Mitra 2004; Kass,
Ventura, and Brown 2005.)

The statistician’s perspective, missing from much analysis of
neural data, is the most important thing that we can provide.
Once students have it, they will be empowered in diverse sit-
uations. Thus, we suggest that the primary goal of statistical
training at all levels should be to help students develop statisti-
cal thinking.

What exactly do we mean by this? Different statisticians
would use somewhat different words to describe what defines
the essential elements of our discipline’s approach, but we be-
lieve there is general consensus about the substance, which can
be stated quite concisely. Statistical thinking uses probabilis-
tic descriptions of variability in (1) inductive reasoning and
(2) analysis of procedures for data collection, prediction, and
scientific inference. For instance, a prototypical description of

variability among data pairs (x1, y1), ..., (xu, y») is the non-
parametric regression model
Yi = f(xi) + i,

in which each ¢; is a random variable. This may be used to sug-
gest methods of smoothing the data and to express uncertainty
about the result [both of which are part of item (1)] and also
to evaluate the behavior of alternative smoothing procedures
[item (2)]. One can dream up a smoothing method, and apply
it, without ever referencing a model—indeed, this is the sort
of thing that we witness and complain about in neuroscience.
Meanwhile, among statisticians there is no end of disagreement
about the details of a model and the choice among methods
(What space of functions should be considered? Should the ¢;
random variables enter additively? Independently? What class
of probability distributions should be used? Should decision-
theoretic criteria be introduced, or prior probabilities?). The es-
sential component that characterizes the discipline is the intro-
duction of probability to describe variation in order to provide a
good solution to a problem involving the reduction of data for a
specified purpose. This is not the only thing that statisticians do
or teach, but it is the part that identifies the way they think. We
provide a bit more discussion of this notion in the Appendix.

Currently, statistical thinking is internalized as a byproduct
of extensive statistical training. Elevating it to an overarching
goal allows curricula to be assessed according to the way in
which statistical thinking is engendered.

4. FLEXIBLE CROSS-DISCIPLINARITY

Contemporary students see before them a world dominated
by “big science,” with a host of exciting paths to participate in
progress. Many students recognize a fundamental role for sta-
tistics, and most see great value in learning statistical methods,
but they are increasingly motivated by a desire to solve impor-
tant problems. In this context, the very best quantitatively ori-
ented students often come from other quantitative disciplines,
including computer science, physics, and engineering, and they
have many options.

As an example, because of his involvement in computational
neuroscience at Carnegie Mellon, one of us (Kass) became
aware of an outstanding senior undergraduate, a young woman
majoring in computer science at one of the top liberal arts col-
leges, with nearly perfect GPA and GRE score. She was very in-
terested in computational aspects of neuroimaging and wanted
to pursue a Ph.D. However, she had never taken a statistics
course, and in fact had taken only one math course beyond cal-
culus. It had not occurred to her that statistics might be a good
option, and, from the standpoint of admission to a graduate pro-
gram in statistics, she presented logistic complications; it was
not clear exactly what she would study, or how many years it
would take to complete her degree. We must make room for
students like this and recruit them.

To attract students with nontraditional quantitative back-
grounds, statistics programs must guide these students toward
making important contributions in a timely manner. Cross-
disciplinary projects will have to play a major role. Once a
department accepts as its primary mission helping students de-
velop an ability to think like statisticians, it is freed from the
constraints of excessive content and can recognize alternative
ways that students can demonstrate their abilities and achieve-
ments. On the one hand, we see cross-disciplinary work as es-
sential to anyone with any kind of statistical credentials—and
thus to statistical training at every level. On the other hand, we
view cross-disciplinary research as an opening to students of
varied backgrounds—a way of welcoming them into the fold
and a mechanism for streamlining training, making programs
more manageable and the discipline more inviting.

To satisfy different kinds of students, programs also must al-
low multiple pathways toward degrees. Increasing the emphasis
on cross-disciplinarity goes hand in hand with reducing the im-
portance of particular courses and thereby decreases program-
matic rigidity. Flexibility is paramount. We do not wish to re-
move theoreticians from our midst; indeed, many nonmathe-
maticians will blossom in theoretical directions. Rather, our aim
is to allow a broader notion of who counts as a statistician.

5. IMPLICATIONS

If someone is able to (i) appreciate the role of probabilis-
tic reasoning in describing variation and evaluating alternative
procedures and (ii) produce a cutting-edge cross-disciplinary
analysis of some data, should we feel comfortable calling that
person a statistician? We think so, and we would like to see our
profession broaden its perspective to a sufficient degree to make
this possible.
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We further believe that it is consequential to declare (i) and
(ii) to be defining goals for a training program. In applying this
at the graduate level, however, we presume that to do “cutting
edge” work, along the way a trainee would have had to have
learned something about classical techniques, such as linear re-
gression, some area of modern statistics (e.g., nonparametric re-
gression, dimensionality reduction, graphical models), and also
general inferential tools, such as the bootstrap and Bayesian
methods. Furthermore, appreciation of probabilistic reasoning
comes from repeated exposure to it in varied contexts. Both of
these require mathematical and computational skills. Thus, we
are proposing variations on what is currently in place in training
programs throughout the country; each training program formu-
lates (explicitly or implicitly) a list of skills and units of knowl-
edge that are truly essential, and figures out how the items on
the list are to be taught and evaluated. What constitutes inculca-
tion of statistical thinking may be in the eye of the beholder—in
this case, the departmental training program. On the other hand,
we have argued that the status quo is unacceptable. Here are
four recommendations.

1. Minimize prerequisites to research. There are continual
disagreements about the stage at which trainees should do re-
search. We strongly favor making cross-disciplinary projects
widely available, even to those with minimal backgrounds. Al-
though advanced trainees will have more tools at their dis-
posal, talented quantitatively oriented students can quickly
learn how to apply and interpret statistical techniques without
formal coursework—indeed, we witness this repeatedly in neu-
roscience. There has been a tendency in statistics to have stu-
dents first understand, then do. But this sequence can be re-
versed, giving a statistical faculty supervisor the opportunity to
demonstrate in practice the value of knowing the theoretical un-
derpinnings of methodology. Perhaps most importantly, as we
stated earlier, students who want to solve real problems will
be attracted to cross-disciplinary research. At both the grad-
uate and undergraduate levels, exciting research opportunities
are likely to be among the best recruitment tools.

2. Identify ways of fostering statistical thinking. How
should we help our students internalize a principled approach to
data collection, prediction, and scientific inference? Apprecia-
tion of statistical thinking should begin in introductory courses.
Each instructor of a first course in statistics grapples with ideas
behind reasoning from data, and much effort has gone into texts
for such classes. Although we recognize the many great strides
taken by textbook authors, we are not entirely satisfied with
the typical content of introductory courses. For example, in
teaching young neurobiologists, we have found it helpful to
stress the value of probabilistic reasoning through propagation
of uncertainty via simulation methods—as in bootstrap confi-
dence intervals or Bayesian inference—and to emphasize “prin-
ciples” by including explicit discussion of mean squared error.
Both topics seem more advanced than what is usually found
in elementary texts. To be attracted to the subject, however, the
most gifted students must see it as deep, with serious theoretical
content. Courses tend to be categorized as either theoretically
oriented for math/statistics majors or method-oriented “service
courses” for other disciplines, and we find too little similarity
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between the two. The main point here is that the first college-
level exposure to statistics matters. Although for pedagogical
purposes, central ideas must remain simple and approachable,
we believe that it is important to represent the discipline as be-
ing rich in profound concepts. More fundamentally, one goal of
every first course in statistics for quantitatively capable students
should be to interest some of the students in further study.

At the graduate level, existing curricula succeed in getting
students to think like statisticians, but focus on this goal is nec-
essary if programs are to be streamlined. Students will still need
exposure to statistical reasoning in multiple diverse settings,
together with emphasis on (a) the roles of heuristics, compu-
tational considerations, and/or generative models in producing
procedures and (b) theoretical performance, balanced by con-
venience, computational efficiency, and interpretability. Many
excellent books on such topics as nonparametric regression,
density estimation, time series analysis, and Bayesian methods
offer very good comparative discussions combining both theo-
retical and practical concerns. The only problem we see is that
they are designed for full-semester courses, whereas in many
cases the modern student may wish to devote only a couple of
weeks to each within formal course work. We believe that there
is an important place for courses, and texts, that give quick im-
pressions while reinforcing underlying principles.

We also take it for granted—but nonetheless believe it worth
mentioning— that training programs at every level should in-
clude many opportunities for trainees to interact with experi-
enced statisticians (in, e.g., journal clubs, informal seminars,
social events), partly to see how they think about problems, but
also to have role models reinforce the joys and benefits of pur-
suing statistics.

3. Require real-world problem solving. Experienced statis-
ticians spend much of their collaborative time trying to under-
stand the nature of the data collection process and its relation-
ship to scientific or technological issues. Some students, espe-
cially those with backgrounds in experimental science, tend to
be well prepared in this dimension, asking appropriate ques-
tions, digging up background material, and readily grasping the
big picture. Many others, however, have difficulty making con-
nections among scientific ideas, the resulting data, and appro-
priate analytic strategies. Having recognized this basic skill for
applied statistics, we must help our students develop it. Several
methods for doing so exist. Project courses, especially at the un-
dergraduate level, can be helpful. Extended research projects—
learning by doing—can of course be among the best ways to
develop problem-solving skills. An important caveat, however,
is that some projects are so well formulated that execution be-
comes straightforward, and little effort toward big-picture com-
prehension is needed. We come across students who in the
course of doing statistical analyses exhibit remarkably little cu-
riosity about the material they are analyzing. Most likely this
is because they have not been taught a systematic approach to
problem solving and do not appreciate the payoff from pursuing
it.

4. Encourage deep cross-disciplinary knowledge. In neu-
roscience, as elsewhere, statistical training can shape how data
lead to useful knowledge. Once the information obtainable from
an experiment is clearly understood, a new aspect of the scien-
tific landscape may come into view. Consequently, statisticians



can make major contributions by redefining problems and redi-
recting data-collection efforts.

In this regard, we distinguish two alternative roles. The first
role has been played by both of us; like other senior statisticians
in varied domains, we have spent many years learning scien-
tific principles and methods and building collaborations with
colleagues, so that our suggestions for research problems and
approaches are taken seriously and often followed. The second
role requires a deeper commitment to cross-disciplinary train-
ing, however. One of us (Brown) became a practicing anesthe-
siologist in addition to being a statistician. As a result of his ex-
tensive physiological knowledge and expertise, he has been able
to create a laboratory and is undertaking a series of experiments
on brain activity to describe how anesthetic drugs produce the
state of anesthesia. Many others in the profession play a similar
“principal investigator” role. Two examples are John Quacken-
bush in the Biostatistics Department in the Harvard School of
Public Health and the Dana Farber Cancer Institute, who formu-
lates and executes experiments that use genomic and computa-
tional approaches to study networks and pathways in cancer de-
velopment and progression, and Wing Wong in the Department
of Statistics at Stanford University, who conducts experiments
on developmental genomics and signal transduction that are in-
formed by statistical considerations.

Faculty who run extradisciplinary experiments and con-
tribute to disciplinary methodology are becoming fairly com-
mon in engineering and physics, but not in statistics. The
change in attitude that we advocate should in time produce
more such people in departments of statistics. In addition to ac-
cepting the desirability of these appointments, however, more
joint training programs are needed. As models in neuroscience,
we can point to our own institutions. The Harvard/MIT Health
Sciences and Technology Ph.D. program trains students in
quantitative subjects while also having them take substantial
medical school courses and serve on rotations in the hospital
as a medical student would. Carnegie Mellon’s Ph.D. Program
in Neural Computation is similar, requiring mastery of a techni-
cal discipline (e.g., computer science or statistics) together with
multiple courses in the brain sciences, and rotation through ex-
perimental laboratories. Again, to attract large numbers of stu-
dents, course requirements in interdisciplinary programs must
be stripped down to manageable essentials. We would like to
see more such joint programs that offer credentials in statis-
tics.

6. DISCUSSION

The report by Lindsay, Kettenring, and Siegmund (2004) was
aimed at the general community of mathematical scientists.
Our discussion has been inward-looking, and critical. Although
there is much to be admired in statistical training programs
throughout the world, we accuse them of harboring obsolete
attitudes about the nature of statistics. Statistics is a wonderful
field, but the way in which statisticians view it must evolve. We
have suggested defining what our discipline brings to the table,
labeling the perspective that we believe to be so fundamentally
valuable “statistical thinking.” We also have advocated greater
encouragement of cross-disciplinary training. Deepening cross-

disciplinary involvement and welcoming more experimentalists
and other practitioners into the clan of statisticians need not di-
minish the importance of the theoretical core. Quite the con-
trary; those with hands-on knowledge of context-driven issues
can help identify methodological problems, prodding theory to
advance in productive new directions.

Our first main message is that training programs should have
a clearer notion of what they intend do. The second message
is that these programs generally need to strengthen and deepen
their commitment to cross-disciplinary work. In this, we follow
many others. We have emphasized the contrast between short-
term consulting and deeper, long-term engagement, which re-
quire different attitudes and skills. We are sympathetic to the
promise made by Birnbaum (1971) that “each student of sta-
tistics working with me at any level shall also work system-
atically with another study adviser representing a scientific or
technological research discipline of interest to the student,”
and we agree with Gnanedesikan (1990) that training should
focus less on defining the appropriate encompassing content
and more on instilling a relevant sense of cross-disciplinary
curiosity: “We need a switch turned on, a value established,
for impelling statisticians to be challenged intellectually and
through a desire to contribute to solving major problems in
other fields.”

The worth of cross-disciplinary work, and its essential role
in stimulating new statistical theory and methods, seems to be
much more widely appreciated now than in the past. We want
to push harder, partly because we feel that curricular ramifi-
cations have not been given sufficient attention, but also be-
cause the world needs more statistically oriented scientific prin-
cipal investigators. Such scientific leadership is, again, not just
a recent development. As one example, in the mid-1970s, Fred
Mosteller, a master at initiating interdisciplinary collaborations
on topics he deemed scientifically important, became interested
in the benefits of surgical therapies, which typically are not
studied using randomized controlled clinical trials. This led
to his formulation of a large research effort involving statisti-
cians, surgeons, anesthesiologists, and public health specialists
to investigate the costs, risks, and benefits of surgery (Bunker,
Barnes, and Mosteller 1977). Mosteller was not trained in
surgery, but he was clearly the intellectual leader of the project.
This kind of leadership is not limited in any way to areas in
which “principal investigator” has a literal meaning in a bio-
medical context. As emphasized by Keller-McNulty (2007),
many of today’s big challenges throughout society are tackled
by large teams, and these teams are in desperate need of sta-
tistical thinking at the very top levels of management. We sug-
gest that a way forward begins with a focus on the fundamental
goals of training, combined with a broad vision of the discipline
of statistics.

APPENDIX: WHAT IS STATISICAL THINKING?

Snee (1990) noted that “many of us talk about statistical
thinking but rarely define it.” Although the field is so broad
that a single notion of statistical thinking cannot possibly be
universally applicable, we provided above a succinct defini-
tion coming from our own experience that we believe articu-
lates a widely held consensus. We are, at least, in line with Ru-
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bin (1993) when he said that

The special training statisticians receive in mapping real prob-
lems into formal probability models, computing inferences from
the data and models, and exploring the adequacy of these infer-
ences, is not really part of any other formal discipline, yet is
often crucial to the quality of empirical research.

Similarly, Mallows (1998) wrote that

Statistical thinking concerns the relation of quantitative data to
a real-world problem, often in the presence of variability and
uncertainty. It attempts to make precise what the data has to say
about the problem of interest.

In combining these points of view, we wished to recognize the
centrality of probabilistic reasoning while distinguishing two
roles for it. First, there is the inductive movement from descrip-
tion of variation to expressions of knowledge and uncertainty.
A probabilistic description of variation would be “the proba-
bility of rolling a 3 with a fair die is 1/6,” whereas an expres-
sion of knowledge would be “I"'m 90% sure that the capital of
Wyoming is Cheyenne.” These two sorts of statements, which
use probability in different ways, are sometimes considered to
involve two different kinds of probability, called “aleatory prob-
ability” and “epistemic probability.” Bayesians merge these, ap-
plying the laws of probability to go from quantitative descrip-
tion to quantified belief, but in every form of statistical infer-
ence, alleatory probability is used somehow to make epistemic
statements. This is the first role of probabilistic reasoning. The
second role is in evaluating procedures. We understand statis-
tical thinking to be based on these two roles for probabilistic
reasoning. This allows us to elaborate our definition of statisti-
cal thinking by stating that it involves two principles:

1. Statistical models of regularity and variability in data may
be used to express knowledge and uncertainty about a signal
in the presence of noise, via inductive reasoning.

2. Statistical methods may be analyzed to determine how well
they are likely to perform.

The downside of spelling out a definition is that it can be easy
to get sidetracked on the details. For starters, we intend “sig-
nal” to denote general underlying phenomena and relationships
of interest, whereas “noise” refers to sources of variation that
are being separated from the signal. We find these terms helpful
partly because the nonparametric regression model, where they
become explicit, is a useful archetype. Furthermore, we believe
that there is at least some modest historical evidence to support
the importance of such a basic dichotomy. Stigler (1999) con-
sidered why psychology adopted statistical methods so much
earlier than economics or sociology, and why astronomy did do
so even earlier. His answer was that the theory of errors, arising
in astronomy, was based on a conceptualization encapsulated
by “observation = truth + error,” and that psychophysics was
able to introduce this to psychology via careful experimental
design. Using our words, this suggests that the idea of consid-
ering data to be generated by combining signal and noise was
essential to the historical development of statistical thinking.

A related detail is that, just as there are disagreements about
the subtleties of the nonparametric regression model and its
application, there are important issues surrounding the role of
modeling in statistics. We intend to use “statistical model” very
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broadly, with the only restriction being that probability is in-
volved, so that the notion covers models with relatively weak
assumptions, as in a two-sample permutation test, or strong as-
sumptions, as in many Bayesian multilevel hierarchical mod-
els. Our formulation cannot accommodate the perspective of
Breiman (2001), but we believe that it is entirely consistent with
the views given in discussions of that article by Cox (2001) and
Efron (2001). Here we are also remaining agnostic about the
extent to which a model may be “explanatory” or “empirical,”
as discussed by Cox (1990) and Lehmann (1990), recognizing
that “[these descriptions] represent somewhat extreme points of
a continuum” (Kruskal and Neyman 1956). Rather, we believe
that when Box (1979) stated that “all models are wrong, but
some are useful,” he was expressing a quintessential statistical
attitude.

[Received September 2008. Revised September 2008.]
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Transfer of Technology From Statistical
Journals to the Biomedical Literature

Past Trends and Future Predictions

Douglas G. Altman, Steven N. Goodman, MD, PhD

Objective.—To investigate the speed of the transfer of new statistical methods.

into the medical literature and, on the basis of current data, to predict what meth-
ods medical journal editors should expect to see in the next decade.

Design.—Influential statistical articles were identified and the time pattern of ci-
tations in the medical literature was ascertained. In addition, longitudinal studies of
the statistical content of articles in medical journals were reviewed. -

Main Outcome Measures.—Cumulative number of citations in medical journals
of each article in the years after publication.

Results.—Annual citations show some evidence of decreasing lag times
between the introduction of new statistical methods and their appearance in medi-
cal journals. Newer technical innovations still typically take 4 to 6 years before they
achieve 25 citations in the medical literature. Few methodological advances of the
1980s seem yet to have been widely cited in medical journals. Longitudinal studies
indicate a large increase in the use of more complex statistical methods.

Conclusions.—Time trends suggest that technology diffusion has speeded up
during the last 30 years, although there is still a lag of several years before medical
citations begin to accrue. Journals should expect to see more articles using
increasingly sophisticated methods. Medical journals may need to modify review-

ing procedures to deal with articles using these complex new methods.

THE INFLUX of statistical methods
into the medical literature has increased
over more than 60 years. Over the same
period, statistics itself has undergone
major changes, so that not only is the
use of statistics in medical research much
more common, but the methods used
have become progressively more com-
plex. Although some of the methods be-
ing introduced in medical research were
developed in other contexts, many sta-
tistical advances have arisen as solu-
tions to problems arising in medical
research. Changes in the type of statis-
tical methods being used in medical ar-
ticles have implications for editors, ref-
erees, and readers.

We report herein a study of citations
to investigate the transfer of new sta-
tistical methods into the medical litera-
ture. We predict some new methods that
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medical journal editors should expect to
see in the next decade.

METHODS

Influential statistical articles published
after 1950 were identified from two books
that reprinted important statistical ar-
ticles,? from a list of the most cited ar-
ticles in medical journals, and from per-
sonal knowledge (Table 1). Several ar-
ticles relate to survival analysigéili34
or meta-analysis,>” two of the strongest
growth areas (in both medicine and medi-
cal statistics) in recent years. Unfortu-
nately, in some important areas of sta-
tistical methods there was no key article
that could be widely cited by a large pro-
portion of users, such as logistic regres-
sion and sample size calculations for clini-
cal trials. We have included some articles
that were published in medical journals
(notably, cancer journals) when these
seemed to be the primary source of the
new method, and also one book.

For each article, the time pattern of
citations in the medical literature was
ascertained. Citations priorto 1971 were
obtained by hand searching of printed
volumes of the Science Citation Index,®
as were citations for a few of the later
articles with relatively few citations. Ci-
tations from 1971 to 1992 were obtained

using computer searches of the
SciSearch database (Institute of Scien-
tific Information, Philadelphia, Pa).
These searches were carried out in July
and August 1993, by which time cita-
tions for 1992 should have been virtu-
ally complete. We did not search for
articles that had incorrect citations of
the articles of interest. It is our impres-
sion that the rate of incorrect citations
of these articles was about 10% (exclud-
ing errors in titles). Some minor incon-
sistency between the two methods of
searching may have arisen through prob-
lems in identifying what constitutes a
medical journal. For comparison, simi-
lar citation analyses were performed for
two heavily cited expository statistical
articles published in medical journals.*?

We also sought evidence from longi-
tudinal studies of the statistical content
of articles in medical journals to exam-
ine changes in the methods used over
time.

RESULTS

Figure 1 shows cumulative numbers
of citations for the articles listed in Table
1 divided into four decades—the 1950s,
1960s, 1970s, and 1980s. The article by
Cox!* was excluded because it has been
cited much more often than the other
articles. It is shown in Fig 2, together
with the article by Kaplan and Meier.®
These two articles are frequently cited
together in articles reporting the re-
sults of survival analyses. They were
published 14 years apart, and Fig 2
shows that the citations for the earlier
article have risen in parallel with those
for the Cox article, but about 14 years
later in relation to the year of publica-
tion. These are now two of the most
heavily cited articles in medical jour-
nals. The rise in citations for the article
by Kaplan and Meier® is especially
marked given that it received only six
citations in medical journals in the first
10 years after publication.

Annual citations for the articles pub-
lished in the four decades do show some
evidence of decreasing lag times between
the introduction and widespread use of
new statistical methods. Newer techni-
cal innovations still typically take 4 to 6
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Table 1.—Statistical Articles Included in This Study
i iz i S A A S S )

Source, y Topic
Methodological articles
Cornfield,® 1951 Qdds ratio

Cochran,* 1954

Woolf,> 1955

Kaplan and Meier,® 1958

Mantel and Haenszel,”
1958

Cohen,® 1960

Mantel,? 1963

Box and Cox,™ 1964

Mantel,"" 1966

Elston and Stewart,'?
1971

Peto and Peto," 1972

Cox,'* 1972

Dempster et al,” 1977

Efron,"® 1979

Hanley and McNeil,””
1982

Geman and Geman,'®
1984

Breiman et al,’® 1984

x2 Trend test
Combining 2x2 tables
Survival curve
Stratified 2x2 table

K Statistic
Survival analysis
Transformations
Survival analysis
Heredity

Log rank test

Proportional hazards
regression

EM algorithm

Bootstrap

Receiver operating
characteristic curve

Gibbs sampling

Classification and

regression trees
Zeger and Liang,?® 1986 Longitudinal data
Expository articles
Peto et al,*' 1977
Bland and Altman,?
1986

Log rank test
Method comparison

years before they achieve 25 citations in
the medical literature. Few methodologi-
cal advances of the 1980s seem yet to
have been widely cited in medical jour-
nals. By contrast, expository articles in
medical journals can reach 500 citations
within 4 to 5 years (Fig 3). Citations for
one of the two expository articles® have
leveled out, with a roughly constant num-
ber of citations each year. Most of the
methodological articles (notably, the
heavily cited articles) have increasing
numbers of citations each year.

Few authors have studied changes
over time in the use of statistical meth-
ods in one journal. Hayden® gave a brief
summary of the rise in the use of simple
statistical methods in Pediatrics from
1952 to 1982, while Felson et al® de-
seribed similar changes in Arthritis and
Rhewmatism from 1967 to 1968 vs 1982.
The most detailed information we are
aware of relates to the New England
Journal of Medicine. Articles published
in 1978 and 1979,% 1989,% and 1990%
have been reviewed using the same set
of categories.® A large increase was
noted during this period in the use of
most statistical methods, especially the
more complex methods (Table 2). It is
notable that survival analysis and logis-
tic regression were found in almost a
third of original articles published in 1989
and 1990.

COMMENT

Citation studies are rightly criticized
as a means of grading researchers,® but
we think they provide a valuable mea-
sure of the impact of a new methodolog-
ical development on medical research.
Figure 1 suggests that technology dif-
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Fig 1.—Cumulative citations in medical journals for selected articles published in 1950 through 1959 (top
left), 1960 through 1969 (top right), 1970 through 1979 (bottom left), and 1980 through 1989 (bottom right).
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Fig 2.—Cumulative citations in medical journals for
two heavily cited articles on survival analysis meth-
ods.

fusion may have speeded up during the
last 30 to 40 years, although there is still
usually a lag of several years before medi-
cal citations begin to accrue.

We used cumulative citations rather
than annual citations, as we feel the to-
tal impact is more relevant in this con-
text and that fluctuations in the annual
counts obscure the trends. For the pur-
poses of documenting technology trans-
fer, it is not the actual number of cita-
tions but the shape of the citation curve
that is most informative. This shape
seems not to have changed greatly dur-
ing four decades. Almost all of the curves
for these classic articles have a dormant
C diras
matic takeoff. The general shape does

“fiot seem to vary in relation to how

heavily cited an article is. There are,
however, a few exceptions to this pat-
tern, notably the article by Hanley and
McNeil" (Fig 1). Developments that
have probably contributed to the more
rapid diffusion of statistical methods into

4000 A
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1000 - /
500 4 //Bland and Altman,22 1986
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Years Since Publication

No. of Citations

Fig 3.—Cumulative citations in medical journals for
two expository articles.

the medical literature are the increas-
ing number of statisticians working in
medicine, the accessibility of powerful
desktop computers to medical research-
ers, and the more rapid development
and dissemination of software to imple-
ment new statistical methods.

Our analyses took no account of the
large increase in the number of articles
being published each year in medical
journals (1730 journals published in 1950,
increasing in 10-year intervals to 2800,
4420, 6780, and 9480) (Ulrich’s Interna-
tional Serials database, Bowker Elec-
tronic Publishing). However, this in-
crease has been almost linear since 1970,
s0 adjustment for the increasing size of
the literature would not greatly alter
the shapes of the curves. Furthermore,
such adjustment is not appropriate if, as
seems likely, researchers today need to
access many more articles in a greater
number of journals than their predeces-
sors. Huth® found a large increase be-
tween 1950 and 1985 in the number of
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Table 2.—Statistical Methods Used in Original
Articles in the New England Journal of Medicine in
1978 and 1979% and 1989 and 1990272

1978-1979, % 1989-1990, %

Topic (n=332)_ (n=215)

Any statistical

analysis 73 88
t Tests 44 39
Contingency tables 27 33
Pearson correlation 12 18
Survival methods/

logistic regression 1" 31
Nonparametric tests iR 23
Epidemiclogic

statistics 9 18
Analysis of variance 8 17
Simple linear

regression 8 13
Transformation 7 7
Multiple regression 5 10
Multiway tables 4 8
Nonparametric

correlation 4 5
Multiple comparisons 3 7

“Other methods” (not
on original list) 3 14
I S T S T D Bl

different journals being cited in articles
published in the New England Jowrnal
of Medicine.

Independent evidence for genuine
changes in the use of statistics comes
from studies that have looked at the
same journals across time. The few such
studies that we are aware of have shown
large increases in the use of statistical
methods and a tendency to use more
complicated methods.?? Thus, there is
clearly a strong component of increased
use and complexity of statistics inde-
pendent of the total journal expansion.
It is relevant that the number of origi-
nal articles published per year by the
New England Jowrnal of Medicine de-
creased during the period of the studies
summarized in Table 2.

Cumulative citations for the method-
ological articles considered generally
curve upward, indicating that the an-
nual number of citations keeps increas-
ing. By contrast, the two expository ar-
ticles considered show a much more rapid
accrual of citations (starting in the year
of publication) but near-linear cumula-
tive citation curves, indicating a fairly
steady annual citation rate. Expository
statistical articles in medical journals
can reach 500 citations within 4 to 5
years (Fig 3). Both articles we consid-
ered®? deseribed methods previously
published in statistical journals'®! with-
out achieving many citations in medical
journals. These citation figures suggest
that expository articles are valuable, es-
pecially for topics that are not usually
included in medical statistics textbooks.
Indeed, the International Committee of
Medical Journal Editors guidelines state,
“References for study design and sta-
tistical methods should be to standard
works (with pages stated) when pos-
sible rather than to papers in which the
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Table 3.—Newer Statistical Methods That May Be Seen More.Often in the Coming Years

Description

Purpose

Bootstrap (also called
resampling; related to
the jackknife)'”

Multiple new data sets are
generated by random sampling
“with reptacement” from the
original data

To calculate SEs or assess the
stability of a statistical model,
often when standard assumptions
are unreliable or the sampling
distribution is unknown

Gibbs sampling'8>*

Random sampling from conditional
distributions within a complex
structure

Bayesian estimation of complex
models

Generalized additive
models®

Nonparametric smoothing of
explanatory variables in
regression

To replace regression when
assumptions are not tenable

Classification and regression

Division of a set of subjects by
combinations of characteristics,

To find combinations of variables
of predictive importance

trees'?® (also known as
recursive partitioning)

to minimize the differences

within groups and to maximize
the differences between groups

Models for longitudinal data
(“general estimating
equations”)?®

Modeling repeated measurements
of an outcome variable while
allowing for covariates

Regression for multiple
assessments of outcome

Models for hierarchical data
(also called multilevel
models)¥”

Fitting mixed linear models to
hierarchical data using iterative
generalized least squares

Modeling data with more than one
level of variation (eg, within and
between patients)

Neural networks®
complex data

Nonparametric modeling of

To provide nonlinear approximations
to multivariable functions or for
classification

designs or methods were originally re-
ported.”* Expository articles cowritten
by a statistician and medical researcher
may be especially helpful—a recent ex-
ample considers receiver operating char-
acteristic curves.” Unfortunately, such
crossover articles require a consider-
able amount of work, and such activity
(being a form of teaching) may not be
helpful to the statistician’s or research-
er’s career in comparison with either
more methodological or medical articles.

Several complex statistical methods
introduced in the 1980s are beginning to
be seen more frequently. Although it is
not possible to identify recent articles
that will turn out to be major break-
throughs, most of the newer methods
are sophisticated. Journals should ex-
pect to see growing numbers of articles
using them. Methods likely to be seen
more often are described briefly in Table
3. Software is available for all of these
techniques, and some are beginning to
be included in well-known statistics
packages. It is worth noting that by the
time a topic reaches medical journals
there may be a large methodological lit-
erature. Ripley®® notes that there are
already more than a dozen journals and
at least 15 texts devoted to neural net-
works.

The evidence of time trends within
one major journal (Table 2) supports the
idea that there is an ever-increasing va-
riety of statistical methods appearing in
medical articles. The speed with which
new methods are introduced may pose
problems for statistical referees, for the
physicians who read the published work,
and for the journals themselves. Refer-
ees may not be able to judge new meth-
ods that they have not yet learned. Phy-

sicians may feel that they have no chance
of understanding the new methods (even
if they are comfortable with more tra-
ditional methods) and will have to take
the results of such studies on faith. The
journals, in whom that faith is being
entrusted, may bear an increasing bur-
den to ensure that the methods are in-
deed valid, since most of their audience
will be unable to assess that for them-
selves.

We think that the following develop-
ments are possible and may be desirable
in the future:

e Authors using complex methods
will be asked to supply additional sup-
porting material for referees but not for
publication. This might take the form of
a formal appendix in the submitted
manuscript, which is peer reviewed (and
possibly modified) but not published. It
should be supplied by authors to read-
ers on request.

@ Because statistical refereeing will
be a more difficult process (because of
both the novelty and the complexity of
methods), medical journals may need to
recruit panels of methodological review-
ers who specialize in specific methods.

e Editors of medical journals should
encourage or actively solicit more cross-
over (expository) articles on new meth-
ods, perhaps with both medical and sta-
tistical authors.

@ More postgraduate training for
medical researchers should be devel-
oped, with formal accreditation, both in
basic statistical methods and also to help
those who wish to keep abreast of newer
methods.

It is likely that the statistical educa-
tion of physicians, already poor,* will
in the future lag even further behind the
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methods that are used in medical jour-
nals. Already the standard methods
taught in an introductory course would
leave a reader unable to judge a high
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ABSTRACT We attempt to identify the 25 most-cited statistical papers, providing some brief
commentary on each paper on our list. This list consists, to a great extent, of papers that are on
non-parametric methods, have applications in the life sciences, or deal with the multiple
comparisons problem. We also list the most-cited papers published in 1993 or later. In contrast
to the overall most-cited papers, these are predominately papers on Bayesian methods and
wavelets. We briefly discuss some of the issues involved in the use of citation counts.
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Citations in General

There has been much discussion of the uses of citation counts in the literature, although
not with respect to the statistics literature with the exceptions of Stigler (1994),
Altman & Goodman (1994), and Theoharakis & Skordia (2003). Austin (1993) assessed
the reliability of citation counts in making tenure and promotion decisions in academia,
while Gilbert (1977) and Edge (1979) have considered citation counts as measures of
the influence of research. See also Cronin (1984).

Edge (1979) criticized citation counts as being overused to measure intellectual lin-
kages. Others have made similar criticisms. Despite such criticisms, however, the use
of citation counts seems to be increasing. The National Research Council, for example,
uses citation rates as one measure to rank PhD programmes in statistics and other
fields. In addition, citation counts appear to be increasingly used in promotion decisions
in academia, in addition to ranking scientific journals. Using ISI Journal Citation
Reports, for example, one can determine that among the 71 journals in the Statistics
and Probability category, Statistical Science ranked fifth in citation impact factor and
16th in the total number of citations received in 2002 with 1,051.

In attempting to determine the causal factors for highly cited papers, Donoho (2002)
gave a list of suggestions for writing papers that would receive a large number of citations.
At the top of his list was ‘Develop a method which can be applied on statistical data of a
kind whose prevalence is growing rapidly’. For example, if someone could develop ‘the’
approach to data mining, the paper would undoubtedly garner a huge number of citations.
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There is generally a time lag of several years before new methodology is implemented in
software, so it is not surprising that number 2 on Donoho’s list was ‘Implement the method
in software, place examples of the software’s use in the paper, make the software of broad
functionality, and give the software away for free.’

Garfield (1998) reported that for the period 1945—-1988 the majority of cited papers in
science were cited only once. In a controversial citation analysis, it was shown that 55% of
papers published during 1981—1985 received no citations within five years of their pub-
lication (Hamilton, 1990). From the same data, Hamilton (1991) broke down the 55%
of uncited papers and indicated that there was a huge variation across various disciplines,
ranging from 9.2% of papers uncited in atomic, molecular, and chemical physics, to 86.9%
in engineering. Pendlebury (1991), however, disagreed with Hamilton’s analysis and
reported that only 22.4% of science articles published in 1984 remained uncited by the
end of 1988.

Papers are cited at different rates in different fields. ScienceWatch (1999) reported that
for the years 1981—-1997 a paper in mathematics needed at least 291 citations to rank in the
top 0.01%, while it took 1,823 citations for the corresponding ranking in molecular
biology and genetics.

What should we make of these numbers? A sceptic might contend that these studies
show that much research has little or no value. Indeed, it seems apparent that most pub-
lished papers do not influence the work of other researchers, although there have of
course been innumerable instances in which researchers have failed to acknowledge
related work. Overall, however, it seems clear that the distribution of papers in regard
to their impact has a huge amount of right skewness.

The 25 Most-Cited Papers

In this section we provide our list of the 25 most-cited statistical papers. We did not limit
ourselves to the primary statistical journals. We considered for inclusion only papers in
which the author(s) proposed a new statistical method, modified an existing statistical
method, or used an existing statistical method in a novel way to address an important
scientific problem. The application of this set of criteria is necessarily subjective to a
large extent. As discussed by Straf (2003), there is no generally accepted definition
of ‘statistics’.

The citation counts are those given on the Institute for Scientific Information (ISI) Web
of Science (as of 1 December 2003). Since the Web of Science does not include all scien-
tific journals, the counts are all undercounts. In addition, we did not attempt to make
adjustments for incorrect citation information, e.g., citations that had incorrect page or
volume numbers. Taking into account these factors could lead to some reordering of
the top 25 or even to some papers dropping off the list. A more significant issue,
however, is the fact that the ISI Web of Science citation counts does not include citations
before 1945. This is thus a problem for papers published well before then, and the problem
is compounded by the fact that it was more difficult for the early papers to accumulate cita-
tions since the number of scientific journals was much smaller at the time they were pub-
lished than is now the case. In addition, as a method becomes a generally accepted part of
statistics, e.g., the one-sample 7-test, the citation rate of the paper in which the method was
initially proposed decreases. We also calculated a current annual citation rate for some
papers (reported in parentheses when available). This is a conservative value since it
was obtained by doubling the number of citations received during a period of less than
six months in the last part of 2003.
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Some very highly cited papers on fuzzy logic, such as the one by Zadeh (1965) with
5,022 citations (338 per year), were not considered to be statistical papers even though
there is a connection between fuzzy logic and statistics, as discussed by Laviolette
et al. (1995). Similarly, Hopfield (1982), on the topic of neural networks with 3,574 cita-
tions (156 per year), was not included. Reed & Muench (1938), with 10,974 citations (242
per year), was not included due to the simplicity of the proposed method. Wright (1931)
with 2,218 citations (144 per year) was not included since the method and results were
judged to be primarily probabilistic, not statistical. In addition, there are some highly
cited papers by well-known statisticians that we did not consider to be statistical
enough to warrant inclusion in our list, e.g., Cooley & Tukey (1965) with 2,872 citations
(78 per year) and Nelder & Mead (1965) with 5,635 citations (426 per year). Some of these
decisions are debatable since Cooley & Tukey (1965) was included by Kotz & Johnson
(1997) with an introduction written by I. J. Good.

It would not be surprising if some papers with significant statistical content have been
overlooked in our study. In addition, it might be argued that some of the papers on our list
should have been excluded for one reason or another. We welcome input on these issues
from the readers of our paper.

The following is our list with some brief commentary.

(1) With 25,869 citations (currently cited 1,984 times per year),

Kaplan, E. L. & Meier, P. (1958) Nonparametric estimation from incomplete observations,
Journal of the American Statistical Association, 53, pp. 457—-481.

Kaplan & Meier (1958) proposed a non-parametric method for estimating the pro-
portion of items in a population whose lifetime exceeded some specified time ¢ from cen-
sored survival data. This type of data is very common in medical studies. This paper not
only has by far the highest number of citations of all statistics papers, but it has also been
ranked among the top five most cited papers for the entire field of science. Based on data
from Journal Citation Reports, the total number of citations received by this paper exceeds
twice the number of citations received by all Journal of the American Statistical Associ-
ation papers in 2002. This paper appeared in Kotz & Johnson (1992b, pp. 311-338) as a
breakthrough paper in statistics with an introduction written by N. E. Breslow.

Kaplan (1983) reported that he and Meier had, in fact, each submitted separate manu-
scripts to the Journal of the American Statistical Association. Due to their similarity, the
editor recommended that their papers be combined into one manuscript. It took them four
years to resolve the differences between their approaches, during which time they were
concerned that someone else might publish the idea.

Interestingly, Garfield (1989) gave this paper as an example of one that was slow to
receive recognition. Indeed, Figure 3 in Garfield (1989) shows that the paper received
very few citations per year through the early 1970s (i.e., for the first 15 years after it
was published). It was cited only 25 times from 1958—-1968. But, starting in 1975, the
number of citations per year began to increase sharply and continued to increase monoto-
nically through 1989, the last year covered by the graph. Meier is quoted in personal com-
munication that year as stating that the needs of applied researchers were ‘quite well met’
by the existing methodology, and it was not until the advent of computers and the increas-
ing mathematical sophistication of clinical researchers that the Kaplan—Meier method
grew in importance and eventually was recognized as the standard.

Despite its popularity, the Kaplan—Meier method has not been without controversy.
Miller (1983) wrote a paper entitled ‘“What price Kaplan—Meier?’ in which he claimed
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that the Kaplan—Meier estimator was inefficient and suggested that analysts should use
some parametric assumptions whenever possible. Eighteen years later, Meier (2001)
responded to the paper with a talk entitled ‘“The price of Kaplan—Meier.” Meier believed
Miller’s (1983) conclusions were incorrect and initially believed that references to it
would taper off for that reason. His presentation was motivated in part by the number
of citations of Miller’s paper. Also, see Meier et al. (2004).

(2) With 18,193 citations (1,342 per year),

Cox, D. R. (1972) Regression models and life tables, Journal of the Royal Statistical Society,
Series B, 34, pp. 187-220.

The topic of this paper is the regression analysis of censored failure time data, which has
far-reaching applications in the biomedical sciences. Cox (1972) used a semiparametric
model for the hazard function, which has significant advantages over using parametric
models for the failure time.

This paper appeared in Kotz & Johnson (1992b, pp. 519-542) as a breakthrough paper
in statistics with an introduction written by R. L. Prentice. See Reid (1994) for some
interesting background on this paper from D. R. Cox. Interestingly, it is reported that a
key insight into the statistical analysis method first came to Professor Cox when he was
quite ill with the flu and was recalled later only with some difficulty. Cox (1986) also
provided some background on the paper.

(3) With 13,108 citations (256 per year),
Duncan, D. B. (1955) Multiple range and multiple F-tests, Biometrics, 11, pp. 1-42.

David Duncan presented his now-famous multiple range test for comparing the means
of several populations at the Joint Meetings of the Institute of Mathematical Statistics and
the Eastern North American Region of the Biometric Society in March of 1954. Although
Duncan also proposed multiple F-tests, and in fact this was his original emphasis, these
tests have not enjoyed the popularity of his multiple range test because they were more
cumbersome to use.

Duncan (1977) gave some historical background on this paper. He also recommended
that the methods in Duncan (1975) be used in place of his multiple range test.

(4) With 9,504 citations (488 per year),

Marquardt, D. W. (1963) An algorithm for least squares estimation of non-linear parameters,
Journal of the Society for Industrial and Applied Mathematics, 2, pp. 431-441.

The Marquardt algorithm proposed in this paper is used to estimate the parameters in a
nonlinear model. See Hahn (1995) and Marquardt (1979) for some interesting background
information on this paper.

(5) With 8,720 citations (114 per year),

Litchfield, J. T. & Wilcoxon, F. A. (1949) A simplified method of evaluating dose-
effect experiments, Journal of Pharmacological and Experimental Therapeutics, 96,
pp- 99-113.

The authors proposed a rapid graphical method for approximating the median effective
dose and the slope of dose-percent effect curves. Litchfield (1977) credited Wilcoxon’s
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intense interest in collaboration for the development of the proposed method. When Litch-
field joined the laboratories where Wilcoxon was working, the two were discussing the
method at Wilcoxon’s request even before Litchfield had seen his employer or checked
in with the personnel department.

(6) With 8,151 citations (1,590 per year),

Bland, J. M. & Altman, D. G. (1986) Statistical methods for assessing agreement between two
clinical measurements, Lancet, 1 (8476), pp. 307-310.

The authors described simple statistical methods and graphs originally proposed by
Altman & Bland (1983) for using paired data to assess the differences between measure-
ments obtained by two different measurement systems. (The paper is available online at
http://www.users.york.ac.uk/~mb55/meas/ba.htm) See Bland & Altman (1992) and
Bland & Altman (1995) for descriptions of the genesis and impact of this paper.

(7) With 6,788 citations (914 per year),

Felsenstein, J. (1985) Confidence limits on phylogenies: an approach using the bootstrap,
Evolution, 39, pp. 783-791.

The context of evolutionary biology is phylogeny, the connections between all groups
of organisms as understood by ancestor/descendant relationships. According to
I. Hoeschele (personal communication), the human genome project and sequencing pro-
jects for other organisms provide an unprecedented amount of data to which the
methods in this paper and those in Nei (1972), our Number 13 paper, can be applied.
The resulting information is immensely valuable in understanding questions in evolution
and in inferring the functions of genes. Phylogenetics is a very active area of research, in
particular in the context of comparative genome analysis and genome-scale adaptation of
methods. For more information on this topic, the reader is referred to Holmes (2003).

Felsenstein (1985) considered an application of the bootstrap method, whereas more
fundamental statistical issues were addressed in the bootstrap paper in Efron (1979),
which narrowly missed being in our list with 1,889 citations (156 per year). Efron
(1979) appeared in Kotz & Johnson (1992b, pp. 519-542) as a breakthrough paper in
statistics, with an introduction written by R. J. Beran.

(8) With 6,579 citations (126 per year),

Peto, R., Pike, M. C., Armitage, P., Breslow, N. E., Cox, D. R., Howard, S. V., Mantel, N.,
McPherson, K., Peto, J. & Smith, K. G. (1977) Design and analysis of randomized clinical
trials requiring prolonged observation of each patient. Part II. Analysis and examples,
British Journal of Cancer, 35, pp. 1-39.

Sir Richard Peto, the first author, and Sir David Cox and Nathan Mantel, who appear in
other places on this list, are among the distinguished group of co-authors of this paper. The
paper is the second of a two-part report to the UK Medical Research Council’s Leukemia
Steering Committee. This report was focused on efficient methods of analysis of data from
randomized clinical trials for which the duration of survival among different groups of
patients is to be compared.

(9) With 6,006 citations (422 per year),

Mantel, N. & Haenszel, W. (1959) Statistical aspects of the analysis of data from retrospective
studies of disease, Journal of the National Cancer Institute, 22, pp. 719-748.
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These authors proposed a chi-square test with one degree of freedom for testing the
association of disease incidence using 2 x 2 contingency tables.

(10) With 5,260 citations (300 per year),

Mantel, N. (1966) Evaluation of survival data and two new rank order statistics arising in its
consideration, Cancer Chemotherapy Reports, 50, pp. 163—170.

Mantel (1966) was also cited by Garfield (1989) as a paper that was slow to receive rec-
ognition. Mantel was apparently philosophical about this, stating in personal communi-
cation to Garfield in 1989, ‘Actually, slow initial rise characterizes nearly everything’,
and also reasoned that his method was slow to gain recognition by statisticians and epide-
miologists because it was published in a cancer journal.

(11) With 4,306 citations (492 per year),

Dempster, A. P., Laird, N. M. & Rubin, D. B. (1977) Maximum likelihood from incomplete
data via the EM algorithm (C/R: pp. 22-37), Journal of the Royal Statistical Society, Series B,
39, pp. 1-22.

The Expectation Maximization (EM) algorithm is used for maximum likelihood esti-
mation with data for which some variables are unobserved. Much has been written
about the algorithm, which coupled with its various applications, including those invol-
ving censored data and truncated data, helps to explain the large number of citations. A
well-regarded book by McLachlan & Krishnan (1997) has been written about the algor-
ithm. The name ‘EM’ was coined by Dempster, Laird & Rubin in this paper, but the
method was apparently used in some form much earlier by a few researchers, including
McKendrick (1926) and Hartley (1958), who introduced the procedure for calculating
maximum likelihood estimates for the general case of count data.

(12) With 3,819 citations (32 per year),

Wilkinson, G. N. (1961) Statistical estimations in enzyme kinetics, Biochemical Journal, 80,
pp. 324-336.

The author gave an account of the weighted linear and nonlinear regression methods
applicable to general problems in enzyme kinetics. The Michaelis—Menten model,
which is used frequently in enzyme kinetics, was used to illustrate aspects of nonlinear
regression.

(13) With 3,672 citations (142 per year),

Nei, M. (1972) Genetic distance between populations, The American Naturalist, 106,
pp- 283-292.

Nei (1972) proposed a measure of genetic distance based on the identity of genes
between populations. The measure can be applied to any pair of organisms.

(14) With 3,511 citations (118 per year),

Dunnett, C. W. (1955) A multiple comparison procedure for comparing several treatments
with a control, Journal of the American Statistical Association, 50, pp. 1096—1121.
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A very interesting article about Professor Dunnett and how his work on multiple
comparisons against a control evolved can be found at www.ssc.ca/main/about/history/
dunnett_e.html. Additionally, Professor Dunnett has been kind enough to provide us
with information relating to this paper and subsequent developments. His work with
Bob Bechhofer and Milton Sobel on ranking and selection led to development of the
multivariate-f distribution (Dunnett & Sobel, 1954, 1955), which fortuitously turned out
to be the appropriate distribution for making multiple comparisons involving a control.
Dunnett (1955) formulated the problem in terms of simultaneous confidence intervals,
which was the same approach that John Tukey and Henry Scheffé had taken in their work.

Because of the great extent to which multiple comparison procedures are used by
researchers outside the field of statistics, it is relevant to question the extent to which
more recent papers that have defined the current state-of-the-art may have been over-
looked. Indeed, Dunnett & Tamhane (1991, 1992) presented step-up and step-down
methods (somewhat analogous to forward selection and backward elimination in linear
regression) with these methods being superior to one-stage procedures in terms of maxi-
mizing power. Despite the superiority of these procedures, Dunnett & Tamhane (1991),
for example, has only 31 citations.

(15) With 3,444 citations (280 per year),

Akaike, H. (1974) A new look at the statistical model identification, IEEE Transactions on
Automatic Control, 19, pp. 716-723.

This is a paper in which Akaike proposed a criterion for estimating the dimensionality
of a model using the criterion now known as Akaike’s Information Criterion (AIC). This
paper has over three times as many citations as Akaike (1973), which was included in Kotz
& Johnson (1992a, pp. 599-624) as a breakthrough paper in statistics, with a discussion
written by J. de Leeuw.

(16) With 2,837 citations (376 per year),

Liang, K.-Y. & Zeger, S. (1986) Longitudinal data analysis using generalized linear models,
Biometrika, 73, pp. 13-22.

This paper was reprinted by Kotz & Johnson (1997, pp. 463—-482) as a breakthrough
paper in statistics with a discussion by P. J. Diggle. Liang & Zeger (1986) dealt with longi-
tudinal studies in which the response measurement was a count. They derived a general-
ized estimating equations (GEE) methodology, which is now widely used.

(17) With 2,810 citations (22 per year),

Cutler, S. J. & Ederer, F. (1958) Maximum utilization of the life table method in analyzing
survival, Journal of Chronic Diseases, 8, pp. 699-712.

The authors presented the rationale and computational details of the actuarial or life-
table method for analysing data on patient survival. The method makes use of all survival
information accumulated up to the closing date of a study. Cutler (1979) reported that he
and Ederer were sharing a hotel room at a scientific meeting when the question leading to
the paper came to him at 5 a.m. He promptly woke Ederer to discuss his idea. Cutler (1979)
also stated that the paper did not represent a methodological breakthrough. The authors
demonstrated that the life-table method could be used to extract the maximum amount
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of information from the data being collected in the newly organized cancer reporting
system.

(18) With 2,764 citations (240 per year),

Geman, S. & Geman, D. (1984) Stochastic relaxation, Gibbs distributions, and the Bayesian
restoration of images, IEEE Transactions on Pattern Analysis and Machine Intelligence, 6,
pp. 721-741.

This paper was included by Kotz & Johnson (1997, pp. 123-126) as a breakthrough
paper with a discussion by P. J. Huber. Geman & Geman (1984) modified Markov
chain Monte Carlo methods and applied them to Bayesian models for the computation
of posterior probabilities.

(19) With 2,529 citations (120 per year),

Box, G. E. P. & Cox, D. R. (1964) An analysis of transformations, Journal of the Royal Stat-
istical Society, Series B, 26, pp. 211-243 (discussion pp. 244-252).

DeGroot (1987) provided some interesting background on this paper from an interview
with Professor Box. Box recounted, for example, that he and Cox were on a committee of
the Royal Statistical Society and several people suggested that they collaborate. Their
motivation and the idea of the paper sprung, to some extent, from the similarities of
their family names.

Box & Cox (1964) presented a very useful family of power transformations that have
typically been used to transform the dependent variable in a regression model so as to
try to meet the assumptions of homoscedasticity and normality of the error terms. The
right side of the model can then be transformed in the same manner so as to retrieve
the quality of the fit before the dependent variable was transformed.

(20) With 2,512 citations (76 per year),

Mantel, N. (1963) Chi-square tests with one degree of freedom: extensions of the Mantel—
Haenszel procedure, Journal of the American Statistical Association, 58, pp. 690—700.

The author extended the methods in Mantel & Haenszel (1959), Number 9 on our list, in
two ways, as it was recognized that the methods are not limited to retrospective studies and
the number of levels of the study factor of interest was allowed to be greater than two.

(21) With 2,456 citations (46 per year),

Dunnett, C. W. (1964) New tables for multiple comparisons with a control, Biometrics, 20, pp.
482-491.

In this paper, exact critical values are given for the method of Dunnett (1955), Number
14 on our list, when two-sided comparisons are made with a control.

(22) With 2,302 citations (42 per year),

Kramer, C. Y. (1956) Extension of multiple range tests to group means with unequal numbers
of replications, Biometrics, 12, pp. 307-310.

Kramer (1956) proposed an approximate method for extending multiple range tests to
cases for which the sample sizes are unequal. Kramer’s work was strongly related to the
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methodology proposed by John Tukey in 1953, whose work was not published. Never-
theless, because of the close connection, Kramer’s method for the unbalanced case is
known as the Tukey—Kramer procedure. (See Benjamini & Braun, 2002, for a discussion
of this issue.)

(23) With 2,248 citations (72 per year),

Fisher, R. A. (1953) Dispersion on a sphere, Proceedings of the Royal Society of London,
Series A, 217, pp. 295-305.

Fisher (1953) presented a theory of errors that is believed to be appropriate for measure-
ments on a sphere and derived a test of significance that was stated as being ‘the analogue
of “Student’s test” in the Gaussian theory of errors’. The paper can be viewed online at
http://www library.adelaide.edu.au/digitised/fisher/249.pdf). According to Garfield (1977),
this paper had only 277 citations between 1961 and 1975, but was Fisher’s most frequently
cited paper during that time period.

(24) With 2,219 citations (240 per year),
Schwarz, G. (1978) Estimating the dimension of a model, Annals of Statistics, 6, pp. 461 -464.

Schwartz’s Bayesian Information Criterion (BIC), introduced in this paper, is a criterion
for model selection that is often mentioned with Akaike’s AIC criterion.

(25) With 2,014 citations (382 per year),

Weir, B. S. & Cockerham, C. C. (1984) Estimating F-statistics for the analysis of population
structure, Evolution, 38(6), pp. 1358-1370.

As Professor Weir informed us, the number of citations of this paper has risen every
year since its publication as different groups of researchers have become interested in
genetic population structure. These groups include ecologists, conservationists and, inter-
estingly enough, forensic scientists.

Comments on the Top 25 List

The most-cited statistical papers fare well when compared to the most-cited papers in
science. Garfield (1990) ranked the 100 most-cited papers in the 1945-1988 Science
Citation Index. Duncan (1972), Litchfield & Wilcoxon (1949), Kaplan & Meier (1958),
Marquardt (1963), and Cox (1972) ranked Numbers 24, 29, 55, 92 and 94, respectively.
Kaplan & Meier (1958) and Cox (1972) had ‘only’ 4,756 and 3,392 citations, respectively,
in Garfield’s study.

All papers on our list were published prior to 1987. A dotplot of the publication years of
the 25 papers on our list is shown in Figure 1.

There is no question that the field of a paper is related to the number of citations. This is
evident from the number of papers in biostatistics on our list. Similarly, of the 27 ‘highly
cited authors in mathematics and statistics’ listed by Kruse (2002) in AmStat News, the
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Figure 1. Dotplot of publication year for the 25 most cited papers
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four who would rank the highest in terms of the number of citations per paper (for papers
published during 1991-2001 and also cited during that period) are all biostatisticians.

If we traced the development of statistical methodology and theory (as Efron, 2001, did,
concentrating on 1950—1980), we would certainly expect that there would be a strong cor-
relation between the influence of a paper and its number of citations. The most influential
papers in statistics have large citation counts, but only a few have enough citations to make
our list. Efron (2001) listed non-parametric and robust methods first in impact, followed by
the Kaplan—Meier method and Cox’s method, with logistic regression and generalized
linear models (GLM) mentioned third, while stating that logistic regression has had a
huge effect on biostatistics. It has been known for some time that Kaplan & Meier
(1958) and Cox (1972) were the two most-cited papers in statistics. See, for example,
Stigler (1994).

Only a few of the most influential papers on the field of statistics are included on our list.
Only five are included in Kotz & Johnson (1992a, 1992b, 1997) as representing ‘break-
through papers in statistics’. Four of our most cited papers, Duncan (1955), Kramer
(1956), and Dunnett (1955, 1964) are on the topic of multiple comparisons. Multiple com-
parison methods are widely used in statistical practice, but without a major influence on
the field of statistics itself. Tukey (1991), for example, downplayed the importance of
the method of Duncan (1955) calling it a ‘distraction’. To more effectively measure
impact with respect to the field of statistics, it would be better to count only citations
that appeared in statistical journals.

It is interesting to note that Nathan Mantel was author or co-author on four of our
25 papers. For more information on his contributions to statistics, the reader is referred
to his obituary in AmStat News (July, 2002, pp. 35-36) or to http://members.aol.com/
savilon/nmantel.html. He did much of his work at the National Cancer Institute, retiring
from there in 1974. He was a very active consultant and undoubtedly many of his
major research contributions had their origins in his consulting work. Sir D. R. Cox
was author or co-author of three of the papers on our list. See Reid (1994) for information
on his background.

Most-cited Papers Published Since 1993

For a perspective on the changing emphases of statistics over time, we also studied the
most-cited statistical papers published in 1993 or later. Our list of the fifteen most-cited
papers was obtained by first obtaining citation counts for all papers written during this
time by the ten most-cited statisticians (for citations received for papers written and cita-
tions received between 1 January 1993 and 30 June 2003) listed in the November 2003
AmStat News (also see http://www.in-cites.com/top/2003/third03-math.html). These
were the following: David L. Donoho (1,354 citations), lain M. Johnstone (1,203 citations),
Adrian E. Raftery (1,117 citations), Adrian F. M. Smith (866 citations), Peter Hall (827
citations), Donald B. Rubin (792 citations), Jianqing Fan (768 citations), Gareth
O. Roberts (725 citations), Robert E. Kass (723 citations), and Siddhartha Chib (708 cita-
tions). We then checked the citation counts for all papers published in 1993 or later in the
following statistical journals given by ISI Journal Citation Reports in the Statistics and
Probability category as having the most citations in 2002 (number of citations is in
parentheses): Journal of the American Statistical Association (11,318), Econometrica
(9,458), Biometrics (7,469), Biometrika (6,742), Annals of Statistics (5,566), Statistics
in Medicine (4,755), Journal of the Royal Statistical Society, Series B (4,755), and
Technometrics (2,514). (Note that Fuzzy Sets and Systems with 3,626 citations was not
included in our search.) It is possible that some papers were overlooked.
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The following is our list:

. Breslow, N. E. & Clayton, D. G. (1993) Approximate inference in generalized linear
mixed models, Journal of the American Statistical Association, 88, pp. 9-25. (558
citations)

. Tierney, L. (1994) Markov-chains for exploring posterior distributions, Annals of
Statistics, 22, pp. 1701-1728. (541 citations)

. Kass, R. E. & Raftery, A. E. (1995) Bayes Factors, Journal of the American Statistical
Association, 90, pp. 773—-795. (533 citations)

. Donoho, D. L. & Johnstone, I. M. (1994) Ideal spatial adaptation by wavelet shrink-
age, Biometrika, 81, pp. 425-455. (480 citations)

. Smith, A. F. M. & Roberts, G. O. (1993) Bayesian computation via the Gibbs sampler
and related Markov-chain Monte-Carlo methods, Journal of the Royal Statistical
Society, Series B, 55, pp. 3—23. (444 citations)

. Green, P. J. (1995) Reversible jump Markov-chain Monte Carlo computation and
Bayesian model determination, Biometrika, 82, pp. 711-732. (479 citations)

. Benjamini, Y. & Hochberg, Y. (1995) Controlling the false discovery rate — a prac-
tical and powerful approach to multiple testing, Journal of the Royal Statistical
Society, Series B, 57, pp. 289—-300. (294 citations)

. Donoho, D. L., Johnstone, I. M., Kerkyacharian, G. & Picard, D. (1995) Wavelet
shrinkage — asymptopia, Journal of the Royal Statistical Society, Series B, 57,
pp. 301-337. (293 citations)

. Donoho, D. L. (1995) De-noising by soft thresholding, IEEE Transactions on

Information Theory, 41, pp. 613—627. (292 citations)

Grambsch, P. M. & Therneau, T. M. (1994) Proportional hazards tests and diagnostics

based on weighted residuals, Biometrika, 81, pp. 515-526. (261 citations)

Donoho, D. L. & Johnstone, I. M. (1995) Adapting to unknown smoothness

via wavelet shrinkage, Journal of the American Statistical Association, 90, pp.

1200—-1224. (257 citations)

Bound, J., Jaeger, D. A. & Baker, R. M. (1995) Problems with instrumental variables

estimation when the correlation between the instruments and the endogenous

explanatory variable is weak, Journal of the American Statistical Association, 90,

pp- 443-450. (252 citations)

Albert, J. H. & Chib, S. (1993) Bayesian analysis of binary and polychotomous response

data, Journal of the American Statistical Association, 88, pp. 669—679. (246 citations)

Stock, J. H. & Watson, M. W. (1993) A simple estimator of cointegrating vectors in

higher-order integrated systems, Econometrica, 61, pp. 783—820. (244 citations)

Chib, S. & Greenberg, E. (1995) Understanding the Metropolis—Hastings algorithm,

The American Statistician, 49, pp. 327—335. (240 citations)

The most cited papers presented here tend to be on topics related to Bayesian methods
d wavelets, although the topics of multiple testing and proportional hazards modelling

are represented. It is interesting to note that it often takes quite a few years for the number

of

citations of a paper to reach its maximum rate. A number of the 25 overall most-cited

papers are cited now at much higher rates than the most-cited papers of the last decade.

Conclusions

W

e find the study of citation counts to be very interesting. It is surprising that relatively

little research has been done on citation counts, rates and patterns in the field of statistics.
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Garfield (1979: 16) described early work in this area, including the Citation Index for Stat-
istics and Probability, ‘a cumulative one-time effort that covers the journal literature of the
field from its inception, early in the twentieth century, through 1966°. This was compiled
by John Tukey and published in 1973 as part of the ‘Information Access Series’ of R&D
Press. It provided comprehensive coverage of 40 statistics journals and selective coverage
of an additional 100 journals.

In our view it would be very interesting to examine a list of the most-cited papers in
each of the top statistics journals (see Campbell & Julious, 1994) or in different application
areas of statistics. Also, it would be useful to identify papers projected to enter the top 25
most-cited statistical papers and, more generally, ‘hot papers’ that have attained unusually
high citation rates shortly after publication. For more on this latter topic, the reader is
referred to Garfield (2000).
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Statistics and Ethics: Some Advice for Young Statisticians

Stephen B. VARDEMAN and Max D. MORRIS

We write to young statisticians about the nature of statistics and
their responsibilitiesas members of the statistical profession. We
observe that the practice of the disciplineis inherently moral and
that this fact has serious implications for their work. In light of
this, we offer some advice about how they should resolve to
think and act.

KEY WORDS: Graduate study; Integrity; Principle; Profes-
sional practice; Research; Teaching.

Dear Gentle Reader:

So, you are embarking on a career in statistics. Good. It is a
genuinely noble pursuit, though this may be hard to see as you
wrestle with new-to-you technical issues varying from “How
do I get this SAS job to run?” to “How do I show this thing is
UMVU?” and on occasion find yourself wondering “What is the
point of all this?”

This last question about purpose is actually a very important
and quite serious one. It has implications that run far beyond
your present pain (and joy) of “getting started.” How you an-
swer it will affect not only you, but also the profession, and
human society at large. We write to offer some advice and en-
couragement, and to say how we hope you frame your answer
to this simultaneously practical and cosmic question.

What are this subject and this profession really all about?
And why are you doing what you are doing? For sure, there
are details to learn (and keep current on throughout a career).
There is everything from the seemingly uncountable number of
tricks of first year probability theory, to statistical computing,
to nonlinear models. It initially looks like “soup to nuts.” You
know that statistics is about collecting and handling data. That is
true, but incomplete; there is much more than that at work here.

The vital point is that this discipline provides tools, patterns
of thought, and habits of heart that will allow you to deal with
data with integrity. At its core statistics is not about cleverness
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and technique, but rather about honesty. Its real contribution
to society is primarily moral, not technical. It is about doing
the right thing when interpreting empirical information. Statis-
ticians are not the world’s best computer scientists, mathemati-
cians, or scientific subject matter specialists. We are (potentially,
at least) the best at the principled collection, summarization, and
analysis of data. Our subject provides a framework for dealing
transparently and consistently with empirical information from
all fields; means of seeing and portraying what is true; ways of
avoiding being fooled by both the ill intent (or ignorance) of
others and our own incorrect predispositions. The mix of the-
ory and methods that you are discovering is the best available
for achieving these noble ends. The more you practice with it,
the sharper will become your (fundamentally moral) judgments
about what is appropriate in handling empirical information.

Others from areas ranging from philosophy to physics might
well object that we have claimed too much, wrapping statistics
in acloak of virtue to the apparent exclusion of other disciplines.
After all, thoughtful scientists and humanists from a variety of
fields are engaged in the pursuit of truth. And any serious ed-
ucation has moral dimensions. Our point, however, is that the
particular role that the profession plays in science and society
should not be viewed as amoral, and that this fact constrains how
we all must think and act as its members.

That society expects our profession to play this kind of role
can be seen in the place statistics has as arbiter of what is suf-
ficient evidence of efficacy and safety to grant FDA approval
of a drug, or enough evidence to support an advertiser’s claim
for the effectiveness of a consumer product. And it can be seen
in the fact that many disciplines have “statistical significance”
requirements for results appearing in their journals.

Society also recognizes that when statistical arguments are
abused, whether through malice or incompetence, genuine harm
is done. How else could a book titled How to Lie With Statis-
tics (Huff 1954) have ever been published and popular? The
famous line (attributed by Mark Twain (1924) to Benjamin Dis-
raeli) “There are three kinds of lies: lies, damned lies, and statis-
tics” witnesses effectively to society’s distaste for obfuscation
or outright dishonesty cloaked in the garb of statistical technol-
ogy. Society disdains hypocrisy. It hates crooked lawyers, shady
corporate executives, and corrupt accountants, and it has con-
tempt for statisticiansand statistical work that lack integrity. But
young statisticians sometimes find themselves being “encour-
aged” to offer questionable interpretations of data. This pres-
sure can come even from well-meaning individuals who believe
that their only interest is in ensuring that their position is treated
“fairly.” Maintaining an independent and principled point-of-
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view in such contexts is critical if a statistician hopes to avoid
becoming a part of Disraeli’s third “lie.”

So, you are embarking upon a noble and serious business. We
take as given that you have a basic moral sense and a strong
desire to personally do good. We also take as self-evident that
integrity is a pattern of life, not an incident. Principled people
consistently do principled work, regardless of whether it serves
their short-term personal interests. Integrity is not something that
is turned on and off at one’s convenience. It cannot be generally
lacking and yet be counted on to appear in the nick of time when
the greater good calls. This implies that what you choose to
think and do now, early in your career, are very good predictors
of what you will think and do throughout the whole of it. You
are setting patterns that will endure over a professional lifetime
and substantially influence the nature and value of what you can
hope to accomplish.

A fair amount has been written about professional ethics in
statistics and we do not propose to review it all or comment on
every issue that has been raised. For example, Deming’s (1986)
article is fundamentally a discussion of ethics. Both the Amer-
ican Statistical Association (1999) and the International Statis-
tical Institute (1985) have official statements on ethical guide-
lines for statisticians. And in a more general setting, the National
Academy of Sciences (1995) has published a useful booklet that
is primarily about ethics in science and has implications for sta-
tistical practice.

Our more specific goal here is to suggest some things that
a high view of the discipline means for your present work and
attitudes. Aiming to speak to both statistics graduate students
and recent grads, we’ll begin with some implications for life in
graduate school, and then move on to implications for an early
career in the discipline.

ADVICE FOR STATISTICS GRADUATE STUDENTS

“Graduate student ethics” (or for that matter “professional
ethics”) is really just “plain ethics” expressed in a graduate stu-
dent (or professional) world. A discussion of it really boils down
to consideration of circumstances and issues that arise in a par-
ticular graduate student (or professional) setting. So an obvious
place to begin is with general student responsibilities. If you are
still in graduate school, we urge you to be scrupulous about your
conduct in the courses you take. Here are some specifics:

e Resolve to never accept credit for work that is not your
own. It should make no difference to you whether an exam is
proctored or unproctored. Whatever the homework policy of the
course, make it your practice to clearly note on your papers
places where you have gained from discussions with classmates
or consulting old problem sets of others. It’s simply right to give
others credit where it is deserved and it’s simply wrong to take
credit where it is undeserved.

o If course policy is that everyone is “completely on their
own,” resolve in advance to politely refuse to discuss with peers
topics that are off-limits, even if others violate the policy. It may
seem a small thing at the time, but you are setting life trajectories
that are bigger than the particular incidents.
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e Determine to never take advantage of (or over) your peers.
If you join a group study session, be ready to make your fair
contribution, not just to benefit from the input of others. If you
have legitimate access to old files or notes or textbooks that are
helpful, let others know about them so that they can benefit as
well.

What do these three points say? Simply that you should play
by the rules set out and be clear and honest about all contri-
butions made to the work you turn in. Why would anyone do
otherwise? Honestly, only to gain an undeserved advantage in a
course grade, or to avoid some effort. But a student willing to cut
corners for an A or a free weekend will have serious difficulty
not cutting corners in later professional responsibilities when
the reward is a promotion or pay raise or a free weekend.

Some additional issues are related to the notion of “doing the
hard thing.” Everyone has things that come harder for them than
others. It’s human nature to want to avoid what is difficult and
to even convince ourselves that really, the easy thing is what is
important and the hard thing is worthless. But that is not only
obviously silly, it has moral implications. Here is some advice
for the student reader:

e Understand that acquiring an advanced education is a dif-
ficult enterprise, that there may be times when you feel like
complaining about this, but that it doesn’t really help to do so.
Whining wastes energy and can poison the learning atmosphere
for others. You are engagedin anoble, if difficult, pursuit. Give it
your best shot without complaining. After all, most things worth
doing are hard.

e Resolve to work on your weaknesses rather than excuse
them. Doing good statistical work is important, and demands the
best possible personal tool kit. The reasoning “I find methods
(theory) easier than theory (methods), so I'll just do methods
(theory)” implicitly and quite wrongly assumes that one can do
good statistical work with half a tool kit.

e Decide not to denigrate the strengths of others. Give other
people credit for what they can do that you cannot. Find your
niche without minimizing the honest efforts and contributions
of others.

e Determine to take the courses that will enable you to be the
best-educated and most effective statistician you can be. These
are often academically demanding, and may not form a par-
ticularly easy route to a high GPA. While difficulty, per se, is
not necessarily a measure of how often you will find the ma-
terial in a course useful, it is related to the mental discipline
you will develop. If you choose a course that covers material
you could easily pick up on your own or because it is taught
by a professor who demands little in exchange for an A, you’ve
cheated yourself. The choices you make about curriculum are
moral choices, not just choices of convenience. You have a lim-
ited time in graduate school . . . use it wisely. How effective you
will be as a professional depends on it. Besides, your choices
say something nontrivial about the personal character that you
are developing.

e Purpose to do what your thesis or dissertation advisor sets
for you to do, as independently as you can. While it may seem
that some assignments are arbitrary or unnecessary, remember



that you do nothave your advisor’s experience as a researcher or
educator. This person knows what you know, what your abilities
are, and the difficulty of your problem. He or she is trying to
help you to develop as a responsible and independent member
of the profession, one accustomed to consistently working up to
your capabilities. Focusing your energy on the challenge of the
problem and the opportunity it represents will take you much
farther than wasting your energy in grumbling or in negotiating
to be led through every detail of a solution.

It is worth adding a further note related to this last point. The
advisor—advisee experience has the potential to be invigorat-
ing and rewarding (both professionally and personally) for both
parties. Think of the efforts you put into it not only as a require-
ment for the degree, but as the beginning of what may be one
of your most important and cherished long-term relationships.
Find someone to work with who you like and respect, and put
your energy into the enterprise.

Most statistics graduate students work as graduate assistants.
Assistants should remember first that an assistantship is not a
fellowship, but rather a job. And it is axiomatic that principled
people return honest effort for their pay. If you are working on a
faculty member’s grant, that person must produce quality work
in line with the interests of some outside entity. Do what you
can to help him or her. If you are a teaching assistant, there
are lectures to conscientiously prepare and deliver, papers to
carefully grade, and students to help. If you are a consultant,
people with real problems of data analysis will appear at your
door seeking aid. They need your best effort and advice. Let us
amplify a bit:

e If youare aresearch assistantitis understood that you have
“your own” class work and thesis or dissertation to attend to.
But some of your weekly hours are first committed to providing
the help (programming, library work, report writing, etc.) your
employer needs. There are important educational benefits that
accrue as you practice at these duties. But the most fundamental
reason to carry them out conscientiouslyand cheerfullyis simply
thatitistherightthingtodo. (Anditis wrong to think that cutting
corners now doesn’t say anything about later behavior. Life will
always be hectic and there is no reason to expect your work
habits after finishing school to be better than the ones you are
developing now.)

e If you are a teaching assistant, purpose to make the best
of the fact that along with some conscientious, motivated, and
pleasant students, you will deal with some unpleasant, intention-
ally ignorant, lazy, and dishonest students. It simply comes with
the territory. For your part, make it a point to model integrity and
purpose for all of them. Do your best to convey that what you are
teaching them really does matter and how they do it matters as
well. Resolve that whatever your “style”/personality (from an-
imated to reserved) your body language will convey a genuine
willingness to help. The job takes patience—plan on it. Resolve
to treat all of your students well, whether or not their behavior
in any sense merits that. And it should go without saying that
although you want to be pleasant and approachable, propriety

and impartiality dictate that you are their instructor or TA, not
their pal.

o If your assignment is to help with statistical consulting,
you are already wrestling (at a “trainee” level) with some of the
serious issues faced by one segment of our profession. Carefully
consider and handle these now, as you begin to see how the
“human element” of statistical consulting requires thoughtful
and principled discipline. You’re going to have to argue with
yourself in conversations like:

—  What looks to me like the thing that should be done would
take two hours to explain and several more hours of my
time to implement, while this client would be happy with
somethingless appropriate thatI could explainin five min-
utes ...

—  This client really wants “A” to be true, but these data look
inconclusive. . .

— This looks pretty much OK except for that oddity over
there that the client doesn’t really want to discuss . . .

Graduate Student Reader, keep your eyes open during this
graduate student experience. Watch your faculty and emulate
the ones who take seriously what they do. There are some fine
role models in our university statistics departments, excellent
members of the profession. Find them, and learn as much as you
can about what they think and how they practice statistics.

ADVICE FOR YOUNG PROFESSIONAL
STATISTICIANS

Many of the themes we’ve introduced in the context of grad-
uate study have their logical extensions to early professional
life. But there are also other matters that we’ve not yet raised.
We proceed to discuss some of the less obvious extrapolations
and further ethical issues faced by young statisticians, organiz-
ing our advice around the topics of (1) research/publication, (2)
teaching, and (3) professional practice.

If you have finished a Ph.D., you have been introduced to
the craft of research in statistical theory or methods. You are
in a position to help develop the profession’s supporting body
of knowledge and to contribute to our journals. It’s important
to consider the corresponding responsibilities. These are tied
closely to a proper view of the purpose of publication in statis-
tics. Published statistical research should provide reliable and
substantial new theory or methodology that has genuine poten-
tial to ultimately help statisticians in the practice of the disci-
pline. Statistical publication should not be treated as a game. It
is, and should be treated as, a serious and moral business. Here
are some points of advice issuing from this high view of what
the research and publication activity is all about:

e Resolve that if you choose to submit work for publication,
it will be complete and represent your best effort. Submitting pa-
pers of little intrinsic value, half-done work, or work sliced into
small pieces sent to multiple venues is an abuse of an important
communicationsystem and is not honorable scholarship. It is not
the job of editors or referees to proofread or complete your pa-
pers, or to insist that you follow up on important issues that you
know exist. See the “Let’s just send it off and let the reviewers
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sort it out” impulse for what it is, a temptation to off-load your
work to someone else. And the “I’ll just submit this half-done
thing to an outlet that will print anything” strategy does nothing
of real value for anyone. It wastes time and effort of those in the
review system, and when “successful” it dilutes our literature.
This makes important work harder to find, and in the end calls
into question our very reason to exist as a profession.

e Purpose that when asked to do the job of a referee, you will
do it thoroughly,impartially, and in as timely a manner as possi-
ble. There is no obvious short-term payoff to doing what is right
here. But the integrity and currency of the scientific publication
process depend on competent and principled referees taking the
job seriously. Resolve never to do a shoddy/cursory review job,
or worse yet to let calculations about personalities (and personal
advantage) govern how you judge a piece of work. Even though
many statistics journals use a “double-blind” system, the pro-
fession is small, and you will find it increasingly rare that you
have no idea who authored a paper you receive for review. So
remember that the spirit of the blind review policy is honorable,
and that you have an obligation to conduct your review in this
spiriteven when you cannotbe completely “blind.” And do what
you can as an individual to help fix the widely recognized prob-
lem that the review process in statistics is presently much slower
than in many other disciplines.

e Decide to routinely take the advice of editors and referees
regarding papers that you submit for publication. Occasions are
rare where editors or referees have it all wrong or purposely treat
an author unfairly. Most often, the advice they offer is construc-
tive and when followed substantially improves an article. Until
an editor signals clearly that he or she has no further interest
in a piece you have submitted, you should almost always make
good faith efforts to revise your paper in accord with his or her
advice. Serial journal-shopping for a venue that will publish a
submission with essentially no revision may minimize the total
effort an author expends on a paper, but the practice wastes the
overall energy of the profession and has a negative effect on the
overall quality of what is published.

e Determine to be scrupulous about giving credit where it
is due. If another has contributed substantially to the content
of a paper, co-authorship is typically appropriate and should be
offered. (On the other hand, never list a colleague as co-author
of a paper until you have that person’s explicit permission to do
s0.) And include acknowledgments of others deserving thanks
for less extensive, but real, help with an article.

e Resolve to acknowledge priority and the derivative nature
of your work with due humility. If after the fact of publication
you find that some of your results can be found in earlier work,
immediately send an acknowledgment to that effect to the jour-
nal where your paper appeared. In writing your papers in the
first place, we encourage you to be forthright and helpful about
what you know is already published on your subject, delineating
carefully what others have already said and where your new con-
tribution lies. (No one ever really “starts from scratch.” Don’t
fall prey to the temptation to leave unsaid what you know is
already known, thinking that to do so strengthens your own po-
sition.) And never borrow published/copyrighted words, even of
your own authorship, without acknowledgment. To do so is pla-
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giarism and is completely unacceptable. (This caution extends,
by the way, to thesis and dissertation work, even if that work is
never submitted to a journal for formal publication.)

A note related to this last point: Avoiding plagiarism places
an extra burden on students whose writing skills are not strong,
especially those struggling with English as a second language.
But it is essential to find one’s own words and not simply copy
or even paraphrase those of another (even for parts of a paper
that are background and obviously don’t purport to provide new
technical content). This is a very serious integrity issue.

Next, let’s consider issues relevant to teaching of statistics
as a professional. There are reasons to do this whether or not
you have plans for a career at a college or university. Teach-
ing/training is increasingly done “in house” by corporations and
consultants, and it could be argued that most professional pre-
sentations are essentially teaching efforts. The logical extension
of the advice offered above to graduate teaching assistants is, of
course, relevant here. But there is an important extra dimension
to discuss, related to the freedom and responsibility that a pro-
fessional has in answering the question “What will govern what
and how I teach?” Will it be “What’s easy for me?” Or will it be
“What will get the best short-term reaction from the students?”
Or will it be “My best professional judgementas to what the stu-
dents need for the long term and my best understanding of how
to effectively convey that information?” This is a moral choice.
Here is some amplification:

e Determine that you won’t fall into the trap of organizing
all courses around your technical specialty. This is an issue of
fundamental humility and recognition that none of us has put all
that is needed into our personal little package (to say nothing
about the matter of “truth in advertising!”). But we suspect that
you know what we are talking about, having seen people turn
every course they teach into a platform to show off their own
work.

e Purpose not to be governed by what is easy to do. This is
not an entirely separate issue from the previous one. But we are
also thinking about cases where the case is not so blatant or not
tied directly to one’s specialty. It’s a lot of work to learn new
methods and software to include in a course, to freshen exam-
ples, to develop new laboratories and assignments for students,
to replace outdated topics and means of presentation. And it’s
sometimes possibleto “get by” without investing that effort. But
doing so is simply wrong. We urge you not to take that route.

e Resolveto dothe best for your students, whether or not they
appreciate your efforts in the short term. We livein a “consumer”
society. Thereis huge pressure onteachersin all contextsto make
students happy. But statistics is hard, and students DON’ T know
what they need. You will. We hope that you opt to do your best to
provide that, not simply what will get the best crowd reaction.
Lots of jokes, little in the way of course demands, and high
grades can please many audiences. And leave studentsignorant.
Of course we should aim to be engaging in our presentation of
our subject. But the point of teaching is to genuinely improve
subject matter knowledge and the reasoning powers of students.
It is not to produce feel-good experiences for them. (In this
regard, we were recently dismayed to see an lowa community
college president quoted in the Des Moines Register (2001) as



proudly saying “We are really a service organization first and an
educational institution second.” While that may in fact be true,
itis a terrible commentary on the state of the institution.)

Those of you beginning academic careers will face enormous
demands for early success. Most universities require substantial
accomplishments in both research and teaching during the first
six years of employment, and some place the bar so high that
seemingly superhuman effort is required. If numbers of refereed
publicationsand instructor evaluations are the “keys to success,”
can you afford to have real quality as your primary goal? Is there
enough time in six short years to accomplish all thatis required if
youtake ouradvice seriously ? These are real and hard questions.
How you use your assistant professorshipis critical to yourlong-
term professional success, and it is obvious that you must take
your institution’s expectations into account. But, we urge you
as you face these issues to remember that one who spends an
assistant professorship cutting corners is at best prepared to be
an associate professor who knows how to cut corners . . . notone
who has learned how to make a difference.

Turning finally to the area of professional practice, we note
that most of what has been written about ethical guidelines for
statisticians concerns what is appropriate in public practice, in
lending aid to others in the impartial and efficient collection and
analysis of their data. This is understandable, as (1) the disci-
pline’s whole reason to existis ultimately to provide such aid and
(2) this activity is both subtle and full of pitfalls. Both the ethi-
cal guidelines and public skepticism typified in the “lies” quote
of Disraeli point to the fact that statistics can be used to form
highly technical and even technically correct support for state-
ments which are in fact not true. We might hope this could hap-
pen only when nonstatisticians practice statistics without proper
technical understanding of the subject. But statistical lies are by
definition immoral uses of statistical arguments, whether techni-
cally correct or not, and stem from societal pressures that affect
statisticians and nonstatisticians alike. What then must you do
in society to preserve the discipline’s (and your own) integrity?

First, recognize that a professional statistician should never
behave like a courtroom lawyer. The practice of law is based
on an adversarial model in which each lawyer represents an as-
signed point of view—that which will yield the most positive
outcome for his or her client. While the use of lies and inten-
tionally misleading statements is prohibited in legal proceed-
ings, legal strategy certainly does involve the selective use of
evidence so as to present the truth (or some part of it) in the light
most favorable to a particular point of view. But a key aspect of
this model of litigationis that decisions are made by an unbiased
authority (a judge or jury) based not on the case presented by a
single side, but only after arguments presented by all parties are
heard.

Statisticiansusually do not operatein such well-controlled ad-
versarial systems. If you do work in this kind of arena you must
keep absolutely clear the distinction between an objective ana-
lyst and an advocate, and never purport to be (or think yourself)
the first when you are the second. If you are employed by an or-
ganization (whether on a permanent basis or as a consultant) you
are by definition not disinterested in its well-being. And if you
are working “pro bono” for a cause you support, you are not dis-

interested in furthering the cause. In either case, it is axiomatic
that your professional judgment is potentially clouded by what
you (quite naturally) want to be true. And you will be no fair
judge of the extent to which this clouding has occurred. There
is real danger here. There is little that is more damning to the
discipline than for one of its professionals, implicitly claiming
some degree of objectivity, to be publicly exposed as overstating
a statistical case in favor of his or her employer or cause.

More commonly, statisticians function as consultants to those
who must make decisions. We do this through careful and
thoughtful design of data collection mechanisms and analysis
of assembled data. But “careful and thoughtful” here are words
that acknowledge a critical fact: Statistical analysis of data can
only be performed within the context of selected assumptions,
models, and/or prior distributions. A statistical analysis is ac-
tually the extraction of substantive information from data and
assumptions. And herein lies the rub, understood well by Dis-
raeli and others skeptical of our work: For givendata, an analysis
can usually be selected which will result in “information” more
favorable to the owner of the analysis than is objectively war-
ranted.

The only “cure” for this difficulty is statistical practice based
on assumptions embodying an informed, balanced, and honest
representation of what is known. “Known,” not “wished for,”
“desired,” “convenient,” or even “other-than-worst-fears.” This
has implications for how statisticians must be and act if they are
to be both effective and ethical.

o Statisticians must be knowledgeable about the system un-
der study. They should not present themselves as competent to
analyze data from systems about which they have no substantive
understanding. Real data are not “context-free.”

e On the other hand, statisticians must recognize and ac-
knowledge the limitations of their “subject matter” knowledge.
Data and variation are ubiquitous. Knowing how to handle them
can give you importantand even uncommon insightsin a variety
of contexts where you have limited subject matter credentials.
But the fact that you can make contributions in league with ex-
perts in a variety of fields doesn’t substitute for credentials in
those fields. The credibility of the statistical profession depends
upon its members being scrupulous about what they know and
what they don’t know. Never forget that you are not the context
expert.

o Statisticiansmust go out of theirway to see that their analy-
ses allow interpretationsof the available data which are tenable
but not popular in the statistician’s organization. This does not
mean “be a troublemaker,” but it does mean that you should
carefully think through how available data would be interpreted
by those with all possible rational points of view.

o Statisticiansmust write complete reports stating the results
of their entire informed thought processes—including what they
know, what they have assumed, what they have decided cannot
be assumed, and what conclusionstenable assumptions support.
Our reports should contain “complete and sufficient” analyses
upon which any rational point of view can be argued. If you
come to the conclusion that one of the spectrum of sensible
interpretationsis “best” in a particular application, make it your
goal to be absolutely transparent about your reasoning. People
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should be able to easily see your full set of model assumptions,
understand what methodology you have used to make inferences
in that model, and have access to diagnostic and robustness work
you have done. (This advice is sound in general. Butit is perhaps
especially relevant to explicitly Bayesian analyses. A consumer
of a posteriordistributionhas a moral right to know how strongly
it depends upon the prior.) Honest statistical work has nothing
to hide. It says what it says. It doesn’t try to obscure points
where alternative conclusions are possible if other assumptions
are made or different analysis paths are followed, and admits
where model fits are short of perfection or conclusionsare highly
model-dependent.

As a statistician, your allegiancemust be to finding the conclu-
sions which can be supported by data and careful assumptions.
Does this make the business of assumption selection more diffi-
cultthanitseemed in your statistics coursework? Does it seem as
though you must take these issues more personally and seriously
than our favorite semi-academic phrase “Let X, Xo, ..., X,, be
iid F'. .. 7” Does it sound like your formulation of these assump-
tions may have more to do with nonmathematical values than
has been discussed in your textbooks? Yes, this and more is true.
Ethical statistical practice requires that you take responsibility
for acquiring substantive understanding, knowing all rational
points of view, and making decisions well beyond those based
entirely in data.

e You must examine yourself to see that you are not even
subconsciously leaning toward analyses which you believe will
“please the boss” or yourself, or simplify the problem unjusti-
fiably. This means that you cannot afford to think of yourself
as a data technician or a hired gun. You must be secure enough
to simultaneously separate any prior vested interest (yours or
others’) in the outcome from your analysis, and meld together
seamlessly everything you know about the subject matter of your
investigation with the structure of your statistical work. You can-
not do this unless you have strength of character and integrity.

e You must not stop with the obvious or even the most likely
explanation of data, but find ways to examine them so that all
rational viewpoints can be informed. This means that you will
work harder and longer than anyone who reads your reports will
ever know. You will not rest until you know you understand
all the information contained in the data, where “information”
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is defined by the context of your work across the spectrum of
rational viewpoints. You cannot do this unless you develop an
ethic of self-reliance, thoroughness, and hard work.

e You must understand fully what your assumptions say and
what they imply. You must not claim that the “usual assump-
tions” are acceptable due to the robustness of your technique
unless you really understand the implications and limits of this
assertion in the context of your application. And you must abso-
lutely never use any statistical method withoutrealizing that you
are implicitly making assumptions, and that the validity of your
results can never be greater than that of the most questionable of
these. You cannot do this unless you remain dedicated to being
the best technical statisticianyou can possibly be, understanding
that this involves knowing and understanding the mathematical
arguments as well as the computationaltechniquesbehind every
tool you need.

Well there it is, more than enough advice to keep a young
statistician busy for a career. We hope we don’t sound too much
like myopic cranks, finding “serious ethical issues” to raise in
even the most mundane contexts. Instead, we hope that we have
argued effectively that ethical matters are central to our disci-
pline and provided some insight into issues that this raises. We
further hope that you determine to take the matter of principle
most seriously.

Carry on, Gentle Reader.

[Received April 2002. Revised November 2002.]
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Likelihood Theory

This appendix is just an overview of the likelihood theory used in this book. For
greater detail or a more gentle introduction, the reader is advised to consult a book
on theoretical statistics such as Cox and Hinkley (1974), Bickel and Doksum (1977)
or Rice (1998).

A.1 Maximum Likelihood .

Consider n independent discrete random variables, Y;,...,Y,, with probability dis-
tribution function f(y|@) where 8 is the, possibly vector-valued, parameter. Suppose
we observe y = (y1,. .. .vn)T, then we define the likelihood as:

POY = y) = [[/(116) = L(8]y)
=1

So the likelihood is a functign of the parameter(s) given the data and is the probability
of the observed data given a specified value of the parameter(s).

For continuous random variables, Y1, .. ., ¥, with probability density function f(»18),
we recognize that, in practice, we can only measure or observe data with limited pre-
cision. We may record y;, but this effectively indicates an observation in the range
[, ¥%] so that:

/

-y
Pl =y) = PO Sy £y = |, ful®)du= f(3/0)3
Yi
where 8; = y* — y}. We can now write the likelihood as:
n n
Loy = [1roie s
i=1 i=1

Now provided that §; is relatively small and does not depend on 6, we may ignore it
and the likelihood is the same as in the discrete case.
As an example, suppose that ¥ is binomially distributed B(n, p). The likelihood is:

o) = () 1=pr

The maximum likelihood estimate (MLE) is the value of the parameter(s) that gives
the largest probability to the observed data, or in other words, maximizes the likeli-
hood function. The value at which the maximum occurs, é, is the maximum likeli-
hood estimate. In most cases, it is easier to maximize the log of likelihood function,
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[(B]y) =logL(8]y). Since log is a monotone increasing function, the maximum oc-
curs at the same 9.

In a few cases, we can find an exact analytical solution for 8. For the binomial, we
have the log-likelihood:

n .
l@w)=bga)+vbmﬂﬂn—wbﬂl~m

The score function, u(9), is the derivative of the log-likelihood with respect to the
parameters. For this example, we have:

, dl{ply y n-—
wip) = AUEb) _y ny
dp, p 1-p
We can find the maximum likelihood estimate p by solving u(p) =0. We get p = y/n.
We should also verify that this stationary point actually represents a maximum.
Usually we want more than an estimate; some measure of the uncertainty in the
estimate is valuable. This can be obtained via the Fisher information which is:
0%1(8)
1(8) = 0)=—-E——=
(8) = var u(8) 30367
If there is more than one parameter, / (8) will be a matrix. The information at &
1s the second derivative at the maximum. Large values indicate high curvature so
that the maximum is well defined and even close alternatives will have much lower
likelihood. This would indicate a high level of confidence in the estimate. One can
show that the variance of 8 can be estimated by:

var (8) = 171(9)

under mild conditions. Sometimes it is difficult to compute the expected value of the
matrix of second derivatives. As an alternative, the observed, rather than expected,
value at © may be used instead. For the binomial example this gives:

var p = p(1 = p)/n
We illustrate these concepts by plotting the log-likelihood for two binomial datasets-

one where n = 25,y = 10 and another where n = 50,y = 20. We construct the log-
likelihood function:

> loglik <- function(p,v,n) lchoose(n,y) + v*log(p) + (n-y)*log(l-p)

For ease of presentation, we normalize by subtracting the log-likelihood at the max-

imum likelihood estimate:

> nloglik <- function(p,y,n) loglik(p,vy,n) - loglik(y/n,y,n)

Now plot the two log-likelihoods, as seen in Figure A.1:

> pr <- segq(0.05,0.95,by=0.01)

> matplot {pr,cbind(nloglik(pr,10,25),nloglik (pr,20,50)),type="1",
xlab="p",ylab="log-likelihood")

We see that the maximum occurs at p = 0.4 in each case at a value of zero because

of the normalization. For the larger sample, we see greater curvature and hence more

information.
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Figure A1 Normalized binomial log-likelihood for n =25,y = 10 shown with a solid line and
n =50,y = 20 shown with a dotted line.

Examples where likelihood can be maximized explicitly are confined to simple
cases. Typically, numerical optimization is necessary. The Newton—Raphson method
is the most well-known technique. Let 8y be an initial guess at 6, then we update
using:

0, =0 —H ' (00)u(6p)
where H is the Hessian matrix of second derivatives:

2%1(8)

H10) = Se3e7
We iterate this method, putting 6, in place of 8y and so on, until the procedure (hope-
fully) converges. This method works well provided the log-likelihood is smooth and
convex around the maximum and that the initial value is reasonably close. In less

well-behaved cases, several things can go wrong:

o The likelihood has multiple maxima. The maximum that Newton—Raphson finds
will depend on the choice of initial estimate. If you are aware that multiple max-
ima may exist, it is advisable to try multiple starting values to search for the overall
maximum. The number and choice of these starting values is problematic. Such
problems are common in fitting neural networks, but rare for generalized linear
models.

e The maximum likelihood may occur at the boundary of the parameter space. This
means that perhaps «(0) # 0, which will confuse the Newton—Raphson method.
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Mixed effect models have several variance parameters. In some cases, these are
maximized at zero, which causes difficulties in the numerical optimization.

o The likelihood has a large number of parameters and is quite flat in the neigh-
borhood of the maximum. The Newton-Raphson method may take a long time to
converge.

The Fisher scoring method replaces H with —/ and sometimes gives superior re-
sults. This method is used in fitting GLMs and is equivalent to iteratively reweighted
least squares.

A minimization function that uses a Newton-type method is available in R. We
demonstrate its use for likelihood maximization. Note that we need to minimize —!/
because nlm minimizes, not maximizes:
> £ <- function(x} -loglik(x,10,25)
> mm <- nlm(f,0.5, hessian;l")

We use a starting value of 0.5 and find the optimum at:

> mmSestimate

[1] 0.4

The inverse of the Hessian at the optimum is equal to the standard estimate of the
variance:

> c(l/mm$hessian, 0.4%(1-0.4)/25)

[1} 0.0096016 0.0096000

Of course, this calculation is not necessary for the binomial, but it is useful for cases
where exact calculation is not possible.

A.2 Hypothesis Testing

Consider two nested models, a larger model € and a smaller model o. Let éQ be the
maximum likelihood estimate under the larger model, while 8, be the correspond-
ing value when 6 is restricted to the range proscribed by the smaller model. The
likelihood ratio test statistic 1s:

2log(L(8w)/L(Ba)) = 2(1(8a) ~ (80))

Under some regularity conditions, this statistic is asymptotically distributed ¥* with
degrees of freedom equal to the difference in the number of identifiable parameters
in the two models. The approximation may not be good for small samples and may
fail entirely if the regularity conditions are broken. For example, if the smaller model
places some parameters on the boundary of the parameter space, the ¥* may not be
valid. This can happen in mixed effects models when testing whether a particular
variance component is zero.

The Wald test may be used to test hypotheses of the form Hy : 8 = 08 and the test
statistic takes the form: .

(6—60)"1(6)(6—80)

Under the null, the test statistic has approximately a x? distribution with degrees of
freedom equal to the number of parameters being tested. Quite often, one does not
wish to test all the parameters and the Wald test is confined to a subset. In particular,
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if we test only one parameter, Hy : 0; = 8,0, the square root of the Wald test statistic
is simply:
8: — 0o
7= -

Sc’:‘(ei)
This is asymptotically normal. For a Gaussian linear model, these are the ¢-statistics
and have an exact ¢-distribution, but for genéralized linear and other models, the
normal approximation must suffice.

The score test of the hypothesis Hy : 8 = 8 uses the statistic:

u(@o)Tr1 (00)u(B9)

and is asymptotically 2 distributed with degrees of freedom equal to the number of
parameters being tested. -

There is no uniform advantage to any of these three tests. The score test does
not require finding the maximum likelihood estimate, while the likelihood ratio test
needs this computation to be done for both models. The Wald test needs just one
maximum likelihood estimate. However, although the likelihood ratio test requires
more information, the extra work is often rewarded. Although the likelihood ratio test
is not always the best, it has been shown to be superior in a wide range of situations.
Unless one has indications to the contrary or the computation is too burdensome, the
likelihood ratio test is the recommended choice.

These test methods can be inverted to produce confidence intervals. To compute
a 100(1 — o) % confidence interval for 6, we calculate the range of hypothesized 6
such that Hy : 89 = 0 would not be rejected at the o level. The computation is simple
for the single-parameter Wald test where the confidence interval for 6; is:

é,‘ + Zl_a’/256‘<é,‘)

where 7 is the appropriate quantile of the normal distribution. The computation is
trickier for the likelihood ratio test. If we are interested in a confidence interval for
a single parameter 6;, we will need to compute the log-likelihood for a range of 8;
with the other 0 set to the maximizing values. This is known as the profile likelihood
for ©;. Once this is computed as /;(6;]y), the confidence interval is:

{0 2(1(B:ly) — L(8:ly)) <x1”%)

As an example, this type of calculation is used in the computation of the confidence
interval for the transformation parameter used in the Box~Cox method.

We can illustrate this by considering a binomial dataset where n = 100 and y =
40. We plot the normalized log-likelihood in Figure A.2 where we have drawn a
horizontal line at half the distance of the 0.95 quantile of X% below the maximum:
> pr <~ seq(0.25, 0.55,by=0.01)
> plot(pr,nloglik(pr,40,100),type="l",xlab="p",ylab="log—likelihood“)
> abline (h=-qchisq(0.95,1)/2)

All p that have a likelihood above the line are contained within a 95% confidence
interval for p. We can compute the range by solving for the points of intersection:
> g <- functicn(x) nloglik(x,40,100)+qchisq(0.95,1\/2

5,

> uniroot (g,c(0.45,0.55)) Sroot
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Figure A.2 Likelihood ratio test-based confidence intervals for binomial p.

1] 0.49765
> uniroot (g,c(0.25,0.35))5root
[1] 0.30743

> abline(v=c(0.49765,0.30743))

The confidence interval is (0.307,0.498) as is indicated by the vertical lines on the
plot. We can compute the Wald test-based interval as:

> se <~ sqrt(0.4*(1-0.4)/100)
> ¢cv <~ gnorm(C.975)

> c(0.4-cv*se,0.4+cv*se)

T1} 0.30398 0.49602

which is very similar, but not identical, to the LRT-based intervals.
Suppose we are interested in the hypothesis, Hy : p = 0.5. The LRT and p-value
are:
> (lrstat <~ 2*(loglik{0.4,40,100)-1loglik(0.5,40,100)))
[1] 4.0271
> pchisqg(lrstat, 1, lower=F)
(1} 0.044775
So the null is barely rejected at the 5% level. The Wald test gives:
> (z <= (0.5-0.4)/se)
[1] 2.0412
> 2
{ 1

*onorm(z, lower=F)

1] 0.041227
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Again, not very different from the LRT. The score test takes more effort to compute.
The observed information is:

~d*l(ply) _y | n-y
dp p* (1-p)?
We compute the score and information at p = 0.5 and then form the test and get the
p-value:

> (sc <- 40/0.5-(100-40)/(1-0.5)

(1] -40

> (obsinf <- 40/0.572+(100-40)/(1-0.5)"2)
(1] 400

> {score.test <- 40*40/400)

(1] 4

> pchisq(d,1, lower=F)

[1] 0.0455 -

The outcome is again slightly different from the previous two tests. Asymptotically,
the three tests agree. We have a moderate size sample in the example, so there is little
difference. More substantial differences could be expected for smaller sample sizes.



APPENDIX A

Delta Method, Maximum Likelihood
Theory, and Information

A.1 Delta Method

One simple technique commonly used for deriving variance estimators for
functions of random variables is called the delta method. Suppose that a
random variable X has mean p and variance 0. Suppose further that we
construct a new random variable ¥ by transforming X, Y = g(X), for a
continuously differentiable function g(-). Then, by Taylor’s theorem, g(X) =
g(p) +g"(u)(X — ) + O((X — p)?). Ignoring the higher order terms, we have
that

E[Y] = El[g(X)] ~ g(u)

and
VarlY] = E[g(X)—g(w)]
~ ¢'(W*EX —pf?
= ol (w?

This simple approximation to the variance of Y is often referred to as the
delta method.

Example A.1. Suppose Y = log(X), then ¢'(z) = 1/z, so Var(Y) ~ o?/u>.

d

A.2 Asymptotic Theory for Likelihood Based Inference

Suppose that Y is a random variable with the p.d.f. fy(y;0) where 6 is an
unknown parameter of dimension p, and fy(y;0) is twice differentiable in a
neighborhood of the true value of 8. The likelthood function, Ly (0), is the den-
sity function for the observed values of Y viewed as a function of the parameter
0.1fY;,Y,,...,Y, are an i.i.d. sample, then, letting Y= (Y7,Y5, ..., Ya),

Ly(8) =[] fr(w:9). (A1)
j=1

393
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The mazimum likelithood estumate (MLE) of 0 is the value of 4, 6, that maxi-
mizes Ly (), or equivalently, the value of 8 for which
5‘10@; Ly (9\) -0
o6 o

For the cases we will consider, this equation will have a unique solution. The
function Uy (#) is known as the efficient score for 0. It can be shown that
EgUy (0) = 0 where E, denotes expectation when Y has distribution fy{y; 0).

An important special case is the one in which fy(y; 9) is part of an expo-
nential family. That is, fv (¥ §) = exp(n(z, NT(y) — A(n(z,0))) where z is a
subject level covariate (possibly vector valued), n(z, #) is a function of the co-
variate and the parameter 0, and A(n) is & function of n which forces fy(y; 6)
to integrate to one. In this case, A'(n) = ET(y) and the score function has the
form Uy (8) = >, B(z, 9)(T(y) — A'(n)), where B(z,0) = on(=, 6)/06. Hence,
the score function is a linear combination“of the centered, transformed obser-
vations T(y) — ET(z) and the solution to the score equations (A1) satisfies
S B(z,6)T(y) = ., B, HET().

Example A.2. Suppose we have the Gaussian linear model y; = I8 + ¢,
where z; and 0 are p-dimensional vectors and the €; are ii.d. N(O)az) For
simplicity we will assume that o? is known. The log-likelihood is

Uy (9) =

log Ly (8) = “nlog(20%)/2— > (¥: = 21 §)/20°
= L S waTa - (TR u - nlos2r)/2 (A2

The score equations are

Uy (8) = =Y mlys — 2l B)/o” =0

Since, in general, z, 18 2 vector, the score function is vector valued, so the
score equations are a linear system of p equations in p unknowns. If the model
has an intercept term, 01, sO that z; = (1,224, %31, - 7a:pi)T, then we have
that the sum of all the observations equals the sum of their expected values,
ST Y= 2 ¢T3 If we have two treatment groups and one of the covariates
is the indicator of treatment, letting R; be the set of indices of subjects in

treatment group j = 1,2, we have

Swu=) nb

1€R; ER;

In some settings it may be computationally simpler fo fit the model by com-
puting the expected values directly by forcing the required marginal totals to

equal the expected totals, rather than by direct estimation of model parame-

ters. O

The expected value of the derivative of —Uy (f) with respect to g is known
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as the Fisher information, Z(6). In the one dimensional case it can be shown
that
97 log Ly-(6),
2(0) = —Eol—ppm |
Es[Uv (8))
= Var[Uy (8)].

In many situations, we cannot compute Z(f) directly, but will need to use an
estimate obtained from the data. It can be shown that under modest regularity
conditions, § & N(#,T-}(0)) where ~ indicates the asymptotic distribution,
e.g., asymptotically 6 has a normal distribution with mean 6 and variance
Z7(0). Note that Z(#) is of the expected curvature of the log-likelihood func-
tion at the true value of §. Larger values of Z(#) indicate that the likelihood
function is more sharply peaked, and therefore, estimates of § are more precise.

These results can be generalized to thé case where 0 is a p-dimensional
vector with no difficulty. In this case the score, Uy (8) is a p-dimensional
vector of partial derivatives, and the Fisher information, Z(6), is a matrix
of partial derivatives. The asymptotic covariance matrix of f is the matrix
inverse Z1(4).

A.3 Hypothesis Testing

Three commonly used approaches for testing Hy: 8 = 6y are as the likelthood
ratio test, the score test, and the Wald test. Here we assume that 6 has dimen-
sion p. In general there may be other unknown parameters, known as nuisance
parameters, that are not of interest but need to be taken into account.

Example A.3. Suppose that we have two binomial samples, y; ~ Bin(n,, 7,),
1 = 1,2, with y; the number of successes, n, the number of trials and 7; the
success probability in each sample. If the null hypothesis is Hy: m = ma, we
can let A = 73 — w3 so that Hy is equivalent to Hp: A = 0. We may write'the
joint distribution of y; and y, in terms of A and either 7, or my. We may say
that A is the parameter of interest and 7 is the nuisance parameter. a

In general, if we let v be the (possibly vector valued) nuisance parameter and
Ly (8,v) be the likelihood function, then the score function has two compo-
nents, Uy (0, v) = (Us v (0,v), U, v (0,v)), where Ug vy (8,v) = Olog Ly (#,v)/0¢
and U, y(8,v) = dlog Ly (0,v)/0v. Under Hy: 8 # 0 let (6,0) be the solu-
tion to Uy (6, v) = 0 while under Hy, let v be the solution to Us y(fo,v) = 0.

The Fisher information can be written in partitioned matrix form as

v [ Usex (@) Usuyx(@v) ] _ [ Zos Ton |
I<0)V} N bl)@jy’(@,l/) [/’rr/, L/,Y(I/) V) B Iu,9 Ir/,u J

where Blog Ly (8, v
i , og Ly (U, V)
Usity(0,v) = T
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The covariance matrix of the vector (6,7) can be written

Var(6,0) = ZI(8,v)""
’ —1 — 7—1 N =17 —
[ (Tee-Tan T Tue) ~(Zso —To200T0.0) Lo 1l]
- - / 1 —1 / 1 \ :
L IUYZEIu,QKIG,Q - I@,y'zujzé’,u) \Lvv ™ Iuﬁzgvgzu,&,?

-

The three tests can now be described.

/ . \ ; Likelihood given

. 0=4

Likeljhood given \ j .

9:‘-9() //!’ \

Figure A.1 Graphical ilustration of likelihood ratio test.

1. Likelihood Ratio Test (LRT). The test statistic is twice the log-likelihood
ratio: X

2log Lvld.r) v

Ly (6o, 7)

where X2 is the x? distribution with p degrees of freedom. Figure A.1 il-

lustrates the principle underlying the LRT when there are no nuisance

parameters. Since (0 o) is the MLE, the likelihood evaluated at (9, U)is at

least as large as the likelihood evaluated at (9, 0). If the likelihood ratio is

large enough, there is strong evidence from the data that the observations

do not arise from the distribution fy(y;6o)-

2
2 x2 under Hy

2. Wald test. Since the upper left block of the matrix Z(9)~1 is the asymptotic
covariance matrix of €, we have that

(6 —80)" (Top — Ie}uIJ,iL,a}"(é —0y) ~ x2 under Hy,
where the 7, , are evaluated at (4,0).
3. Score (Rao) test. We have under Ho, Uy (6o, 0) & N(0,Z(6y,v)). Hence the
test statistic is
Us (89, 9)I(80,7) Uy (60, 7) ~ X3 under Ho.

In the exponential family case, the score test assesses the difference between
the (possibly transformed) observed data, and its expectation. Since the
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second component of Uy (8, 7) is zero, this can also be written
Us,y (60, v)T (Zs 6 — Zo,, T, T00)  Us v (Bo,v) 2 Xz under Hp,

where the 7, , are evaluated at (6, 7). Note that unlike the LRT and the
Wald test, there is no need to compute the MLE 6. The score test is often
used to assess the association between the outcome and large numbers of
covariates without the need to fit many different models.

Under modest assumptions, these tests are asymptotically equivalent. For
ordinary linear regression models with 1.i.d. Gaussian errors and known vari-
ance, these tests are in fact identical. For other models, the Wald and score
tests are quadratic approximations to the likelihood ratio test. The Wald test
is based on a quadratic approximation to the LRT at the MLE, while the
score test is an approximation at fy. These approximations are illustrated by
figure A.2. -

Wald Test Score Test
/ﬂ \ A
N Gay
\\ Var(3)
L(9) :
21 ’ \
o8 L(6,) \\x 7/
y \"
\ \‘.‘ \
\ \
\ \ \
L \
g &y 8 o

Figure A.2 Illustrations showing Wald and score tests as quadratic approrimations
to the likelihood ratio test. The solid line represents the log-likelihood function and
the dashed line represents the quadratic approzimation.

Example A.4. Returning to the binomial example, we have
Ly<A, ’/Tl\ = K(yl,nl y Y2, ng)ﬂ';ﬂ (l — ’/Tl/\)nlb-y1 (71’1 + A)yz (1 — Ty — A>n2—y2
for a function K'(-) which does not depend on the unknown parameters. The
components of the score function are
Ya M2 =Y
m+A 1—-m —A
R’ LY M2y
T l-—71’1 I7T1+A 1*7r1~A'
It is easy to show that, under Hy: A = 0, the MLE for T 1s the overall

Uay(Aym) =

LTTFLY(A)TH) =
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mean 7 = (y; + y2)/(n1 + n2), and, undér Hy: A # 0, 71 = y1/n; and
A= yg/ng — yl/nl.
The log-likelihood ratio is:

Ly (A, ) , o
log (ﬁ%) = yilog® + (n1 —y1)log(l — )
v + yolog(F + A) + (n — y2) log(l — 7, — A)
— y1log ™ — (n1 —y1)log(l —7y)

— yalog 7y — (ne —y2) log(l — 71)

A ) . 1 — 7.
= ylloggﬂnl—yl)log( Tl)
M I 1—71’1
L+ AL 1— 7 —A,
+ Yo log(ﬂrl —— ) + (np — yg)log(—7—1~—,)
Ut 1".71'1
= ZOIO@;%@ (A.3)

where the sum in equation (A.3) is over the four cells in the two-by-two table
of survival status by treatment, O represents the observed value in a given cell
and FE represents its expected value under Hy. Asymptotically, the statistic
25" Olog & has a x? distribution under Hp.

To perform the Wald and score tests, we need the Fisherinformation matrix.
The elements of the Fisher information matrix are

E[ Y2 - (n2 —yz)\
(i +A)2  (1—m —A)?
T2 T2

- il

(m +4) (1—-m —A)

2
(m +A)1—m —4Q)

Ian =Iax =Tx A

where the expectation is taken under H;.
Similarly,
- 1 %]
B CEN T TES)

\

Iﬂl,ﬂ'l

The variance of A is, therefore,

\fa,r/_‘/i = (IA,A - IA:WII;lI,leW17A>_1
o om(l-m) (M A1 —m = A)
- - — |

Note that this is identical to the variance obtained directly using the binomial
variance, Var y;/n, = m;(1 — m,)/n,. The variance estimate is obtained by
replacing m; and A by their estimates.

Therefore, the Wald test statistic for Hg has form

’ /- / \ 2
(Y2/n2 —y1/n1)

(1= #)/ny+ (F1 = A)1—#1 —A)/ng.
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The score test is similar. Under Hg, we have™

Y2 N2 — Yo
T L=
1

= m(yz — M)

Uay(0,7) =

which is proportional to the observed number of events in group 2 minus
the expected number under Hy. Under Hy, the variance of Ua y(0,71) is
Ian = Inm it e Iy a = (/01 + 1/ng) ™t /mi(1 — m1), so the score test
statistic is ‘

Yo — Nty \ V! 1
g2 2Rl 21— (— + —
¢ ) A=A+ )

(y2 — na(ys + v+ 2)/[n1 +n2))*(n1 +ny)?
ninz (Y1 +}({2)(n1 +n2 — Y1 —y2)

which is the (uncorrected) Pearson x? test statistic. It can be shown that the
score statistic can also be written (O — E)?/E, where O and F are as in
equation (A.3).

Note that the Wald test and the score test have similar form; the difference
between them is that the Wald test uses the variance computed under Hi,
while the score test uses the variance computed under Hy. |

A4 Computing.the MLE

In most situations there is no closed form solution for the MLE, g , but finding
the solution requires an iterative procedure. One commonly used method for
finding 6 is the Newton-Raphson procedure.

We begin with an initial guess 0y, from which we generate a sequence of
estimates él, 92, ég, ... until convergence is achieved. For 7 = 1,2,3, .., 0, is
derived from 6;_; by first applying Taylor’s theorem. We have that

Uy (0) = Uy<éi_1) + U@)y(éi*l)(G — éi_l) + higher order terms.

Ignoring the higher order terms, we set the above equal to zero and solve for
8 yielding

0; = 0,4 — UG,Y(éi—l)_lUY(éi—l)- (A4)

Iteration stops once consecutive values of g, differ by a sufficiently small
amount.

Note that if 6 is a vector of length p, the score function Uy (¢) will be a
vector of partial derivatives of length p, and Ue,y(éi_l) will be the matrix of
second order partial derivatives. Equation (A.4) will be an equation involving
vectors and matrices.
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a. Y, X, — aX n distribution.

b. X, +Y, — X + a n distribution.

The proof of Slutsky’s Theorem is omitted, since it relies on a characterizat
of convergence in distribution that we have not discussed. A typical application:
illustrated by the following example.

Example 5.5.18 (Normal approximation with estimated variance) Suppg
that :

Ve 2 o,
a

but the value of ¢ is unknown. We have seen in Example 5.5.3 that, if lmn e Var_'bl
=0, then S2 — o2 in probability. By Exercise 5.32, 0/S, — 1 in probability. Heng
Slutsky’s Theorem tells us '

\/;FT_L(Xn - ,u)

5.5.4 The Delta Method

The previous section gives conditions under which a standardized random varial
has a limit normal distribution. There are many times, however, when we are n
specifically interested in the distribution of the random variable itself, but rath
some function of the random variable.

Example 5.5.19 (Estimating the odds) Suppose we observe X1, Xz, ... Xn
dependent Bernoulli(p) random variables. The typical parameter of interest is p,
success probability, but another popular parameter is 1—_’;, the odds. For example
the data represent the outcomes of a medical treatment with p = 2/3, then a pers
has odds 2 : 1 of getting better. Moreover, if there were another treatment with st
cess probability r, biostatisticians often estimate the odds ratio l%—p/ ——, giving ¢
relative odds of one treatment over another. :

As we would typically estimate the success probability p with the observed sucd
probability p = 5, X,/n, we might consider using 1_%5 as an estimate of T%E B
what are the properties of this estimator? How might we estimate the variance
%‘? Moreover, how can we approximate its sampling distribution?

fntuition abandons us, and exact calculation is relatively hopeless, so we have
rely on an approximation. The Delta Method will allow us to obtain reasonab

approximate answers to our questions.

One method of proceeding is based on using a Taylor series approximation, whi
allows us to approximate the mean and variance of a function of a random varia
We will also see that these rather straightforward approximations are good eno
to obtain a CLT. We begin with a short review of Taylor series.
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Hefinition 5.5.20 If a function g(z) has derivatives of order r, that is, g(z) =
_g(z) exists, then for any constant a, the Taylor polynomial of order r about a is

r

T.(z) = Z 9(a) (z —a).

1
1=0 v

Taylor’s major theorem, which we will not, prove here, is that the remainder from
y Ny

e approximation, g(z) — T.(xz), always tends to O faster than the highest-order

plicit term. .

P

heorem 5.5.21 (Taylor) If g (a) = d (a;)]l:a exists, then

dx™

g(z)'— Tr(x)

limy_.q oy

=0.
In general, we will not be concerned with the explicit form of the remainder. Since

are interested in approximations, we are just going to ignore the remainder. There
e, however, many explicit forms, one useful one being

) T {r+l)/t
ofz) - Tow) = [ L

o rl

(z - t)dt.

For the statistical application of Taylor's Theorem, we are most concerned with
e first-order Taylor series, that is, an approximation using just the first derivative
aking 7 = 1 in the above formulas). Furthermore, we will also find use for a multi-

riate Taylor series. Since the above detail is univariate, some of the following will
e to be accepted on faith.

et T, ..., T, be random variables with means 0y, ... .05, and define T = (11, ...,
and 8 = (0y,...,0;). Suppose there is a differentiable function g(T) (an estimator

ome parameter) for which we want an approximate estimate of variance. Define

, g
50) = 90, o

first-order Taylor series expansion of g about 6 is

k
g(t) =g(8) + Z g,(0)(t, — 6;) + Remainder.

=1

our statistical approximation we forget about the remainder and write

k
7) g(t) ~ g(8) + Zg{(@(m —6,)-

, take expectations on both sides of (5.5.7) to get

k
8) Eeg(T) ~ g(6) + ) _ 4(6)Eq(T, — 6:)

=1

= g(0). : (T; has mean 0;)
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We can now approximate the variance of g(T) by

Varg g(T) = Bo (1(T) — 9(0)1%) (using (5.5.8)
2
k; B ; .
~ Bg <<Zi:lgé(9>(ﬂ - 91)> ) (using (5»5_7)‘
)
(5.5.9) = S (g(6)PVar, Ty +2 Y 0:(0)5(8)Cova (T To),
=1 >3

where the last equality comes from expanding the square and using the definitio
of variance and covariance (similar to Exercise 4.44). Approximation (5.5.9) is ve
useful because it gives us a variance formula for a general function, using only simpl

variances and covariances. Here are two examples.

Example 5.5.22 (Continuation of Exa;nple 5.5.19) Recall that we are inte
ested in the properties of 25 as an estimate of {7, where p is a binomial succ

probability. In our above notation, take g(p) = 55 O q'(p) = (1_119\\‘2 and
Var (2=) % 19/ () Vax(d)
1—9 :
L Ppll-p P
BGED n(l-p)?*

giving us an approximation for the variance of our estimator.

Example 5.5.23 (Approximate mean and variance) Suppose X is a rand
variable with E,X = p # 0. If we want to estimate a function g(p), a first-or

approximation would give us
g(X) = g(p) + g'(B)(X — ).
If we use g(X) as an estimator of g(u), we can say that approximately
E,g(X) = g(n),
Var,, g(X) = [g'(w))*Var, X.

For a specific example, take g(p) = 1/p. We estimate 1/p with 1/X, and we can 53]

1 1\,
Var“<—i> =~ <;> Var, X.

Using these Taylor series approximations for the mean and variance, we get thi
following useful generalization of the Central Limit Theorem, known as the Del

Method.
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eorem 5.5.24 (Delta Method) Let Y,, be a sequence of random variwables that
isfies vn(Yy, — 0) — n(0,02) in distribution. For a given function g and a specific
walue of 0, suppose that g'(9) exists and 1s not 0. Then

5.10) Vnig(Ys) — g(8)] — n(0,02[g'(8)]%) in distribution.
proof: The Taylor expansion of ¢(¥;) around Y, =0 is
55.11) 9(Ys) = g(8) + 4'(9)(Y,, — ) - Remainder,

here the remainder — 0 as Y,, — . Since ¥, -~ 8 in probability it follows that the
emainder — O in probability. By applying Slutsky’s Theorem (Theorem 5.5.17) to

Vnlg(Yn) = 9(8)] = g'(0)vn(Yn - 6),
he result now follows. See Exercise 5.43 for details. U

xample 5.5.25 (Continuation of Example 5.5.23) Suppose now that we have
he mean of a random sample X. For 4 # 0, we have

n distribution.

‘If we do not know the variance of X, to use the above approximation requires an
stimate, say S2. Moreover, there is the question of what to do with the 1/ term, as
ie also do not know . We can estimate everything, which gives us the approximate

variance
— /1 C1\*
\/T —_ =~ —_ SZ.
a<X> (X)

thermore, as both X and S? are consistent estimators, we can again apply Slutsky’s
Theorem to conclude that for u # 0,

1 distribution.

‘Note how we wrote this latter quantity, dividing through by the estimated standard
eviation and making the limiting distribution a standard normal. This is the only way
1at makes sense if we need to estimate any parameters in the limiting distribution.
e also note that there is an alternative approach when there are parameters to
Stimate, and here we can actually avoid using an estimate for u in the variance (see
he score test in Section 10.3.2). I

here are two extensions of the basic Delta Method that we need to deal with to
plete our treatment. The first concerns the possibility that ¢’(x) = 0. This could
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happen, for example, if we were interested in estimating the variance of a binomjs
variance (see Exercise 5.44).
If ¢’(8) = 0, we take one more term in the Taylor expansion to get

g"(%)

9(Yn) = g(0) + g'(6)(Yn - 0) + — 'Y, —0)> + Remainder.

If we do some rearranging (setting g’ = 0), we have

/ \ - ‘ _ 9/1(0> / \2 :
(5.5.12) g(Yn) —g(0) = —?—\::Yn — 0)° + Remainder.

Now recall that the square of a n(0,1) is a xi (Example 2.1.9), which implies tha

n(Y, — 9>2 2

— 3 X
in distribution. Therefore, an argument similar to that used in Theorem 5.5.24
establish the following theorem.

Theorem 5.5.26 (Second-order Delta Method) Let Y, be a sequence of rand
variables that satisfies \/n(Yy, —8) — n(0,0%) mn distribution. For a gien functio
and a specific value of 8, suppose that g'(8) = 0 and ¢"(0) erists and is not 0. Th
e e o , 5970 o

(5.5.13) nlg(Yn) — g(0)] — o X1 i distribution.

B)
&

Approximation techniques are very useful when more than one parameter m
up the function to be estimated and more than one random variable is used in
estimator. One common example is in growth studies, where a ratio of weight/heig}
is a variable of interest. (Recall that in Chapter 3 we saw that a ratio of two no
random variables has a Cauchy distribution. The ratio problem, while being import
to experimenters, is nasty in theory.)

This brings us to the second extension of the Delta Method, to the multivari
case. As we already have Taylor’s Theorem for the multivariate case, this extensior
contains no surprises.

Example 5.5.27 (Moments of a ratio estimator) Suppose X and ¥ are rand
variables with nonzero means px and py, respectively. The parametric function
be estimated is g(px, py) = px/uy . It is straightforward to calculate :

a 1
TW#X:MY) =
Hx Hy

and

——glux, by) = —5
Y L



%)
g
i

on 5.6 GENERATING A RANDOM SAMPLE

first-order Taylor approximations (5.5.8) and (5.5.9) give

X’> X
Bl — | = —
<Y, Ly

xY 1 2 . \
Var( > ~ —-Var X + uf VarY — 2M—§<-COV<AX, Y)

Y Hy Hy Hy
B <ux )‘2 <Var X Var¥  Cov(X, Y}>
py I iy px Y

1s, we have an approximation for the mean and variance of the ratio estimator, and
pproximations use only the means, variances, and covariance of X and Y. Exact
ations would be quite hopeless, with glosed-form expressions being unattainable.

e next present a CLT to cover an estimator such as the ratio estimator. Note that
wst deal with multiple random variables although the ultimate CLT is a univari-
ne. Suppose the vector-valued random variable X = (Xi,...,X,) has mean
(41, -, tp) and covariances Cov(X,, X;) = 0yj, and we observe an independent
om sample Xy,..., X, and calculate the means X, = ZZZI X, 2 =1,...,p.
function g(x) = g(z1,...,2p) we can use the development after (5.5.7) to write

\

14
9(Z1, o B) = gl ) + Y 9e(X) (B — ),

we then have the following theorem.

orem 5.5.28 (Multivariate Delta Method) Let X;,..., X, be a random
ple with E(X;;) = u; and Cov(Xi, X;x) = 04j. For a gwen function g with
nuous first partial derivatives and a specific value of p = (1, ..., up) for which

9g(p)  9g(w)
17 pu; EP >O;

g}
s

Vnlg(Xy, ., Xs) —glpr, - pp)] — n(0,7%) in distribution .
he proof necessitates dealing with the convergence of multivariate random vari-
and we will not deal with such multivariate intricacies here, but will take
srem 5.5.28 on faith. The interested reader can find more details in Lehmann and
lla (1998, Section 1.8).

Generating a Random Sample

s far we have been concerned with the many methods of describing the behav-
f random variables—transformations, distributions, moment calculations, limit
TEemSs. In practice, these random variables are used to describe and model real
omena, and observations on these random variables are the data that we collect.
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SUMMARY. We obtain closed-form asymptotic variance formulae for three point estimators of the intraclass
correlation coefficient that may be applied to binary outcome data arising in clusters of variable size. Our
results include as special cases those that have previously appeared in the literature (Fleiss and Cuzick, 1979,
Applied Psychological Measurement 3, 537-542; Bloch and Kraemer, 1989, Biometrics 45, 269—287; Altaye,
Donner, and Klar, 2001, Biometrics 57, 584-588). Simulation results indicate that confidence intervals based
on the estimator proposed by Fleiss and Cuzick provide coverage levels close to nominal over a wide range
of parameter combinations. Two examples are presented.
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1. Introduction

The intraclass correlation coefficient (ICC), a quantitative
measure of the resemblance among observations within classes
(clusters), is one of the most widely applied and versatile in-
dices in applied research. For example, it is frequently used
to quantify the familial aggregation of disease in genetic epi-
demiological studies (Cohen, 1980; Liang, Qaqish, and Zeger,
1992). In reliability studies, the ICC is an index measuring
the level of interobserver agreement (Barto, 1966; Fleiss and
Cuzick, 1979; Kraemer, Periyakoil, and Noda, 2002), while in
health care delivery research, the ICC has been used to mea-
sure the efficiency of hospital staff (Gange et al., 1996). This
parameter is also critical for estimating the required size of a
cluster randomization trial (Cornfield, 1978).

Inference procedures for the ICC are well developed for
the case of continuous data under the assumption of multi-
variate normality, as summarized by Donner (1986). In con-
trast, techniques for binary data have been less well devel-
oped, with the emphasis primarily on point estimation (see
Ridout, Demétrio, and Firth [1999] for an excellent review).
Aside from some computationally intensive procedures (e.g.,
Feng and Grizzle, 1992), two popular approaches for such in-
ferences are based on generalized estimating equations (GEE)
and the beta-binomial (BB) distribution (Lui, Cumberland,
and Kuo, 1996). However, recent research has shown that the
GEE approach, which was not designed for inference concern-
ing the ICC, may result in confidence interval coverage which
is substantially below nominal (Evans, Feng, and Peterson,
2001). A disadvantage of the BB model is that it is too re-
strictive to be relied on for inferences concerning the ICC
when the class sizes are variable (Feng and Grizzle, 1992).

Agreement; Cluster-randomization trials; Common correlation model; Delta method; Ex-

This approach is further limited by the assumption that “the
binary observations within a cluster are assumed to be a fi-
nite subset of an infinite exchangeable sequence of random
variables” (Bowman, 2001).

We also note that Mak (1988) has derived a formula for the
variance of an ICC estimator. However, the resulting expres-
sion is equivalent to that obtained using the GEE approach
in that the expectations of the third and fourth moments are
replaced by observed values (Shoukri and Martin, 1992).

In Section 2, we adopt the common correlation model
(Madsen, 1993) to derive explicit variance formulae for three
estimators of the ICC previously found to perform well in
terms of mean square error and bias by Ridout et al. (1999).
Confidence interval methods based on these formulae are de-
scribed in Section 3. In Section 4, we evaluate the performance
of these methods using Monte Carlo simulation. In Section 5,
we provide examples using data from two previously published
studies, one addressing familial aggregation of a respiratory
condition, and the other focusing on interrater agreement.
The article concludes with some final remarks in Section 6.

2. The Large Sample Variance
of the ICC Estimators

2.1 Assumptions and Point Estimators

Consider a random sample of k clusters of sizen; (i =1, 2,...,
k), where the responses X;; (j = 1, 2,...,n;) in the ith class
are dichotomous with success and failure coded as 1 and 0,
respectively. The probability of success 7 is assumed to be
identical for all individuals, i.e., Pr(X; = 1) = 7 for all ¢, j,
an assumption usually referred to as “exchangeability.” (Note
that when this assumption is in doubt, it may be tested; see
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Stefanescu and Turnbull [2003].) A second assumption is that
the observations from different clusters are independent, while
each pair of observations within the same cluster have a com-
mon correlation given by p = corr(X;;, Xi), j # L.

Under these assumptions, sample estimates for 7 and p are
readily available. An intuitive and simple estimator for = is

given by
k
>
i=1

N )
where Y; = Z]‘XU‘ is the total number of successes in class
i, and N = > n; is the total number of observations in the
study. At least 20 different estimators for p have been pro-
posed in various areas of research, as reviewed by Ridout et
al. (1999). The simulation results reported by these authors
identified three of these as most accurate in terms of bias and
mean square error. The first two estimators are obtained by
applying formulae for continuous data directly to binary data
while the third is commonly used in the context of reliability
studies by Fleiss and Cuzick (1979).

The analysis of variance (ANOVA) estimator is given by

T =

~ MSB-MSW W
PA = MSB + (ns — 1)MSW’
where
2
MSB = Zﬁ—<zy)
1 Y7
wsw = 1 {3 S
and

2
L (X
i .
The Pearson pairwise estimator with constant weights is given

by
Y, (Y:—-1)
ﬁP = ! Z - ﬂz ) (2)

) Zni(”i_l)

where
> Vi - 1)
Z n; (n; — 1) .

Finally, the kappa-type estimator proposed by Fleiss and
Cuzick (1979) is given by

/:L:

> Yilni = Yi)/n,
N _Rr(_7) ®)

prc =1—

Note that the Pearson estimator and the Fleiss—Cuzick esti-
mator are identical in the case of constant cluster size (Ridout
et al., 1999).
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2.2 Variance Derivation

Under the common correlation assumption the exchangeable
model can be written (Madsen, 1993) as

p(l—m)+ (1= p)(1—m)",
<n> (lip)ﬂ-y(liﬂ-)n_ya 1§y§n*1a
Yy

pm+ (1= p)m™,

y =0,

Yy =n.
(4)

Note that for (4) to be a probability mass function, p must
satisfy

aQ-mm "

1-m)—-(1—-m" 7—an

max |:— <p<l. (5)

A straightforward calculation yields the moment generating
function of Y as

My () = p[L =7 {1 - exp(t)}] + (1 — p) [L — 7 + wexp(D)]",

which yields the ith moment as

EYl= —

t=0

Noting that p4 and ppc are functions of S; = ZK and
Sy = > Y?/n,, it can be shown that (S, Ss) is distributed
asymptotically as bivariate normal with variance—covariance
matrix

B var(S)
B COV(Sl,Sz)
_ b var(Y;)

N Z <cov (Yi, Yf/ni)

=1

COV(Sl, SQ)
var(Ssy) )

cov(Yi,Yf/ni)>
) . (6)
var(Yi /nl)

Application of the delta method (Agresti, 2002, p. 579) yields
the asymptotic distribution for p as

VE(p—p) = N (0,9"29),

where

9p

0S5,

9p

i

is evaluated at ES; = Nw and ES; = kn(1 — @) + w(1 — m)
(N — k)p + Nz for ps and ppc. After some straightforward
but tedious calculation, a consistent variance estimator for py
is obtained as

var(pn) = [(k — naN(N — ) /2
X {2k+ (ﬁ —6) > !
+ Kﬁ G)Znil —ON 4Tk — 8k /N
SR (ml_ =i 6) Z”ﬂp

(1l —m)

P =




Intraclass Correlation Coefficient for Binary Outcome Data

—2N — k+4k*/N

[N2k2
(1l —m)

+ <7 — 8k/N — 42;1(1__’%3[)) an] o’

oty (55 (S )

(7)

where
A=(N—-k)[IN=-1—na(k—=1D]p+N(k—1)(na—1).
Similar steps yield the estimated variance of prc, given by

var(prc) = (1—p)

1 > !
x {|:7r(17r) _6] (N — k)’

k k
-] v
o
N2z (1—7)
(BN —2k)(N=2k) Y n? 9N
- N (N —k)? NN
+ {4—“1_%)} N o (8)

which reduces to the null variance derived by Fleiss and
Cuzick (1979) when p = 0.

Since pp is a function of S; and S5 = Y7, a similar deriva-
tion yields the variance of pp as

(1-p)

[Z n; (n; — 1)}2
X {ZZni(ni—l)—i—p [ﬁ—i’)}
> 2, o 1
x> nt(ni—1) +p {bm}

x> mi(ng - 1)3}. (9)

In the case of constant cluster size n; = n for all i, expressions
(8) and (9) simplify to

pyt-e,| 2 3 1
var(p) = |:n(n—1) {3 7r(1—7r)}p

k
+";1 {4—W(11W)}p2} (10)

var (pp) =
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which is identical to the variance formula derived by Bloch
and Kraemer (1989) for n = 2 and to that derived by Altaye,
Donner, and Klar (2001) for n = 3.

3. Confidence Interval Construction

An obvious approach to constructing a confidence interval for
p is to obtain the large sample limits given by

[):t Za/2V @(ﬁ)a

where z,/s is the a/2 upper quantile of the standard normal
distribution. However, several simulation studies have shown
that this procedure does not perform well with extreme values
of m and p or when k is small (e.g., Donner and Eliasziw,
1992; Altaye et al., 2001). Alternatively, one may attempt to
use Fisher’s z transformation to improve the normality of the
sampling distribution of p. Unfortunately it has been shown
that this transformation is of limited use when applied to
nonnormal data (Berry and Mielke, 2000).

We propose here to invert a modified Wald test, an ap-
proach which has been shown to provide accurate results when
computing confidence limits for the difference between two in-
traclass kappa coefficients (Donner and Zou, 2002). This ap-
proach is also conceptually straightforward since the above
variance formulae can be regarded as cubic functions of p.
Therefore, we may write

(11)

where var(p) is the appropriate variance expression with #
substituted for m. The confidence limits for p are then given
by the two admissible roots of this equation, which may be
found explicitly. For the ANOVA method, we replace p with
pa and var(p) with var(pa) in equation (11). In a similar fash-
ion we may also obtain confidence limits for p using either the
Pearson estimator or the Fleiss—Cuzick estimator, which we
refer to as the Pearson and FC methods, respectively.

(h—p) = 21/2‘,’5}(@’

4. Simulation Study

A simulation study was performed to evaluate the coverage
levels of the three methods described above. For this pur-
pose, we generated variable cluster sizes from a truncated
negative binomial distribution with mean and variance given,
respectively, by 3.12 and 4.52, which correspond to the U.S.
sibship size distribution in 1950 (Brass, 1958; Donner and
Koval, 1987). Other parameter values considered were p =
0.1, 0.2, 0.3, 0.5, 0.8; # = 0.1, 0.3, 0.5; and k = 25, 50, 100,
200. For each of the 60 parameter combinations, 1000 data
sets were generated from the common correlation model given
by (4), followed by construction of a two-sided 95% confidence
interval using the methods described above.

The performance of these methods was evaluated in terms
of the observed percent coverage. Since negative values of p
are usually considered implausible in most application areas,
we truncated p at 0 for any calculated negative value. All
programming was implemented using SAS IML.

Results in Table 1 show that the confidence interval based
on the Fleiss—Cuzick estimator for p is slightly conserva-
tive when m = 0.1 and k = 25, but maintains 95% nomi-
nal coverage level very well provided £ > 50. On the other
hand, the performance of the confidence interval based on
the ANOVA estimator is somewhat erratic, even though it is
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Table 1
Empirical coverage percent based on 1000 runs for three methods of constructing a 95% two-sided confidence interval
for the ICC with binary data
T
k=25 k=50 k = 100 k = 200
p Method 0.1 0.3 0.5 0.1 0.3 0.5 0.1 0.3 0.5 0.1 0.3 0.5
0.1 ANOVA 60.0 97.1 97.2 94.4 97.0 96.7 98.7 98.2 96.2 99.9 98.2 93.1
Pearson 97.4 96.7 97.3 96.6 96.6 97.5 96.4 97.1 96.5 98.1 96.5 95.6
FC 97.6 96.8 98.3 96.5 96.1 97.6 96.3 97.6 97.0 96.8 96.9 93.6
0.2 ANOVA 50.9 97.4 97.1 88.9 97.9 95.1 97.1 97.4 92.6 99.3 97.1 91.2
Pearson 98.6 97.1 98.1 97.4 97.2 97.9 97.6 96.7 96.5 98.1 95.9 95.1
FC 97.7 97.0 97.8 96.9 97.3 96.3 96.4 96.0 93.9 97.1 95.0 94.4
0.3 ANOVA 40.4 97.1 94.4 81.1 97.8 93.5 98.7 97.9 91.7 99.7 96.9 90.7
Pearson 99.2 98.7 97.9 98.8 98.1 96.5 98.6 97.2 95.6 97.8 96.3 95.8
FC 98.1 97.5 96.8 97.5 95.0 96.3 97.4 96.0 94.5 95.8 94.5 94.3
0.5 ANOVA 20.2 89.8 92.0 50.1 95.8 89.3 84.2 96.7 90.2 99.8 97.1 86.5
Pearson 100 97.8 96.5 99.5 95.8 95.7 99.1 95.9 95.5 97.0 95.7 95.1
FC 99.5 95.5 94.6 97.2 94.5 94.7 94.5 95.1 94.6 94.9 95.6 94.3
0.8 ANOVA 2.0* 56.2 54.4 3.0 77.0 49.3 7.1 91.6 39.5 22.2 96.3 35.1
Pearson 93.3* 92.8 93.8 91.1 95.1 94.6 91.0 95.5 93.8 93.4 94.9 94.6
FC 93.7* 95.8 95.2 94.0 95.6 95.4 93.0 95.9 93.7 94.5 95.4 93.7

*Since in 3% of data sets generated in this case p was undefined (# = 0), the coverage was calculated over the remaining 970 runs. Cluster
sizes are generated according to a truncated negative binomial model with mean 3.12 and variance 4.52.

commonly recommended for point estimation. We also note
that the method based on the Pearson estimator performs
better than that based on the ANOVA estimator, but not
as well as that based on the Fleiss—Cuzick estimator. In par-
ticular, confidence interval construction based on the Pear-
son estimator tends to yield conservative limits unless p is
high (>0.8).

5. Examples

As a first example, we analyze the data presented in Exam-
ple 3 of Liang et al. (1992), where the familial aggregation of
chronic obstructive pulmonary disease (COPD) is used as a
measure of how genetic and environmental factors may con-
tribute to disease etiology. The data involve 203 siblings from
100 families with size ranging from 1 to 6, with the binary
response of interest indicating whether a given sibling of a
COPD patient has impaired pulmonary function. We obtain
7 = 0.296, with the values of p, pp, and prc (standard errors)
given by 0.186 (0.129), 0.260 (0.131), and 0.180 (0.107), re-
spectively. The likelihood estimates (standard error) obtained
using a BB and a saturated exchangeable model as proposed
by Stefanescu and Turnbull (2003) are given by 0.270 (0.145)
and 0.200 (0.089), respectively. The corresponding 95% confi-
dence intervals using the modified Wald method are given by
(0, 0.441), (0.068, 0.523), and (0.008, 0.402).

As a second example, we consider the data presented by
Lipsitz, Laird, and Brennan (1994). In this data set, 26 pa-
tients with psychiatric disorders are classified by at least three
and at most six psychiatrists into two categories (neurosis ver-
sus other disorder). The value of 7 is given by 0.401, and the
values (standard error) of gy, pp, and ppc by 0.422 (0.116),
0.408 (0.117), and 0.409 (0.114). Therefore the resulting 95%
confidence intervals are given by (0.217, 0.633), (0.205, 0.625),
and (0.210, 0.621), respectively. Note that the estimated stan-

dard error for prc is in close agreement with simulation results
presented by Lipsitz et al. (1994, Table 4).

6. Final Remarks

As many as 20 different point estimators of the ICC have been
proposed across a diverse number of application areas. Rid-
out et al. (1999) provided a systematic review and evaluation
of these estimators, focusing on bias and mean square error.
We have extended their results by providing closed-form vari-
ance expressions for three of these point estimators, filling a
long-standing gap in the literature (e.g., see Fleiss et al., 1979;
Kraemer et al., 2002). The results of a simulation study lead
us to recommend a modified Wald method as having excellent
properties for confidence interval construction. Simulation re-
sults indicate that this method, used in conjunction with the
Fleiss—Cuzick estimator, performs very well in sample sizes of
50 or more.

The results in this article apply to studies involving a rea-
sonably large number of clusters, each of relatively small size.
Thus they are most applicable to family studies and other ap-
plication areas where these conditions apply. Our results also
depend on the assumption of a common correlation among
observations within the same cluster. Future research that
extends this model to accommodate more complex correla-
tion structures, such as arise in many genetic epidemiology
studies, would clearly be worthwhile.

The implementation of the recommended confidence in-
terval procedure using SAS IML and S_plus is available from
the Biometrics website under the link “Data Sets/Computer
Code.”
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RESUME

Nous obtenons une formule de la variance asymptotique pour
trois estimateurs du coefficient de corrélation intra-classe qui
peut étre utilisé & des données binaires issues de groupes de
taille variable. Nos résultats incluent les cas développés dans
la littérature (Fleiss et Cuzick, 1979, Applied Psychological
Measurement 3, 537-554; Bloch et Kramer, 1989, Biometrics
45, 269-287; Altaye, Donner et Klar, 2001, Biometrics 57,
584-588). Les résultats des simulations montrent que les in-
tervalles de confiance basés sur ’estimateur proposé par Fleiss
et Cuzick (1979) conduisent des niveaux de couverture proche
de la valeur nominale pour une large échelle de combinaisons
des parametres. Deux exemples sont présentés.
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Two score and 10 years of score tests
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S.J. Poti one of my co-workers at the Indian Statistical Institute in the early 1940s
was working on a practical problem where he had to test a null hypothesis on a single
parameter, Hy: 0 = 0y (0 has the given value 0y), when it was known a priori that
the alternative 6 > 0. He asked me whether an efficient test could be constructed for
this purpose. I told him that Neyman and Pearson constructed what is called a locally
unbiased most powerful (LUMP) test for two-sided alternatives and a similar method
could be used to construct a locally most powerful one-sided (LMPOS) test. We need
only to find a test (critical region of a given size) for which the power function has
the maximum slope at 6y on one side. If P(X,0) is the density at the value X in
the sample space, then an application of Neyman—Pearson lemma gives the critical
region as

w: P'(X,00) > AP(X; 0y) (1)

or S(X,0p)= /4 where S(X,0)=dlog P(X,0)/d6 is Fisher’s score function. The constant
A is determined such that the size of the critical region has a given value o. The result
was published as a short note (Rao and Poti, 1946). We also suggested that a two-sided
test such as [S(X,0p)| > A would be a good competitor to LUMP test of Neyman and
Pearson. Of course, a critical region of the form

wi {S(X,00) > 21} U{S(X, 00) < A2} (2)

would provide a better test.

In 1946, 1 was deputed to work on an anthropometric project in the Museum of
Anthropology and Ethnology at the Cambridge University, UK. I took this opportunity
of contacting R.A. Fisher who was then Balfour Professor of Genetics at the Cambridge
University and register for a Ph.D. degree in statistics under his guidance. Fisher agreed
but insisted that I should spend some time in his Genetics Laboratory where he was
breeding mice to map the chromosomes (i.e., locating the positions of various genes on
different chromosomes). I thought that this would be a good experience and agreed to
work a few hours in his genetics laboratory every day in addition to my regular work at
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the Museum. Fisher assigned to me the problem of mapping four genes on one of the
six chromosomes of mice, by estimating the linkages or recombination probabilities of
segments between genes. (Later I learnt that all his students were geneticists working
for a Ph.D. degree in genetics, and I was the only one who wrote a thesis in statistics
under his guidance.)

I started mating mice of different genotypes to collect the necessary data. At the
same time, | started to develop the appropriate statistical methods for the analysis of
experimental data. Each experiment provided data containing independent information
on the same set of parameters (recombination probabilities in the various segments
of the chromosomes). The problem was one of meta analysis, i.e., of combining the
information from different experiments for the estimation of parameters. In such cases, it
is often necessary to examine whether the parameters involved in different experiments
are the same or not. My solution was as follows.

Let X; be the observed sample, [;(X;,0;), the log likelihood, @;(X;,0;)=
0l;(X;, 0;)/00;, the p-vector of scores for the vector parameter 6; and I(6;), Fisher

information matrix for the ith experiment, i =1,...,k. To test the hypothesis
Hy:0,=---=0y. (3)
I suggested the statistic
Iﬁl [0, O 11:(0))~ ' [(X, 0)], )
where 0 is the maximum likelihood estimate, under the assumption 6 =---=0;, which

is obtained as a solution of the equation
k
>, 9i(X;,0)=0. (5)
i=1

Statistic (4) is shown to be distributed as chi-square on p(k—1) degrees of freedom in
large samples. 0 would be the appropriate estimate of the common parameter obtained
from the whole data if the value of (4) is not large. Otherwise, we have to examine
the nature of the differences between parameters in different experiments.

I wrote a paper setting out the detailed steps for analyzing the data involving the
segregation of several factors in matings of different genotypes. In an appendix to the
paper, I discussed the general theory of asymptotic tests based on scores from which
statistic (4) was derived. I showed the paper to Fisher. He thumbed through it and
said, “The paper is probably good but I would like to see numerical results”. He also
suggested that I should write a separate paper on the theoretical results.

After I acquired the data, I did the necessary computations and give him the revised
paper. He was pleased and asked me to submit the paper to the Journal of Heredity,
a new journal for reporting research work in genetics. The paper was accepted and
published in 1950 (see Rao, 1950). The theoretical portion of the paper appeared as a
separate publication in the Proceedings of the Cambridge Philosophical Society (Rao,
1948). In this paper, I considered the general problem of testing simple and composite
hypotheses concerning a vector parameter 6 based on the vector score function @(X, )
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and information matrix /(0), where X is the observed sample. To test the simple
hypothesis Hy: 0 = 0y, the test statistic was defined as

o 4P 00))

a a'l (00)61
where a is a p-vector of constants. It was shown that statistic (6) is asymptotically
distributed as y> on p degrees of freedom. Note that when p =1, a takes only two
values +1, and test reduces to |@(X,0y)| > 1 as discussed in Rao and Poti (1946). For
testing a composite hypothesis, the suggested statistic was

[D(X,0)]'[1(0)] ' [®(X, 0)], (7)

= [D(X, 00)]'[1(00)] ' [P(X, 00)], (6)

where 0 is the maximum likelihood estimate of 6 under the restriction of the composite
hypothesis. Statistic (4) used in the analysis of genetic data is a special case of test (7).

I knew at the time I developed the score test, now referred to as RS (Rao’s score),
there were two alternative tests, the likelihood ratio L of Neyman and Pearson (1928)
whose asymptotic distribution was derived by Wilks (1938) and Wald’s (1943) W.
These three test statistics, L, W and RS which are referred as the “holy trinity” are
asymptotically equivalent under null as well as Pitman alternatives (see Serfling, 1980,
p. 156). The RS seemed to be attractive as it involved less computations and is invariant
for transformation of parameters. Further several well-known large sample tests like
Pearson Chisquare could be identified as score tests. I mentioned as a conjecture in the
first edition of my book Linear Statistical Inference and its Applications (Rao, 1965,
Section 6.2) that RS is likely to be locally more powerful than L and W. Peers (1971)
showed that this conjecture is not true as stated. On the basis of his result which I
did not examine carefully, I omitted my conjecture in the second edition of my book
(Rao, 1973).

The score test went unnoticed for a number of years after it was introduced. It
was resurrected by the Indian School of Statisticians in the eighties, who studied its
optimum properties and showed that my conjecture holds with some modifications, and
in some respects it has more attractive features than L and W, contrary to what Peers
thought. For details of these developments, reference may be made to papers by Ghosh
(1991), Li (1999) and Mukherjee (1993).

I may also mention that I used the score function in deriving sequential tests of null
hypotheses (Rao, 1951) which has applications in quality control (Box and Ramirez,
1992) and clinical trials (Bradley, 1953).

It may be noted that a few years after my 1948 paper appeared, the same score test
was introduced by Silvey (1954) under the name Lagrangian multiplier test, and this
terminology appears in econometrics literature (see Byron (1968) who was probably the
first to introduce the RS statistic in econometrics). Neyman (1954, 1959) introduced
what is called C(x) test which is similar to the score test when there is one main
parameter and several nuisance parameters. Neyman used +/n consistent estimates of
the nuisance parameters under the null hypothesis for the main parameter, instead of
ml estimates used by me (Rao, 1948) in the computation the score statistic. Hall and
Mathiason (1990) extended Neyman’s C(«) test to more than one main parameter using
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an argument similar to the one used in the derivation of the score test. The resulting
test was named by them as Neyman—Rao test.

I am glad to see that score type tests are beginning to be used in different areas of
study and research. They have found applications in econometrics (see Amemiya, 1985,
pp. 142-146, 206-207, 469; Bera and Bilias, 1999; Bera, 1999; Bera and Mukherjee,
1999 for general surveys) and in survival analysis (Klein and Moeschberger, 1997,
pp. 407-410, 429-433). Score tests are discussed in books on asymptotic statisti-
cal inference (Lehman, 1999, pp. 451, 529, 532, 534, 539, 570; Serfling, 1980, pp.
155-160). Score type tests based on estimating equations have also been introduced
(Boos, 1992; Sen, 1982). Some other modulli on score tests are given in Rao (1961).

I would like to mention that I would not have thought of score tests if I had not
worked on a particular practical problem in genetics which Fisher asked me to in-
vestigate. I realized the importance of the score function in combining information
from different independent sources and tried to develop a theory of inference based
primarily on scores. Score tests have some attractive features and I am glad to see that
my 1948 paper has been included in Breakthroughs in Statistics: 1890-1990, Vol. 3,
edited by Kotz and Johnson. A foreword to this paper by P.K. Sen contains a dis-
cussion of the merits and demerits of the score test. A special invited paper session
on 50 years of Rao’s score test was organized at the Joint Meetings of ASA, IMS,
SSC and BS held at Anaheim, August 10—14, 1997. T am glad to see the current
interest in score tests and their modifications and generalizations, and I wish to thank
A K. Bera and R. Mukherjee for putting together papers on the current state of the art
for publication in a special issue of the Journal of Statistical Planning and Inference.
This would encourage further research into several unresolved problems in the applica-
tion of score tests. Of course, no known method in statistics is universally applicable
and it is important to know in which situations, a particular method is efficient.

I may also mention that mathematical genetics I learnt by attending Fisher’s lectures
and talking to his students when I was in Cambridge had another benefit. It enabled
me to guide students for the Ph.D. degree in mathematical genetics on my return to the
Indian Statistical Institute. At least two of my students who received the Ph.D. degree
are leading figures in statistical genetics today.
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I—INTRODUCTORY
(a) General Remarks, Notation, and Definitions

We shall distinguish two aspects of the problems of estimation : (i) the practical
and (ii) the theoretical. The practical aspect may be described as follows :

(ia) The statistician is concerned with a population, =, which for some reason or
other cannot be studied exhaustively. It is only possible to draw a sample from
this population which may be studied in detail and used to form an opinion as to
the values of certain constants describing the properties of the population =. For
example, it may be desired to calculate approximately the mean of a certain character
possessed by the individuals forming the population =, etc.

(ib) Alternatively, the statistician may be concerned with certain experiments
which, if repeated under apparently identical conditions, yield varying results.
Such experiments are called random experiments, (see p. 338). To explain or describe

VOL. CCXXXVI.—A 767  (Price 6s.) 2z [Published August 30, 1937
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the machinery of the varying results of random experiments certain mathematical
schemes are drawn up involving one or more parameters, the values of which are
not fixed. The statistician is then asked to provide numerical values of these
parameters, to be calculated from experimental data and upon the assumption that
the mathematical model of the experiments is correct.

The situation may be exemplified by the counts of «-particles ejected by some
radioactive matter. The physicists have here elaborated a mathematical model
of the phenomenon involving only one numerical parameter, namely, the average
duration of life of an atom, and the statistician is asked to use the results of the
available observations to deduce the numerical value of this parameter.

In both cases described, the problem with which the statistician is faced is the
problem of estimation. This problem consists in determining what arithmetical
operations should be performed on the observational data in order to obtain a result,
to be called an estimate, which presumably does not differ very much from the true
value of the numerical character, either of the population =, as in (ig), or of the
random experiments, as in (i).

(ii) The theoretical aspect of the problem ofstatistical estimation consists primarily
in putting in a precise form certain vague notions mentioned in (i). It will be
noticed that the problem in its practical aspect is not a mathematical problem,
and before attempting any mathematical solution we must substitute for (1) another
problem, (ii), having a mathematical sense and such that, for practical purposes, it
may be considered as equivalent to (i).

The vague non-mathematical elements in (i) are connected with the sentence
describing the meaning of the word estimate. What exactly is meant by the
statement that the value of the estimate ““ presumably >’ should not differ very much
from the estimated number ? The only established branch of mathematics dealing
with conceptions bearing on the word “ presumably ” is the calculus of probability.
Tt therefore seems natural to base the precise definition of an estimate on conceptions
of probability. Itis easy to see that the connexion of the problem considered with
the theory of probability does not stop here and that the conditions of the problem
themselves are, mathematically, clear only if they are expressed in the same terms
of probability.

In (ia) we speak of a statistician drawing a sample from the population studied.
Itis known that if the sample is systematically selected and not drawn *‘ at random
the conclusions concerning the population = formed on its basis are, as a rule, false
and at the present state of our knowledge impossible to justify. On the other
hand, we know that justifiable and frequently correct conclusions are possible only
when the process of drawing the sample is *“ random ”*, though the randomness may
be at times more or less restricted. I have put the word * random ” in inverted
commas because it is very difficult to define what is meant by it in practice.* We
try to achieve randomness by more or less complicated devices, using roulette,

* This point requires a longer discussion, which I hope to be able to publish in a separate paper.
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dice, etc. Theoretically, however, the situation is clear : when we speak of a
random sample we mean that it is drawn so that (1) the probability of each
individual of the population being included in the sample is the same, and (2) separate
drawings are mutually independent, except in the case of dependence resulting from
the population being finite, when the individual drawn is not returned to the
population before the next drawing.

Leaving apart on one side the practical difficulty of achieving randomness and the
meaning of this word when applied to actual experiments, I want to call attention
to the fact that the conditions of the problem in (iz) may be mathematically described
as follows.

Denote X, Y, ..., Z, the characters of the individuals of the population =, in
which we are interested and by #, y, . . . . 2, respectively the values of these characters
corresponding to some particular individual. For example, if the population =
consists of certain plants, X may mean the weight of the roots, Y the colour of the
flowers, Z the weight of the seeds, etc. The method of random sampling adopted,
together with the properties of the population =, some of which may be known and
others doubtful, determine the probability,* say P {E}, of the occurrence of any
possible system, E, of values of X, Y, ... ., Zin the individuals which may be drawn
to form the sample. Denote by 0, the numerical character of the population =
which it is desired to estimate : this, for example, may be the mean value of X, the
regression coeflicient of Z on X, the mean square contingency of Z and Y, etc. The
probability P {E} will depend on the value of 6, and in most cases on the values of
certain other parameters, say, 0,, 0y, . . ., etc.

We see, therefore, that the problem with which the theoretical statistician is faced
is as follows :

Sampling randomly from the population =, it is possible to obtain samples, say

EuFBoeo By o e o (1)

where each sample is described by means of values of the characters X, Y, .. ., Z,
corresponding to each of the individuals forming the sample. The probability of
any sample E,;, say P{E;]0,, 0,,... 0}, depends on a certain number, /, of para-
meters 0;, the values of which are unknown, describing the properties of the
population =. The problem consists in determining how to use the sample which
may be actually obtained in order to estimate 0,.

We see that the conditions of the problem in (iz) are expressed in terms of pro-
bability. The same holds good with regard to the problem in (ib), which shows
that the distinction between (iz) and (i6) is only superficial. In fact, random
experiments differ from those which are not considered as random only by the cir-
cumstance that the mathematical model devised for their description involves’

* If the population 7 is finite. Otherwise the method of sampling and the properties of the
population will determine the elementary probability law of X, Y, ..., Z considered as random
variables. For the definitions of random variables and their probability laws, see p. 340 below.

27 2
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probabilities. Each model of this kind determines the range of the possible results
of random experiments and also the probability of each such result, depending upon
one parameter or more, the numerical value of which is unknown.

We come to the conclusion that both the conditions of the problem of estimation
and the satisfactory solution sought, if expressed accurately, are expressed in terms
of probability. Before we proceed to the final formulation of the problem, it will
be useful to give a short review of the forms of some solutions which have been
advanced in the past. For this we shall need to define the terms probability, random
variable, and probability law. These definitions are needed not because I introduce
some new conceptions to be described by the above terms, but because the theory
which is developed below refers only to some particular systems of the theory of
probability which at the present time exist,* and it is essential to avoid misunder-
standings.

I find it convenient to use the word probability in the following connexion : “ the
probability of an object, A, having a property B”’. This may include as particular
cases : “ probability of a result, A, of a certain experiment having the property B of
actually occurring > (= probability of the result A — for short) and * the probability
of a proposition, A, of having the property, B, of being true”. All these ways of
speaking could be shortened in obvious ways.

I want to emphasize at the outset that the definition of probability as given below
is applicable only to certain objects A and to certain of their properties B—not to all
possible. In order to specify the conditions of the applicability of the definition of
the probability, denote by (A) the set of all objects which we agree to denote by A.
(A) will be called the fundamental probability set. Further, let (B) denote the set of
these objects A which possess some distinctive property B and finally, ((B)), a certain
class of subsets (B’) , (B”), . . ., corresponding to some class of properties B, B”, etc.

It will be assumedT

(1) that the class ((B)) includes (A), so that (A) ¢ ((B)) and

* It may be useful to point out that although we are frequently witnessing controversies in which
authors try to defend one or another system of the theory of probability as the only legitimate, I am
of the opinion that several such theories may be and actually are legitimate, in spite of their occasionally
contradicting one another. Each of these theories is based on some system of postulates, and so long
as the postulates forming one particular system do not contradict each other and are sufficient to
construct a theory, this is as legitimate as any other. In this, of course, the theories of probability
are not in any sort exceptional.

Both Euclidean and non-Euclidean geometries are equally legitimate, but, e.g., the statement
‘“ the sum of angles in a linear triangle is always equal to m ™ is correct only in the former. In
theoretical work the choice between several equally legitimate theories is a matter of personal taste
only. In problems of application the personal taste is again the decisive moment, but it is certainly
influenced by considerations of the relative convenience and the empirical facts.

t The problem of the definition of measure in relation to the theory of probability has been
recently discussed by Lomnickr and Uram (1934), who quote an extensive literature. A systematic
outline of the theory of probability based on that of measure is given by KoLmocororr (1933).
See also BoreL (1925-26) ; Livy (1925) ; FrécueT (1937).
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(2) that for the class ((B)) it was possible to define a single-valued function,
m (B), of (B) which will be called the measure of (B). The sets (B) belonging to
the class ((B)) will be called measurable. The assumed properties of the measure
are as follows :

(a) Whatever (B) of the class ((B)), m (B) = 0.

(b) If (B) is empty (does not contain any single element), then it is measurable and
m (B) = 0.

(¢) The measure of (A) is greater than zero.

(d) If (By), (By) ... (B,)...is any at most denumerable set of measurable subsets,
then their sum, (2B;), is also measurable. If the subsets of neither pair (B;) and
(B;) (where ¢ # j) have common elements, then m (£B;) = OEO m (B,).

f=1

() If (B) is measurable, then the set (B) of objects A non-possessing the property

B is also measurable and consequently, owing to (d), m (B) 4 m (B) = m (A).

Under the above conditions the probability, P{B|A}, of an object A having the
property B will be defined as the ratio P {B|A} = —-—Z ((ig . The probability P {B,|A},
or P {B,} for short, may be called the absolute probability of the property B,. Denote
by B, B, the property of A consisting in the presence of both B, and B,. Tt is casy
to show that if (B;) and (B,) are both measurable then (B; B,) will be measurable
also. If m (B,) > 0, then the ratio, say P {B,|B,} = m (B,B,)/m (B,), will be called
the relative probability of B, given B,. This definition of the relative probability
applies when the measure m (B,) as defined for the fundamental probability set (A)
is not equal to zero. If, however, m (B;) = 0 and we are able to define some other
measure, say m’, applicable to (B,) and to a class of its subsets including (B, B,) such
that m’ (B,) > 0, then the relative probability of B, given B, will be defined as
P{B,|B,} = m’ (B,B,)/m’ (B;). Whatever may be the case, we shall have P{B,B,}
= P{BI}P{BZIBI} = P{Bz}P{BllB2}~

It is easy to see that if the fundamental probability set is finite, then the number of
elements in any ofits subsets will satisfy the definition of the measure. On the other
hand, if (A) is the set of points filling up a certain region in n-dimensioned space,
then the measure of Lebesgue will satisfy the definition used here. These two
definitions will be used wherever applicable. ' ’

If (A) is infinite but the objects A are not actually points (e.g., if they are certain
lines, etc.), the above definition of probability may be again applied, provided it is
possible to establish a one to one correspondence between the objects A and other
objects A’, forming a class of sets where the measure has already been defined.
If (B) is any subset of (A) and (B’) the corresponding subset of (A’), then the measure
of (B) may be defined as being equal to that of (B’). It is known that a similar
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definition of measure of subsets of (A) could be done in more than one way. Such
is, for instance, the historical example considered by BERTRAND, PoiNcARE, and BoREL
when the objects A are the chords in a circle C of radius 7 and the property B consists
of their length, /, exceeding some specified value, B. It may be useful to consider
two of the possible ways of treating this problem.

1. Denote by x the angle between the radius perpendicular to any given chord A
and any fixed direction. Further, let y be the distance of the chord A from the centre
of the circle C. If A’ denotes a point on the plane with coordinates x and y, then
there will be a one to one correspondence between the chords A of length
0 = [ < 2r and the points of a rectangle, say (A’), defined by the inequalities
0<x=2r and 0 < y = r. The measure of the set of chords A with lengths
exceeding B could be defined as being equal to the area of that part of (A’) where
0 <y =+/12— (}B)2 It follows that the probability in which we are interested is
P{{ > B} = (r2 — (3B)2)r .

2. Denote by x and y the angles between a fixed direction and the radii con-
necting the ends of any given chord A. If A’ denotes a point on a plane with
coordinates ¥ and », then there will be a one to one correspondence between the
chords of the system (A) and the points A" within the parallelogram (A’’) deter-
mined by the inequalities 0 < ¥ = 2r, ¥ =y =< x + =. The measure of the set of
chords A with their lengths exceeding B may be defined as being equal to the area of
that part of (A”) where 2rsin ¥ y > B.

Starting with this definition P {{ > B} = 1 —2 arcsin (B/2r) =~*.

It is seen that the two solutions differ, and it may be asked which of them is correct.
The answer is that both are correct but they correspond to different conditions of the
problem. In fact, the question ““ what is the probability of a chord having its length
larger than B > does not specify the problem entirely. This is only determined when
we define the measure appropriate to the set (A) and its subsets to be considered.
We may describe this also differently, using the terms “random experiments >’ and
“ their results”.  'We may say that to have the problem of probability determined,
it is necessary to define the method by which the randomness of an experiment is
attained. Describing the conditions of the problem concerning the length of a chord
leading to the solution (1), we could say that when selecting at random a chord A,
we first pick up at random the direction of a radius, all of them being equally
probable, and then, equally at random, we select the distance between the centre of
the circle and the chord, all values between zero and r being equally probable.
It.is easy to see what would be the description in the same language of the random
experiment leading to the solution (2). We shall use sometimes this way of speaking,
but it is necessary to remember that behind such words, as e.g., “ picking up at
random a direction, all of them being equally probable ’, there is a definition of the
measure appropriate to the fundamental probability set and its subsets. I want to
emphasize that in this paper the sentence like the one taken in inverted commas is
no more than a way of describing the fundamental probability set and the appropriate
measure. The conception of ““ equally probable * is not in any way involved in the
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definition of probability adopted here, and it is a pure convention that the state-
ment
* For the purpose of calculating the

probabilities concerning chords
in a circle, the measure of any set
‘ In picking up at random a chord, (A;) of chords is defined as that of
we first select a direction of radius, | means no | the set (A’;) of points with co-
all of them being equally probable | more and | ordinates » and y such that for
and then we choose a distance be- ( no  less | any chord A; in (A,), x is the

tween the centre of the circle and than direction of the radius perpendicu-

the chord, all values of the distance lar to A, and y the distance of A,

between zero and r being equally from the centre of the circle.

probable.” (A,) is measurable only if (A’,) is
so.” '

- However free we are in mathematical work in using wordings we find convenient,
as long as they are clearly defined, our choice must be justified in one way or another.
The justification of the way of speaking about the definition of the measure within
the fundamental probability set in terms of imaginary random experiments lies in
the empirical fact, which BorTkiEwicz insisted on calling the law of big numbers.
This is that, given a purely mathematical definition of a probability set including
the appropriate measure, we are able to construct a real experiment, possible to
carry out in any laboratory, with a certain range of possible results and such that if
it is repeated many times, the relative frequencies of these results and their different
combinations in small series approach closely the values of probabilities as calculated
from the definition of the fundamental probability set. Examples of such real
random experiments are provided by the experience of roulette (BorTKIEWICZ,
1917), by the experiment with throwing a needle* so as to obtain an analogy to the
problem of Buffon, and by various sampling experiments based on TrppeTT’s Tables
of random numbers (1927).

These examples show that the random experiments corresponding in the sense
described to mathematically defined probability sets are possible. However,
frequently they are technically difficult, e.g., if we take any coin and toss it many
times, it is very probable that the frequency of heads will not approach 3. To get
this result, we must select what could be called a well-balanced coin and we have to
work out an appropriate method of tossing. Whenever we succeed in arranging the
technique of a random experiment, say E, such that the relative frequencies of its
different results in long series sufficiently approach, in our opinion, the probabilities
calculated from a fundamental probability set (A), we shall say that the set (A)
adequately represents the method of carrying out the experiment E. The theory
developed below is entirely independent of whether the law of big numbers holds

* This is mentioned by Borer (1910). I could not find the name of the performer of the
experiment.
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good or not. But the applications of the theory do depend on the assumption
that it is valid. The questions dealt with in the present section are of fundamental
importance. However, they do not constitute the main part of the paper and there-
fore are necessarily treated very briefly. The readers who may find the present
exposition not sufficiently clear may be referred for further details to the work
of KorLmoGcororr (1933, see particularly p. 3 et seq.). 1 should state also that
an excellent theoretical explanation of the experimental phenomena mentioned,
connected with the previous work of Poincarf and SmorucHOwski, has been
recently advanced by Hopr (1934).

We shall now draw a few obvious but important conclusions from the definition
of the probability adopted.

(1) Ifthe fundamental probability set consists of only one element, any probability
calculated with regard to this set must have the value either zero or unity.

(2) If all the elements of the fundamental probability set (A) possess a certain
property B, then the absolute probability of B, and also its relative probability
given any other property B, must be equal to unity, so that P {Bj}= P {B,|B,} = 1.
On the other hand, if it is known only that P {B,} = 1, then it does not necessarily
follow that P {By|B,} must be equal to unity.

We may now proceed to the definition of a random variable. We shall say that
x is a random variable if it is a single-valued measurable function (not a constant)
defined within the fundamental probability set (A), with the exception perhaps of
a set of elements of measure zero. We shall consider only cases where x is a real
numerical function. If x is a random variable, then its value corresponding to any
given element A of (A) may be considered as a property of A, and whatever the real
numbers a < b, the definition of (A) will allow the calculation of the probability,
say P {a = x < b} of x having a value such that a = x < 4.

We notice also that as x is not constant in (A), it is possible to find at least one
pair of elements, A, and A,, of (A) such that the corresponding values of x, say
x; < Xy, are different. Ifwe denote by B the property distinguishing both A, and A,
from all other elements of (A) and if ¢ < & are two numbers such that a < %, < b
< x, then P{a = » < b|B} = 4. Tt follows that if x is a random variable in the
sense of the above definition, then there must exist such properties B and such
numbers ¢ < bthat 0 < P{e = x < 6|B} < 1.

It is obvious that the above two properties are equivalent to the definition of a
random variable. In fact, if x has the properties (¢) that whatever a < & the
definition of the fundamental probability set (A) allows the calculation of the
probability P {a = x < 6}, and () that there are such properties B and such numbers
a < bthat 0 < P{a = x < 6|B} < 1, then x is a random variable in the sense of the
above definition.

The probability P {¢ = x < 6} considered as a function of ¢ and b will be called
the integral probability law of x.

A random variable is here contrasted with a constant, say 0, which will be defined
as a magnitude, the numerical values of which corresponding to all elements of the
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set (A) are all equal. If 0 is a constant, then whatever ¢ < 4, and B, the probability
P{e = 0 < b|B} may have only values unity or zero according to whether 6 falls in
between a and 4 or not.

Keeping in mind the above definitions of the variables, in discussing them we shall
often use the way of speaking in terms of random experiments. In the sense of the
convention adopted above, we may say that x is a random variable when its values
are determined by the results of a random experiment.

It is important to keep a clear distinction between random variables and unknown
constants. The 1000th decimal, X, in the expansion of = = 3-14159...is a
quantity unknown to me, but it is not a random variable since its value is perfectly
fixed, whatever fundamental probability set we choose to consider. We could say
alternatively that the value that Xy, may have does not depend upon the result
of any random experiment.

Similarly, if we consider a specified population, say the population g5 of persons
residing permanently in London during the year 1935, any character of this popula-
tion will be a constant. In the sense of the terms used here, there will be no practical
meaning in a question concerning the probability that the average income, say
I 035, of the individuals of this population 1s, say, between £100 and £300. As the
fundamental probability set consists of only one element, namely I o, the value of
this probability is zero or unity, and to ascertain it we must discover for certain
whether £100 = I,y < £300 or not. This is, of course, possible, though it might
involve great practical difficulty, just as it is possible to find the actual value of
X000, the 1000th figure in the expansion of =. Any calculations showing that
P {100 = I,s; << 300} has a greater value than zero and smaller than unity must be
either wrong or based on some theory of probability other than the one considered
here.

This is the point where the difference between the theory of probability adopted
here and that developed by JErFrEYs (1931) comes to the front. According to the
latter, previous economic knowledge may be used to calculate the probability
P{a =< I,03; < 0|B} where a << b are any numbers and the result of the calculations
may be represented by any fraction, not necessarily by zero or unity.

The above examples must be contrasted with the following ones. We may con-
sider the probability of a figure X, in the expansion of = falling between any specified
limits @ << 6 and find it to be equal, ¢.g., to 3. This is possible when we first define
a random method of drawing a figure out of those which serve to represent the
expansion of =. If this is done, then X is a random variable and the X, previously
defined will be one of its particular values.

Similarly, it is probably not impossible to construct a more or less adequate
mathematical model of fluctuations in the size of income, in which the yearly average
income, I, of the permanent population of London will be a random variable. The
I o35 previously defined will be a particular value of I, observed at the end of the
year 1935.

It is true that any constant, &, might be formally considered as a random variable
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with the integral probability law P{a < £ < b} having only values unity or zero
according to whether £ falls between « and b or not. If we pass from letters to
figures this'will lead to formulae like P{l =2 < 3} = 1,or P{8 =2 < 4} = 0.

Of course, in practice we shall have generally some unknown number £ instead of
2 in the above formulae and accordingly we shall not know what are the actual values
of the probabilities. In order to find these values, it would be necessary to obtain
some precise information as to the value of £. It follows that the consideration of
such probabilities is entirely useless, since whatever we are able to express in using
them, we can say more simply by means of equations or inequalities.

For this reason, when defining a random variable, we require its probability law
to be able to have values other than zero and unity. The other case may be set
aside as trivial.

- In the following development we shall have to consider at once several random
variables

Xy Xy oo X o e 2)

It will be convenient to denote by E any combination of their particular values
and to interpret each such combination E as a point (the sample point) in an #-
dimensional space W (the sample space), having its coordinates equal to the
particular values of the variables (2). If w denotes any region in W, then the
probability, say P {Ezw}, of the sample point falling within w considered as a function
of w will be described as the integral probability law of the variables (2).

We shall consider only cases where there exists a non-negative function

p(E)=p (x,...,%,) determined and integrable in the whole sample space W,
such that for any region w

m&wzynhﬂmwrum. ...... G

The function p (E) will be called the elementary probability law of the X’s in (2).
It is easy to show that when p (x4, . . ., x,, %,) is known, then p (%, . . ., x,_,) may be
calculated by integrating p (x,, ... x,) with regard to x, from — @ to 4 .

When dealing with several probability laws calculated in relation to probability
sets depending on some variables, say y; . . . ,, in order to avoid misunderstandings,
we shall use the notation p (x; ... #x,]9 ...2) 0r p (Elyy...0.). Ifp(x, ... %,
Xgi15 - - - %,) is the probability law of x;, x, . . ., %14, . . . &, and if for a given system
of the x’s, p (%1, . . . &,) > O then, for that system, the relative probability law of
Xy, Xy« .« X GIVEN Xy, . . . X, denoted by p (%, . .. %%y, . . . %,), will be defined by
the relation p (X1, oy .+« o Xpy « + X)) =P (Kepr, - o - ) p (Kyy v oo Ml Xprgy o v o X,).

With the above definitions and notation we may now formulate the problem of
estimation as follows :

Let
X Xg oo X, o0 oo @
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be a system of #n random variables, the particular values of which may be given by
observation. The elementary probability law of these variables

Do 200,000 0) .. (B)

depends in a known manner upon / parameters 6, . . . 6,, the values of which are not
known. It is required to estimate one (or more) of these parameters, using the
observed values of the variables (4), say

x,l, x’z, . o . x',, . . . . . . . . . . D . (6)

(b) Review* of the Solutions of the Problem of Estimation Advanced Hereto

The first attempt to solve the problem of estimation is connected with the theorem
of Bayes and is applicable when the parameters 04, 6,,... 6, in (5) are themselves
random variables. The theorem of Bayes leads to the formula

P (04, 0gy ot 04"y, &'y, ... %))
_ P (04, 05 ...0)p (), &%y, ... 4°]0,...0)
j. . .jp (01, Ogy oo 0) f (A1, ¥y oo 2|00y o 0) Oy .. dOy (7).

representing the probability law of 0, 0,, ... 0, calculated under the assumption
that the observations have provided the values (6) of the variables (4). Here
p (01, ... 0,) denotes the probability law of the 0’s, called a priori, and the integral
in the denominator extends over all systems of values of the 6’s. The function
b (01, 05, ... 0]a", &5 ... &",) is called the a posteriori probability law of 0°s. In
cases where the a priori probability law p (04, 0,, ... 6,) is known, the formula (7)
permits the calculation of the most probable values of any of the 6’s and also of the
probability that 0, say, will fall in any given interval, say, ¢ =< 0; << 4. The most

probable value of 0,, say 6;, may be considered as the estimate of 6; and then the
probability, say

PO, — A< 0,<0+AE}Y, . ........ (8

will describe the accuracy of the estimate éi, where A is any fixed positive number
and E’ denotes the set (6) of observations.

It is known that, as far as we work with the conception of probability as adopted in
this paper, the above theoretically perfect solution may be applied in practice only
in quite exceptional cases, and this for two reasons :

(a) It is only very rarely that the parameters 6,, 6,, ... 6, are random variables.
They are generally unknown constants and therefore their probability law a priori
has no meaning.

* This review is not in any sense complete. Its purpose is to exemplify the attempts to solve the
problem of estimation.

3 A2



344 J. NEYMAN

(b) Even if the parameters to be estimated, 0,, 0,,...0;,, could be considered as
random variables, the elementary probability law a priori, p (04, 05, ... 0)), is
usually unknown, and hence the formula (7) cannot be used because of the lack of
the necessary data.

When these difficulties were noticed, attempts were made to avoid them by
introducing some new principle lying essentially outside the domain of the objective
theory of probability.

The first of the principles advanced involved the assumption that when we have
no information as to the values of the 0’s, it is admissible to substitute in formula (7)
some function of the 0’s selected on intuitive grounds, e.g.,

' p(0,05...0)=const. . .. . ... ... (9
and use the result, say

p1 (04, .. 0,|E) = ACEVE S RURY. P UIR) ... (10)

j. . .jp (X', g o )]0y, .. .0,) dOy . .. dO,

as if this were the a posterior: probability law of the 0’s.

This procedure is perfectly justifiable on the ground of certain theories of
probability, e.g., as developed by HaroLD JEFFREYS, but it is not justifiable on the
ground of the theory of probability adopted in this paper. In fact, the function
b1 (05 ... 0]E") as defined by (10) will not generally have the property serving as a
definition of the elementary probability law of the 0°s. Its integral over any region
w in the space of the 0’s will not be necessarily equal to the ratio of the measures of
two sets of elements belonging to the fundamental probability set, which we call the
probability. Consequently, if the experiment leading to the set of values of the #’s
is repeated many times and if we select such experiments (many of them) in which
the observed values were the same, %'y, 5’5 . . . &, the assumed validity of the law
of big numbers (in the sense of BorTkiEwicz) will not guarantee that the frequency

of cases where the true value of 6; falls within é,- — A< 0; < é,- -+ A will approach
the value of (8), if this is calculated from (10). Moreover, if the 6’s are
constant, this frequency will be permanently zero or unity, thus essentially differing
from (8).

The next principle I shall mention is that advocating the use of the so-called
unbiassed estimates and leading to the method of least squares. Partly following
Markorr (1923), I shall formulate it as follows :

In order to estimate a parameter 6; involved in the probability law (5), we should
use an unbiassed estimate or, preferably, the best unbiassed estimate.

A function, F;, of the variables (4) is called an unbiassed estimate of 0, if its mathe-
matical expectation is identically equal to 0,, whatever the actual values of
0,, 05, ...6. Thus,
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An unbiassed estimate F; is called the best if its variance, say
V=6 F:—0)2, . . ... ... ... (12

does not exceed that of any other unbiassed estimate of 6;.

It is known that MARKOFF provided a remarkable theorem leading, in certain
cases, to the calculation of the best of the unbiassed estimates which are linear
functions of the variables (4). The advantage of the unbiassed estimates and the
Jjustification of their use lies in the fact that in cases frequently met the probability of
their differing very much from the estimated parameters is small.

The other principle, which is to a certain extent in rivalry with that of the
unbiassed estimate, is the principle of maximum likelihood. This consists in con-
sidering L. = const. X p (x'y, 5 ... 2,10, ...0,), where x’; denotes the observed
value of X, as a function of the parameters 6;, called the likelihood. It is advocated
that the values of L may serve as a measure of our uncertainty or confidence in the
corresponding values of the 6’s. Accordmgly, we should have the _greatest con-

fidence in the values, say, b 1 %2, .. 6,, for which L is a maximum. 6 obviously is
a function of &’; ... «’, ; it is called the maximum likelihood estimate of 6;.

As far as I am aware, the idea of the maximum likelihood estimates is due to
KARL PeArsoN, who applied the principle in 1895 (see particularly pp. 262-265),
among others to deduce the now familiar formula for estimating the coefficient of
correlation. However, he did not insist much on the general applicability of the
principle. This was done with great emphasis by R. A. FIsHER, who invented the
term likelihood, and in a series of papers (FISHER, 1925) stated several important
properties of the maximum likelihood estimates, to the general effect that it is

~improbable that their values will differ very much from those of the parameters
estimated. In fact, the maximum likelihood estimates appear to be what could be
called the best *“ almost unbiassed > estimates. Many of FIsHER’s statements, partly
in a modified form, were subsequently proved by HoTeLLing (1932), Doos (1934),
and Ducuk (1936). An excellent account of the present state of the theory is given
by Darmors (1936).

In certain cases the unbiassed estimates are identical with those of maximum
likelihood ; in others we know only the maximum likelihood estimate, and then
there is no “ competition > between the two principles. But it sometimes happens
thatboth principles may be applied and lead to different results. Such is, for instance,
the case when it is known that the variables (4) are all independent and each of them
follows the same normal law, so that

1 _ St
[)(EIZ,G)z(G\/%«)e WL .. ... (13

The maximum likelihood estimate of the variance, o2, is

n - . 1 n
('\1'22 E (x"_—x)z, x:';l :

B Rl

By e (14)

i=1
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while the unbiassed estimate is, say,

- 1
2 __
’ n—1;

| M=

(% — %)%, .. (15)

= 1

1]

and the question arises which of them to use. Obviously this is a question of
principle, and the arguments, like * you must use (15) because the expectation of o?
is equal to ¢?”*, do not prove much by themselves. It is perhaps remarkable that
some of the authors who, when discussing theory, advocate the use of the maximum
likelihood estimate, use in practice the estimate (15).

The formulae (4) and (15) may be used to illustrate the meaning of the expression
“ almost unbiassed > estimate, used above. Familiar formulae show that the
expectation of 62 is

5(&2):(1—1>62, . ..os
n

thus showing a “ negative bias,” n%2. If we increase the number of observations,
n, the bias tends to zero, which justifies the terms  almost unbiassed ” or  con-
sistent >’ estimate attached to (14). '

(c) Estimation by Unique Estimate and by Interval

In the preceding pages we have described briefly three of the several important
principles advanced for the calculation of estimates. ~All of them represent attempts
to solve the problem which might be called the problem of a unique estimate of an
unknown parameter which reduces to determining a function of the observations,
the value of which presumably does not differ very much from that of the estimated
parameter.

We shall now call attention to the fact that apart from the problem of a unique
estimate, the requirements of practical statistical work brought to the front another
problem which we shall call the problem of estimation by interval.

Denote generally by 6 the parameter to be estimated and by T its estimate, deduced
from some principle or another. Whatever the principle, it is obviously impossible
to assume that in any particular case T is exactly equal to 6. Therefore, the
practical statistician required some measure of the accuracy of the estimate T. The
generally accepted method of describing this accuracy consists in calculating the
estimate, say S%, of the variance Vy of T and in writing the result of all the calcula-
tions in the form T 4 S;.

Behind this method of presenting the results of estimating 0, there is the idea that
the true value of 6 will frequently lie between the value of T minus a certain multiple
of Sy and T plus perhaps some other multiple of S;. Therefore, the smaller S; the
more accurate is the estimate T of 6.

If we look through a number of recent statistical publications, we shall find that
it is exceedingly rare that the values of unique estimates are given without the + Sr.
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We shall find also that the comments on the values of T are largely dependent on
those of S;. This shows that what the statisticians have really in mind in problems
of estimation is not the idea of a unique estimate but that of two estimates having

the form, say : 3
0=T —%S; and 0 =T 4+ kS, . . . . . . . (17)

where k; and £, are certain constants, indicating the limits between which the true
value of 0 presumably falls.

In this way the practical work, which is frequently in advance of the theory,
brings us to consider the theoretical problem of estimating the parameter 6 by means
of the interval (0, 0), extending from 6 to 6. These limits will be called the lower
and upper estimates of 0 respectively. It is obvious that if the values of £, and £,
in (17) are not specified, then the real nature of the two estimates is not determined.,

In what follows, we shall consider in full detail the problem of estimation by
interval. We shall show that it can be solved entirely on the ground of the theory
of probability as adopted in this paper, without appealing to any new principles or
measures of uncertainty in our judgements. In so doing, we shall try to determine
the lower and upper estimates, 6 and 6, which assure the greatest possible accuracy
of the result, without assuming that they must necessarily have the commonly
adopted form (17).

II—CoNFIDENCE INTERVALS
(a) Statement of the Problem

After these somewhat long preliminaries, we may proceed to the statement of the
problem in its full generality.

Consider the variables (4) and assume that the form of their probability law (5) is
known, that it involves the parameters 0;, 0,,..., 0,, which are constant (not
random variables), and that the numerical values of these parameters are unknown.
It is desired to estimate one of these parameters, say 0,. By this I shall mean that
it is desired to define two functions 6 (E) and 6 (E) < 0 (E), determined and single
valued at any point E of the sample space, such that if E’ is the sample point deter-
mined by observation, we can (1) calculate the corresponding values of § (E’) and
6 (E’), and (2) state that the true value of 0,, say 0,° is contained within the limits

0EN)=0"=<0(E), . ... ... ... (18)

this statement having some intelligible justification on the ground of the theory of
probability. _

This point requires to be made more precise. Following the routine of thought
established under the influence of the Bayes Theorem, we could ask that, given the
sample point E’, the probability of 0,° falling within the limits (18) should be large,
say, « = 0-99, etc. If we express this condition by the formula

PO (E) < 0,°<0E)E} =0, . . . .. ... (19)
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we see at once that it contradicts the assumption that 0,° is constant. In fact, on
this assumption, whatever the fixed point E’ and the values 8 (E’) and 6 (E’), the
only values the probability (19) may possess are zero and unity. For this reason we
shall drop the specification of the problem as given by the condition (19).

Returning to the inequalities (18), we notice that while the central part, 0,° is a
constant, the extreme parts 6 (E’) and 6 (E’) are particular values of random
variables. In fact, the coordinates of the sample point E are the random variables
(4), and if 6 (E) and 6 (E) are single-valued functions of E, they must be random
variables themselves.

Therefore, whenever the functions 9 (E) and 6 (E) are defined in one way or
another, but the sample point E is not yet fixed by observation, we may legitimately
discuss the probability of 6 (E) and 6 (E) fulfilling any given inequality and in
particular the inequalities analogous to (18), in which, however, we must drop
the dashes specifying a particular fixed sample point E’.  We may also try to select
6 (E) and 6 (E) so that the probability of § (E) falling short of 0,° and at the same
time of 6 (E) exceeding 0,° is equal to any number « between zero and unity, fixed
in advance. If 0,° denotes the true value of 6,, then of course this probability must
be calculated under the assumption that 6,° is the true value of 6;. Thus we can
look for two function § (E) and 6 (E), such that

POE) <0,"=06E)]0,Y=a . ... ... (20)

and require that the equation (20) holds good whatever the value 6,° of 0, and
whatever the values of the other parameters 0,, 03, . . ., 0,, involved in the probability
law of the X’s may be.

The functions 6 (E) and 6 (E) satisfying the above conditions will be called the
lower and the upper confidence limits of 6,. The value « of the probability (20)
will be called the confidence coefficient, and the interval, say & (E), from 6 (E) to
0 (E), the confidence interval corresponding to the confidence coefficient «.

It is obvious that the form of the functions 6 (E) and 6 (E) must depend upon the
probability law p (E[6, ... 0,).

It will be seen that the solution of the mathematical problem of determining the
confidence limits 6 (E) and 6 (E) provides the solution of the practical problem of
estimation by interval. For suppose that the functions 6 (E) and 6 (E) are deter-
mined so that the equation (20) does hold good whatever the values of all the
parameters 6,, 0,,... 6, may be, and « is some fraction close to unity, say « = 0-99,
We can then tell the practical statistician that whenever he is certain that the form
of the probability law of the X’s is given by the function p (E|6,, 05, ... 0,) which
served to determine 6 (E) and 6 (E), he may estimate 6, by making the following
three steps : (@) he must perform the random experiment and observe the particular
values #xy, X, . . . %, of the X’s; (b) he must use these values to calculate the corre-
sponding values of § (E) and 8(E) ; and (¢) he must state that 8 (E) < 6,° < 6 (E),
where 6,° denotes the true value of 6,. How can this recommendation be
justified ?
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The justification lies in the character of probabilities as used here, and in the law
of great numbers. According to this empirical law, which has been confirmed by
numerous experiments, whenever we frequently and independently repeat a random
experiment with a constant probability, «, of a certain result, A, then the relative
frequency of the occurrence of this result approaches «. Now the three steps (a),
(b), and (¢) recommended to the practical statistician represent a random experiment
which may result in a correct statement concerning the value of 6,. This result may
be denoted by A, and if the calculations leading to the functions § (E) and 6 (E) are
correct, the probability of A will be constantly equal to a. In fact, the statement (c)
concerning the value of 6, is only correct when 6 (E) falls below 6,° and 6 (E),
above 0,°, and the probability of this is equal to« whenever 6,°is the true value of 6,.
It follows that if the practical statistician applies permanently the rules («), {6) and
(¢) for purposes of estimating the value of the parameter 6,, in the long run he will be
correct in about 99 per cent. of all cases.

It is important to notice that for this conclusion to be true, it is not necessary that
the problem of estimation should be the same in all the cases. For instance, during
a period of time the statistician may deal with a thousand problems of estimation and
in each the parameter 0, to be estimated and the probability law of the X’s may be
different. As far as in each case the functions § (E) and 6 (E) are properly calculated
and correspond to the same value of «, his steps (a), (b), and (c), though different in
details of sampling and arithmetic, will have this in common—the probability of their
resulting in a correct statement will be the same, «. Hence the frequency of actually
correct statements will approach «.

It will be noticed that in the above description the probability statements refer
to the problems of estimation with which the statistician will be concerned in the
future. In fact, I have repeatedly stated that the frequency of correct results will
tend to «.* Consider now the case when a sample, E’, is already drawn and the
calculations have given, say, 8 (E’) = 1 and 6 (E’) = 2. Can we say that in this
particular case the probability of the true value of 0, falling between 1 and 2 is equal
toa?

The answer is obviously in the negative. The parameter 6, is an unknown constant
and no probability statement concerning its value may be made, that is except for
the hypothetical and trivial ones

1 if 1=6,"=<2
P{l=06"=<2 = .. (21
0 ifeither 6,° <1 or 2<6,°

which we have decided not to consider.

The theoretical statistician constructing the functions 8 (E) and § (E), having the
above property (20), may be compared with the organizer of a game of chance in
which the gambler has a certain range of possibilities to choose from while, whatever

* "This, of course, is subject to restriction that the X’s considered will follow the probability law
assumed.
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he actually chooses, the probability of his winning and thus the probability of the
bank losing has permanently the same value, 1 — «.

The choice of the gambler on what to bet, which is beyond the control of the bank,
corresponds to the uncontrolled possibilities of 6, having this or that value. The
case in which the bank wins the game corresponds to the correct statement of the
actual value of 6,. Inboth cases the frequency of ““ successes ” in a long series of
future ““ games ’ is approximately known. On the other hand, if the owner of the
bank, say, in the case of roulette, knows that in a particular game the ball has stopped
at the sector No. 1, this information does not help him in any way to guess how the
gamblers have betted. Similarly, once the sample E’ is drawn and the values of
0 (E’) 6 and (E’) determined, the calculus of probability adopted here is helpless to
provide answer to the question of what is the true value of 6,.

(b) Solution of the Problem of Confidence Intervals

In order to find the solution of the problem of confidence intervals, let us suppose
that it is already solved and that 0 (E) and 6 (E) are functions determined and single
valued in the whole sample space, W, and such that the equality (20) holds good
whatever the true values of the parameters 04, 0,,...6,. It will be convenient to
interpret the situation geometrically. For this purpose we shall need to consider
the space, G, of # 4 1 dimensions which we shall call the general space. The points
in this space will be determined by # 4 1 coordinates x,, %,, . . . &,, 0, the first n of
which are the particular values of the random variables (4) and thus determine the
position of a sample point, E, in the n-dimensional space W, and the last coordinate
6, is one of the possible values of the parameter 6, in the probability law p (E[0,... 6))
which we desire to estimate.

Consequently, if we consider any hyperplane, G (0,) in G corresponding to the
equation 6, = const., this may be interpreted as an image of the sample space W.
We notice also that to any point E in the sample space W there will correspond in G
a straight line, say L (E), parallel to the axis O6;. If x,,x," ..., are the co-
ordinates of E’, then the line L (E’) will correspond to the equations x; = x;" for
1=1,2,...n

Consider now the functions 0 (E) and 6 (E). On each line L (E), they will
determine two points, say B (E) and C (E) with coordinates

Ky %ey ... %, 0(E) . 0 00000 . (22)
and B

KigXay oo % O (E) o 0 0 0 L oo o (23)
respectively, where ¥y, %5, . . . x, are the coordinates of the sample point E. The

interval between B (E) and C (E) will be the image of the confidence interval § (E)
corresponding to the sample point E. If we fix a value of 6, = 0,” and a sample
point E’, then the hyperplane G (6,") may cut or may not cut the confidence interval
5 (E). IfG (6,") does cut 3 (E'), let a (6,, E’) denote the point of intersection.
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The position is illustrated in fig. 1, in which, however, only three axes of co-
ordinates are drawn, Ox,, Ox,, and O6,. The line L (E’) is represented by a dotted
vertical line and the confidence interval 8 (E’) by a continuous section of this line,
which is thicker above and thinner below the point a (6';, E’) of its intersection with'
the hyperplane G (0,"). The confidence interval § (E’) corresponding to another
sample point, E”, is not cut by G (6,’) and is situated entirely above this hyperplane.

Now denote by A (6,’) the set of all points a (6}, E) in G (6’;) in which this
hyperplane cuts one or the other of the confidence intervals 8 (E), corresponding to
any sample point. It is easily seen that the coordinate 6, of any point belonging to
A (6'y) is equal to 6'; and that the remaining

coordinates x, Xy, . . . &, satisfy the inequalities EL(E")
, - |C(E“)

O(E) <06, =<06(E). .. (24 8o L5) 8@..){
! ‘ :B(E“)

In many particular problems it is found that
the set of points A (0,) thus defined is filling
up a region. Because of this A (6';) will be
called the region of acceptance corresponding
to the fixed value of 6, = 0’,.

It may not seem obvious that the region of
acceptance A (0,) as defined above must exist
(contain points) for any value of 6,. In fact,
it may seem possible that for certain values of
0, the hyperplane G (6,) may not cut any of
the intervals 8 (E). It will, however, be seen
below that this is impossible.

As mentioned above, the coordinates x;, z
Xgy - . . %, of any sample point E determine in Fic. 1—The general space G.
the space G the straight line L. (E) parallel to
the axis of 6,. If this line crosses the hyperplane G (0,) in a point belonging to
A (60,) it will be convenient to say that E falls within A (6,).

If for a given sample point E the lower and the upper estimates satisfy the
inequalities 0 (E) =< 6’; =< 6 (E), where 6’; is any value of 0,, then it will be con-
venient to describe the situation by saying that the confidence interval & (E) covers
6’;.  This will be denoted by & (E) G6’;.

The conception and propertles of the regions of acceptance are exceedingly
important from the point of view of the theory given below. We shall therefore
discuss them in detail proving separately a few propositions, however simple they
may seem to be.

Proposition I—Whenever the sample point E falls within the region of acceptance
A (6',), corresponding to any fixed value 6’; of 0,, then the corresponding confidence
interval § (E) must cover 6.

Proof—This proposition is a direct consequence of the definition of the region of

ofs—® —>
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acceptance. Suppose it is not true. Then there must be at least one sample point,
say E’, which falls within A (0’;) and such that either 0 (E') < 6" (E’) < 0’y or
0, < 8 (E) = 0 (E). Comparing these inequalities with (24) which serve as a
definition of the region of acceptance A (6’,), we see that E’ could not fall within
A (0’;), which proves the Proposition I.

Proposition II—If a confidence interval § (E”’) corresponding to a sample point
E" covers a value 0’ of 0,, then the sample point E”" must fall within A (6',).

Progf—If & (E”) covers 6';, then it follows that 6 () < 0’; < 6 (E”). Com-
paring these inequalities with (24) defining the region A (0’,), we see that E” must
fall within A (0,).

If we agree to denote generally by {BeA} the words ““ B belongs to A > or ““ B is
an element of A ”’, then we may sum up the above two propositions by writing the
identity ~

(EeA (0} =0 (B) CO =0 (E) =0, =0 (E)}, ... (25

meaning that the event consisting in the sample point E falling within the region of

acceptance A (0,) is equivalent to the other event which consists in 0, being covered
by 3 (E).

Corollary I—It follows from the Proposition I and II that whatever may be the
true values 0'y, 0’y . .. 0", of the 0’s, the probability of any fixed value 6", of 6,
being covered by & (E) is identical with the probability of the sample point E falling
within A (6';).

P (E) CO",[0, ... 0% = P {8 (E) = 0" = 0 (E)[0'y, 0%, ... 0}

= P{EcA (0""1)]0'y, 675, ... 0"} (26)

Proposition III—If the functions 0 (E) and 60 (E) are so determined that whatever
may be the true values of 64, 0, . .. 6;, the probability, P, of the true value of 0,
being covered by the interval & (E) extending from 0 (E) to 6 (E) is always equal to

a fixed number «, then the region of acceptance A (0';) corresponding to any fixed
value 0’; of 0, must have the property that the probability

P {EEA (ell)lella By ... 0} = a,

whatever may be the values of the parameters 6,, 65, ... 0,

Progf—Assume that 0’; happens to be the true value of 6, and denote generally
by 6’; the true value of 6;, for : = 2,3,.../ The probability P, as defined in
conditions of the Proposition III, may be expressed by means of the formula

P=P{(E) =0, =<0 (E)0,0,...0% . .... (28)
Owing to (26), which holds good for any 0, 0’5, ... 0, we may write also

P =P {EecA (6/)]07, 0%p, .. .00} . . . . . . .. (29)
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’

If P is permanently equal to «, then P {EcA (0’,)|6";, 0’5, ... 0"} must be also
equal to «, whatever 0y, 6’5, ... 0", which proves the proposition.

Corollary II—It follows from the Proposition IIT that whatever the value 6’; of
04, the region of acceptance A (6’;) could not be empty. In fact, if for any value
6’; the region A (6,") as defined above did not contain any points at all, then the
probability P {EcA (0,)]0’y,... 0"} would be zero, which would contradict the
Proposition III.

Proposition IIT describes the fundamental property of any single region of
acceptance A (0,) taken separately. We shall now prove three propositions con-
cerning the whole set of the regions A (0,) corresponding to all possible values of 6.

Proposition IV—If the functions 6 (E) and 6 (E) = 0 (E) are single valued and
determined for any sample point E, then whatever the sample point E’, there will
exist at least one value of 0,, say 0y, such that the point E’ will fall within A (6';).

Progf—Consider the values of 0 (E) and 0 (E) corresponding to the point E’ and
let 0’; be any value of 6, satisfying the condition 6 (E') < 0’; = 6 (E’). Com-
paring these inequalities with (24), we see that E’ must fall within A (6’;), which
proves the proposition.

Proposition V—If a sample point E’ falls within the regions of acceptance A (6';)
and A (0”;) corresponding to 0’; and 6", > 0, respectively, then it will also fall
within the region of acceptance A (6’;) corresponding to any 0’"’; such that
0’y <0, < 0",

Proof—If the sample point E’ falls within A (6’;) and A (6”;) then, owing to (24),
it follows that '

0E)=0,<0,=0(E) ........ (30)

Accordingly, whatever 6", such that 6’, < 6”"'; << 0’1, it follows that
0(E) <0, <O(E), . ....... (31)

which shows that E’ falls within A (6"").

Proposition VI—If a sample point E’ falls within any of the regions A (6,) for
0’y < 0, < 0", where 6’; and 6"'; are fixed numbers, then it must also fall within
A (07) and A (07,).

Proof—Suppose that the proposition is not true and that, for example, E’ does not
fall within A (0’;). Then it follows that

0 <O(EN). . o oo (32)

Let 6", be a number exceeding 6’; but smaller than either § (E’) and 0", so that
8’ < 6 < 0" and 0" < 6 (E). It follows from the definition (24) of A (6,)
that E’ does not fall within A (6”"), contrary to the assumption that for any 6, such
that 0'; < 0, << 6”; the point E’ falls within A (6,). Similarly it is possible to
prove that E’ must fall within A (6";).
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The four propositions ITI, IV, V, and VI describe the necessary conditions which
must be satisfied by the regions of acceptance A (6,), either separately by each of
them or collectively, if the functions 6 (E) and 6 (E) are determined and single
valued in the whole sample space W and if the equation (20) holds good for any
value of 0,; that is to say when they determine the confidence intervals required.

We shall now prove the reciprocal proposition, showing that ifiit is possible to select
on each hyperplane G (9,) a region A (0,) having the properties as described in the
conclusions of the propositions IIT to VI, then the system of these regions may be
used to define the functions 6 (E) =< 6 (E) which will be determined and single
valued at any sample point E ; further, their system will have the property that for
any value 0,° of 6, the equality (20) will hold good, whatever the values of the other
parameters 0,4, 03, ... 0,

Suppose, therefore, that on each hyperplane G (0,) there is defined a region,
A’ (0,), such that

(i) P {EcA’ (0,)]|0,} = a, whatever the values of 0,, 05,... 0,

(ii) Whatever the sample point E, there exists at least one value 0’; of 0, such that
E falls within A’ (6';).

(iii) If a sample point E falls within A’ (6’;) and A’ (0"';) where 6’; << 6", then,
whatever 6'”, such that 6’; < 6”"'; < 6", the point E falls within A’ (6"",).

(iv) If a sample point E falls within A’ (6,) for any 0, satisfying the inequalities
6’y < 6, < 6’4, then it falls also within A’ (6’;) and A’ (6",).

Denote by 6’ (E) the lower and by 6’ (E) the upper bound of values of 6, for which
a fixed sample point E falls within A’ (6,).

- Proposition VII—If the regions A’ (0,) satisfy the conditions (i), (ii), (iii), and (iv),
then the functions 8" (E) and 60’ (E) are the lower and the upper confidence limits of
04, i.e., such that

(a) they are determined and single valued at any point E and 0’ (E) = 0’ (E),
(b) whatever the true value 0,° of 0,, the probability

P{O'(E) =060'=06 (E)0,F =0, . ... ... (33)

independently of the values of the other parameters 0,, 05, ... 6,

Proof—The property (a) of functions 9’ (E) and 0’ (E) follows directly from the
condition (ii) and the definition of 6’ (E) and 0’ (E). We may notice, however,
that 9’ (E) and 6’ (E) are not necessarily finite.

To prove the property (4), it will be sufficient to show that whatever 6,°

P {0’ (E) =< 0,°=< 0" (E)|0,% = P {EcA’ (6,9]6,%, . . . . (34)

and then refer to the condition (i). ~
For this purpose we notice first that owing to the definition of 6’ (E) and 6’ (E)
whenever E falls within A’ (6,°), then it must follow that 6’ (E) = 6,° = 6’ (E)

b
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It remains to show that inversely, if for any point E, 6’ (E) =< 0,° = 6’ (E), then
this point must fall within A’ (6,°).

Suppose for a moment that this is not true and that there is a sample point E’ not
falling within A’ (0,°) and such that 6’ (E') = 6,° = 0’ (E/). B

It is easily seen that in such a case, either 6’ (E’) = 0,° or 6,° = 6’ (E’) or both, if
0" (E') = 0’ (E). In fact, if 0’ (E) < 0,°< 0’ (E’), then 0’ (E') and 6" (E'),
being the lower and the upper bounds of the values of 6, for which E’ falls within
A’ (6,), there would exist two values of 0,, say 0’; and 0”;, such that E’ is falling
within A’ (6’;) and A’ (6”’,) and

O (E)=0,<0°<0 =0 (E). ...... (35)

It would then follow from the condition (iii) that E’ falls within A’ (6,°), contrary
to the assumption. Therefore, we cannot assume that 6’ (E') < 6,° < 6’ (E’).
Now it is easy to see that if

0 (E)=0,"=0(E) . .. ....... (36)

then E’ must fall within A’ (6,°). In fact, 0’ (E’) and 6’ (E’) are respectively the
lower and the upper bounds of the values of 0, for which E’ falls within A’ (6,).
If they are both equal to 0,°, then 6,° must be the only value of 6, for which E’ falls
within A’ (6,).

It remains to consider only such cases where either 0 (E') = 6,° < 6’ (E’) or
0 (E) < 0,°= 0" (E’). In both cases 6’ (E') < 6’ (E'). We notice first that,
whatever 0,, within the limits

0 (E) <0, <0 (E) . ........ . (37

the sample point E’ must fall within A’ (6,). Otherwise either ' (E’) and 6’ (E’)
would not be respectively the lower and the upper bounds of values of 6, for which
E’ falls within A’ (0,), or else the condition (iii) would not be satisfied. Now it
follows from (iv) that E’ must fall both within A’ (6’;) and A’ (6"”";) where 6’y = 0’ (E’)
and 0”; = 6’ (E’) and therefore within A’ (6,°), which completes the proof of the
Proposition VII.

Thus the problem of constructing the system of confidence intervals is equivalent
to that of selecting on each hyperplane, G (6,), regions A (6,) satisfying the conditions
(i)—-@iv). Obviously, these regions will have the property of being regions of
acceptance.

Before going any further with the theory and discussing the problem of how to
choose the most appropriate system of the regions of acceptance, we shall illustrate
the results already reached on two examples. These have been selected so as to reduce
to a minimum the technical difficulties in carrying out the necessary calculations
which might easily conceal the essential points of the theory to be illustrated. It is
obvious that under the circumstances the examples could hardly fail to be somewhat
artificial. However, at the end of the paper the reader will find examples having
direct practical importance.
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(¢) Example I

Consider first the case where the probability law of the random variables con-
sidered depends only upon one unknown parameter 0, which it is desired to estimate.
Assume further, for simplicity, that the number of random variables, the particular
values of which may be given by observation is » = 2 and that their elementary
probability law p (%, #,]0) is known to be

b (x4, %,|0) = 672 for 0 <ux,x,<H }

and . (38)
b (%1, %,|0) = 0 for any other system of values of x; and x,
The value of 0 is unknown and it is desired
to construct a system of confidence intervals
oA for its estimation.

% R &) The sample space W is now of two dimen-
A‘}.ﬁ o sions, i.c., a plane. As the coordinates of the

‘ SN sample point must be positive, we may con-
e . B\ sider that W is limited by the conditions
Q 0 < #; and 0 < x,. Denote by W, (0) the
5] R part of W in which p (x;, x,|0) is positive.
Obviously W, (6) is a square with its side
s equal to 0.
\ g@ Fig. 2 represents the general space G with
two planes G (0) on which the correspond-
ing squares W, (0) are marked.
According to Proposition VII, the con-
Qe struction of the system of confidence intervals
will be completed if we manage to select on
each of the planes G (0) a region of accept-
€, ance A (9) satisfying (i)—(iv). Nowitis easily
Fre. 2. seen that it is possible to suggest many systems
of regions, some of which will and some of
which will not satisfy all these conditions. We shall consider three systems, which
will be denoted by S;, S,, and S;, and the particular regions forming these systems
by A, (0), A, (0), and A; (0) respectively.
(1) Fix any value of 0 and let the region of acceptance A, (60) be defined by the
inequalities

S —
2,
\/

A

¢

[
o~—
‘e

PO < x; <6 for ¢=1,2, . . . . . . ... (39)
where B is a positive number less than unity and so selected as to satisfy the condition

P{EA, (0)[0} = . . . . . ... .. (40)
Obviousl
e P (EeA, (0)[0) = (1 —B)% . . « « o o . .. (41)
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and it follows that
P=1—at. . . .. ... .. (42)

The regions A, (0) defined by (39) will form the system S,. If B is selected as
indicated in (42), they will satisfy the condition (i). Now it is easy to see that they
will not satisfy the condition (ii) and that therefore the system S; does not present a
suitable choice of regions of acceptance which would determine the confidence
intervals.

To see this, take any sample point E’ with coordinates x',, x',, and see whether it
is always possible to find a value of 6 = 0’, such that E’ will fall within A, (6").
Owing to (39), such a value 0’ should satisfy the inequalities

BO < x',x'y <<, ... . . ... .. (43)

or, if / and L denote respectively the smaller and the greater of the numbers ', and

x5, then
L<o <™, . .. ... ... (44)

This shows that the value 0" such that E’ falls within A, (6’;) can be found only if

L <ig™,or BL </ Nowifl = ', = ', = L, then these inequalities lead to the

condition Bxa’, << #';. If, on the contrary, [ = 'y, = &', = L, then Bx’; << «/,.

Accordingly, none of the sample points E” with coordinates x''; and x'’, such that
either '

0<xy <Bx'y or O<a'y<px’s .. . ... (45)

will fall within any of the regions A, (0) forming the system S,, and it follows that
they could not serve as regions of acceptance. Fig. 3 (i) illustrates the situation.
Here cross-hatched areas correspond to (45).

(2) The second system S, of regions A, (0) we shall consider might be suggested
by intuition. It follows from the definition of the probability law p (x,, x,|(0) that
%, and x, are mutually independent and that they vary from zero to 6. Under these
circumstances, the mean ¥ = } (¥, 4 #,) will vary symmetrically about 6 and there-
fore 2x = x;, 4 x5, = T could be considered as an estimate of 6 itself.

Denote by A, (6) a region in G (0) defined by the inequalities

60— A=ux +a,=<6-4+A, . ... .. (46)
where A is so selected as to have P {EcA, (0)|6} = «. Simple calculations give

P (EeA, ()]0} = 1 — <.§_>2 e, (47)

and it follows that A = 6 (1 — «)*.  Substituting this value in (46), we get
b(l—1—a)) =wx +r,=0601+A—a)}) . . . .. (48)
as the final definition of the region A, (6). Fig. 3 (ii) shows the form of the region.
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It is easily seen that the system S, of regions thus defined satisfies all the conditions
(i)—.(iv) . " B o o . B N

For example, in order to check the condition (ii), we may notice that whatever
the positive numbers x'; and x',, the value

;XX
6_1_1(1.___,_1)% N €32

satisfies the inequalities (48) which means that the sample point E” with coordinates
x'y and x', falls within A, (6').

The other conditions (iii) and (iv) are checked equally easily. Thus the regions
A, (9) may be considered as regions of acceptance. Let us now see how they
determine the lower and the upper confidence limits of 0, say 0, (E) and 6, (E).
According to the definition, 0, (E) is the lower bound of the values 6" of 6 for which
the sample point E falls within A, (6”). If x, and x, are the coordinates of E, then
it follows from (48) that 6’ could not be smaller than, but may be as small as,

(%1 4 x) (1 4 (1 — «)*) 71, which means that

0, (E):i% ........ ... (50)

Similarly we get from (48) that 6’ may be as large as, but could not exceed,
(%, + x5) (1 — (1 — a))~1, which shows that

8, (E) = % ......... (51)

Formerly we used the symbol 3 (E) to denote the confidence interval extending
from 6 (E) to 6 (E). Now we shall use the same symbol to denote the length of the
confidence interval. We shall have from (50) and (51), say

az(E):62(E)-ez(E)zz(lerxz)‘/l;“. Ce. (52)

Now we may use (50) and (51) for estimating 6. If the observations provided the
values of x; and x,, say «'; and #’,, we should state that

1+(1_a)§5051__(1_a)§. oo .. (88)

Whatever value of « may be fixed in advance, such that 0 << « << 1, we may be certain
that the frequency of the statement in the form (53) being correct will, in the long
run, approach o.

The accuracy of estimation corresponding to a fixed value of « may be measured
by the lengths of the confidence intervals (52).
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(8) The regions A, (6) forming the third set, S;, will be defined by the inequalities
gd=L<<O6 .. ... (54)

where L denotes again the larger of the two numbers », and x,, and ¢ a number
between zero and unity to be determined so as to satisfy the condition (i)

P {EcA, (0)]6} = P{g0 = L < 00} =a. . . . . .. (55)

Fig. 3 (iii) shows the relationship between W, (6) and A, (6) which lies outside
the square adjoining the origin of coordinates with its side equal to ¢f.

o

W77 T
//// o)

19

P

LY}

\\

W(ey
x, O CIN ¢ x, © ' 0

(0] {ii) (iif)
Fi1c. 3.

It may be useful to deduce the probability law of L for a more general case, when
the number n of the x’s considered is arbitrary, all of them being independent and
following the same probability law

p (%) =1/6 for 0 < x; << 0
....... (56)
p(x)=0 elsewhere
For this purpose we notice that for any positive constant L” =< 6
n L’ L/‘ n
PL <L) = I [ p(x)ds= (F) ...... (57)
i=1J0 ’

Differentiating this expression with regard to L’, we may obtain the elementary
probability law of L. The probability in the left-hand side of (55) may be obtained
directly from (57) and we have, for n = 2,

P{gh=L<0|0}=1—¢>=@a. . . . . . . .. (58)
Hence
g = (1—a)t oo (59)

Thus the inequality (54) defining the region A, (6) becomes
0(l —a)=L<0.. .. ... .. ... (60)
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It is easily seen that the system S; satisfies the conditions (i)—(iv) and therefore may
be considered as a system of regions of acceptance defining the lower and the upper
confidence limits of 6 and hence the confidence intervals. In order to obtain the
lower limit, 6 (E), fix any sample point E and consider (54). Itis easily seen that if
L is the larger of the coordinates of E, then the lower bound of the 6’s for which E
falls within A; (0) is given by

O, (E)y==L. . . . . ... ... .. (61)

On the other hand, it is seen also from (54) that the upper bound of the same 6’s is
obtained from ¢6 (E) = L, thus

0, (B)=L(1—a) & . ... ... ... (62)
It follows that the length of the confidence interval is, say,

5 (E):L?l(%;‘);_)* Lo .. (63)

The formulae (61) and (62) could be used to estimate 0, and in applying them we
shall be correct, in the long run, in 100« per cent. of all cases.

It is interesting to compare the two systems of confidence intervals (50) and (51),
(61) and (62). For this purpose let us choose « = . The statements concerning
the value of 0 using the two confidence intervals will be

=0=4x, 8, (E)=3%x, ... ... ... (64
and
L=6=<2L, 3E=L ..... .. . . (65)

where x is the arithmetic mean of x; and x,. Assume that in two different cases,
A and B, the observations gave 1’y = &', = 1 and "', = 0-1, 5", = 1-9 respectively.
Then using (64) we shall get, in both cases,

: t=0=4, .. ... (66)
while using (65)
l=0=2 and 1'9=0=38 . ... ... (67

in cases A and B respectively.

The two pairs of inequalities do not agree and a superficial examination may lead
to the conclusion that there is some contradiction in the theory.

It is perhaps not so bad with the sample A, for which the two confidence intervals
(66) and (67) partly overlap but do not cover each other. But in the case of the
sample B the interval (67) is entirely included within (66). Are these intervals
equally reliable ?

Before this question could be answered, it must be made more precise. What is
exactly meant by the words “ equally reliable ”’, and do they refer to the numerically
defined intervals, viz., (4/3, 4) and (1-9, 3-8), or to the whole systems of intervals as
given by (64) and (65) ?
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The theory of confidence intervals as explained in preceding pages does give reasons
for considering the systems (64) and (65) as ““ equally reliable”’. By this is meant
that (1) if a random experiment determining the values of x, and x, is performed
many times and (2) if the random variables x, and x, follow the probability law (38)
where the value of 6 > 0 in each experiment may be the same or different—without
any limitation whatsoever—then the frequency of cases where the intervals (64) and
(65) calculated for each experiment would actually cover the true value of 0 will be,
in the long run, the same, namely, « = 3/4.

On the other hand, if the words * equally reliable ”” in the above question refer
to the numerical intervals (4/3,4) and (1-9, 3-8), then the theory of confidence
intervals does not give any reasons for judging them equally reliable or not.

It may be useful to illustrate the above statements with a simple sampling experi-
ment which the reader may wish to perform.

Imagine that in a period of time the statistician is faced 400 times with the
problem of estimating 6. The true value of 6 may be in all those 400 cases the same,
or it may vary from case to case in an absolutely arbitrary manner. Assume, for
instance, that in a set of 400 random experiments the distribution of 0 is as set up in
the following table (or any other) :

True 0 Frequency
1 155
2 37
10 8
20 10
30 190

Next take T1PPETT’s random sample tables (1927) and consider each of the numbers
composed of four digits as a decimal fraction. Write down from the table 400 couples
of figures. The figures of the first 155 couples consider as particular values of x;
and x, determined by 155 experiments with true 6 = 1. The figures in the next
37 couples multiply by 2 and consider the products as forming the results of 37
further experiments where 0 = 2. The figures in the next 8 couples should be
multiplied by 10, those in the next 10 couples by 20, and finally those in the remaining
190 couples by 30.

Substitute the obtained results in formulae (64) and (65) and see in each case
whether the calculated interval covers the true value of 6, i.c., 1, 2, 10, 20, or 30,
whichever the case may be. It will be seen that the relative frequency of cases where
the confidence intervals either calculated from (64) or from (65) will actually cover
the true 6 will be approximately equal to « = 0-75. Of course, there will be no
perfect agreement with this figure, but it would be extremely surprising if the observed
frequency fell outside the limits of 0-69 and 0-81.  This result is entirely independent
of the distribution of true 6’s, and the above table may be altered as desired, without
any limitation.

If there is little to choose between the two systems of confidence intervals (50) and
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(61), and (62) and (63) from the point of view of probability of correct statements,
there are other aspects which easily determine the choice. In problems of estimation
by interval, it is natural to try to get as narrow confidence intervals as possible.
Comparing again (66) and (67), we find that the latter interval is considerably
shorter than the former. It is easy to see that this is a general rule. In fact, what-
ever the mean, x, if both %, and x, are necessarily positive, then

r=L<2y, ... ... . .(68)
and it follows from (64) and (65) that
(3/8) 8, (E) <383 (E) < (3/4)3, (E), . . . . . . . .(69

showing that the length of the confidence interval determined by (62) and (63) is
always less than 3 /4 of that determined by (50) and (51). Itis obvious, therefore, that
the confidence intervals defined by (62) and (63) compared to the other system have
definite advantages. These advantages, however, are independent of the conception
of probability.

Using again the analogy with the games of chance, we may say that while the rules
of the two kinds of game, as described by the two pairs of inequalities (50) and (51),
(62) and (63), assure the same probability of winning, the sums which could be won
in each case are different, and this is the reason why we prefer the * game”’ (62) and

(63).*

(d) Example 11

Let us now consider an example in which the probability law of the random
variables considered depends upon two parameters 6, and 6,, our problem being to
estimate the value of 6;. In order to remove all technical difficulties which might
screen the essential points of the theory, we shall again consider a simple case where
the number of the random variables is n = 2. Suppose that it is known for certain

that

P (%1, 5|04, 02) = 6—2-2-— 0, 0, +30,x for 0 < xy, %, and x; + x, =<
1

p (%1, %3]0, 0,) = O for any other system of values of the x’s.

ell
. (70)
J

As to the parameters 6, and 0,, it is known only that 6, > 0 and — 1 < 0,70, = 2.
The sample space W is limited to the first quadrant of the plane of the ¥’s, and its
positive part, W, (8,), corresponding to any fixed value of 6,, is formed by a triangle
as suggested in fig. 4.

In order to see at once the difficulties introduced by the fact that the probability
law (70) depends upon #wo parameters, while we are interested in one only, let us
try to solve the problem of confidence intervals by a guess. In Example I, the more

* This point will be discussed later. See pp. 370 et seq.
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satisfactory confidence intervals were determined by regions of acceptance belonging
to S,, having their internal boundary similar to that of the external, the latter being
also the external boundary of W, (6).

As the conditions of the problem in Example II present many features similar to
those in Example I, let us try to use as regions of acceptance the regions A; (6,),
constructed in the same manner as the more successful regions of acceptance in
Example I.

The region A, (0,) will be limited by the axes of coordinates, by the straight line
%, + x, = 06, and by a parallel to that line, corresponding to the equation
%, + x5 = a 6, where a << 1 will be a constant which we shall try to determine so as
to satisfy the condition (i).

OF— XT—{B ad e %,

F1c. 4—B C represents W, (x';) ; DE represents w (x;)
We have
P {EcA, (61)1613 0, =P {ab, = %, 4 2, = 01|61, 0,0}

a9y — x4

—1— L‘dxlj b (%1, %] 01,05) drs

0

=1—a®+3a2 (1 —a)00, . . .. .. (71

Now it is easy to see that the regions A; (6,) cannot be used as regions of acceptance.

In fact, it follows from the proposition III that the regions A; (6,) could only be
used as regions of acceptance if, for any fixed value of 6, = 6’;, the probability
P {EeA, (67,)]0',,0,} were equal to a irrespective of what is the true value of 0,. Looking
at the last line of (71), we see that if @ and 6, = 6’; are fixed, the probability
P {EcA, (01)]6",,05} still depends on 6, and that, according to the value of this
parameter, it may be smaller or larger than the prescribed «.

We see, therefore, that in cases where the probability law of the x’s depends upon
some more parameters, say 0,, 05, ... 0, besides 0,, which it is desired to estimate,



364 J. NEYMAN

the choice of the regions of acceptance must be limited to those, A (0,), for which
the value of the probability P {EcA (0,)|0,, 0,,... 0} = « and is independent of
the values of the parameters 0, .... 0,

Regions of this type which have been considered elsewhere (NEymMAN and PEARSON,
1933) are called similar to the sample space with regard to the parameters 0,,
03, ...0,andof sizea. Ifcertain limiting conditions are satisfied by the elementary
probability law of the X’s, it is known also how to construct the most general similar
region. Therefore, under these conditions, we are able to select the regions of
acceptance, not only satisfying the condition (i) but also some other conditions con-
cerning the relative width of the confidence intervals which will be discussed below.

The conditions under which we are able to construct the most general region
similar to the sample space with regard to the parameter 0, are not satisfied by the
probability law (70). Therefore, we are not able to construct any region similar to
W with regard to 6,. However, a few theoretical remarks which follow allow the
construction of a rather broad family, say ¥, of such regions. It is just possible that
an advance of our knowledge on the subject will show that the only regions similar
to W with regard to 0, are those belonging to F.

(¢) Family of Similar Regions Based on a Sufficient System of Statistics

Denote by p (E|0,, 6,, ... 0,) the probability law of random variables X,, X,, . ..
X, depending on [ parameters 0,, 0,,... 6, by W (T, T,,...T,), or W (T) for
short, the locus of points in the sample space W where some statistics™ T, T,, ... T,
have certain constant values and finally by w (T,, Ty, ... T,), or w (T), a part of
W (T) which may be defined in one way or another. We shall assume that the T’s
possess continuous partial derivatives with regard to the X’s. We may now prove the
following proposition.

Proposition VIII—If the statistics Ty, Ty, . .. T, form a sufficient set with regard
to the parameters 0,, 05, ... 0, then the probability of the sample point E falling
within w (T) calculated under the assumption that it has fallen within W (T) or

P{Ecw (ME<W M} . . . ... .... (72

is independent of 6,, 64, ... 0,and is a function of 6, only.

In proving this proposition, we shall start by expressing its conditions analytically.
The condition that the statistics T,, T, . .. T, form a sufficient system with regard
to 0y, 0,, ... 0,is equivalent to (i) that Ty, T,, ... T, are algebraically independent
and (ii) that the elementary probability law of the X’s can be presented in the form
of the product

b (E|0y, 04, ... 0)=p (Ty, Ty, ... T,05, 04, ... 0) F(E[6,), . . (73)

* For the definitions of the terms used in this section, se¢e NEyMAN and Prarson (1936, 4).
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where p (T, T,, ... T,| 04, 0,,...0,) means the elementary probability law of
the T’s and f (E|6,) is a function of the x’s and possibly of 6,, but quite independent
of 0,, 05,...0,.*% The word “ equivalent ”’ means that whenever T, ... T, form
a sufficient set then both (i) and (ii) must hold good and that, inversely, whenever
(1) and (ii) are true, then the statistics T, . . . T, must form a sufficient set.

Introduce a new system of n-variables Ty, Ty, ... T, ¢ 1, ..., including the
statistics T;, which form the sufficient set, and transforming the original space W
of the x’s into another n-dimensional space W’.  As the T’s are algebraically in-
dependent, it is always possible to arrange so as to have a one to one correspondence
between W and W', except perhaps for a set of points of measure zero. Denoting
by E’ the point in W’ and using (73), we may write the probability law of the new
variables in the form

p(EN0y, 04...0) =p (T, Ty, ... T|0,,...0)f (E6,), . . (74)

where again f; (E’|6,) does not depend upon 6,, 65 ... 6, Dividing both sides of
(74) by p (T,, ... T, 04, 6,5, ... 0,), we shall obtain the relative probability law of
bivts bygoy .oty given Ty, Ty, o0 T, .

p (t,+1, t‘,+2, “ .. tnI61, “ 0 el) Tl) “ .. T,) :ﬂ (E/Iel)’ o e (75)

Now (72) represents the probability of E falling within w (T), calculated on the
assumption that it fell on the hypersurface W (T). The image of W (T) in W’ will
be a prime, say W'(T), defined by T; = const., 1 = 1,2,...s, and the image of
w (T) a part of W’ (T), which we shall denote by w’ (T). 'The position of the point
E" on W’ (T) corresponding to any fixed system of values of T, Ty, ... T, is deter-
mined by the coordinates ¢ 1, ¢y, . . . £, and it follows that the probability in (72)
is equal to the integral of (75) with regard to £ .4, £, ...t extending over the
region w’ ('T).

As (75) is independent of 0,, 05, ... 0,, so must be its integral taken over w’ ('T),

P {Ecw (T)|EeW (T)} = P {E'ew’ (T)|E'eW’ (T)}

= jj‘ ,mp (biyrye o Ty, Toy oo . T) dty g . dt,

Zj...f,mfl (E'(0,) dt, 1ty s...dty. . . . (76)

This completes the proof of the proposition VIII. We may remark that for any
fixed value of 6, and a fixed system of T, T,, ... T, for which p (T, ... T,) >0
the region w (T) may be so selected as to ascribe to (76) any value between zero and
unity which may be given in advance. It is also obvious that this could be done in
an infinity of ways.

* This proposition has been stated without proof by NEyMAN and Pearson (1936, b), p. 121. It may
be easily proved following the lines indicated by NEvyman (1935, a).
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Proposition IX—If T, T,, ... T, form a sufficient set of statistics with regard to
04, 03, . .. 0, and if for any system of values of the T’s the region w (T) is so selected
that, for a fixed value of 6, = 6’

P{Eew (T)|EeW (T)} =@, . . . . . . .. (77)

where 0 < « < 1, then, for that value 6, = 6, the n-dimensional region w which
would be obtained by combining together the regions w (T) corresponding to all

possible systems of values of T, Ty, ... T,, will be similar to the sample space W
with regard to 6,, 0,, ... 6, and will have its size equal to «, so that

P{Ecw|0'} =a, . . . . . e e e o .. (78)
whatever the values of 0,, 0,,... 0,

In order to prove Proposition IX, denote by %’ the image of w in W’.  Obviously
w’" will be a combination of the regions »’ (T) and also

P {Eew|0';} = P{E'ew’|0)}, . . . . . . . . .. ..o (79)
and therefore

P {Eew| 0’} = jj P (E]0, 0, ... 0)dT, dTy ... di.  (80)

Using (74) and denoting by W'’ the set of all possible systems of values of T, T, .
T,, we obtain further

P (Bew] 0} = [ ... | [p (T, Ty ... T|01, 6,y ... 0)

w L
j j oS (B0 dh dtﬂ} dT, ... dT,. (81)

Owing to (77), this equation reduces to

-

P (Ee w]0} = | .. [ p(Th TJ0, 00 0) AT AT, = o, (82)

since the integral of p (Ty,...T,|0's,... 0,), taken over the set W’ of all possible
systems of values of the T’s, must be equal to unity, whatever the values of 04, 0.,
... 0. This proves the Proposition IX.

It follows that, whenever a system of statistics T;, T,, . . . T} sufficient with regard
to the parameters 6,, . . . 6, exists, we may construct an infinity of regions w, all of
which will be similar to the sample space W and will have the same size «. To do so
it is sufficient

(a) To select on any hypersurface W (T) a region w (T) satisfying the condition
(77). Owing to Proposition VIII, this i¢ always possible and in an infinity
of ways.
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(b) To combine all the regions w (T') corresponding to all possible systems of
values of the T’s.

The family of the regions similar to the sample space with regard to 6,,... 0,
which may be thus obtained may be called the family based on the sufficient system
of statistics T}, Ty, ... T,. It is possible that in certain cases similar regions will
exist which do not enter into such families based on sufficient systems of statistics.

We may now go back to our Example IT and see how the problem of confidence
intervals could be solved.

(f) Example 1la.

Turning back to the probability law of x; and x, as defined in (70), it is easy to
see that x; is a specific sufficient statistic with regard to 6,. As a specific sufficient
statistic with regard to one parameter is a particular case of a sufficient system of
statistics, this fact, together with the Proposition IX, could be used in order to con-
struct regions similar with regard to 0,, which we require to serve us as regions of
acceptance.

In order to see that x, is a specific sufficient statistic with regard to 6,, let us calculate
its elementary probability law. Integrating (70) with regard to x, between limits
zero and 0, — x;, we easily obtain

i (xl) zﬁ(xl, leeu 62) (61 ——xl) for 0 < x = 61,}
p (x;) = 0 for any other value of x;. Coe e

(83)

It is seen that p (x,) depends both on 6, and 6, and therefore we shall denote it by
p (x1]6,0,). Now we ean write

D (%1, 25|04, 05) = p (21|04, 0,) F(E[6,), . . . . . . (84)
with f(E|6,) defined as follows. For 0 < x;, x, and ¥, + %, =< 0,
SE[O) =(0;—x)"" . . . ..o L. (8)

and at any other point f(E[0,) = 0. As f(E|0,) is independent of 0,, it follows
that x, is a specific sufficient statistic of 6,.

Using Proposition IX, we may now construct regions which, for a fixed value of
6, will be similar to W with regard to 6,. For this purpose we have to fix 6, = 6,
(say) and also the value of the sufficient statistic ¥, = #’;. Next we consider the
locus W (x’;) where x = x” and select any part of it w (x") satisfying (77).

The combination of w (x") corresponding to all values of x' between limits
0 < x’" = 0’; will give us a region similar to the sample space with regard to 6,.

Now W (#';) is a straight line parallel to the axis Ox,. In order to select its part
w (x'), which may be represented by an interval, satisfying (77), we require the
relative probability law of x,, given x;. Using the familiar relation

D (%, %) = p (1) p (Xa|%1), o o o . . . (86)

3D 2
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and comparing it with (84) and (85), we find that for 0 < x; = 0,

P (%01, 20) = (0, — x;)7t for O <y =0, — 2 } (87)

b (%5]04, x,) = 0 for other values of x,.

It follows that the relative probability law of x,, given x,, is positive and constant for
0 < x, = 6, —x, and is zero elsewhere on the line W (x;). Therefore the con-
dition (77) concerning the interval w (x';)* to be one of the elements of the similar
region w reduces to the requirement that the length of w (x’) should be in a constant
proportion « to the length of the interval, say W, (x',), on W (#;), where p (x;|0,, x',)
1s positive.

We see that a number of regions similar to the sample space with regard to 0,
could be obtained as follows. (a) Fix a value of x = #’ < 6, and select on the line
W, (x'y) corresponding to

¥, =%, and O0< =<0, — %y, . ... ... (88

any interval w (x',), the length of which is equal to « (6, — x’;). (b) Combine all
such intervals together to form w.

We shall select as the regions of acceptance, A, (0,), the regions constructed as
described in (2) and (b) with an additional limitation, that the intervals w (x;)
corresponding to different values of #, should be similarly situated on W, (x,).
Thus, for any 0 < x; < 6, we shall define the interval w (x,) by the inequalities

b0, —x) <ap=(b-+a)(0, —x), . ... .. (89

where b is any positive number not exceeding 1 — «. Combining all such intervals,
which obviously satisfy (a), we shall obtain the region A, (6,) which we shall use as
a region of acceptance in estimating 6,. As shown in fig. 4, the region A, (6,) is
limited by the axis Ox,, and by two straight lines x, = b (0, — x;) and x, = (b 4+ «)
(6, — x;). Ttis easy to check that P {EcA,(0,)|6,} = « whatever the value of 6,,
so that the condition (i) required for A, (6;) to be a region of acceptance is satisfied.
Tt is easily seen that the remaining conditions (ii)-(v) are also satisfied.

Now we may determine the confidence intervals for 6, resulting from the regions
of acceptance A, (6,). If »’; and x’, are the coordinates of any sample point E’
determined by observation, we see from (89) that the lower bound of values 6'; of

6, for which E’cA, (67,) is

gl(E')—_—_x'1+5%;. e (90)

* Tt is obvious that it is not necessary that @ (x*) should be one single interval on Wy (2”). It
could be formed by several such intervals subject to the condition that the sum of their lengths is

equal toa (0, — %'), elc.



STATISTICAL ESTIMATION 369

The upper bound of 6’; is found from the same inequalities (89), namely,
m@m:ﬁ+%a e ... (9D

These are two estimates of 6, determining the confidence interval 8 (E’).. The
length of this interval for any given sample point, E, is

— xXg
S(E)w_b(b——i—oc)’ R 29
and depends upon the value of & chosen. The larger b, the smaller 8 (E) and
therefore the more accurate estimation of 6,. The confidence intervals giving the
greatest accuracy correspond to b = 1 — a.

We see again that after having assured that the probability of our being correct
in statements concerning the estimated parameter is equal to «, we can proceed
further and satisfy some requirements concerning the accuracy of these statements
as measured by the length of the confidence intervals.

The above two examples are simple not only because they do not present any
technical difficulties in calculating probability laws, etc., but also because the choice
between the systems of confidence intervals suggested is easy, e.g., if we use alter-
natively b '= 1 — « and 6" << 1 — «, all the confidence intervals as determined by
(90) and (91) corresponding to 4" will be shorter than those corresponding to 5”.
There is therefore no doubt as to what value of 4 should be chosen.

This, however, is not always the case, and in general there are two or more systems
of confidence intervals possible corresponding to the same confidence coefficient «,
such that for certain sample points, E’, the intervals in one system are shorter than
those in the other, while for some other sample points, E”, the reverse is true.

This point is of some importance and I advise the reader, as a useful exercise, to
consider a system of regions of acceptance, Az (6,), defined as follows :

(1) for 0 < %, =< 1/2 6, , A; (8,) contains all points in which
(1 —a) (0 —x) =x, =0, —x, . . . . ... (93)
(2) for 1/2 6, < x, < 6, , Ay (6,) contains all points in which
0<ay<a (O, — &) - « o« o oo . (99
It is easy to see that the regions A, (6,) thus defined may serve as regions of accep-
tance. The reader will also easily find that for all sample points of the line x, = ax,
the confidence intervals as defined by regions A; (6,) will be shorter than those

defined by (90) and (91) with 4 = 1 — «. On the contrary, the confidence intervals
for all sample points lying on the line x, = gx, with

O<q<%§ff%, e (95)
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will be greater than those defined by (90) and (91). The position is illustrated in
fig. 5. Here it is not so clear which of the two systems of confidence intervals to
choose. The analysis of the situation is given in the next section.

IIT—Accuracy oF CONFIDENCE INTERVALS
(a) Shortest Systems of Confidence Intervals

If there are possible the systems of confidence intervals, say C, and C,, such that
for some sample points the intervals in C, are shorter than those in C,, while for some
other sample points the reverse is true, the choice between C, and C, may be based
on the relative frequency or on the probability of having an interval of a given length.

If using C; we have short confidence in-
X, tervals more frequently than when using
C,, then the system C, will be probably
considered as more satisfactory.

The above statement may appeal to
intuition, but it is obviously too vague to
be used in practice.

Consider the general problem when the
number 7 of the variables X which we may
observe is arbitrary and the probability
law of the X’s, p (E|04,. .. 6,) depends on
[ parameters 0,, ... 6, the first of which,
0;, we desire to estimate. Denote by 6,°
the unknown true value and by 6’; any
other value of the estimated parameter.
Denote further by 3; (E) the confidence

Fic. 5—Shaded area represents A, (6,) interval for 6, corresponding to the sample
point E and belonging to a particular

system G;, (¢ = 1, 2. ..) of the confidence intervals established at a fixed confidence
coefficient «. Thus we assume that, as in the above examples, we have several

systems of confidence intervals C;, C,, ... If all of them correspond to the same
confidence coeflicient «, then all of them satisfy the condition

P{(E) GO0, =a, . . .. .. ... (96
stating that, whatever 6, and whatever the values of other parameters 0,, ... 6,

the probability that the interval should cover the true value 6,°, is equal to «.
This is the common property of the systems of confidence intervals considered.
Now it is obvious that whilst it is desirable that the true value of 6, = 6,° should
be covered by the confidence interval 3 (E) determined by an observed sample point
E, it is not so with any other value of 6, = 6'; # 6,°. In fact, the presence of the
value 6’y # 6,° within an interval 3 (E) containing 0,° is unnecessary and may be
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interpreted as an indication that this interval is ““ too broad . Itis clearly impossible
to avoid altogether covering the values of 0, which are not true. But we may try
to diminish the frequency of & (E) covering any value 6’; # 6,° to a minimum.
This leads us to the following definition of the shortest system of confidence intervals.

If a system, C,, of confidence intervals 3, (E) has the property that whatever any
other system C of intervals § (E) corresponding to the same confidence coefficient
«, whatever the true value of 6, = 6,° and whatever any other value 6, » 60,°

P {5, (E) C0',|6,°F = P {5 (E) C0"0,%, . . . ... (97)

then the system C, will be called the shortest system of confidence intervals.

The justification of this terminology is clear. When using C,, the true value of
6, = 0,° will be covered with the prescribed frequency « and any other value
0’y # 0,° with a frequency not exceeding that corresponding to any other system,
C corresponding to the same confidence coefficient «. This could be described by
saying that the intervals 3, (E) are not unnecessarily broad.

The problem of determining the shortest system of confidence intervals is
immediately reduced to that of finding appropriate regions of acceptance. In fact,
using the Proposition I and II or the Corollary I expressed by (26), we may rewrite
the condition (97) as follows :

P {EcA, (0')]0,% = P {EcA (6/))[6,%, . . . ... (98)

where A, (6,) and A (6,) denote the regions of acceptance leading to the systems
of confidence intervals G, and C respectively.

If C, is the shortest system, then (98) should hold whatever 6,° and 6, and what-
ever the regions of acceptance A (6,), provided they correspond to the fixed confi-
dence coeflicient «. The condition (98) concerns the region of acceptance A, (6,),
and it must be combined with that expressed by the Proposition ITI, namely that

P {EcA, (6",)|6"} = P{EcA (6')|0" )} =@a, . . . . .. (99)

which must also hold for any 6, and any values of the other parameters 6,, . .. 6,.

We see that the problem of the shortest systems of confidence intervals correspond-
ing to a confidence coefficient « is reduced to the following :

(1) Fix any value of 6; = 6’; and determine on the hyperplane G (6’;) a region
A (0')) similar to the sample space with regard to 8,, ... 6, and of the size «.

(2) Out of all such regions A (6’;) choose the one, A, (6’,), for which the
probablhty P {EcA (6',)|0,°}, where 6,° is any value of 6, different from 6’ is
minimum.

(3) If the region A, (6’;) so found does not lose its property of minimizing
P {E<A (6,)|6,° when the value 0," is changed, and if the whole system of the
regions AO( ’,) corresponding to all possible values of 6, satisfies the conditions
(i)—(iv) of p. 354, then it may be used as the system of regions of acceptance and will
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determine the shortest system of confidence intervals. The problem as described in
(1) and (2) has already been considered in connexion with the theory of testing
statistical hypotheses (NEyman and Prarson, 1933) and its solution is known.
However, it is also known that the region, A, (0",), satisfying the conditions (1) and
(2) for a particular 0,° does not always do so when that value of 0,° is changed.
It follows that the shortest systems of confidence intervals do not always exist.  Still,
they do exist occasionally. The reader acquainted with the joint paper mentioned
will have no difficulty in checking that the confidence intervals determined by (61)
and (62) in the case of the above Example I form the shortest system of confidence
intervals. Applying the theory of the same paper, it is also easy to see that the
confidence intervals defined by (90) and (91) with 4 = 1 — « form a system which is
shortest of all those which could be constructed, using regions of acceptance belonging
to the family based on the specific sufficient statistic x;.

These, however, are rather rare cases. In order to emphasize this rareness, we
shall prove the following proposition.

Proposition X

(1) If the probability law p (E|0) of the X’s, depending upon one parameter 0,
is continuous in the whole sample space W and if at any point of this space it admits
a continuous derivative with regard to 0 not identically equal to zero, and admitting
differentiation under the sign of the integral taken over W ;

(2) If A (0") is a region in the sample space W and 6" and 0" are two particular

values of 6, such that
P{EA (0|0} =a , . . . . . . .. . . (100)
and
P {EcA (07)]0"} = P{EcA|6"} . . . . . .. (101)

where A is any other region in W such that P {EcA|0} = « ;
(8) If on the boundary of A (6’) there exists at least one point where p (E|0°) is
not zero, then there must exist a third value of 6 = 6’"’, and a region B in W, such

that
P{EeB|0} =o« . . . . . . . . . .. (102)

P (EcA (69)[677} > P {E<B|0”}. . . . . ... (103)

It will be noticed that the Proposition X means that if the probability law of the
X’s satisfies the condition (1), then the shortest system of confidence intervals generally
do not exist. It follows also that in such cases the uniformly most powerful tests of
hypotheses specifying the value of 6 cannot exist.

We shall prove the Proposition X, starting with the assumption that it is not
correct and that whatever the value 0’”, either smaller or larger than 6’, and what-
ever the region B satisfying (102) it follows that

P (EeA (00"} = P{E<B[0"}. . . . . . .. (104)
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It is known (NEymAN and Prarson, 1933) that in such a case, whatever the sample
point E’ within the region A (6’), then for any 6,

PENO) =E(0)p (B07), . o o vt .. (105)

where £ (6) depends only on 6 and not on the x’s. At any point, E”, outside A (6)
we should have

pE(0) = k(0)p (B7[0)). . . . . .. .. (108)

Owing to the continuity of the probability law p (E|0) we shall have at any point
E'” on the boundary of A (0)

pE0) =k (0)p (B7]07). . o . ... .. (107)

We shall assume that p (E"’|6’) > 0. Asp (E"’|0) admits a derivative with regard
to 0, it follows that £ (6) must admitone. It follows also from (107) that if 6 — 6’
thenk (0) — 1. Differentiating (107) with regard to 6, and putting 6 — 6’ = A6,
we can write the following expansion of £ (0)

E(0) =1+ AOK (0" 4 g AO)
— 14 A0 (E"[0" + ¢ A0) p~ (E7[0)),0 < ¢ <1, (108)

where the dashes indicate differentiation with regard to 0. On the other hand, we

can write also
p (E'|6) = p (E’|0")) + A6 p" (E'|6" 4-rAB), O <r<<1. . . (109)

Substituting (108) and (109) in (105) and rearranging, we get

e engy P B0 gA0) p (B]0)\ _
20 (4 (E']0" + rao) T )=0, . (10

and this inequality must hold good at any point E’ within A (6") and for any value
of A6. It follows that
fEery — B p (EL) o 111
¢ ®10) - L EC (111)

at any point E’ within A (6’). In fact, if the expression in the left-hand side of
(111) were not zero, then, owing to the continuity of 4" (E|6), for sufficiently small
values of A6, the expression in brackets in (110) would not be zero and would have
a constant sign. As A6 may be both positive and negative, the inequality (110)
would not be satisfied. Using the inequality (106) holding good at any point
outside A (6’) and repeating the above argument, we could easily find that (111)
must hold good also outside A (6') and therefore in the whole sample space W.
Now it is easy to see that p’ (E|6’) must be identically equal to zero, which contradicts
the hypothesis (1) of the proposition X.

VOL. CCXXXVI.—A ' 3 E
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‘To show this we consider the integral
jj p(EIO) dey. . dey=1. . .. ... .. (112)
w

Differentiating it with regard to 0 and putting 6 = 0’, we get

j...jwp' (E|0") dy ... dv,=0. . . ... .. (113)

We can calculate p’ (E|6’) from (111) and substitute into (113). Using again (112)

we find
17/ (EHIIG:) _o
p (E/Il e )
Substituting this again in (111) we find p’ (E|6’,) = 0, whatever the point E in W.
This proves the Proposition X.

As the majority of probability laws with which we deal in practice, ¢.g., the normal
law, satisfy the conditions of Proposition X, it is seen that, for practical purposes,
some other type of systems of confidence intervals is required, as the shortest systems
generally do not exist.

(b) Ong-sided Estimation

The proof of the above proposition is based upon the circumstance that the left-
hand side of the inequality (110) must not change its sign, while A6 is both positive
and negative.

It is therefore obvious that if it were for some reasons required to determine regions
of acceptance A, (0) satisfying the conditions

P{EcA, (0)]0} =, - « o v b e . (112)

whatever the value of 6, and whatever the values of other unknown parameters
involved in the probability law of the X’s, and also the condition

P {EcA, (0°)]07} = P {EeA (0)[07}, - . . . . . (113)

whatever any other region A (6’,) satisfying (112) and whatever 6’; and 6",
provided, however, the difference between them 0’y — 0, is either always positive or always
negative, then the solution of this problem would exist more frequently than that of
the problem of the shortest systems of confidence intervals.

The application of the regions of acceptance having the above properties is found
useful in problems which may be called those of one-sided estimation. In frequent
practical cases we are interested only in one limit which the value of the estimated
parameter cannot exceed in one or in the other direction. When analysing seeds,
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we ask for the minimum per cent. of germinating grains which it is possible to
guarantee. When testing a new variety of cereals we are again interested in the
minimum of gain in yield over the established standard which it is likely to give.
In sampling manufactured products, the consumer will be interested to know the
upper limit of the percentage defective which a given batch contains. Finally, in
certain actuarial problems, we may be interested in the upper limit of mortality
rate of a certain society group for which only a limited body of data is available.

In all these cases we are interested in the value of one parameter, say, 0,, and it is
desired to determine only one estimate of the same, either 0 (E) or 6 (E), which we
shall call the unique lower and the unique upper estimate respectively. If 6, is the
percentage of germinating seeds, we are interested in its lower estimate 0 (E) so as
to be able to state that 8 (E) =< 6,, while the estimation of the upper bound 6 (E)
is of much less importance. On the other hand, if it is the question of the upper
limit of mortality rate, 6,, then we desire to make statements as to its value in the
form 6, = 6 (E), etc.

These are the problems of one-sided estimation, and it is easy to see that their most
satisfactory solution depends upon the possibility of constructing regions of acceptance
satisfying (1) and (2), the latter with the restriction that the sign of the difference
0, — 0, is constant.

The two problems of the unique lower and the unique upper estimates are very
similar, so that it will be sufficient to treat only one of them, ¢.g., the first. Suppose,
then, that we are interested in the unique lower estimate § (E) of a parameter 6,.
Treating the problem from the point of view of confidence intervals, we desire to
define a function 6 (E) of the sample point E such that whatever may be the true
value 0,° of 0,, the probability

PUOE) =00, =0 . ........ (114

where « is the chosen confidence coefficient. Repeating the reasonings of the
preceding sections, we find that this problem is equivalent with that of choosing
appropriate regions of acceptance and that there is an infinity of solutions. Let us
now specify the properties of a solution which would make it more desirable than any
other.
For that purpose denote by 6,° the unknown true value of 6, and by 6’, and 6",
any two other values such that
0, <0,°<0”;. . . ... ... (115)

It is obvious that if we are interested only in the unique lower estimate of 6, and
want the probability of § (E) falling short of the true value 6,° to be equal to «, we
should not mind 6 (E) being smaller than 6’’;. Therefore, when choosing the
function 9 (E), we should not formulate any restriction concerning its satisfying the
inequality § (E) < 6"y, provided the equation (114) is satisfied. The position with
regard to 6', is different. If6 (E) happens to be smaller than 60';, then it will also be

3 E 2
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smaller than 6,° and our statement concerning the value of 6, based on 6 (E) will
be correct. However, it would also be correct if, say,

0 (E) =3 (6, 4 0,° > 04, . . .. ... (116)

and in such a case it would be more accurate and would undoubtedly be judged more
desirable. Generalizing the above conclusion, we could say that whenever we are
interested in the unique lower estimate 0 (E) of a parameter 6,, we should require
it to have the property that whatever 6’; < 6,° the chance of 6 (E) falling short of
6’ should be as small as possible, thus

P{6(E) < 06'4]0,° = minimum . . . . . . . (117)

for all values of 0’y and 0,° such that 6’; < 6,°. This condition implies that the
region of acceptance A, (0';) corresponding to any value of 6, = 6’; should have the

property
P {EecA, (0'1)]0,% = P (EcA|0,%), . . . . ... (118)

whatever 6,° > 6’; and whatever any other region A such that
P {EcA|0"} = P {EeA, (6'))]|0' )} =a. . . . . . . (119)

Similarly, if it were desired to find the unique upper estimate 0 (E) of 6,, the most
desirable solution would be determined by the regions of acceptance, A° (6,) such

that
P {EcA° (6",)]0,} = P {EcA]6,%, . . . . . .. (120)

whatever 6,° < 0; and whatever the region A satisfying (119).

If unique estimates determined by (118) and (119) or (120) and (119) exist, they
will be called the best one-sided estimates of 6,.

Following the recent results (NEyMaN and Prarson, 1933, 1936, a) concerning the
theory of testing hypotheses, it is easy to establish formulae giving the best one-sided
estimates in many important problems. Of these I shall mention one.

(c) Example IIT
Consider the case where the probability law of the X’s is normal
3 (=)

# (Blts) = <;—:}§>e SEE (121)

with unknown £ and o and where it is desired to estimate £&. Following the lines
indicated, it is easily found that the best one-sided estimates of € are given by
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where
Z (x’ - ;’)2

s : 2 :w'.=1 — . . . .
,=Z1 X s TS VR . (123)

x =

S |-

and ¢ may be taken from Fisher’s tables corresponding to P = 2 (1 — «).*

(d) Short Unbiassed Systems of Confidence Intervals

We must now consider the important case where we are interested in the two-
sided estimation in which the probability law of the X’s is highly regular so that,
owing to Proposition X, the shortest systems of confidence intervals do not exist.
We must formulate the properties of confidence intervals which could be considered
as particularly satisfactory.

We shall start with the obvious remark that, if possible, the value of the estimated
parameter which in a particular case happens to be true, should be covered by the
confidence interval more frequently than any other value.

Alternatively, we may express this by saying that for any given value of 6, = 6,°
the probability of its being covered by the confidence interval 8 (E) should be greatest
when 6,° happens to be the true value of 6,. Therefore, whatever 6’y # 6,° it must

b
) P (E) C0,°0,% —a =P {5 (E) CO,°0%) . . . .. (124)

We may express this in still another manner, considering the probability of 6,°
being covered by the confidence interval 8 (E) as a function of that value of 6, which

happens to be true,
P{B(E)Co,°0,3=/(0,). . . . . . .. .. (125)

The formula (124) requires that the function (125) should be maximum for 6, = 6,°
and that that maximum should be equal to «.

It seems to be obvious that if there are many systems of confidence intervals in
which, whatever 6,° the probability (125) considered as a function of 6,, is maximum
for 6, = 0,°% we should choose the system by which this maximum is the steepest, so
that, while the true value of 0, is being shifted away from 0,° the chance of 6,° being
covered by 8 (E) diminishes in the quickest way.

These conditions may now be expressed in terms of equivalent conditions con-
cerning the regions of acceptance.

* The properties of the formulae (122) giving the best one-sided estimates of & were found by the
author in about 1930. Subsequently, these properties, together with an outline of the theory of
estimation, were included in his lectures first given at the University of Warsaw, then, from 1934, at the
University College, London, and also in a course of lectures at the University of Paris in January,
1936. References to these formulae may be found both in Polish and English statistical literature. See
for instance : (1)W. Pytrowski : “The Dependence of the Income of Small Farms upon their Area, the
Outlay and the Capital Invested in Gows . Warsaw, 1932. See particularly pp. 28-29 ; (2) CLorPPER
and PearsoN (1934).
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Let A (0,°) be a region of acceptance corrgsponding to some value 6,° of 0,, so

that
P{EcA (6,)[6,} =0a . . . . . . . . .. (126)
whatever 6,°. We have

£(0,) =P {5 (E) C0,°|0;} = P {EcA (6,°)[0,} . . . . . (127)

and the above conditions concerning the confidence intervals appear to be equivalent
with the condition that the right-hand side of (127), considered as a function of 6,
should be a maximum for 6, = 6,° and that this maximum should be as sharp as
possible. » '

In cases where the elementary probability law of the X’s, integrated over any
region, admits two differentiations with regard to 6, under the integral sign, this
leads to the following :

Whatever 6,°, and whatever the values of other unknown parameters, 64, 05, . .. 6,
0 .
PEAOID [ 0. 0) ey dn=0 L (128)
00, 6 = 6,0 A8
0
o°P {EeA (6,7)[60:3)  — j j 4 (E[0°, ... 6) dxy ... dx, = minimum, (129)
00, 6y = 6 A (89

where p’ and p”’ denote the derivatives with regard to 6,.

The system of confidence intervals having the above properties will be called the
short unbiassed system. The possibility of determining such systems depends on the
possibility of determining the regions of acceptance satisfying (126), (128), and (129).
This problem has been recently dealt with in the case where the number of the
unknown parameters involved in the probability law of the X’s is equal to one
(NEymaN and PeArson, 1936, ¢) and to two (NEYMAN, 1935, ).

In such cases as treated in the papers referred to, the construction of the short
unbiassed systems of confidence intervals does not present any difficulties.

In particular, if the. probability law of the X’s is as in (121), then the short un-
biassed system of the confidence intervals for £ is given by the formula

FofsmE=FAls . ... ... (130)

where ¢ should be taken from Fisher’s tables for P = 1 — «.

IV—SumMMARY

The main problem treated in this paper is that of confidence limits and of confidence
intervals and may be briefly described as follows. Let p (%, ...%,]04, 05,...6)
= p (E|64,...0) be the elementary probability law of n random variables x,. . . x,
depending on [ constant parameters 0, 0,,... 0, The letter E stands here for
X1, ... %, Suppose that the analytical nature of p (%, ... %,|04, ... 0, is known but
the values of the parameters 64, . . 8, are unknown. It is required to determine two
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single-valued functions of the x’s, 6 (E) and 6 (E) having the property that, what-
ever the values of the 0’s, say 0';, 6/,, ... 6’ the probability of § (E) falling short of
6’y and at the same time of 6 (E) exceeding 0’, is equal to a number « fixed in
advance so that 0 < « < 1,

P{O (E) =0, =<0 (E)0,0,...00=0a ..... (131)

It is essential to notice that in this problem the probability refers to the values of
6 (E) and 6(E) which, being single-valued functions of the &’s, are random variables.
6’; being a constant, the left-hand side of (131) does not represent the probability of
6’; falling within some fixed limits.

The functions 0 (E) and 6 (E) are called the confidence limits for 6, and the
interval (8 (E), 0 (E)) the confidence interval corresponding to the confidence
coefficient «.

The problem thus stated has been completely solved for the case where [ = 1,
and it is found to possess an infinity of solutions. If/ = 2 the solution obtained is
limited to the case where there exists a sufficient set of statistics for 6,, 65, ... 6, and
then again there is an infinity of solutions.

Methods were indicated by which it is possible to find among all possible solutions
of the problem the one giving the confidence intervals which are shorter (in a sense
defined in the text) than those corresponding to any other solution.

The confidence limits § (E) and 6 (E) may be looked upon as giving a solution of
the statistical problem of estimating 6, independent of any knowledge of probabilities
a priori. Once 0 (E) and 0 (E) are determined corresponding to a value of « close
to unity, say « = 0-99, the statistician desiring to estimate 8, may be recommended
(1) to observe the values of the random variables x;, ...x, (2) to calculate the
corresponding values of 6 (E) and 6 (E), and (3) to state that the value of the para-
meter 0, is within the limits § (E) < 6, < 0 (E).

The justification of this recommendation lies in the fact that the three steps
described are equivalent to a random experiment which may result either in a correct
or in an erroneous statement concerning the value of 6,, the probability of a correct
statement being equal to« = 0-99. Thus the statistician following the above recom-
mendation is in a position comparable with that of a game of chance with the
probability of winning being equal to « = 0-99.

The method followed to determine the confidence limits for a single parameter
permits an obvious generalization for the case where the number of parameters to be
estimated simultaneously is greater than one.

Three previous publications concerning the confidence intervals for which I am
either partly or wholly responsible (Neyman, 1934, Martuszewski, NEyMAN, and
SupiNska, 1935, NEYMAN, 1935, ¢) refer to the simplest case where the number of ran-
domvariablesand that of the parameters to be estimated are equal to unity. The prob-
lem considered here is therefore far more general and also it is treated differently.
Previously, the parameters to be estimated were considered as random variables
following an arbitrary probability law which could be continuous or not and, even,
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could reduce to unity just for one particular value of the parameter, being zero else-
where. This arbitrariness of the probability law of the parameters served as an
excuse, but the very assumption of'its existence seemed to be an artificiality from which
the present method of approach is entirely free.

Subsidiary results obtained include a method of constructing similar regions which
is more general than the one known previously and the Proposition X bearing on the
theory of testing hypotheses. It emphasizes the rareness of cases where there exists
a uniformly most powerful test.
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Tips for Writing (and Reading) Methodological Articles

Scott E. Maxwell and David A. Cole

University of Notre Dame

One reason many methodological articles are not very intelligible to their readers is because the
content is often inherently difficult. However, a contributing factor in some cases is the tacit assump-
tion that rules of good writing cease to apply when writing about statistics. The authors of this article
argue that good writing becomes even more important as the content of the article becomes more
complex. Furthermore, they believe that additional rules pertain to writing methodological articles
and highlight various ways that methodological article authors can make their work more accessible
(and less painful) to researchers who are not methodological specialists. The authors also suggest
how nonspecialists can most effectively approach the task of reading a quantitative article.

For some psychologists, writing a methodological article is a
fine art of obfuscating needlessly tedious and complex trivia.
For others, reading a methodological article ranks right up there
with a visit to the dentist’s office. Many methodological articles,
however, are not accessible to their intended readers, not neces-
sarily because the material is so sophisticated but because the
presentation of the material is so obtuse. Our goal in this article
is to provide a few suggestions for writing methodological arti-
cles. Excellent articles are available on the writing of general
psychology articles (e.g., Bem, 1987; Sternberg, 1988, 1992).
Hence, we try to avoid repeating these points, except to say that
all the rules for good nontechnical writing are at least as impor-
‘tant for good technical writing if only because the material is
often more complex. Our specific focus is on writing method-
ological articles for nonspecialists, although some of our com-
ments may also pertain to authors who target specialists.

Quantitative methods articles in psychology take many
different forms. Some articles are similar to substantive Psycho-
logical Bulletin articles insofar as they are literature reviews.
The authors of these articles typically synthesize relevant meth-
odological literature or present new statistical methods in a for-
mat that is appropriate to a nonstatistical audience. Other au-
thors present the results of original research. The topics range
from evaluations and comparisons of current statistical tech-
nologies to developments and introductions of qualitatively new
research methodologies. Such articles may include highly tech-
nical mathematics or extensive computer simulation. Because
of the diversity of these articles, we attempt to make points that
are useful to as wide a range as possible of current and future
methodological article authors.

Preparation
Defining Your Audience

*“Perhaps the most important principle of good writing is to
keep the reader uppermost in mind” (Knuth, Larrabee, & Rob-
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erts, 1989, p. 3). This principle is especially important in tech-
nical writing, where your audience may be remarkably diverse,
ranging from methodologists who specialize precisely in the
topic under investigation to researchers in very different fields
who hope to apply a specific new technique in their next study.
Authors often overlook the fact that they wield considerable
control over their readership by carefully choosing the journals
to which they submit their work. At least three questions should
be considered when selecting a journal in which to publish a
methodological article. First, how technical is your presenta-
tion? The perfect article for a highly technical outlet such as
Psychometrika may be almost unintelligible to the majority of
Psychological Bulletin readers. Many journals ( Psychological
Bulletin included) explicitly proscribe the use of complex
mathematics, such as calculus or matrix algebra. If not, the ed-
itor either requests the author to find a more accessible way to
make the points or suggests to the author to submit the work to
a more technical journal. Second, how specific is your method-
ological point? Among methodological journals, some (e.g.,
Psychological Bulletin) target a readership that uses a wide va-
riety of methodologies. In general, articles in which highly spe-
cific points about a particular statistical technique are made be-
long in more specialized methodological journals (e.g., Struc-
tural Equation Modeling). If the point is more general or
pertains to a wider variety of research paradigms, then broader
methodological outlets may be more appropriate. Third, how
specific are the implications of your article for a particular sub-
discipline of psychology? Articles submitted to journals with
broad readerships should have implications for researchers al-
most irrespective of their content area. Even when the technical
level of the presentation is low, authors must still face the ques-
tion of whether the practical implications of the article are
broad enough to warrant publication in a journal such as Psy-
chological Bulletin or whether a more specialized substantive
Jjournal might be more appropriate. Many area journals publish
occasional methodological articles (e.g., Journal of Applied
Psychology), have special sections on methodological advances
(e.g., Journal of Consulting and Clinical Psychology), or even
publish special issues on methodology (e.g., Journal of Coun-
seling Psychology and Journal of Family Psychology). Conse-
quently, an article on a specific topic, such as reaction times in
cognitive tasks, would probably fit well in a cognitive journal,
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whereas an article on reaction time research in general might
cut across disciplines and thus be more appropriate for a jour-
nal with a broader readership.

After selecting a journal, continue to strive to write for as
broad an audience as possible. Failure to relate specific meth-
odological points to the variety of situations to which they
might pertain unnecessarily limits the impact of the article. Use
examples from diverse research areas; refer the reader to wide-
ranging applications of your procedure; and elaborate on the
implications of your methodology for diverse research para-
digms. Pitching your article to too narrow an audience may not
get it the attention it deserves.

Most articles have multiple audiences. A hierarchical struc-
ture permits an article to be read for its general ideas by some
readers and for its specific details by others. Presenting a general
overview of the problem and the solution early in the article
enables all readers to walk away with the overall gist of the mes-
sage. Then, increasing the amount of detail as the article pro-
gresses allows readers to go as far as they want (or need) into
the intricacies of the methodology. At the same time, authors
and readers alike need to be sensitive to the dangers of stopping
too soon. Authors might motivate readers to persevere by issu-
ing periodic cautionary notes that describe potential hazards of
implementing this new technique (among other things) before
reading the next section.

Obtain feedback on the article from a variety of sources. For
example, sharing a draft of the article with other authors who
have written articles in the same general area may provide valu-
able expert feedback. It may be especially useful to seek the
opinions of individuals whose expertise and perspective differ
from your own. For example, some authors may benefit from
involving a methodological expert who can ensure the technical
accuracy of the article. All authors may benefit from the input
of a knowledgeable nonspecialist, who can endow the work with
a healthy respect for some of the readers’ primary concerns,
paraphrase statistical jargon, enrich the article with substantive
examples from nonquantitative journals, and maintain a focus
on the article’s practical implications.

Motivating the Reader

Most psychologists are content to continue plying the tradi-
tional statistics and methodologies learned in graduate school.
A pretty serious wake-up call is needed to alert psychology au-
thors to new alternatives. Before proving anything with num-
bers and formulas, prove to the reader that what you propose
can make a real difference. A specialist who encounters your
article may immediately appreciate the relevance and potential
importance of your article simply by reading the title and the
abstract. The nonspecialist, however, is likely to need more
guidance. Consequently, be as explicit as possible about the pur-
pose of the article. Furthermore, make the point as early as pos-
sible in the article; otherwise, many readers may not struggle
beyond the first paragraph or even the abstract.

To some extent, the point is the same as Sternberg’s (1992)
advice that all psychology authors should “tell readers why they
should be interested” (p. 12). This point is even more impor-
tant when writing a methodological article, however, if only be-
cause there is likely to be a larger gap between the author’s back-
ground and the reader’s. The author may be drawn to the topic

because of its theoretical elegance or mathematical challenge,
whereas readers are more likely to be interested in knowing
whether this article means that they should design their studies
differently or analyze their data with a new technique.

As Knuth et al. ( 1989) stated, “‘present the reader with some-
thing straightforward to start off with” (p. 76). Hand the read-
ers a statement that explains what the article is about and why
they should read it. Most Psychological Bulletin articles have
one of the following points at their center:

1. Methodological advances allow interesting questions to be
answered that previously were not amenable to a solution.

2. Here is a way to increase your statistical power,

3. You may not be testing the hypothesis you thought you
were.

4. If you have data that depart from standard assumptions,
there may be better ways to analyze your data.

5. A new statistic is better than the standard statistic.

Remember, presenting a new solution is of little value if the
reader does not understand the problem yet. A voluminous re-
view of every nuance of a methodological conundrum is un-
likely to hold anyone’s interest unless one is working on the par-
ticular problem. If the problem is truly important, an author
should be able to state in a few sentences at the beginning of the
article what the problem is, why it is important for psycholo-
gists, and why it has been difficult to solve.

Reviewing the Literature

Stipulating that prospective authors conduct a thorough lit-
erature search prior to formulating a methodological article is
hardly an earthshattering notion. Less obvious, however, is that
searching the relevant literature for methodological articles is
often quite different from reviewing the literature for substan-
tive articles. The multidisciplinary nature of methodology re-
quires that the researcher be familiar with previous work in a
variety of other disciplines. What appears to be a new statistical
technique in psychology may have already been proposed in the
statistics literature. The Current Index to Statistics ( American
Statistical Association, 1994), an annual keyword index, is ex-
tremely useful for identifying relevant statistical literature on a
particular topic.

Quantitative psychologists must also be aware of the method-
ological literatures in other social sciences. For example, au-
thors on structural equation modeling often must be familiar
with recent advances that have appeared in sociology literature
(such as Sociological Methods and Research and Sociological
Methodology). Finally, methodologists must be cognizant of the
ideas transmitted to the next wave of researchers through recent
methodology textbooks. Articles that critique methodologies
from texts published a decade ago are not of much value if those
presentations no longer appear in more recent books. Similarly,
articles that constitute pedagogical reviews of already published
methodologies must differ substantively from modern textbook
presentations of the same material. Synthesizing literature that
has heretofore appeared exclusively in specialized methodology
journals may be quite valuable. Once new methodologies ap-
pear in textbooks, however, they are likely to be inappropriate
journal topics even if previous literature reviews have not ap-
peared in journal format.

Occasionally, relevant literature lurks in unexpected places.
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In statistics, problems can sometimes be transformed in such a
way that they take on an entirely different appearance (even
though they are technically unchanged). Under the alternative
guise, new literature, if not new insights, may be hiding.

Communicating Technical Material

Many psychologists’ worst adult memories are from their first
graduate statistics class. With a few well-chosen mathematical
proofs and equations, you have the power to dredge up night-
mares of endless take-home exams and to rekindle feelings of
deep-seated insecurity—not exactly the recipe for tempting the
reader past the first few opening paragraphs of your article. You
might rationalize that these simply are not the people who will
read your article anyway, but that is precisely the (unfortunate)
point. )

Some authors appear to operate from the assumption that
clarity and rigor represent opposite ends of the same dimension:
These authors argue that if everyone can understand their argu-
ments, then their points must not have much insight. Certainly
some arguments require a great deal of prior knowledge without
which even the clearest prose fails to be comprehensible. Nev-
ertheless, it does not follow that clarity and rigor are enemies of
one another. The author must adopt a different attitude, such as
by wondering how he or she can make this inherently difficult
(and potentially tedious) material as accessible as possible.

Clarity is especially critical in technical writing where the
presentation of ideas is usually cumulative. If the author does
not communicate the first points clearly, readers will probably
be lost and therefore be unable to appreciate the remainder of
the article. Be aware of what the reader knows because either
the material has already been presented in the article or some
background knowledge can be safely assumed (Knuth et al.,
1989). If your article is closely related to an earlier article, it is
usually necessary to summarize the major points of the previ-
ous article in considerable detail. Do not expect readers to be
familiar with recent articles, and do not require them to read
the articles before they can comprehend yours. Good advice is
-generally to start at a lower technical level than you would think.
Even more difficult, however, is to anticipate what the reader
expects next. Prepare the reader for the relations between
different sections of the article so that individual pieces become
a coherent whole.

Presume that many readers will skim (or altogether skip)
anything that even slightly resembles an equation. Why fight
it? Too much mathematical material in an article written for
nonspecialists may effectively reduce actual readership to zero.
The most obvious solution is to relegate technical details to an
appendix. This is frequently a useful strategy; however, authors
must take care that the main message of the article is clear even
to those who do not read the appendix.

At times, equations are necessary for the main message of the
article, in which case they should not be placed in an appendix.
Indeed, a statistics article in a specialized journal may (and per-
haps should) contain as many equations as words. When it
comes time for the unavoidable mathematical argument, con-
sider a few simple steps:

1. Tell the reader what you are going to show and why it is
impofant.

2. Define your terms clearly when you first introduce them

(and do not be afraid to remind the reader of key terms along
the way).

3. Within the mathematics section, do not forget that you
can use words too. Phrases such as “substituting Equation 3
into Equation 4 produces the following” are far superior to
phrases such as “it follows that” or insults such as “obviously.”
Remember, too, that symbolic expressions are parts of sen-
tences and should be punctuated as such as well.

4. Pause periodically to explain particular equations and
comment on how they fit into the big picture.

5. At the end of the mathematics section, provide a verbal
summary of the main points and why they are important.

Formulas can often be made more comprehensible by the
presentation of “special cases.” For example, some formulas
may become simpler when sample size becomes extremely
large. Simplifications may also arise when certain terms are as-
sumed to be equal to one another or to zero. Yet another sim-
plification sometimes emerges when a formula is written for the
special case of two groups or in its univariate form instead of
the more general multivariate form. Even if the rest of the arti-
cle uses the more complex form of the formula, readers will
usually find this presentation to be more meaningful if they
have been able to grasp the essential meaning of the formula
through special cases.

Of course, authors must also exercise good judgment about
how much verbal explanation surrounding the mathematical
presentation will be useful to readers. Unnecessary verbiage
simply slows readers down and can make concentrating on the
major points more difficult. On a related point, although word
variety can reduce repetition and subsequent boredom, techni-
cal terms should generally not be interchanged even when they
have the same precise meaning because many readers may not
know whether the change in working reflects a change in
meaning,.

Notation

The wise use of symbols in a quantitative article provides a
clear and parsimonious form of communication. It is much
simpler for both the reader and the author to write g; instead of
“population standard deviation within group j.”” Whereas the
advantage is most obvious in equations, the careful use of sym-
bols in text can also prevent awkward and excessive verbiage.
Careless or thoughtless notation, however, may frustrate the
most dedicated reader even when the expository text of the ar-
ticle is exemplary. A few straightforward rules go a long way
to ensure that symbols help rather than hinder the reader. For
example, providing an explicit definition of each symbol when
it is first introduced is essential. Even something as seemingly
straightforward as » may need to be defined. Aithough the
American Psychological Association’s Publication Manual
(1994) stipulates that n be used to denote sample size within a
group and N be used to denote total sample size, some readers
may not be aware of this notation. Even when the initial mean-
ing is explicit and clear, readers may benefit from an occasional
reminder of what a symbol represents, especially if it has not
been used for several pages. Also helpful is to take advantage of
mnemonic coding wherever possible. Standard notation should
be used if it has been established. The Publication Manual
(1994) provides an extensive list of common statistical abbrevi-
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ations and symbols. Even when standard notation does not ex-
ist, it is still important to follow general conventions, such as
using Greek letters to represent population parameters and
Latin letters for sample statistics. Needless to say, the same sym-
bol should never be used to represent two different concepts,
nor should two different symbols be used to represent the same
concept. Finally, authors must be aware of the need to balance
the parsimony obtained from symbols with the added burden
placed on readers to remember what each symbol represents.
In general, the best advice is to use as few symbols as possible.

Examples and Figures

A mathematician’s natural tendency is to derive the -most
general form of an expression first and only then consider spe-
cial cases. This strategy can be effective in articles written for
nonspecialists if the author explains the general problem thor-
oughly and builds a compelling case for needing the general
form in the first place. Nonspecialists, however, often crave a
few special cases as appetizers, which then whet their appetite
for the most general case. Although this sequence is typically
less elegant mathematically, beginning with concrete examples
may allow nonspecialists to follow the underlying logic more
easily. This approach is similar to the particular-general-par-
ticular teaching technique recommended by Rourke (as cited
in Mosteller, 1980). To explain an abstract idea, begin with a
specific example that motivates the need to develop a solution
to the problem. A general approach to the problem can then be
considered along with a general solution. A sense of closure and
full understanding may be absent, however, unless the general
principles are followed by their application to a specific
problem.

Using the particular-general-particular strategy is often con-
sistent with using appropriate examples. Numerical examples
are especially helpful in methodological articles. Authors can
fulfill the first step of Rourke’s (cited in Mosteller, 1980) strat-
egy by providing an initial discussion of a problem in need of a
solution. Once the author has presented the general solution,
the initial problem can be revisited through a numerical exam-
ple. A dilemma facing the author is to make the example com-
plicated enough to be realistic and yet simple enough to ilius-
trate the general methodological principle clearly. At times, the
best resolution of this dilemma may involve a succession of in-
creasingly complicated examples (see Cole, 1987). Ideally, ex-
amples also provide sufficient information to allow readers to
work through computations or programming themselves, so
they can check the accuracy of their understanding as well as
their ability to apply procedures to actual data. Sometimes pro-
viding a numerical example on the basis of a small number of
cases is either so unrealistic as to be misleading or it is simply
infeasible. However, authors should be aware that useful al-
ternatives may exist in these cases. For example, Willett and
Sayer ( 1994) provided complete longitudinal data on a subsam-
ple of cases and effectively integrated their presentation of the
subsample with their discussion of the actual total sample. For
some types of problems, presenting the sample covariance ma-
trix (or other summary statistics) may be sufficient to allow
readers to duplicate the authors’ results (see MacCallum &
Browne, 1993, for an example). Willett and Sayer’s inclusion of
the LISREL program code in an appendix also illustrates an

additional approach for helping readers to check their under-
standing of the proposed method and to use it appropriately for
their own data. Although examples are often essential for clear
communication, both authors and readers must understand that
examples in and of themselves do not establish desirable prop-
erties of a proposed method.

The juxtaposition of specific and general issues may be ideally
suited for methodological articles that demonstrate how ad-
vances in computer software can offer new methodological op-
portunities. The impact of such a presentation can usually be
greatly increased by couching the presentation in terms of more
general methodological issues. Try to use software examples to
illustrate fundamental methodological principles. Good exam-
ples are O’Brien and Kaiser’s (1985 ) demonstration of how syn-
tax choices in SPSS multivariate analysis of variance yield
different analyses in repeated measures designs and Bryk and
Raudenbush’s (1987) discussion of how hierarchical linear
modeling addresses basic questions in the analysis of change.
The combination of computer software, a broad consideration
of more general quantitative issues, and specific numerical ex-
amples enables readers 1o not just use the statistical program
but also better understand the advantages and disadvantages of
various data analytic strategies.

Another useful tool for communicating technical material is
the use of figures. Figures may be useful for showing results
from numerical examples or for displaying the results of simu-
lation studies. An often overlooked advantage of figures, how-
ever, is their use for depicting mathematical relationships. Plot-
ting mathematical functions often illuminates the meaning un-
derlying an abstract mathematical expression. For example,
some of our own work ( Maxwell, 1994; Maxwell, Cole, Arvey,
& Salas, 1991) illustrated how contour plots can show the
meaning and practical implications of mathematical deriva-
tions. Recent advances in graphics software open the door to a
multitude of possibilities for visual representations of multivar-
iate data and relationships. Methodologists should be at the
forefront of advances in graphics (see Cleveland, 1985, 1993;
Tufte, 1983, 1990).

Simulation Studies

Much of the methodological work submitted to psychology
journals involves simulation studies. Simulations can be ex-
traordinarily valuable because they allow the author to describe
properties of statistics under suboptimal conditions where un-
derlying assumptions have not been met. As a consequence,
mathematical derivations of properties may be cumbersome if
not impossible. Effective communication of simulation studies
involves special considerations beyond those of other method-
ological articles; simulation studies are experiments.and must
be described and interpreted in this light.

For example, careful thought must be given to the selection
of specific parameter values to manipulate. An infinite number
of ways exist for distributions to depart from homoscedasticity.
How does the author select a realistic sample of distributions to
examine? Although there is no simple answer, some sources can
supply useful evidence of the types of distributions obtained in
actual empirical work in the behavioral sciences (e.g., Micceri,
1989). Sawilowsky and Blair (1992) provided an exalaple of
how this type of information can be incorporated into the de-
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sign of simulation studies. Of course, previous simulation stud-
ies in related areas can also provide a useful framework for se-
lecting conditions to simulate.

As in all experiments, the author should be prepared to inter-
pret the results obtained from the specific parameter values in
the context of a broader theoretical framework. For example,
the specific results obtained with exactly 20 or 50 participants
per group in the simulation are valuable only to the extent that
the author can establish a case for generalizing the findings to
other sample sizes (even if these specific values were not in-
cluded in the simulation ). The author must also plan an appro-
priate number of simulation replications so that obtained re-
sults are sufficiently precise. Obtaining 8 significant results out
of 100 simulated replications at an alpha level of .05 does not
necessarily indicate that the test under consideration is liberal.
The excessive error rate might simply reflect sampling error.
Many replications are quite appropriate when a high degree of
precision is required.

Simulation studies typically produce an enormous amount
of data. After doing all of the work to generate the data, the
author may be tempted to show the reader all the results of this
massive effort. Authors, however, must distill this mass of infor-
mation down to its essence, especially for a nonspecialist read-
ership. Most important, the author must decide what conclu-
sions emerge from systematic patterns in the data and organize
the presentation of results accordingly. In addition to typical
reports of proportions, means, and standard errors, Maxwell
(1980) illustrated how correlates of the primary statistics can
provide an even broader context for interpreting results ob-
tained for the selected parameter values. Other approaches for
establishing a broad framework include making an approxi-
mate argument (see the appendix of Hedges & Olkin, 1984, for
an example) and using exact theory for simplified cases and
developing large sample theory (see Hedges, Cooper, & Bush-
man, 1992, for both of these approaches). In addition, Harwell
(1992) discussed methods for integrating results from simula-
tion studies, which are valuable ideas for the prospective simu-
lation researcher.

A final (or “first”) concern for simulation studies is that they
are sometimes completely unnecessary. Authors occasionally
fail to appreciate the value of the analytic proof. If properties of
a statistic can be derived mathematically under specified condi-
tions, then there is no need to study the statistic through simu-
lations under these same conditions. Such simulations add no
information whatsoever to what is already known mathemati-
cally. Such simulations only serve to validate the algorithms
used in the simulation itself. Thus, including such conditions in
a simulation may be useful to verify that the simulation is cor-
rect under baseline conditions. Authors should not, however,
make the mistake of inferring that these results are informative
in and of themselves.

Once Burned, Twice Shy

Identify the limits of your findings early in the article. Imag-
ine a reader’s frustration at having plowed through a statistical
treatise on distribution-free alternatives to maximum likeli-
hood structural equation modeling only to discover at the end
of the article that the sample size requirements are 10 times
what the reader usually has available. Trudging through a sec-

ond methodological masterpiece may not end up very high on
this reader’s list of things to do.

One frequent way in which limitations manifest themselves
is through assumptions. Unfortunately, authors sometimes fail
to state assumptions explicitly. Without a clear statement of as-
sumptions, the reader has no starting point for statistical claims
made in the article. Although a detailed statement of assump-
tions might best appear in an appendix, most articles would
benefit from a general overview of the assumptions near the ini-
tial statement of the problem and proposed solution.

In arelated vein, authors should avoid the temptation to pres-
ent a new methodology as a panacea. In all likelihood, any new
method carries with it some disadvantages as well as advantages.
Authors do readers a disservice when their presentation is one
sided. Although a certain degree of enthusiasm is understand-
able and even desirable, balance is also important.

Tips for Reading Methodological Articles

Not surprisingly, many of the tips for writing methodological
articles apply equally well to reading quantitative articles. Ide-
ally, the goals of the author and the reader are virtually identical.
In many cases, the advice for authors can be generalized to read-
ers simply by substituting reader for author.

Just as authors should often strive for a hierarchical structure,
readers may also benefit from approaching a methodological
article hierarchically. For many readers, attempting to read a
technical article word for word from beginning to end is a guar-
anteed prescription for frustration. Instead, it is often far better
to skim the article initially to develop a broad understanding of
the article. A second reading might involve close reading of the
introduction and the conclusion, again simply skimming the
details of the justifications for the conclusions. Only on the third
reading might there be any serious attempt to begin to un-
derstand the details of the actual argument. In any case, readers
should frequently expect that they will need to reread method-
ological articles before they feel comfortable with their under-
standing of the material. Throughout this process, it is often
helpful to take notes on the key points of the introduction and
conclusions as well as on the basis for the conclusions. Similarly,
readers can benefit from making a list of symbols and brief de-
scriptions of what they represent.

Just as authors can improve clarity of technical points by pre-
senting special cases, readers can also check their understanding
of such points by considering special cases even if the author
does not provide them for the reader’s convenience. Along these
lines, readers can also attempt to reproduce the results from a
numerical example. Finally, when all else fails, readers can ask
for help. Just as authors usually benefit from the advice of some-
one with a different perspective, readers may also discover that
sharing an article with a colleague allows both individuals to
reach a higher level of understanding.

Summary

Attention to fundamental rules for good writing is especially
important when writing articles on methodology or statistics.
Such basic rules are insufficient, however. Additional concerns
arise as the content of psychological articles becomes increas-
ingly technical or mathematical. With an eye toward improving
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the written presentation of methodological material, we outline
a number of tips for technical writing:

1. Keep the reader uppermost in mind.

2. Select the journal for your article carefully.

3. Write for as broad an audience as possible.

4. Obtain feedback from someone whose expertise and per-
spective is different from your own.

5. Be especially clear at the onset because methodological
presentations are often cumulative.

6. Convince your reader that it is important to read this
article.

7. Be aware of the unusually diverse literature that is rele-
vant to methodological articles.

8. Be sensitive to what your readers do and do not know.

9. Strategically define your symbols.

10. Encapsulate and clearly summarize technical material.

11. Consider using the particular—general-particular ap-
proach to technical presentations.

12. A figure is worth a thousand equations.

13. Keep the work relevant to real-world situations.

14. Be mindful of the value of mathematical proofs.

15. Confess the limitations and shortcomings of even the best
new methodologies.

Needless to say, following these guidelines and 100 others will
not guarantee publication. The packaging will make the prod-
uct pretty, it will get the article read, and it will help the material
to be understood, but the bottom line will always be the quality
of the authors’ ideas and their ultimate relevance to psychologi-
cal research.
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How to Read the Statistical Methods Literature:

James R. MURPHY

Statistical methods papers are densely written. The writers
assume that the readers already have sophisticated knowl-
edge of the topic. In addition, a standard statistical notation
has not been developed. Students who learn a technique in
one notation may be confused when reading articles written
with a different notation. This paper contains suggestions
for making the student’s task easier and more productive.

KEY WORDS: Pedagogy; Reading statistical methods;
Teaching statistics.

1. INTRODUCTION

Several guides tell the nonstatistician how to read and
interpret applied statistical results. Huff (1954) gives five
points for the skeptical reader to keep in mind. Sackett
(1991) and Colton (1979) each provide check lists to de-
termine whether statistical methods are appropriately used
in medical articles. There are also guides for reading papers
containing complex mathematics, including Cowen (1991),
Phanstiel (1990), Parke (1958), and Pemberton (1969).
Schechtman (1987) suggests teaching biostatistics through
reading the medical literature. All of the references given
above provide useful information for reading technical ma-
terial. However, there are specific problems in reading the
statistical methods literature that these articles do not ad-
dress. In this paper I present the outline of a general method
for organizing such reading.

The statistical literature presents several challenges. First,
various skills are needed in reading statistical methods: ba-
sic language skills, knowledge of statistical notation, al-
gebraic skills, and, increasingly, some recognition of how
computers function. Second, technical articles are rarely
models of expository style. They tend to rely heavily on
technical jargon and on an interplay between the written
word and written notation. A concept that is difficult to
explain in language is sometimes easily explained in no-
tation, but the resulting dissonance between the two can
make the article difficult to understand. Third, advanced
articles assume that basic concepts do not need to be ex-
plained. Fourth, we are most comfortable with notation we
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Medicine and Biostatistics, University of Colorado Health Sciences Center,
Denver, CO 80262.
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learned in class. A different notation can be confusing. Fi-
nally, many papers discuss both statistical theory and the
computational techniques necessary to implement the the-
ory. The theory and computation are not always clearly sep-
arated.

Every statistician has to come to grips with these prob-
lems in reading the literature, but our individual solutions
do not get passed on to students in any formal way. This
means that each new group of students has-to.develop a
way of dealing with these problems. In this paper I outline
strategies that I use to read statistical methods papers. These
suggestions were developed from trial and error, discussion
with colleagues, and suggestions from Polya (1945). The
outline was written for the student, and is intended for any
class that requires reading papers from the literature. The
first time that I give this outline to a class I ask students to
use the outline while reading two articles that I select from
journals such as Statistics in Medicine or the Journal of the
American Statistical Association. The articles selected deal
with the topic of the class, and are intended to be slightly
above the knowledge level of the average student. Students
write a summary of each article, answering the questions
given in the outline. I have made no formal evaluation of
the outline, but informal discussions with students suggest
that it does help them to read the articles.

2. HOW TO READ THE STATISTICAL
METHODS LITERATURE

2.1 Right Attitude and Environment (It is a Long
Process; Be Comfortable)

I applaud everyone who finds it easy to read statistical
methods papers. For the rest of us it is best to start with the
right attitude: “This is going to take some time.” I would
set aside 4 hours at a minimum for a simple paper, and
considerably longer for more complicated work. This does
not have to be in a single large block of time, but it gives
you an idea of the total amount of time that it might take. It
helps to have a comfortable environment in which to work.
A comfortable chair, good light, pencil, paper, and possibly
a computer are useful accessories.

2.2 Focus on Why You are Reading the Article

The adage that “You can’t see the forest for the trees” of-
ten applies when you read a complicated article. Before you
begin to read, you should determine why you are reading
this article. Focus on that main point.
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Table 1. Sample Entry for a Bibliographic Database

Reference: Andrews, D. F. (1971), “Sequentially Designed Experiments
for Screening Out Bad Models with F-tests,” Biometrika, 58(3), 427.

Statistical theories involved: Linear models, sequential designs,
sequential F tests.

Computational techniques used: Generation of random normal devia-
tions, setting up a design space and choosing sample points based
upon accumulating data, simulating data.

Distributional assumptions: Normal distribution;
measures.

Other relevant assumptions: The models discussed here exist in a hier-
archy of polynomial models, and you are trying to choose the best
order for the polynomial.

Dataset used: Simulated data.

Relevant cross-references: None dealing with designing a space for the
experiment.

Notes: Possible use in Phase | trials or selecting models for decline rates
in repeated measures. Basic proposal is to select design spaces that
will allow you to determine which of a set of possible models is invalid,
and then run your experiment on the most valid model.

requires replicate

A statistician has three basic reasons to read an article:
general interest, relevance to a particular application, or
broader knowledge of a specific statistical method. Gleser’s
(1986) suggestions for a fourth purpose of refereeing a pa-
per are consistent with the advice given in this paper.

These reasons are not mutually exclusive. However, it
helps to focus on one reason for reading a particular arti-
cle. If the paper is of general interest, you would focus on
the introduction and background. If it has information about
an application, you would focus on the results and data sec-
tion. Reading to improve your knowledge about statistical
methodology requires the most comprehensive examination
of the paper.

Whatever your reason for reading the article, it helps to
start with Huff’s first point: “Who said it and where?.” Do
the authors already have an established reputation in this
methodology? Is the article published in a journal where
these methods are likely to have had rigorous editorial
scrutiny?

2.3 State the Problem in Your Terms

Read enough of the abstract, introduction, and discussion
so that you can state the problem in a sentence or two. State
the problem in notational terms with which you are famil-
iar. Sketch a possible way to solve the problem (or several
if they occur to you) in terms of your present knowledge.
It may help to skim the article, reading only the topic sen-
tences in each paragraph to make sure that you understand
all aspects of the problem. If, after doing this you, cannot
state the problem clearly in your terms, look at the ref-
erences. Is there an earlier attempt to solve this problem?
This earlier article may state the problem in more famil-
iar terms or may be by someone you know to be a good
researcher and writer. A general text covering the problem
discussed in the article may give you related material for
solving this problem. You may need several iterations to
grasp the problem.

When you can state the problem in your terms, read the
introduction again along with the methods section. Pay par-
ticular attention to the assumptions being made and the
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limitations that these place on the solution being offered.
Compare the methods to the sketch of a solution that you
made. How does it differ? What points did you miss that
this method considers? What assumptions did you make
compared to the ones made here? If you are reading for
general interest, this may be as far as you want to go. I
recommend making a brief outline of what you have just
done for future reference (see Section 2.8).

2.4 Find a Similar Problem with which You are
Familiar and Work Through the Technical
Details of the New Problem by Relating
it to the Familiar One

From this point on assume that you want to use the re-
sults in this paper either in an application or to understand
and develop new theory. Simply reading an article does not
give you a complete understanding of its contents. Using or
teaching the methods in the article provides a more com-
plete understanding. If you have an opportunity through a
journal club or a class to teach someone else about the ar-
ticle, you should do so. Even if you cannot teach someone
else, begin to use the methods in the article.

Start by relating this problem to one with which you are
already familiar. Follow the arguments and manipulations
of the familiar problem, and broaden them to include your
new problem. For example, to understand a paper on esti-
mating parameters for linear models with stochastic param-
eters, you could relate the problem to one with fixed param-
eters, and examine the differences in the matrix structures,
the effect on the Gauss—Markov solutions, the variability
of the estimates, etc. Starting with a familiar problem gives
you a firm base for pushing into unknown territory. There
may be several different ways to approach your new prob-
lem. Different starting points should get you to the same
place. The solution to your new problem will fit with your
expanding knowledge base, and can be used in other prob-
lems.

2.5 Apply the Problem to Data

This is similar to point 2.4, but emphasizes using your
new knowledge in a concrete way. Work through the tech-
niques using a dataset that you know. Think about what
would happen if these data had a different distribution or
structure. What happens if the assumptions are violated?
Many applied papers supply data that demonstrate the use
of the techniques discussed. Such a dataset may demon-
strate the technique to best advantage.

Simple numerical examples may also be helpful. Try ap-
plying that new matrix manipulation on a 2 x 2 matrix, and
see what happens. If appropriate, program the techniques
and examine the statistics as they are generated.

2.6 Separate Theory from Technical Details
of Execution

To understand and use a new technique with facility you
will need to understand both its theory and method of ex-
ecution. When you are starting to read, however, it is a
good idea to separate theory from execution. An estimate
derived from mixed model theory may require the EM algo-



rithm for calculations. When reading the article keep clear
which part of the discussion concerns the EM algorithm
and which concerns the theory. In a particularly complex
paper you may want to go through the points in this outline
once for the theory arguments and once for the execution
of the theory.

2.7 Read the Article at Least Three Times

Emphasizing Different Sections Each Time

You have now read the paper through once, examined
all sections in some detail, and obtained a good general
understanding of the paper. The second time through the
paper examine the internal consistency of the arguments,
concentrating on the methods and results sections. Are the
assumptions necessary and sufficient? Are the logic and no-
tation straightforward and understandable? Do you under-
stand the statistics, the probability theory, and the math-
ematics? Could you explain and defend this technique to
statisticians at your level of experience and understanding?

As you ask these questions also consider what the authors
could have done to make the task easier for you. Every-
thing you think of here should be a candidate for inclusion
in your own papers. This is a good time to examine the ref-
erences again, and possibly examine companion papers that
will shed light on your remaining questions. Begin to talk to
colleagues, and consider unsolved problems that await your
solutions. You may want to present some of your thoughts
and get feedback from a group at this point. You should feel
comfortable doing this because you now have a firm grasp
on parts of the problem and can explain what you are still
confused about. Boen (1982) has good suggestions about
making presentations and answering questions in front of
an audience.

Finally, read the paper for external consistency or gener-
alizibility. Scrutinize the introduction, results or examples,
and discussion sections. Find out how to use this technique,
what kind of data it is useful for, where it fits into a range of
solutions for problems of this type, and whether tested, sta-
ble, well-supported computer programs are available. Look
at other applications of this or similar techniques that are
in the references.

2.8 Consider Setting Up an Annotated Database

An annotated list of references will make it easier to

review a technique. You are not outlining the paper; you just
need to put enough down to make the paper easier to read
next time. This database could be as simple as notecards or
as sophisticated as using a computerized reference manager.
Table 1 gives an example from my database, but be creative.
You do not want all of your effort in reading the paper the
first time to be lost when you do not use the procedure for
a period of time. Also, note the good writers, theorists, and
applications people as you find them. Not all statisticians
are equally good in all areas, but you can pick the best
in each area to emulate. You might even consider adding
notes on the best presenters at meetings and what makes
them good.

3. FINAL COMMENTS

Mark your progress by what you have done, not by what
there is to do. The amount of literature is increasing expo-
nentially, and you will never be able to read it all. You may,
however, be able to read all of the good articles on a given
topic. If you keep track of articles with a database, you will
be surprised at how much of the literature you do read.

[Received March 1995. Revised August 1996.]
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NOTES

PROBABLE INFERENCE, THE LAW OF SUCCESSION, AND
STATISTICAL INFERENCE

By Epwin B. WiLson, Harvard School of Public Health

Probable Inference (Usual). If there be observed a certain frequency
or rate po in a population of » and if the corresponding standard devia-
tion (pogo/m)V'2= a0 be computed, the common statement of probable
inference is to say that: The probability that the true value of the
rate p lies outside its limits po— Ao and pe+Aoy is less than or equal to
Py. It is assumed that P decreases with an increase of . If the
criterion of Tchebycheff is used, Px is itself less than 1/X%; but if the
probability table is used, Px is the area under the probability curve
beyond the ordinates =Xgo. The rule of Tchebycheff is exceedingly
conservative in its estimate of P\, whereas the probability table gives a
radical estimate.

Strictly speaking, the usual statement of probable inference as given
above is elliptical. Really the chance that the true probability p lies
outside a specified range is either 0 or 1; for p actually lies within that
range or does not. It is the observed rate po which has a greater or less
chance of lying within a certain interval of the true rate p. If the
observer has had the hard luck to have observed a relatively rare event
and to have based his inference thereon, he may be fairly wide of the
mark.

Probable Inference (Improved). A better way to proceed is to reason
as follows: There is some rate p. Its standard deviation is (pg/n)/?=g.
The probability that an observation as bad as po will occur, where po
lies outside the limits p—2Ae and p-+Me, is less than or equal to Pa.
This form of statement throws the emphasis upon the fallibility of a
particular observation in respect to being typical of a general situation.

1t is still possible to state the criterion in terms of the observed rate
po for the equation (po— p)?=»Npg/n, where ¢=1—1p, is quadratic in p
and may be solved to find p. If A2/n=t, the solution is

1+¢ 1+¢
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The rule then may be stated as: If the true value of the probability p
lies outside the range

Pott/2 NV pogit+£/4 po+t/2+ V poqot+12/4
14¢ 1+¢ 14¢ 14¢

the chance of having such hard luck as to have made an observation so
bad as po is less or equal to Px. And this form of statement is not
elliptical. It is the proper form of probable inference.

Concerning the range indicated, it may be remarked that it is not
centered at the value po but at the value (po+1/2)/(1+¢) which differs
from p, by being displaced toward the value 1/2 by the amount

pott/2 _ = t(1/2—po) _ (go—Ppo)t/2
14t I 14+t

Moreover, the interval on either side of the mean is
R =" pugo/n+N/4n?/ (14-¥/n),

which is not identical with Asy computed from p, nor with
that value Ao, which might be computed from the central value
(po+t/2)/(141) of the range indicated. In fact B <Ao, and Aoo<Aoe,
but R may be either less than or greater than Nog—Iless if p, lies between
.067 and .933, greater if p, lies outside those limits unless {=X2/n be
considerable compared with 2. The precise lines of division are

p0=;i%v1—(2+t)-2.

The Law of Succession. The law of succession of Laplace states that
if we have experienced S successes and F failures out of S+ F =mn trials,
the chance of success on the (n+41)st trial is (S+1)/(n+2). Thus the
law of succession purports to give the probability from experience not
as po=S/nbut as p=(S+1)/(n+2). This chance is, however, not the
true chance of success, because the chance of success p on every trial
must be the same. The proof of the law depends on inverse proba-
bilities and in particular on the assumption that all probabilities are
a priort equi-probable. The proof has been much criticized, for it has
been held that the experience po=S/n does not permit the assumption
that all probabilities are equi-probable, but indicates that those in the
neighborhood of po must be much more probable than those remote
from po. The simplest, if crudest, form of the argument of equi-
probability is found in interpreting the formula (S+1)/(n+2) as giving
two new trials of which one is assumed to be a success and the other a
failure.

’
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If we apply the criterion in terms of the standard deviation as
above developed we may state that the center of the range for p is
(po+t/2)/(1+1%). If we now replace t by N?/n, and pen by S, the center
of the range becomes (S+X2/2)/(n+X\2), and the probable inference is
this: If the true probability lies outside the range

S—I—)\2/2_)\VSF/n+>\2/4 and S+)\2/2+)\VSF/n+>\2/4
n+N n+N n4+N n+xn

the chance of our having the hard luck to realize the observed value
po=4.S/n is less than or equal to Py. As the distribution of the chances
of an observation is asymmetric, it is perhaps unfair to take the central
value of the range as the best estimate of the true probability; but this
is what is actually done in practice.

In terms, therefore, of the practical criterion the forecasted value of
the true probability is

2
S+1, nor §,but S+N/2,

not ;
n+2 n n—+N

and the value that should be assigned depends on the value of A, <. e.,
on our readiness to gamble on the typicalness of our realized experience.
From this viewpoint, only those who believe that their experience is
absolutely typical will set A=0 and use as a forecast the realized fre-
quency S/n. Those who use the law of succession, set A>=2 and allow
a total variation in their experience of 2.8, 1. e., they wish to assert that
they have not had an experience so rare that it or one less probable
would arise, on the basis of the probability table as an estimate of P,
less than 16 times in 100. Those who make the usual allowance of 2¢
for drawing an inference would use (S+2)/(n+4) as a law of succession.

A particularly interesting and instructive case is that in which there
has been total failure, po=0, 0o=0. Here clearly the first form of the
inference, namely, that the true value of p must lie between po—Aoo=0
and po+Aeo=0 is out of the question. The true form states that the
experience is not so unusual as P, if p is less than N?/(n+N)n or if the
expected number of instances is less than A2/(n+\?), which for n large
is practically A2/n. If this were applied to the classic case of determin-
ing the chance that the sun should fail to rise, one would take \ very
small compared to 1 because general considerations of astronomy make
it highly probable that our past experience is very nearly typical. If
the application were to the fact that there were no deaths from leprosy
in Massachusetts (n=4,000,000) in 1924, X would also be taken small
because leprosy is so rare, perhaps A=2/3, meaning that we would take
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an even chance. But in the case of paratyphoid fever, we might
prefer to use the ordinary criterion with A=2.

Statistical Inference. This brings us to statistical inference which
had best be differentiated from probable inference by requiring that
something over and above the value of po be known, something that
will motivate a choice among values for A in drawing the inference. It
is well known that some phenomena show less and some show more
variation than that due to chance as determined by the Bernoulli
expansion (p+¢)". The value L of the Lexian ratio is precisely the
ratio of the observed dispersion to the value of (npq)'/2 or (pg/n)'? as
the case may be. If we have general information which leads us to
believe that the variation of a particular phenomenon be supernormal
(L>1), we naturally shall allow for some value of L in drawing the
inference. Thus if the Lexian ratio is presumed from previous analysis
of similar phenomena to be in the neighborhood of 5, we may use A=10
as properly as we should use A=2 if the phenomenon were believed to
be normal (Bernoullian).
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Approximate is Better than “Exact” for Interval Estimation

Alan AGRESTI and Brent A. COULL

For interval estimation of a proportion, coverage probabil-
ities tend to be too large for “exact” confidence intervals
based on inverting the binomial test and too small for the
interval based on inverting the Wald large-sample normal
test (i.e., sample proportion + z-score x estimated standard
error). Wilson’s suggestion of inverting the related score
test with null rather than estimated standard error yields
coverage probabilities close to nominal confidence levels,
even for very small sample sizes. The 95% score interval
has similar behavior as the adjusted Wald interval obtained
after adding two ““successes” and two “failures” to the sam-
ple. In elementary courses, with the score and adjusted Wald
methods it is unnecessary to provide students with awkward
sample size guidelines.

KEY WORDS: Confidence interval, Discrete distribu-
tion; Exact inference; Poisson distribution; Small sample;
Score test.

1. INTRODUCTION

One of the most basic analyses in statistical inference is
forming a confidence interval for a binomial parameter p.
Let X denote a binomial variate for sample size n, and let
p = X/n denote the sample proportion. Most introductory
statistics textbooks present the confidence interval based
on the asymptotic normality of the sample proportion and
estimating the standard error. This 100(1 — a)% confidence
interval for p is

P+ 2as2v/P(1 = P)/n, M

where z. denotes the 1 — ¢ quantile of the standard normal
distribution. This is called the Wald confidence interval for
p, since it results from inverting the Wald test for p; that is,
the interval is the set of py values having P value exceeding
a in testing Hy : p = po against H, : p # po using the
test statistic z = (p — po)/~+/P(1 — p)/n. Historically, this
is surely one of the first confidence intervals proposed for
any parameter (see, e.g., Laplace 1812, p. 283).

To avoid approximation, most advanced statistics text-
books recommend the Clopper—Pearson (1934) “exact” con-
fidence interval for p, based on inverting equal-tailed bino-
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of Binomial Proportions

mial tests of Hy : p = pp. It has endpoints that are the
solutions in pg to the equations

> ( Z )plg(l —po)"* =a/2
k=z
and

g (%)sba-mr*=ar2

except that the lower bound is O when = = 0 and the upper
bound is 1 when z = n. This interval estimator is guar-
anteed to have coverage probability of at least 1 — o for
every possible value of p. When =z = 1,2,...,n — 1, the
confidence interval equals

n—xz+1

-1
5UF2m,2(n-x+1),1—a/2]

1+

-1
n—x

=Ps |:1 * (ZL' + 1)F2(m+1),2(n—ac),a/2
where F, ;. denotes the 1 — ¢ quantile from the F' distri-
bution with degrees of freedom a and b. Equivalently, the
lower endpoint is the «/2 quantile of a beta distribution
with parameters « and n — z + 1, and the upper endpoint is
the 1 — /2 quantile of a beta distribution with parameters
x+1 and n—x. Letters to the editor from J. Klotz and from
L. Leemis and K. S. Trivedi in the November 1996 issue of
this journal (p. 389) showed how simple it is to calculate
this interval using Minitab or S-Plus.

A considerable literature exists about these and other,
less common, methods of forming confidence intervals for
p. Santner and Duffy (1989, pp. 33-43) and Vollset (1993)
reviewed a variety of methods. It has been known for some
time that the Wald interval performs poorly unless n is
quite large (e.g., Ghosh 1979, Blyth and Still 1983). The
Clopper—Pearson exact interval is typically treated as the
“gold standard” (e.g., Bohning 1994; Leemis and Trivedi
1996; Jovanovic and Levy 1997; and most mathematical
statistics texts). However, this procedure is necessarily con-
servative, because of the discreteness of the binomial distri-
bution (Neyman 1935), just as the corresponding exact test
(without supplementary randomization on the boundary of
the critical region) is conservative. For any fixed parameter
value, the actual coverage probability can be much larger
than the nominal confidence level unless n is quite large,
and we believe it is inappropriate to treat this approach as
optimal for statistical practice.

A compromise solution is the confidence interval based
on inverting the approximately normal test that uses the
null, rather than estimated, standard error; that is, its
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endpoints are the pg solutions to the equations (p —

p0)/v/Po(1 —po)/n = £24/2. This confidence interval, ap-
parently first discussed by Edwin B. Wilson (1927), has the

form

(54 2222 B =51+ 2 Al ) 1+ 22 /)
(2)

This inversion of what is the score test for p is called the
score confidence interval. (Score tests, and in particular
their standard errors, are based on the log likelihood at the
null hypothesis value of the parameter, whereas Wald tests
are based on the log likelihood at the maximum likelihood
estimate; see, e.g., Agresti 1996, pp. 88-95.) This article
shows that the score confidence interval tends to perform
much better than the exact or Wald intervals in terms of
having coverage probabilities close to the nominal confi-
dence level. It can be recommended for use with nearly all
sample sizes and parameter values. In addition, we show
that a simple adaptation of the Wald interval also performs
well even for small samples.

At first glance, the score confidence interval formula
seems awkward to interpret, compared to (1). Letting z =
Z4/2, however, the midpoint of this interval is the weighted

‘average
) n N 1 22
P\q + 22 2\n+22)’

which falls between p and 1/2, with the weight given to
p approaching 1 asymptotically. This midpoint shrinks the
sample proportion towards .5, the shrinking being less se-
vere as n increases. The coefficient of z in the term that
is added to and subtracted from this midpoint to form the
score confidence interval has square equal to

— [ﬁ(l —ﬁ)(#) * @) <%> <h§?)}

This has the form of a weighted average of the variance
of a sample proportion when p = p and the variance of a
sample proportion when p = 1/2, using n + 22 in place of
the usual sample size n.

2. COMPARING ACTUAL COVERAGE
PROBABILITIES TO NOMINAL
CONFIDENCE LEVELS

For a fixed value of a parameter, the actual coverage prob-
ability of an interval estimator is the (a priori) probability
that the interval contains that value. In many cases, such
as with discrete distributions, this varies according to the
parameter value. In statistical theory, the confidence coeffi-
cient is defined to be the infimum of such coverage proba-
bilities for all possible values of that parameter. Most practi-
tioners, however, probably interpret confidence coefficients
in terms of “average performance” rather than “worst pos-
sible performance.” Thus, a possibly more relevant descrip-
tion of performance is the long-run percentage of times that
the procedure is correct when it is used repeatedly for a va-
riety of data sets in various problems with possibly different
parameter values.

For any confidence interval procedure for estimating p,
the actual coverage probability at a fixed value of p is

Cn(p) = _ I(k,p) ( Z > pH(1—p)" 7,
k=0

where I(k,p) equals 1 if the interval contains p when X = k
and equals O if it does not contain p. We summarize this,
using the alternative description of performance, by aver-
aging over the possible values that p can take. We obtained
results C,, = fol Cr(p)g(p)dp for three beta densities g(p)
for this averaging: (1) the uniform distribution (mean = .50,
std. dev. = 1/4/12 = .29); (2) bell-shaped with values rel-
atively near the middle (mean = .50, std. dev. = .10); (3)
skewed with values relatively near 0 (mean = .10, std. dev.
= .05) or, by symmetry, near 1. Due to space considerations,
we report results here mainly for the first case, but similar
results occurred in the other two cases. Though this eval-
uation may suggest a Bayesian approach to inference, we
restrict attention in this article to comparing the three stan-
dard methods decribed previously, in which the user makes
no assumption about such a distribution for p.

Table 1 shows the mean of the actual coverage probabili-
ties for the uniform averaging of the parameter values (i.e.,
C, with g(p) =1, 0 < p < 1) at various sample sizes, for
nominal 95% Wald, score, and exact confidence intervals
(the three other methods listed in that table are discussed

Table 1. Mean Coverage Probabilities of Nominal 95% Confidence Intervals for the Binomial Parameter p, with Root Mean
Square Errors in Parentheses, for Sampling p from a Uniform Distribution

Method n=25 n=15 n= 30 n =50 n= 100
Exact .990 .980 .973 .969 .965
(.041) (.031) (.026) (.022) (.017)

Score .955 .953 .952 .952 .951
(.029) (.019) (.014) (.012) (.008)

Wald .641 .819 .875 .901 .922
(.400) (.238) (.170) (.133) (.094)

Wald with ¢ .664 .837 .886 .905 .926
(.391) (.233) (.167) (.131) (.093)

Mid-P .978 .964 .958 .955 .953
(.033) (.021) (.017) (.013) (.010)

Continuity-corrected .987 979 .973 .969 .965
Score (.039) (.030) (.025) (.021) (.016)
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in Section 4). The mean actual coverage probabilities for
the Wald interval tend to be much too small. On the other
hand, the exact interval is very conservative. For instance,
for this method, C,, = .990 when n = 5, .980 when n =
15, and .973 when n = 30. By contrast, C,, for the score
method is close to the nominal confidence level, even for n
= 5 where it is .955. Figure 1, which plots C,, as a function
of n for the three interval estimators with the uniform and
skewed beta weightings, illustrates their performance. Sim-
ilar results were obtained with the bell-shaped weighting
and using .90 nominal confidence coefficient, but are not
reported here.

To describe how far actual coverage probabilities typi-
cally fall from the nominal confidence level, Table 1 also

reports \/ fol(Cn(p) —.95)2dp, the uniform-weighted root
mean squared error of those probabilities about that confi-
dence level. These values indicate that the variability about
the nominal level is much smaller for the score confidence
interval than for the Wald or exact confidence intervals. The
improved performance of the score method relative to the
Wald method is no surprise and simply adds to other evi-
dence of this type accumulated over the years (e.g., Ghosh
1979; Vollset 1993). Some readers, though, may be sur-
prised at just how much better the score method does than
the exact method. The exact interval remains quite conser-
vative even for moderately large sample sizes when p tends
to be near 0 or 1. The Wald interval is also especially inad-
equate when p is near O or 1, partly a consequence of using
p as its midpoint when the binomial distribution is highly
skewed.

Even though the score intervals tend to have consider-
ably higher actual coverage probabilities than the Wald in-
tervals, they are not necessarily wider. In fact, unless the
sample proportions fall near O or 1, they are shorter. Di-
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rect comparison of the formulas for the two interval widths
yields that the score interval is narrower than the Wald
interval whenever p falls within \/(n + 22)/(8n + 422) of
1/2. In particular, since this term decreases in the limit to-
ward 1/4/8 = .35 as n increases or |z| decreases, the score
interval is narrower than the Wald interval whenever p falls
in (.15, .85) for any n and any nominal confidence level.
See Ghosh (1979) for additional results about the relative
lengths of the two types of interval. This comparison has
limited relevance, since the actual coverage probabilities of
the two methods differ. We mention this, however, to stress
that the inadequacy of the Wald approach is not that the
intervals are too short.

For fixed n and p, the expected width of an interval es-
timator is a useful measure of its performance. Figure 2
illustrates the relative sizes of the expected widths for the
nominal 95% Wald, score, and exact intervals by plotting
them as a function of p, for n = 15. For small n, the score
intervals tend to be much shorter than exact intervals. The
narrowness of the Wald intervals as p approaches 0 or 1
reflects the fact that when = = 0 or n, that interval is de-
generate at 0 or at 1. By contrast, when =z = 0, the score
interval is [0,2%/(n + 2%)] = [0, 3.84/(n + 3.84)] and the
exact interval is [0, 1 — (.025)'/™], which is approximately
[0, —log(.025)/n] = [0, 3.69/n]; the latter shows an exten-
sion of the “rule of 3/n” (Jovanovic and Levy 1997) from
the .95 upper confidence bound to .95 confidence limits.

Is anything sacrificed by using the score intervals? Well,
since they are not “exact,” they are not guaranteed to have
coverage probabilities uniformly bounded below by the
nominal confidence level, and their actual confidence co-
efficient (the infimum of such probabilities) is, in fact, well
below it. Vollset’s (1993) plots of the coverage probabilities
as a function of p, for various methods, are illuminating for
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Figure 1. Mean Coverage Probability as a Function of Sample Size for the Nominal 95% Exact (E), Score (S), and Wald (W) Intervals, When p
has (a) a Uniform (0,1) Distribution and (b) a Beta Distribution with ;1 = .10 and o = .05.
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Figure 2. A Comparison of Expected Widths for the Nominal 95%
Exact, Wald, and Score Intervals When n = 15.

describing the behavior of the methods. The score method
has two very narrow regions of values for p, one near 0 and
one near 1, at which the actual coverage probability falls
seriously below the nominal confidence level, and this badly
affects the actual confidence coefficient. These regions get
closer to 0 and to 1 as n increases. For n = 10 with nominal
95% confidence intervals, for instance, there is a minimum
coverage of .835 at p = .018 and p = .982, whereas at n =
100, there is a minimum coverage of .838 at p = .002 and
p = .998.

We now explain why this happens. There is a region
of values [0,7) for p that falls in the score confidence
interval only when X = 0. The upper bound r of this
region is the lower endpoint of the confidence interval
when X = 1, which for large n is approximately (1 +
2%/2 — 23/4+ 22/2) /n. The coverage probability just be-
low 7 is approximately P(X = 0) = [1 — (1 + 22/2 —
2VA+22/2) /)™ = exp{—(1 + 22/2 — /4 + 22/2)}. The
analogous remark applies for values of p near 1. This lim-
iting coverage probability is .800 for nominal 90% inter-
vals, .838 for 95% intervals, and .889 for 99% intervals.
See Huwang (1995) for related remarks. In particular, the
actual confidence level does not converge to the nominal
level as n increases.

Though this may seem problematic, the portion of the [0,
1] parameter space over which the actual coverage proba-

bility drops seriously below the nominal confidence level
is small. Table 2 illustrates. The proportion of the parame-
ter space for which the coverage probability of the nominal
95% score interval falls below .90 is no more than .01 when
n > 20. That table also shows that the proportion of param-
eter values for which the coverage probability is within .02
of .95 is much higher for the score than the exact interval.
In fact, the score coverage probability is closer than the ex-
act coverage probability to .95 over more than 90% of the
parameter space, for the sample sizes reported.

3. THE “ADD TWO SUCCESSES AND TWO
FAILURES” ADJUSTED WALD INTERVAL

The poor performance of the Wald interval is unfortu-
nate, since it is the simplest approach to present in elemen-
tary statistics courses. We strongly recommend that instruc-
tors present the score interval instead. Santner (1998) makes
the same recommendation. Of course, many instructors will
hesitate to present a formula such as (2) in elementary
courses. The shrinkage representation of the score approach
suggests, however, that for constructing 95% confidence in-
tervals (for which 2% = 1.96% ~ 4 and the midpoint of the
score interval is (X + 22/2)/(n + 2%) = (X +2)/(n + 4))
an instructor will not go far wrong in giving the following
advice: “Add two successes and two failures and then use
the Wald formula (1).” That is, this “adjusted Wald” interval
uses the usual simple formula presented in such courses, but
with (n +4) trials and point estimate p = (X +2)/(n +4).

The midpoint of this interval, 5 = (X + 2)/(n + 4), is
nearly identical to the midpoint of the 95% score interval.
It is identical to the Bayes estimate (mean of the posterior
distribution) for the beta prior distribution with parame-
ters 2 and 2, which has mean .50 and standard deviation
.224 and which shrinks the sample proportion toward .50
somewhat more than does the uniform prior. This simple
adjustment to the ordinary Wald interval changes it from
highly liberal to slightly conservative, on the average, and
a bit more conservative than the score method. Figure 3 il-
lustrates, showing the mean actual coverage probability C,,
for the nominal 95% Wald and adjusted Wald intervals as a
function of n, for the uniform and skewed weightings of p.
The adjusted Wald confidence interval behaves surprisingly
well, even for very small sample sizes.

Figure 4 shows the actual coverage probabilities as a
function of p for the Wald, adjusted Wald, and Clopper—
Pearson exact intervals when n = 5 and n = 10. The im-

Table 2. Proportion of Parameter Space for which (a) Nominal 95% Score Interval has Actual Coverage Probability
Below .90; (b) Nominal 95% Score and Exact Intervals Have Actual Coverage Probabilities
Between .93 and .97, (c) Actual Coverage Probability is Closer to .95 for Score Interval than Exact Interval

Coverage Coverage closer
Score coverage .93-.97 to .95 for Score
n Prob. below .90 Score Exact than Exact

5 .042 463 .000 944
10 .019 .608 .077 .963
20 .010 792 .297 .925
30 .006 .882 .395 977
50 .003 .939 615 .961
100 .002 .968 .830 .961
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Figure 3. Mean Coverage Probability as a Function of Sample Size for the Nominal 95% Wald (W) and Adjusted Wald (A) Intervals, When p
has (a) a Uniform (0,1) Distribution and (b) a Beta Distribution with . = .10 and o = .05.

provement of the adjusted Wald interval over the ordinary ing spikes with seriously low coverage near p = 0 and 1.
Wald interval is dramatic. The adjusted Wald interval also This is because this interval’s rather crude bounds contain
has the advantage, relative to the score interval, of not hav- 0 when X = 0 or 1 and contain 1 when X = n—1 or n. For
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Figure 4. A Comparison of Coverage Probabilities for the Nominal 95% Wald, Adjusted Wald, and Exact Intervals.
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instance, the minimum coverage probability for the nominal
95% adjusted Wald interval is .917 for n = 10 and never
falls below .92 for n > 10. The proportion of the parameter
space for which the actual coverage probability falls within
.02 of .95 is slightly less than reported in Table 2 for the
score interval, but the proportion of times its actual cov-
erage probability is closer to .95 than the exact interval is
still at least .94 for the sample sizes reported in that table.
See Chen (1990) for results about coverage properties of
related intervals using Bayes estimates as midpoints.

Introductory statistics textbooks have an awkward time
with sample size recommendations for the Wald inter-
val. Most simple recommendations tend to be inadequate
(Leemis and Trivedi 1996). Our results suggest that if one
tells students to add two successes and two failures be-
fore they form the Wald 95% interval, it is not necessary to
present such sample size rules, since the “add two successes
and two failures” confidence interval behaves adequately
for practical application for essentially any n regardless of
the value of p.

One can use the adjusted Wald interval without regard-
ing its midpoint p = (X +2)/(n +4) as the preferred point
estimate of p. However, this rather strong shrinkage toward
.5 might often provide a more appealing estimate than .
The mean square error of p equals [np(l — p) + 16(p —
5)2]/(n + 4)%, which is smaller than that of p when p is
within v/3n? + 8n + 4/(6n + 4) of .5; this interval of val-
ues of p decreases from (.113, .887) to (.211, .789) as n in-
creases. Interestingly, Wilson (1927) mentioned this shrink-
age estimator as a reasonable alternative to the sample pro-
portion or the Laplace estimator (X + 1)/(n + 2). Letting
S denote X, the number of successes, Wilson stated, “As
the distribution of chances of an observation is asymmet-
ric, it is perhaps unfair to take the central value as the best
estimate of the true probability; but this is what is actually
done in practice. .. . Those who make the usual allowance
of 20 for drawing an inference would use (S +2)/(n+4).”

In recognition of his pioneering work, predating the fa-
mous articles by Neyman and Pearson on confidence inter-
vals, we suggest that statisticians refer to p = (X +2)/(n+

4) as the Wilson point estimator of p and refer to the score
confidence interval for p as the Wilson method. See Stigler
(1997) for an interesting summary of Edwin B. Wilson’s ca-
reer. Other highlights included service as the first professor
and head of the Department of Vital Statistics at Harvard
School of Public Health in 1922, the Wilson—Hilferty nor-
mal approximation for the chi-squared distribution in 1931,
and the Wilson—Worcester introduction of the median lethal
dose (LD 50) in bioassay.

4. OTHER INTERVAL ESTIMATION
METHODS FOR p

Although the focus of this article is comparison of the
Wald, score, and exact intervals, which are the methods
commonly presented in statistics textbooks, we next briefly
discuss some alternative methods. Some elementary text-
books (e.g., Siegel 1988), perhaps recognizing the poor per-
formance of the Wald intervals, suggest using ordinary ¢
confidence intervals for a mean for interval estimation of a
proportion. These intervals are wider than the Wald inter-
vals, of course, but we found that mean coverage probabil-
ities are still seriously deficient. Table 1 illustrates for the
uniform weighting.

Other, more complex, methods exist for constructing ex-
act confidence intervals, such as presented by Blyth and
Still (1983) and Duffy and Santner (1987). Our evaluations
of these intervals indicated that they perform better than the
Clopper—Pearson intervals but not as well as the score in-
tervals, still showing considerable conservatism. To reduce
the conservativeness inherent in exact methods for discrete
distributions, many authors recommend using tests and con-
fidence intervals based on the mid- P value, namely half the
probability of the observed result plus the probability of
more extreme results (Lancaster 1961). The mid-P confi-
dence interval is the inversion of the adaptation of the ex-
act test that uses the mid-P value. Results in Vollset (1993)
suggest that the mid-P interval tends to perform well but
is somewhat more conservative than the score interval, typ-
ically having actual coverage probability greater than (and
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never much less than) the nominal confidence level. Our
evaluations agreed with this, and are also illustrated in Ta-
ble 1. We feel this is a reasonable method to use, especially
if one is concerned that p may be very close to 0 or 1. It is
more complex computationally than the score and adjusted
Wald intervals, but like those intervals it has the advantage
of being shorter than the exact interval.

Yet another alternative method is a continuity-corrected
version of the score interval, based on the normal continu-
ity correction for the binomial. This interval approximates
the Clopper—Pearson interval, however, and our evaluations
and results in Vollset (1993, Fig. 2) suggest that it is often
as conservative as the exact interval itself. Again, Table 1
illustrates, and we do not recommend this approach.

Finally, we mention two other methods that perform well.
The confidence interval based on inverting the likelihood-
ratio test is similar to the score interval in terms of how it
compares with the exact interval, but it is more complex to
construct. Not surprisingly, Bayesian confidence intervals
with beta priors that are only weakly informative also per-
form well in a frequentist sense (see, e.g., Carlin and Louis
1996, pp. 117-123).

In deciding whether to use the score interval, some may
be bothered by its poor coverage for values of p just below
the lower boundary of the interval when X = 1 and just
above the upper boundary of the interval when X =n — 1.
One could then use an adapted version that replaces the
lower endpoint by —log(l — a)/n when X = 1 and the
upper endpoint by 1 +log(1 —a)/n when X =n — 1. (e.g.,
at p=—log(l—a)/n, P(X =0)=[1+log(l—a)/n|" ~
1 — a.) This adaptation improves the minimum coverage
considerably. For instance, the nominal 95% interval has
minimum coverage probability converging to .895 for large
n, which is the large-sample coverage probability at p just
below the lower endpoint of the interval when X = 2.

S.  CONCLUSION AND EXTENSIONS

The Clopper—Pearson interval has coverage probabilities
bounded below by the nominal confidence level, but the
typical coverage probability is much higher than that level.
The score and adjusted Wald intervals can have coverage
probabilities lower than the nominal confidence level, yet
the typical coverage probability is close to that level. In
forming a 95% confidence interval, is it better to use an ap-
proach that guarantees that the actual coverage probabilities
are at least .95 yet typically achieves coverage probabilities
of about .98 or .99, or an approach giving narrower inter-
vals for which the actual coverage probability could be less
than .95 but is usually quite close to .95?7 For most appli-
cations, we would prefer the latter. The score and adjusted
Wald confidence intervals for p provide shorter intervals
with actual coverage probability usually nearer the nominal
confidence level. In particular, even though the score and
adjusted Wald intervals leave something to be desired in
terms of satisfying the usual technical definition of “95%
confidence,” the operational performance of those methods

is better than the exact interval in terms of how most prac-
titioners interpret that term.

Results similar to those in this article also hold in other
discrete problems. For instance, similar comparisons apply
for score, Wald, and exact confidence intervals for a Pois-
son parameter u, based on an observation X from that dis-
tribution. Figure 5 illustrates, plotting the actual coverage
probabilities when the nominal confidence level is .95. Here,
the score interval for p results from inverting the approx-
imately normal test statistic z = (X — pg)/+/fo, the Wald

interval results from inverting z = (X — po)/v/X, and the
endpoints of the exact interval, (1/2)(x3 X..025> xg( X +1)7_975),
result from equating tail sums of null Poisson probabilities
to .025 (Garwood 1936; for n independent Poisson obser-
vations, Xi,...,X,, the same formulas apply if one lets
X =Y X; and p = F(X) = nE(X;)). For another discrete
example, see Mehta and Walsh (1992) for a comparison of
exact with mid- P confidence intervals for odds ratios or for
a common odds ratio in several 2x2 contingency tables.

Exact inference has an important place in statistical infer-
ence of discrete data, in particular for sparse contingency
table problems for which large-sample chi-squared statis-
tics are often unreliable. However, approximate results are
sometimes more useful than exact results, because of the
inherent conservativeness of exact methods.

[Received February 1997. Revised November 1997.]
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Qualms About Bootstrap Confidence Intervals

NATHANIEL SCHENKER*

The percentile method and bias-corrected percentile method of
Efron (1981, 1982) are discussed. When these methods are
used to construct nonparametric confidence intervals for the
variance of a normal distribution, the coverage probabilities are
substantially below the nominal level for small to moderate
samples. This is due to the inapplicability of assumptions un-
derlying the methods. These assumptions are difficult or im-
possible to check in the complicated situations for which the
bootstrap is intended. Therefore, bootstrap confidence intervals
should be used with caution in complex problems.

KEY WORDS: Bias-corrected percentile method; Nonpara-
metric confidence intervals; Percentile method; Pivotal quan-
tity; Resampling plans.

1. INTRODUCTION

The bootstrap (Efron 1979, 1981, 1982) has been advertised
and is widely viewed as a tool that can be used to set non-
parametric confidence intervals in complex problems. This ar-
ticle discusses the percentile method and bias-corrected per-
centile method of Efron (1981, 1982). These methods are shown
to perform poorly in the relatively simple problem of setting a
confidence interval for the variance of a normal distribution.
The purpose of the article is to focus on assumptions underlying
the use of bootstrap confidence intervals and to caution prac-
titioners against applying these methods blindly in complex
problems.

2. THE BOOTSTRAP

Suppose X, . . . , X, are iid random variables from a pop-
ulation with unknown cdf F, and suppose the goal is to draw
inferences about some parameter 6 of the populatlon Let
0x,, ..., X ,) be an estimator of § and let F be the sample
cdf, that is, the cdf that assigns mass 1/n to each X;. The
bootstrap approximates the sampling distribution of 6 under F
by the sampling distribution of @ under F. This procedure is
usually hard to carry out analytically, and it is often necessary
to use Monte Carlo methods as follows (Efron 1981, 1982):

1. Construct F.

2. Draw a bootstrap sample X¥, . . . , X} iid with cdf F,
and calculate 6* = 9(Xi“, R ¢ 8

3. Independently do step 2 B times (for some large B), ob-
taining 9,’,", b=1,...,B. Thecdf of § at y is approximated
by CDF(y) = #{0} < y}/B.

Let F be written as F, to signify the dependence of F on 6.
The sample cdf F is likely to be closer to Fj than to Fy. For
example, if X, . . . , X, are drawn from a N(0, 1) distribution,
then ¥ will be better approximated by the N(X, 2) cdf, where

* Nathaniel Schenker is with the Statistical Research Division, U.S. Bureau
of the Census, Washington, DC 20233. Support for this research was provided
by National Science Foundation Grants MCS 81-01836 and SES 83-11428 at
the Department of Statistics, University of Chicago. The author thanks Stephen
Stigler, David Wallace, and Wing Wong for many fruitful discussions. The
comments of the associate editor and the referees are also appreciated.

X and 42 are the sample mean and variance, respectively, than
by the N(0, 1) cdf. Thus the bootstrap procedure just described
is likely to approximate the sampling distribution of § under
Fj better than it approximates the sampling distribution of
under Fy. This idea will be used in the next section.

3. THE PERCENTILE AND BIAS-CORRECTED
PERCENTILE METHODS

Letz’ = ®~(CDF(6)), where ® is the N(0, 1) cdf Efron’s
(1981, 1982) bias-corrected percentile method uses [CDF ®2z
~ 2,_0), CDF~\(®Q2z' — z,))], where z, = ®7'(p), as a
nominal 100(1 — 2a)% nonparametric confldence interval for
0. The derivation of this method is based on the assumption
that there is a monotone increasing function g such that g(f)
— g(0) ~ N(, 1 and g(0*) — g ~ N, 1?) for some
constants # and 2. (Here, + is used to denote the distribution
under the repeated bootstrap sampling of Section 2.) Note that
the interval for 8 does not involve g, so g need not be known;
it is only necessary to know that g exists.

The assumption underlying the bias-corrected percentile method
is not valid in general, but is approximately valid under the
following condition. Suppose there exists a monotone increas-
ing function g such that g(@) — g(6) is a normal pivotal quan-
tity, that is, such that g(@) — g(0) has the same normal dis-
tribution for all values of 6. Then since F is approximately the
same as Fj, g(@*) - g(@) will have a distribution close to this
normal distribution under repeated bootstrap sampling.

When CDF (@) = .5, which should be approximately true
if 6 is median unbiased for 0 (that is, P[f < 6] = .5 for all
0), the bias-corrected percentile method reduces to [C/\F‘ Ya),
CDF~'(1 — )]. Efron (1981, 1982) has named this the per-
centile method interval.

4. EXAMPLE: ESTIMATING THE VARIANCE OF
A NORMAL DISTRIBUTION

The techniques of setting nonparametric confidence intervals
that were described in the previous section will now be con-
sidered for the problem of estimating a normal variance. Sup-
pose Xy, . . ., X, are iid from N(u, ¢*) with # and 6% unknown,
and a 90% confidence interval for ¢ is desired. Let 6% = 2,
(X; — X)*/n be the estimator of ¢? used.

In addition to the methods of Section 3, the following pro-
cedure will be considered. The cdf of 62/6? at y will be ap-
proximated by G(y) = #{63*/6> < y}/B (see Section 2 for
notation). Then [62/G~'(1 — a), 62/G~'(a)] will be used as a
nominal 100(1 — 2a)% confidence interval for ¢®. Since
G(y) = CDF(6%), it follows that G~'(-) = CDF~'(-)/8%, so
the interval is just [6*/CDF~'(1 — a), &*/CDF ~\(a)]. This is
not really a nonparametric confidence interval, since knowledge
of the parametric family, N(u, ¢%), was used in choosing the
quantity 62/ to be bootstrapped; this quantity is pivotal under

© 1985 American Statistical Association
Journal of the American Statistical Association
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Table 1. Monte Carlo Coverage Probabilities of
Nominal 90% Confidence Intervals for o2

Percentile Bias-Corrected Bootstrapping
n Method Percentile Method 6%/a?
20 .78 .80 .85
35 .82 .85 .86
100 .87 .88 .88

the normal family. However, the nonparametric bootstrap step
of substituting F' for F and resampling from F' (see Section 2)
is still used. Thus the performance of this interval will indicate
how well the bootstrap performs when applied to a known
pivotal quantity.

A simulation study has been conducted for samples of size
20, 35, and 100. Sixteen hundred Monte Carlo trials were used,
and the case u = 0, 6> = 1 was simulated without loss of
generality. In computing the bootstrap approximations, B =
1,000 bootstrap replications were used. Computations were per-
formed using FORTRAN programs on the DECSYSTEM-20
computer of the Graduate School of Business at the University
of Chicago. Random variables were generated using the IMSL
routines GGUBS and GGNPM.

The proportions p of the intervals covering 6> = 1 are given
in Table 1. The standard error (p(1 — p)/1,600)"'? of each entry
is about .01. All of the bootstrap methods have Monte Carlo
coverage rates that are reasonably close to the nominal level
of 90% when n = 100. For smaller n, however, the bootstrap
methods do not perform as well.

The intervals based on bootstrapping 62/¢* have the best
coverage rates of the three methods; this is expected, since
6?%/0* is a pivotal quantity under sampling from N(u, 02). How-
ever, this method does not achieve the nominal level of 90%.
This is due to the deficiency of the nonparametric step of re-
sampling from the sample cdf F' in the bootstrap procedure.
Since 42/¢* is pivotal under normal sampling, bootstrapping
62/0* would yield exact 90% intervals if F' were always a normal
cdf. However, F is never exactly a normal cdf, and can be
much different from one for small x.

Along with the problem associated with resampling from F,
the percentile and bias-corrected percentile methods are based
on assumptions that do not hold in this example. Let WH,,
denote the Wilson—Hilferty transformation of a y2_, random
variable to an approximate N(0, 1) variate (see Kendall and
Stuart 1977). Thus, WH,(x) = 9(n — 1)/2)V*((x/(n — 1))
— 1 + 2/(9(n — 1))). This transformation works very well
for degrees of freedom as large as those considered here. Define
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Table 2. Values of g,(1) = WH,(n), Where WH, Is the
Wilson—Hilferty Transformation of a
x2_, Random Variable

n gn(1)

20 27

35 20
100 12

the function g, by g,(x) = WH,(nx). Algebraic manipulation
then shows that g,(6%) — g,(6®) ~ 0*°N(—g,(1), 1), approx-
imately. Thus, although there exists a transformation to ap-
proximate normality, the pivotal quantity discussed in Section
3 does not exist. This is one reason for the poor performance
of the bias-corrected percentile method.

Since g,(6%) — g,(¢%) has an approximate 6*°N(—g,(1), 1)
distribution, 6? is not median unbiased for ¢2. The bias of
8.(6?) for g,(6?) in standard deviation units is — g.(1). Values
of g,(1) are given in Table 2 for n = 20, 35, and 100. The
poor performance of the percentile method is due in part to the
lack of median unbiasedness.

5. CONCLUSIONS

Nonparametric confidence intervals formed using the boot-
strap are intended for use in complicated estimation problems.
The percentile and bias-corrected percentile methods were ex-
amined here in the relatively simple problem of estimating the
variance of a normal distribution. The coverage probabilities
were well below the nominal level for small to moderate sam-
ples. Along with the problems inherent in resampling from the
sample cdf, underlying assumptions about pivotal quantities
and median unbiasedness were not valid.

If little is known about a problem, it is very difficult or
impossible to check the assumptions underlying the use of
bootstrap confidence intervals. Therefore, they should be used
with caution in complex problems.

[Received November 1983. Revised October 1984.]
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Better Bootstrap Confidence Intervals

BRADLEY EFRON*

We consider the problem of setting approximate confidence intervals for
a single parameter 6 in a multiparameter family. The standard approx-
imate intervals based on maximum likelihood theory, 0 * 629, can be
quite misleading. In practice, tricks based on transformations, bias cor-
rections, and so forth, are often used to improve their accuracy. The
bootstrap confidence intervals discussed in this article automatically in-
corporate such tricks without requiring the statistician to think them
through for each new application, at the price of a considerable increase
in computational effort. The new intervals incorporate an improvement
over previously suggested methods, which results in second-order cor-
rectness in a wide variety of problems. In addition to parametric families,
bootstrap intervals are also developed for nonparametric situations.

KEY WORDS: Resampling methods; Approximate confidence inter-
vals; Transformations; Nonparametric intervals; Second-order theory;
Skewness corrections.

1. INTRODUCTION

This article concerns setting approximate confidence in-
tervals for a real-valued parameter 6 in a multiparameter
family. The nonparametric case, where the number of
nuisance parameters is infinite, is also considered. The
word ‘‘approximate” is important, because in only a few
special situations can exact confidence intervals be con-
structed. Table 1 shows one such situation: the data (y;,
y,) are bivariate normal with unknown mean vector (7,
#,), covariance matrix = I the identity; the parameters of
interest are 8 = #,/n, and, in addition, & = 1/6. Fieller’s
construction (1954) gives central 90% interval (5% error
in each tail) of [.29, .76] for 6, having observed y = (8,
4). The corresponding interval for £ = 1/0 is the obvious
mapping ¢ € [1/.76, 1/.29].

Table 1 also shows the standard approximate intervals

0E[d + 629,80 + 62079, (1.1)

where 0 is the maximum likelihood estimate (MLE) of 6,
6 is an estimate of its standard deviation, often based on
derivatives of the log-likelihood function, and z* is the
100 - a percentile point of a standard normal variate. In
Table 1, a = .05 and z(® = —z(1"9 = —1.645.

The standard intervals (1.1) are extremely useful in sta-
tistical practice because they can be applied in an auto-
matic way to almost any parametric situation. However,
they can be far from perfect, as the results for ¢ show.
Not only is the standard interval for £ quite different from
the exact interval, it is not even the obvious transformation
[1/.73, 1/.27] of the standard interval for 6.

Approximate confidence intervals based on bootstrap
computations were introduced by Efron (1981, 1982a).
Like the standard intervals, these can be applied auto-
matically to almost any situation, though at greater com-
putational expense than (1.1). Unlike (1.1), the bootstrap
intervals transform correctly, so the interval for £ = 1/6

* Bradley Efron is Professor of Statistics and Biostatistics, Department
of Statistics, Stanford University, Stanford, CA 94305. The author is
grateful to Robert Tibshirani, Timothy Hesterberg, and John Tukey for
several useful discussions, suggestions, and references.

in the Fieller example is obtained by inverting the end-
points of the interval for §. They also tend to be more
accurate than the standard intervals. In the situation of
Table 1 the bootstrap intervals agree with the exact inter-
vals to three decimal places. Efron (1985) showed that this
is no accident; there is a wide class of problems for which
the bootstrap intervals are an order of magnitude more
accurate than the standard intervals.

In those problems where exact confidence limits exist
the endpoints are typically of the form

6 + 8(z® + AP/Vn + BO/n + ),  (1.2)

where n is the sample size (see Efron 1985). The standard
intervals (1.1) are first-order correct in the sense that the
term 0 + &z asymptotically dominates (1.2). However,
the second-order term 8A(/V/n can have a major effect
in small-sample situations. It is this term that causes the
asymmetry of the exact intervals about the MLE as illus-
trated in Table 1. As a point of comparison the Student-¢
effect is of third-order magnitude, comparable with
6B®/n in (1.2). The bootstrap method described in Efron
(1985) was shown to be second-order correct in a certain
class of problems, automatically producing intervals of cor-
rect second-order asymptotic form § + &(z@ + AP/
\/ﬁ + )

This article describes an improved bootstrap method
that is second-order correct in a wider class of problems.
This wider class includes all of the familiar parametric
examples where there are no nuisance parameters and
where the data have been reduced to a one-dimensional
summary statistic, with asymptotic properties of the usual
MLE form (see Sec. 5).

Several authors have developed higher-order correct ap-
proximate confidence intervals based on Edgeworth ex-
pansions (Abramovitch and Singh 1985; Beran 1984a,b;
Hall 1983; Withers 1983), sometimes using bootstrap
methods to reduce the theoretical computations. There is
a close theoretical relationship between this line of work
and the current article (see, e.g., Remark G, Sec. 11).
However, the details of the various methods are consid-
erably different, and they can give quite different numer-
ical results. An important point, which will probably have
to be settled by extensive simulations, is which method,
if any, handles best the practical problems of day-to-day
applied statistics.

2. OVERVIEW

The standard interval (1.1) is based on taking literally
the asymptotic normal approximation

(0 - 6)/6 ~ N(0, 1), (2.1)

© 1987 American Statistical Association
Journal of the American Statistical Association
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Table 1. Central 90% Confidence Intervals for 6 = n,/n, and
¢ = 1/6, Having Observed (y;, ¥,) = (8, 4) From a
Bivariate Normal Distribution 'y ~ Ny(m, 1)

For 6 (RIL) For ¢ (RIL)
Exact interval (also bootstrap) [.29,.76] (1.21) [1.32,3.50] (2.20)
Standard approximation (1.1)  [.27,.73] (1.00) [1.08,2.92] (1.00)
MLE f=.5 E=2

NOTE: The exact intervals are based on Fieller's construction. R/L is the ratio of the right side
of the interval, measured from the MLE, to the left side. The exact intervals are markedly
asymmetric. The approximate bootstrap intervals of Efron (1982a) agree with the exact intervals
to three decimal places in this case.

with the estimated standard error ¢ considered to be a
fixed constant. In certain cases it is well known that both
convergence to normality and constancy of ¢ can be dra-
matically improved by considering instead of  and 6 a
monotone tranformation ¢ = g(f) and ¢ = g(#). The
classic example is that of the correlation coefficient from
a bivariate normal sample, for which Fisher’s inverse hy-
perbolic tangent transformation works beautifully (see Ef-
ron 1982b).

The bias-corrected bootstrap intervals previously intro-
duced by Efron (1981, 1982a), called the BC intervals,
assume that normality and constant standard error can be
achieved by some transformation ¢ = g(8), = g(6), say

(d; - ¢)/T -~ N(—ZO7 1)7 (22)

7 being the constant standard error of ¢. Allowing the bias
constant z, in (2.2) considerably improves the approxi-
mation in many cases, including that of the normal cor-
relation coefficient. Taking (2.2) literally gives the obvious
confidence interval (¢ + 72zo) = 7z(® for ¢, which can then
be converted back to a confidence interval for 6 by the
inverse transformation § = g~1(¢). The advantage of the
BC method is that all of this is done automatically from
bootstrap calculations, without requiring the statistician to
know the correct transformation g.

The improved bootstrap method introduced in this ar-
ticle, called BC,, makes one further generalization on (2.1):
it is assumed that for some monotone transformation g,
some bias constant z,, and some “‘acceleration constant”
a, the transformation ¢ = g(#), ¢ = g(0) results in

(¢ — @)t~ N(—2¢04, %), 0,=1+ap. (2.3)

Notice that (2.2) is the special case of (2.3), witha = 0.

Given (2.3), it is not difficult to find the correct confi-
dence interval for ¢ and then convert it back to an interval
for § by 0 = g~'(¢). The BC, method produces this in-
terval for 6 automatically, without requiring any knowl-
edge of the transformation to form (2.3). This is the gist
of Lemma 1 in Section 3.

The difference between (2.2) and (2.3) is greater than
it seems. The hypothesized ideal transformation g leading
to (2.2) must be both normalizing and variance stabilizing,

whereas in (2.3) g need be only normalizing. Efron (1982b)

shows that normalization and stabilization are partially
antagonistic goals in familiar families such as the Poisson
and the binomial. Schenker’s counterexample to the BC
method (1985), which helped motivate this article, is based
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on a family (discussed in Sec. 3) for which (2.2) fails. The
main purpose of this article, to produce automatically in-
tervals that are second-order correct, generally requires
assumption (2.3) rather than (2.2).

It is not surprising that a theory based on (2.3) is usually
more accurate than a theory based on (2.1). In fact, ap-
plied statisticians make frequent use of devices like those
in (2.3), transformations, bias corrections, and even ac-
celeration adjustments, to improve the performance of the
standard intervals. The advantage of the BC, method is
that it automates these improvements, so the statistician
does not have to think them through anew for each new
application.

The bootstrap was originally introduced as a nonpara-
metric Monte Carlo device for estimating standard errors.
The basic idea, however, can be applied to any statistical
problem, including parametric ones, and does not neces-
sarily require Monte Carlo simulations. We will begin our
discussion of the BC, method by considering the simplest
type of parametric problem: where the data consists only
of a single real-valued statistic 6 in a one- parameter family
of densities fo(0), say 6 ~ fo, and where we want a con-
fidence interval for 6 based on 6.

Sections 3, 4, and 5 describe the BC, method in this
simple setting, show how to calculate it from bootstrap
computations, and demonstrate that it gives second-order
correct intervals for § under reasonable conditions.

Of course there is no need for the bootstrap in the simple
situation  ~ f,, since then it is usually quite easy to
calculate exact confidence intervals for 6. There are three
reasons for beginning the discussion with the simple sit-
uation: (a) it makes clear the logic of the BC, method; (b)
it makes possible the comparison of BC, intervals with
exact intervals, exact intervals usually not existing in com-
plicated problems; (c) it then turns out to be quite easy
to extend the BC, method to complicated situations, where
it is more likely to be needed.

The simple situation § ~ f, can be made more compli-
cated, and more realistic, in two ways: the data can cpnsist
of a vector y instead of a single summary statistic 4, and
the parameter can be a vector v instead of a single un-
known scalar 6. Section 6 considers multiparameter fam-
ilies f,(y), where we wish to set an approximate confi-
dence interval for a real-valued function 6 = t(m).

Our approach is to reduce the problem back to the
simple situation. The data vector y is replaced by an ef-
ficient estimator 6 of @, perhaps the MLE, and the mul-
tiparameter family f, is replaced by a least favorable one-
parameter family. All of the calculations are handled au-
tomatically by the BC, algorithm. For a class of examples,
including the Fieller problem of Table 1, the BC, method
automatically produces second-order correct intervals, but
a proof of general second-order correctness does not yet
exist for multiparameter situations.

Section 7 returns to the original nonparametric setting
of the bootstrap: the data y is assumed to be a random
sample x;, x,, . . . , X, from a completely unknown prob-
ability distribution F. We wish to set an approximate con-
fidence interval for § = ¢(F), some real-valued function
of F. The BC, method extends in a natural way to the
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nonparametric setting. In the case where 6 is the expec-
tation, theoretical analysis shows the BC, intervals per-
forming reasonably. Except for the case of the expecta-
tion, not much is proved about nonparametric BC, intervals,
though the empirical results look promising. Section 8 de-
velops a heuristic justification for the nonparametric BC,
method in terms of the geometry of multinomial sampling.

In the simple situation 6 ~ f, the parametric boot-
strap distribution 6* ~ f; can often be written down ex-
plicitly, or at least approximated by standard parametric
devices such as Edgeworth expansions. The number of
bootstrap repllcatlons of §*, to use the terminology of
previous papers, is then, effectively, infinity. For more
complicated situations like the nonparametric confidence
interval problem, Monte Carlo sampling is usually needed
to calculate the BC, intervals. How many bootstrap rep-
lications are necessary? The answer, on the order of 1,000,
is derived in Section 9. This compares with only about 100
bootstrap replications necessary to adequately calculate a
bootstrap standard error. Bootstrap confidence intervals
require a lot more computation than bootstrap standard
errors, if second-order accuracy is desired.

To get the main ideas across, some important technical
points are deferred until Sections 10-12.

3. BOOTSTRAP CONFIDENCE INTERVALS FOR
SIMPLE PARAMETRIC SITUATIONS

We first consider the simple situation 6 ~ - fo, Where we
have a one-parameter family of densities F4(0) for the real-
valued statistic §. We wish to set a confidence interval for
6 having observed only 6. The statistic § estimates 6. Later
we will make specific assumptions about the properties of
0 as an estimator of —essentially that 6 behaves like the
MLE asymptotically, though § may be some first-order
efficient estimator other than the MLE.

By definition, the parametric bootstrap distribution in
this simple situation is

6* ~ f5. (3.1)

In other words it is the distribution of the statistic of in-
terest when the unknown parameter 0 is set equal to the
observed point estimate 6. We also need to define the cdf
of the bootstrap distribution

GGs) = f " fo(6mdd* = Prff* <5 (3.2)
The integral is replaced by a summation in discrete fam-
ilies. The goal of bootstrap theory is to make inferential
statements on the basis of the bootstrap distribution. In
this article the inferences are approximate confidence in-
tervals for 6.

Example (chi-squared scale family). Suppose that

6 ~ 0(x3%/19), (3.3)
the example considered in Schenker (1985). Then
fo(0) = c(0/6)35¢=°500  for § >0
[c = 9.5°5/T'(9.5)]. (3.4)
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Having observed 0, the bootstrap distribution 6* ~ 6
(x%/19) has density 6(0*/0)85e‘95(“f*’é) for 6* > 0. The
bootstrap cdf is G(s) = I,5(9.5s/0), where I, 5 indicates
the incomplete gamma function of degree 9.5.

Now suppose that for a family § ~ f, there exists a
monotone-increasing transformation g and constants z, and
a such that

A A

o =g(0), ¢ =g (3.5)
satisfy
d=0¢ +0yZ-2), Z~N01 (3.6
with
o, =1+ ag. (3.7)

This is of form (2.3), with ¢ = 1. [Eq. (2.3) can always
be reduced to the case © = 1; see Remark A, Sec. 11.]
We will assume that ¢ > —1/aif a > 0in (3.7), so g4 >
0, and likewise ¢ < —1/a if a < 0. The constant a will
typically be in the range |a| < .2, as will z,.

Let ® denote the standard normal cdf, and let G~'(a)
denote the 100 - « percentile of the bootstrap cdf (3.2).

Lemma 1. Under conditions (3.5)-(3.7), the correct
central confidence interval of level 1-2« for 6 is

0 € [GH(@(z[a]), G(D(2[L — aD)],  (3.8)
where

(zo + z©)
1 - a(zy + z®)”’

z[a] = zy + (3.9
and likewise for z[1 — a].

The proof of Lemma 1, at the end of this section, makes
clear that interval (3.8) is correct in a strong sense: it is
equivalent, under assumptions (3.5)—(3.7), to the usual
obvious interval for a simple translation problem. Given
the bootstrap cdf G(s) and values of z, and a derived from
bootstrap calculations as in the following sections, we can
form interval (3.8), (3.9) for 6 whether or not assumptions
(3.5)-(3.7) apply. This by definition is the BC, interval
for 6.

If zy and a equal 0, then z[a] = z® and (3.8) becomes
6 € [G(a), G'(1 — a)]. In this case we just use the ob-
vious percentiles of the bootstrap distribution to form
an approximate confidence interval for ¢, an approach
called the percentile method in Efron (1981, 1982a). In
general z, and a do not equal zero, and formulas (3.8),
(3.9) make adjustments to the percentile method that are
necessary to achieve second-order correctness.

Continuing example (3.3), the theory of Efron (1982b)
shows that for the chi-squared scale family we can find a
transformation g very nearly satisfying (3.5)—(3.7). Schenker
(1985) proved the same result by a different method. The
constants

zo = .1082, = .1077 (3.10)

and the transformation g appropriate to family (3.3) are
derived in Section 10 and Remark E of Section 11. Simple
ways of approximating z, and a for general families 6 ~
fo are given in Section 4.
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Line 2 of Table 2 shows the central 90% BC, interval,
a = .05, for family (3.3), with G(s) = I,5(9.5s/6) and z,
and a as in (3.10). The exact confidence interval is § €
(190731, 196/x %], where x% is the 100 - « percentile
point of a X%g distribution. Notice how closely the BC,
endpoints match those of the exact interval (see line 1).
The standard interval (1.1) is quite inaccurate in this case.

Suppose that we set a = 0 in (3.9), so z[a] = 2z, +
2@, Interval (3.8) with this definition of z[«] and z[1 —
a] is called the BC interval, short for bias-corrected boot-
strap interval, in Efron (1981, 1982a). In other words, BC
= BC,, with a = 0. The constant z, is easier to obtain
than the constant a, as discussed in the next section, which
is why the BC interval might be used. Line 3 of Table 2
shows that for family (3.3) the BC interval is a definite
improvement over the standard interval but goes only about
half as far as it should toward achieving the asymmetry of
the exact interval.

The Fieller situation of Table 1 is an example of a class
of multiparameter problems for which a = 0, so the BC
and BC, intervals coincide. Efron (1985) showed that the
BC intervals are second-order correct for this class, as
discussed in Section 6. In general problems the full BC,
method is necessary to get second-order correctness, as
shown in Section S.

Bartlett (1953) and Schenker (1985) discussed problem
(3.3). The BC, method can be thought of as a computer-
based way to carry out Bartlett’s program of improved
approximate confidence intervals without having to do his
theoretical calculations.

Proof of Lemma 1. We begin by showing that the BC,
interval for ¢ based on ¢ is correct in a certain obvious
sense: notice that (3.6), (3.7) give

{1+ ad} ={1 + apXl + a(Z - z5)}. (3.11)

Taking logarithms puts the problem into standard trans-
lation form,

=0+ W, (3.12)
= log{l + a¢}, ¢ = log{l + a¢}, and W = log{l +
a(Z — z,)}. This example was discussed more carefully in
Sections 4 and 8 of Efron (1982b), where the possibility
of the bracketed terms in (3.11) being negative was dealt
with. Here it will cause no trouble to assume them positive
so that it is permissible to take logarithms. In fact the
transformation to (3.12) is only for motivational purposes.
A quicker but less informative proof of Lemma 1 is pos-
sible, working directly on the ¢ scale.

Table 2. Central 90% Confidence Intervals for 6 Having Observed

6~ 0x2%/19
R/L
1. Exact [6310 1880] 2.38
2. BC, (a = .1077) [.6309, 1.884] 2.37
3. BC(a = 0) [.5800, 1.696] 1.64
4. Standard (1.1) [.4660, 1. 534 1.00
5. Nonparametric BC, [.6400, 1.680] 1.88

NOTE: The BC; interval, with a = .1077, the correct value, is nearly identical to the exact
interval. The BC interval, a = 0, is only a partial improvement over the standard interval. The
nonparametric BC, interval is discussed in Section 7.
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The translation problem (3.12) gives a natural central
1 — 2a interval for { having observed (,

(el - wt-a, { — wo, (3.13)

where w is the 100 - « percentile point for W, Pr{W <
w@} = a.

We will use the notation #[«] for the a-level endpoint
of a confidence interval for a parameter 6. For instance
(3.13) says that {[a] = £ — w9, {[1- o] = ¢ — w,
The interval (3.13) can be transformed back to the ¢ scale
by the inverse mappings ¢ = (¢l — 1)/a, ¢ = (¢f — 1)/
a,(Z — zy) = (" — 1)/a. Alittle algebraic manipulation
shows that the resulting interval for ¢ has a-level endpoint

R (zo + 29)
= 2 . .].
¢[a] ¢ + gé 1 — a(Zo + Z(a)) (3 4)
The cdf of ¢ according to (3.6) is @((s — ¢)/oy + 2),

so the bootstrap cdf of ¢*, say H, is H(s) = d((s — ¢)/
0; + 2o). This has inverse A (a) = ¢ + o;{® () -
2o}, which shows that A ~1(®(z[a])) equals (3.14) [see def-
inition (3.9)]. In other words, the BC, interval for ¢, based
on ¢, coincides with the correct interval (3.14), “correct”
meaning in agreement with the translation interval (3.13).

The BC, intervals transform in the obvious way: if ¢ =
g(0), ¢ = g(0), then the BC, interval endpoints satisfy

¢la] = g(0[a]). This follows directly from (3.8), (3.9) and
the relationship H(g(s)) = G(s), equivalently H '(a) =
g(G~Y()), between the two bootstrap cdf’s. Lemma 1 has
now been verified: the transformations  — ¢ — ¢ and 6
— ¢ — { reduce the problem to translation form (3.12);
the inverse transformations of the natural interval (3.13)
for { produce the BC, interval (3.8), (3.9).

4. THE TWO CONSTANTS

The BC, intervals require the statistician to calculate the
bootstrap distribution G and also the two constants z, and
a. The bootstrap distribution is obtained directly from (3.2).
This calculation does not require knowledge of the nor-
malizing transformation g occurring in (3.5). The two con-
stants z, and a can also be obtained, or at least approxi-
mated, directly from the bootstrap distribution f;(6*).
These calculatlons which are the subject of this section,
assume that a transformation g to form (3.6), (3.7) exists,
but do not require g to be known.

In fact the bias-correction constant z; is

2, = ®-YG(0)) (4.1)

under assumptions (3.5)-(3.7), and so can be computed
directly from G. To verify (4.1) notice that

Prydd < ¢} = PHZ < zg = D(z))  (42)
according to (3.6). However, (3.5) gives
Pr,{0 < 6} = Pry{d < ¢} = (2) (4.3)

for every value of §. Substituting 6 = 0 gives G(0) =
Pry{0* < 0} = ®(z,), which is (4.1).
What about the acceleration constant a? We will show

that a good approximation for a is

= § SKEW,-4(l), (4.4)
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where SKEW,_;(X) indicates the skewness of a random
variable X, /43(X)/,uz(X 32 evaluated at parameter point
6 equal to 0, and I, is the score function of the family
6), - A

1o(8) = a/96 log f,(6). (4.5)

Formula (4.4) allows us to calculate a from the form of
the given density f, near § = 6, without knowing g. Sec-
tions 6 and 7 discuss the computation of g in families with
nuisance parameters. Section 10 gives a deeper discussion
of a and its relationship to other quantities of interest. See
also Remark F, Section 11.

Example. For 0 ~ 0(3%/19), as in Table 2, standard
x? calculations give SKEW({)/6 = [8/(19 - 36)]"* = .1081,
which is quite close to the actual value a = .1077 derived
in Section 10.

Here is a simple heuristic argument that indicates the
role of the constant a in setting approxi'mate confidence
intervals. Suppose that zo = 0 and a > 0 in (3.6), (3.7).
Having observed ¢ = 0, and noticing o5 = 1, the naive
interval for ¢ [which is almost the same as the standard
interval (1.1)] is ¢ € [z©®, z(1~9]. If, however, the stat-
istician checks the situation at the right endpoint z(!~-9, he
finds that the hypothesized standard deviation of ¢ has
increased from 1 to 1 + az(!~9. This suggests increasing
the right endpoint to z=9(1 + az('~). Now the hypoth-
esized standard deviation has further increased to 1 +
az@~9(1 + az(1-9), suggesting a still larger right endpoint,
and so forth. Continuing on in this way results in formula
(3.14), leading to Lemma 1. [Improving the standard in-
terval (1.1) by recomputing & at its endpoints is a useful
idea. It was brought to my attention by John Tukey, who
pointed out its use by Bartlett (1953); see, e.g., Bartlett’s
eq. (17). Tukey’s (1949) unpublished talk anticipated many
of the same points.]

We call a the acceleration constant because of its effect
of constantly changing the natural units of measurement
as we move along the ¢ (or 6) axis. Notice that we can
write (3.7) as

gy = a4, [1 + a(d — o)/ a,], (4.6)

SO

_ d(olay)
(¢ — #u)lo)

for any fixed value of ¢,. This shows that a is the relative
change in o4 per unit standard deviation change in ¢, no
matter what value ¢ has.

The point ¢, = 0 is favored in definition (3.7), since o,
has been set equal to the convenient value 1. There is no
harm in thinking of 0 as the true value of ¢, the value
actually governing the distribution of ¢ in (3.8), because
in theory we can always choose the transformation g so
that this is the case and, in addition, so that g, = 1 (see
Remark A, Sec. 11). The restriction 1 + a¢ > 0 in (3.7)
causes no practical trouble for |a| < .2, since it is then at
least 5 standard deviations to the boundary of the per-
missible ¢ region.

The remainder of this section is devoted to verifying

4.7)
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(4.4). The discussion is fairly technical and can be deferred
until Section 10 at the reader’s preference.
If we make smooth one-to-one transformations é =

g(0), ¢ = h(0), then [,($) = 1,(6)/h'(6) and SKEW
(l ) = SKEW(/,). In other words, the right side of (4.4)
is invariant under all mappings of this type. Suppose that
for some choice of g and &, we can represent the family
of distributions of ¢ as

¢ = (b + O'¢Q(Z),

where g, and g(Z) are functions of ¢ and z, having at
least one and two derivatives, respectively, q'(Z) > 0.
Situation (4.8), with the added conditions ¢(0) = 0, ¢'(0)
= 1, is called a general scaled transformation family (GSTF)
in Efron (1982b). [Please note the corrigenda to Efron
(1982b).]

Z~N@0,1), (4.8)

Lemma 2. The family (4.8) has score function I,(¢)
satisfying

gl () ~ [Z +

7@ [1+ @] _,
q’(Z)][ q'(Z) ] @
Z ~ N0, 1). (4.9)

Here 6, = do,/d¢ and q' and q" are the first two deriv-
atives of q.

Before presenting the proof of Lemma 2, we note that
it verifies (4.4): in situation (3.6), (3.7), where 65 = a,
q'(Z) =1, q"(Z) = 0, the distributional relationship (4.9)
becomes

(z—n]
(4.10)

ol s($) ~ (1 — aZo)[Z 1T

Let

a
1 - azy’

(4.11)

& =

a quantity discussed in Section 10. From the moments of
Z ~ N(0, 1), (4.10) gives
SKEW(i,) 1+ 4%é
6 (1 + 29

(4.12)

We will see in Section 10 that for the usual repeated
sampling situation both a and z, are order of magnitude
O(n~') in the sample size n. This means that ¢, = a - [1
+ O(n™Y)], (4.11), and that SKEW(i,)/6 = SKEW(i,)/
6 = a[l + O(n~1)], (4.12), justifying approximation (4.4).
The “constant” a actually depends on 6, but substituting
6 =06in (4.4) causes errors only at the third-order level,
like 6B{/n in (1.2), and so does not affect the second-
order properties of the BC, intervals.

Proof of Lemma 2. Starting from (4.8), the cdf of

¢ is cI’(q (¢ = ¢)/5y)), so § has density f,() =
exp(— )/(\/2—7; 04q'(Z4)), where Z, = q 1((<l5 ¢)/
Gp)- ThlS gives log-likelihood function

Io(d) = —4Z% — log(q'(Z)) — log(a,). (4.13)
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Lemma 2 follows by differentiating (4.13) with respect to
¢ and noting that Z, ~ N(0, 1) when sampling from (4.8).

5. SECOND-ORDER CORRECTNESS OF
THE BC, INTERVALS

The standard intervals are based on approximation (2.1).
The BC, intervals, which improved considerably on the
standard intervals in Tables 1 and 2, are based on the more
general approximation (2.3). Is it possible to go beyond
(2.3), to find still further improvements over the standard
intervals? The answer is no, at least not in terms of second-
order asymptotics. The theorem of this section states that
for simple one-parameter problems the BC, intervals co-
incide through second order with the exact intervals. In
terms of (1.2), the BC, intervals have the correct second-
order asymptotic form § + 6(z@ + A@/Vn + ).

We continue to consider the simple one-parameter prob-
lem 6 ~ f,. Suppose that the 100 - & percentlle of f as a
function of 0, say 0, is a continuously increasing function
of 0 for any fixed «. In this case the usual confidence
interval construction gives an exact 1 — 2a central interval
for 0 havmg observed 0, say (O[], HEx[l a]], where
e @] is the value of @ satisfying 0% ~® = 0. The exact
interval in Table 2 is an example of this construction.

It is not necessary that 6 be the MLE of 6. In (3.6), for
instance, ¢ is not the MLE of ¢. The BC, method is quite
insensitive to small changes in the form of the estimator
(see Remark B, Sec. 11). It will be assumed, however,
that § behaves asymptotically like the MLE in terms of
the orders of magnitude of its bias, standard deviation,
skewness, and kurtosis,

6 — 0 ~ (By/n, Co/N'n, Do/, Eg/n).  (5.1)

Here n is the sample size upon which the summary statistic
0 is based; By, Cy, Dy, and E, are bounded functions of 0
(and of n, which is suppressed in the notation). Then (5.1)
says that the bias of 8, By/n, is O(n™?), the standard de-
viation C,/Vnis O(n~12), skewness O(n~"2), and kurtosis
O(n~'). Higher cumulants, which are typically of order
smaller than O(n 1), will be assumed negligible in proving
the results that follow (see DiCiccio 1984; Hougaard 1982).

In the simple situation 6 ~ fo» 0 is a sufficient statistic
for 0. Later when we consider more complicated problems
we will take 6 to be the MLE of 6. This guarantees that
d is first-order efficient and asymptotically sufficient (Ef-
ron 1975).

The asymptotics of this article are stated relative to the
size of the estimated standard error & of 4, as in (1.2). It
is often convenient in what follows to have & be O,(1).
This is easy to accomplish by transforming to q§ =

Vb, ¢ = Vnb, so (5.1) becomes

¢ - ¢ ~ (ﬁd)* O'¢, V¢, 5(#)’

where ﬁd’ B¢/,,1/z/n , Op = C¢/,,1/2, Yo = D¢/n1/2/n 2, and
84 = Egun/n. Notice that B, = O(n=12), f, = d,b’¢/d¢ =
O(n~- 3), and so forth. We can just assume to begin with
that 0 and 6 are the rescaled quantities previously called

(5.2)
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¢ and ¢. Then the following orders of magnitude apply:

o(1) O~  Oom™")  Om*?
Gy Go, Bos Yo G, Bos Vo, 09 Po» Vo Op

Theorem 1. If § has bias By, standard error g4, skewness
g, and kurtosis J, satisfying (5.3), then the BC, intervals
are second-order correct.

The theorem states that pc [a], the @ endpoint of the
BC, interval, is asymptotically close to the exact endpoint,

(Oscla] = Oedal)/6 = Op(n7"). (5.4)

This is not true for the standard intervals (1.1) or the BC
intervals, a = 0. The proof of Theorem 1, which appears
in Section 12, makes it clear that all three of the elements
in (2.3), the transformation g, the bias-correction constant
Z,, and the acceleration constant a, make necessary cor-
rections of O,(n~"?) to the standard intervals.

(5.3)

6. NUISANCE PARAMETERS

The discussion so far has centered on the simple case
6 ~ ~ f4, where we have only a real-valued parameter 6 and
areal-valued summary statistic 6 from which we are trying
to construct a confidence interval for 8. We have been able
to show favorable properties of the BC, intervals for the
simple case, but of course the simple case is where we
least need a general method like the bootstrap.

This section discusses the more difficult situation where
there are nuisance parameters besides the parameter of
interest §. Section 7 discusses the nonparametric situation,
where the number of nuisance parameters is effectively
infinite. Because of the inherently simple nature of the
bootstrap it will be easy to extend the BC, method to cover
these cases, though we will not be able to provide as strong
a justification for the correctness of the resulting intervals.

Suppose then that the data y comes from a parametric
family § of density functions f,, say y ~ f,, where m is an
unknown vector of parameters, and we want a confidence
interval for the real-valued parameter § = #(n). In Efron
(1985), the multivariate normal case y ~ Ni(m, I) is ex-
amined in detail. X

From y we obtain 9, the MLE of n, and 6 = #(4), the
MLE of 0. The parametric bootstrap distribution of y is
defined to be

Yy~ fa (6.1)

the distribution of the data when n equals 4. From y*
we obtain §*, the bootstrap MLE of %, and then §* =
1(h").

The distribution of §* under model (6.1) is the para-
metric boostrap distribution of 8, generalizing (3.1). This
gives the bootstrap cdf

G(s) = Pry{d* < s}, 6.2)

as in (3.2). The bias-correction constant z, equals
®-YG(H)), as in (4.1).

To compute the BC, intervals (3.8), (3.9), we also need

to know the appropriate value of the acceleration constant
a. We will find a by following Stein’s (1956) construction,
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which replaces the multiparameter faAmily F={fabya
least favorable one-parameter family 3.

Let i, be the vector with ith coordmate d/dn; log fo(y),
SO l,,(y) = 0 by definition of the MLE 1, and let [, be
the k X k matrix with ijth entry 8%/(9n,05;) log f,,(y)|,, @
In addition, let V be the gradient vector of 6 = #(m)
evaluated at the MLE, V, = (8/37,)t(n)|,-4 The least
favorable direction at = 1 is defined to be

p= (_i.)—lﬁ (6.3)

Then the least favorable famlly is the one-parameter
subfamily of F passing through 1 in the direction fi,

§ = {70y = faraa(y)h (6.4)

Using y* to denote a hypothetical data vector from ¥, is
intended to avoid confusion with the actual data vector y
that gave 9; 1) and ji are fixed in (6.4), only A being un-
known.

Consider the problem of estimating (1) = t(f§ + Ajh)
having observed y* ~ },. The Fisher information bound
for an unbiased estimate of ¢ in this one-parameter family
evaluated at 4 = 0 is V'(—1I; 4)” 'V, which is the same as
the corresponding bound for estimating 6 = (), atm =
1, in the multiparameter family 5. This is Stein’s reason
for calling ¥ least favorable.

We will use & to calculate an approximate value for the
acceleration constant a,

a = {SKEW,_[d log fﬁ+lﬁ(y*)/a’1]/6}

This is formula (4.4) applied to § assumlng that 4 =
(which is the MLE of 4 in  when y* = vy, the actual data
vector). See Remark F, Section 11.

Formula (6.5) is especially simple in the exponential
family case where the densities f,(y) are of the form

faly) = etry=v@ify(y). (6.6)

The factor » in the exponent of (6.6) is not necessary, but

it is included to agree with the situation where the data

consists of iid observations x;, x,, . .., X,, each with

%ensity exp(n'x — w(n)), and y is the sufficient vector
n_x;/n.

(6. 5)

Lemma 3. For the exponential family (6.6), formula
(6.5) gives

_ 190
ERVATEIOE 7
where
g Yy(h + AR)
0)] 0 = — .
P(0) | (6.8)
Proof. We have
alog f * ., A
2oefaenl¥D | ppr(yr — wa), (69)
=0
so SKEW,_[(d log f4+:4(¥*))/04] equals the skewness of

p'y* for y* ~ fi. The fact that SKEW(ji'y*) equals
[y/(3)(0)/(u/(2)(0))3’2]/\/_ nis a standard exercise in expo-
nential family theory. Note that Lemma 3 applies to y ~
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Ni(m, I), the case considered in Efron (1985), and gives
a = 0, which is why the unaccelerated BC intervals worked
well there.

Table 3 relates to the following example:

Yy~ Nim, a3D), [0y = 1 + a(lyl - 8)],

where we observe y = (8, 0, 0, 0) and wish to set confi-
dence intervals for the parameter § = #(n) = |j5l. The
case a = 0 amounts to finding a confidence interval for
the noncentrality parameter of a noncentral y? distribution
and can be solved exactly. The theory of Efron (1985)
applies to the a = 0 case, and we see that the BC, interval,
that is, the BC interval, well-matches the exact interval.

Table 3 shows the result of varying the constant a from
.10 to —.10. This example has a partlcularly simple ge-
ometry: the sphere Cy = {q : || = 0} is the set of m
vectors having ¢(n) equal to the MLE value § = t(n), the
least favorable direction fi is orthogonal to Cy at §; the
distribution of § is nearly normal (see Efron 1985, Table
2), with standard deviation changing in the least favorable
direction at a rate nearly equal to a, as in (4.7). The BC,
intervals alter predictably with a. For instance, comparing
the upper endpoint at a = .10 with a = 0, notice that
(9.70 — 8.00)/(9.44 — 8.00) = 1.18, closely matching the
expansion factor due to acceleration, 1 + .10 - 1.645 =
1.16.

We could disguise problem (6.10) by making nonlinear
transformations

(6.10)

M = h(n),

in which case the geometry of the BC, intervals might not
be obvious from the form of the parameter 6 = t(h~'(7))
= |lh~*(q)|| and the transformed densities f;(y). However,
the BC, method is invariant under such transformations
(see Remark C, Sec. 11), so the statistician would auto-
matically get the same intervals as if he knew the nor-
malizing transformations y = g~(§), m = A~'(9).
Currently we cannot justify the BC, method as being
second-order correct in the multiparameter context of this
section, though it seems a likely conjecture that this is so.
We know that it is so in the one-parameter case (see Sec.
5) and in the restricted multiparameter case of Efron (1985),
where the BC, and BC methods coincide, and that the

y = 8(y), (6.11)

BC, method makes a rather obvious correction to the BC
interval in the general multiparameter case.

Table 3. Central 90% Confidence Intervals for 6 = ||, Having
Observed |ly|| = 8, From the Parametric Family y ~ N(m, d3l),
With o, = 1 + a(llrll — 8)

Exact (RIL) BC, (RIL) (6.5
a=.10 [6.46, 9.69] (.96) [6.47,9.70] (.97) .0984
a = .05 [6.32,9.57] (.85) [6.34,9.56] (.84) .0498
a=0 [6.14,9.47) (74) [6.19,9.44] (.75) 0
a=—-.05 [5.92,938 (65 [6.03,9.35] (.66) —.0498
a=—-.10 |[5.62,9.30] (.56) [5.89,9.27] (.60) —.0984

NOTE: The standard interval (1.1) is [6.36, 9.64] for all values of a. The last column shows
that (6.5) nearly equals the constant a in this case. The exact intervals are based on the
noncentral 2 distribution.
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7. THE NONPARAMETRIC CASE

This section concerns the nonparametric case where the
datay = (xi, x5, . . . , X,,) consist of n iid observations x;
that may have come from any probability distribution F
on their common sample space 9. There is a real-valued
parameter § = t(F) for which we desire an approximate
confidence interval. We will show how the BC, method
can be used to provide such an interval based on the ob-
vious nonparametric estimate 6 = t(F) Here F is the
empirical probability distribution of the sample, putting
mass 1/n on each observed value x;.

A bootstrap sample y* ~ F consists in this case of an
iid sample of size n from E, say y* = (xf, x5, . .., x).
In other words, y* is a random sample of size n drawn
with replacement from {x;, x,, . . . , x,}. The bootstrap
sample y* gives a bootstrap rephcatlon of 0, 6* = t(F*),
where F* puts mass 1/n on each x*. The bootstrap cdf
G(s) is the probability that a bootstrap replication is less
than s,

G(s) = Prp{f* < s}, (7.1)

as in (6.2) and (3 2). The bias-correction constant z, equals
®-Y(G(h)), as in (4.1).

For most nonparametric problems the bootstrap cdf G
has to be determined by Monte Carlo sampling. Section
9 discusses how many Monte Carlo replications of 6* are
necessary. Here we will continue to assume that G has
been computed exactly—in effect, that we have taken an
infinite number of bootstrap replications 6.

At this point we could use G to form the BC interval for
0, but to obtain the BC, interval (3.8), (3.9) we also need
the value of the acceleration constant a. We will derive a
simple approximation for a, based on Lemma 3. It depends
on

U, = lim H((1 - AYF + A6) — t(F) ,

A0 A

i=1,2,... (7.2)

the empirical influence function of § = t(F). Here ¢, is
a pomt mass at x;, so U, is the derivative of the esti-
mate § with respect to the mass on point x;. [Jaeckel’s in-
finitesimal jackknife estimate of standard error for @ is
(Z1UH"*/n.] Definition (7.2) assumes that #(F) is smoothly
defined for choices of F near F [see Efron 1982a, (6.3),
or Efron 1979, sec. 5]. Note that 2] U, =

The next section shows that Lemma 3, applied to a
family appropriate to the nonparametric situation, gives
the following approximation for the constant a,

“i[(E)/Go) ]

This is a convenient formula since the U; can be evaluated
easily by using finite differences in definition (7.2).

Example 1: The Law School Data. Table 4 shows two
indexes of student excellence, LSAT and GPA, for each
of 15 American law schools (see Efron 1982a, sec. 2.2).
The Pearson correlation coefficient p between LSAT and
GPA equals .776; we want a confidence interval for the

,n’

(7.3)
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Table 4. The Law School Data and Values of the Empirical Influence
Function for the Correlation Coefficient p

i (LSAT, GPA) U i (LSAT, GPA) U

1 (576,3.39)  —1.507 9  (651,3.36) 310
2 (635,3.30) .168 10 (605, 3.13) .004
3 (558, 2.81) 273 11 (653,3.12) —.526
4 (578, 3.03) .004 12 (575,2.74)  —.091
5 (666, 3.44) 525 13 (545, 2.76) 434
6 (580, 3.07) —.049 14 (572, 2.88) 125
7 (555, 3.00) -.100 15 (594,2.96)  —.048
8 (661, 3.43) 477

true correlation p. Table 4 also shows the values of U, for
the statistic §, from which formula (7.3) produces a =
—.0817. B = 100,000 bootstrap replications (about 100
times more than actually needed; see Sec. 9) gave G(f)

.463, and so z, = —.0927. Using these values of a and
zy in (3.8), (3.9) resulted in the central 90% nonparametric
BC, interval [.43, .92] for p. The usual bivariate normal
interval, based on Fisher’s tanh~! transformation, is [.49,
.90]. This is also the parametric BC, interval based on the
simple family p ~ f,, where f,(p) is Fisher’s density func-
tion for the correlation coefficient from bivariate normal
data. The standard interval (1.1), p * 1.6456, using the
bootstrap estimate & = .133, is [.56, .99].

Formula (7.3) is invariant under monotone changes of
the parameter of interest. This results in the BC, intervals
having correct transformation properties. Suppose, for ex-
ample, that we change parameters from p to ¢ = g(p) =
tanh~!(p), with corresponding nonparametric estimate q,'>
= g(p). The central 90% BC, interval for ¢ based on )
is then the obvious transformation of the interval for 6
based on 0, [g(.43), g(.92)] = [.46, 1.59]. This compares
with Fisher’s tanh " interval [g(.49), g(.90)] = [.54, 1.47]
and the standard interval ¢ = 1.6456, = [.49, 1.59]. The
standard interval is much more reasonable-looking on the
tanh~! scale, as we might expect from Fisher’s transfor-
mation theory. As commented before, a major advantage
of the BC, method is that the statistician need not know
the correct scale on which to work. In effect the method
effectively selects the best (most normal) scale and then
transforms the interval back to the scale of interest.

Example 2: The Mean. Suppose that Fis a distribution
on the real line, and 6 = #(F) equals the expectation EpX.
The empirical influence function U; = (x; — X), so (7.3)
gives

MY (= X (= 3PP
(1/6Vn)(fis/3?) = $/6Vn. (7.4)

Here &, = 2 (x; — X)"/n, the hth sample central moment,
and § = f[i;/43?, the sample skewness. It turns out also
that z, = $/6Vn in this case, by standard Edgeworth ar-
guments. Both a and z, are typically of order n~'2.

Because the sample mean is such a simple statistic, we
can use Edgeworth methods to get asymptotic expressions
for the a-level endpoint of the BC, interval:

Osclal = X + 6{z@ + (§/6Vn)(2z + 1) +

Q
I

O,(n~M},
(7.5)
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& = (fi/m)"2. This compares with
Oscla] = X + 6{z® + ($/6Vn)(z® + 1) + O,(n M)},
(7.6)

for the BC interval, so the BC, intervals are shifted ap-
proximately (5/6\Vn)z(@’ further right.

Johnson (1978) suggested modifying the usual ¢ statistic
T=@-6)6toT, =T+ (5/6Vn)(2T* + 1) and then
considering T; to have a standard ¢,_; distribution in order
to obtain confidence intervals for § = EzX. Efron (1981,
sec. 10) showed that this is much like using the bootstrap
distribution of 7* = (x* — X)/6* as a pivotal quantity.
Interestingly enough, the Edgeworth expansion of 6,[al,
the o endpoint of Johnson’s interval, coincides with (7.5).
The BC, method makes a ““t correction” in the case of 6
= EpX, but it is not the familiar Student-t correction,
which operates at third order in (1.2), but rather a second-
order correction, coming from the correlation between x
and ¢ in nonnormal populations (see Remark D, Sec. 11).

I conjecture that the nonparametric BC, intervals will
be second-order correct for any parameter 6. There is no
proof of this, a major difficulty being the definition of
second-order correctness in the nonparametric situation.
Whether or not it is true, small-sample nonparametric con-
fidence intervals are far from well understood and, as em-
phasized in Schenker (1985), should be interpreted with
some caution.

Example 3: The Variance. Suppose that & is the real
line and 6 = var X, the variance. Line 5 of Table 2 shows
the result of applying the nonparametric BC, method to
data sets x;, x5, . . . , Xy, which were actually iid samples
from an N(0, 1) distribution. The number .640, for ex-
ample, is the average of O [.05}/ 6 over 40 such data sets,
B = 4,000 bootstrap replications per data set. The upper
limit 1.68 - § is'noticeably small. The reason is simple: the
nonparametric bootstrap distribution of #* has a short
upper tail compared with the parametric bootstrap distri-
bution, which is a scaled y%, random variable. The results
of Beran (1984a), Bickel and Freedman (1981), and Singh
(1981) show that the nonparametric bootstrap distribution
is highly accurate asymptotically, but of course that is not
a guarantee of good small-sample behavior. Bootstrapping
from a smoothed version of F, as in Efron (1982a, sec.
5.3), alleviates the problem in this particular example.

8. GEOMETRY OF THE NONPARAMETRIC CASE

Formula (7.3), which allows us to apply the BC, method
nonparametrically, is based on a simple heuristic argu-
ment: instead of the actual sample-space 9C of the data
points x;, consider only distributions F supported on X =
{x1, x5, ..., x,}, the observed data set. This is an n-
category multinomial family, to which the results of Sec-
tion 6 can be applied. Because the multinomial is an ex-
ponential family, Lemma 3 directly gives (7.3).

We will now examine this argument more carefully, with
the help of a simple geometric representation. See Efron
(1981, sec. 11) for further discussion of this approach to
nonparametric confidence intervals.
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A typical distribution supported on 9 is

F(w) : mass w; on x;, (8.1)

where w = (w;, w,, . . ., w,) can be any vector in the
simplex §, = {w: w; = 0 Vi, 2} w; = 1}. The parameter
6 = t(F) is defined on §, by 6(w) = #(F(w)). The central
point of the simplex,

wl=1/n = (1/n, 1n, ..., 1/n), (8.2)

corresponds to F(w?) = F, the usual empirical distribu-

tion; (w°) = § = t(F), the nonparametric MLE of 6.
The curved surface

e = {w: 0(w) = O(w°) = 6} (8.3)

comprises those distributions F(w) having 6(w) = 0. The
vector U, is orthogonal to ¢ at w°, as shown in Figure 1,
which follows from definition (7.2) of the empirical influ-
ence function. U is essentially the gradient of 6(w) at w°
(see Efron 1982a, sec. 6.3).

With w unknown, but & = {x,, . .., x,} considered
fixed, one can imagine setting a confidence interval for
6(w) on the basis of a hypothetical sample x§, x5, . . .,
x} ~ F(w). A sufficient statistic is the vector of proportions
P, = #{x} = x}/n, say P = (P, P,, ..., P,), with
distribution

P ~ mult,(n, w)/n, wES,. (8.4)

The notation here indicates n draws from an n-category
multinomial, having probability w; for category i. We sup-
pose that we have observed P = w? in (8.4), that is, that
the hypothetical sample xf, . .., x* equals the actual
sample x;, . . ., X,.

Distributions (8.4) form an n-parameter exponential
family (6.6) withy = P, ; = log(nw;) + ¢, and y(y) =
log(2} exp(n;)/n). Here ¢ can be any constant, since all
vectors i) + c1 correspond to the same probability vector
w, namely w; = exp(n,)/ 2} exp(n;).

If one accepts the reduction of the original nonpara-
metric problem to (8.4), with observed value P = w?,
then it is easy to carry through the least favorable family
calculations (6.3)-(6.5): (i) 4 = 0; (i) o = U; (iii) f, is
the member of (7.4) corresponding to %) + Ajp = AU,
namely

P* ~ mult(n, w*)/n, w} = exp(/lU,-)/Z exp(AU));
j=1

(8.5)

(iv) finally, formula (7.3) follows directly from Lemma 3,
by differentiating (1) = log(Z} exp(4'J;)/n) (and re-
membering that 2 U, = 0).

Only step (ii) is not immediate, but it is a straightforward
consequence of definition (6.3) and standard properties of
the multinomial. It has already been noted that U is or-
thogonal to €, so U is proportional to V in (6.3). However,
—i4 = I — 11'/n, which has pseudo-inverse I. Thus fi is
proportional to U. Since (6.7), (6.8) produce the same
value of a if ji is multiplied by any constant, this in effect
gives p = U.

An interesting case that provides some support for the
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nonparametric BC, method is that where the sample space
is finite to begin with, say & = {1, 2, , L}. A typ-
ical distribution on «is f = (f, . . ., fL) where fi =
Prix; = I}. The observed sample proportions f= (F1, fas

C s FU), fi = #{x; = D/n, are sufficient, with distribu-
tion f ~ mult, (n, f)/n. This is an L-parameter exponential
family, so the theory of Section 6 applies. It turns out that
Lemma 3 agrees with formula (7.3) in this case. Non-
parametric BC, intervals are the same as parametric BC,
intervals when 9Cis finite. See remarks G and H of Efron
(1979) for the first-order bootstrap asymptotics of finite
sample spaces.

Family (8.4) was used in Section 11 of Efron (1981) to
motivate a method called nonparametric tilting, a nonpar-
ametric analog of the standard hypothesis-testing ap-
proach to confidence interval construction. The one-pa-
rameter tilting family, (11.12) of Efron (1981), is closely
related to the least favorable family 5 in Figure 1. Efron
(1981, table 5) considered samples of size n = 15 for the
one-sided exponential density f(x) = exp[—(x + 1] (x

—1). Central 90% tilting intervals for § = E.X were
constructed for each of 10 such samples, averaging [ — .34,
.50]. The corresponding nonparametric BC, intervals av-
eraged [—.34, .52] and were quite similar to the tilting
intervals on a sample-by-sample comparison. The non-
parametric BC, method is computationally simpler than
nonparametric tilting and seems likely to give similar re-
sults in most problems.

We end this section with a useful approximation formula
for the bias-correction constant z,, developed jointly with
Timothy Hesterberg. In addition to (7.2) we need the
second-order empirical influence function

Vi = lim {[t((1 — 24)F + AJ; + AJ))
A—0

- (1 = A)F + A6)

— (1 - AF + A6) + ((F)/AY. (8.6)

Define z,, = (3) 2 U3/(2] U?)*? [approximation (7.3)

for a] and
[U’VU
2 = | TyTn T

OF ®7)

tr V] /2n{Ul),

where V is the n X n matrix (V).

Lemma 4. The bias-correction constant z, approxi-
mately equals

Q12D (201) P (200)}-

For the law school data, Example 1 of Section 7, zy, =
—.0817 and zy, = —.0067, giving zo = —.0869 from (8.8),
compared with z, = —.0927 = .0039 from B = 100,000
bootstrap replications.

The term z(, relates to skewness in §, and zy, is a geo-
metric term arising from the curvature of ¢; at w°. It is
analogous to formula (A15) of Efron (1985). Lemma 4
will not be proved here but is important in the sample size
considerations of Section 9.

(8.8)
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Figure 1. All probability distributions supported on {x,, X, . . .
are represented as the simplex §,. The central point w° corresponds
to the empirical distribution F. The curves indicate level surfaces of
constant value of the parameter 6. In particular s comprises those
probability distributions having 6 equal to O(w°) = 6, the MLE. The
least favorable family 5 passes through we in the direction U, orthogonal
to G.

) Xn}

9. BOOTSTRAP SAMPLE SIZES

How many bootstrap replications of 6* need we take?
So far we have pretended that the number of replications
B = oo, butif Monte Carlo methods are necessary to obtain
the bootstrap cdf G, then B must be finite, usually the
smaller the better. This section gives rough estimates of
how small B may be taken in practice. The results are
presented without proof, all being standard exercises in
error estimation (see, e.g., Kendall and Stuart 1958, chap.
10). They apply to any situation, parametric or nonpara-
metric, where G is obtained by Monte Carlo sampling.

First consider the easy problem of estimating the stan-
dard error of § via the bootstrap The bootstrap estimate
based on B replications, 65 = [ZZ.,(0 — 6*)¥
(B — 1]"?, has conditional coefficient of variation (stan-
dard deviation divided by expectation)

CV{65 |y} = [(6 + 2)/4B]™", 9.1)

where § is the kurtosis of the bootstrap distribution G.
The notation indicates that the observed data y is fixed in
this calculation. As B — =, then (9.1) — 0 and 65 — &,
the ideal bootstrap estimate of standard error.

Of course ¢ itself will usually not estimate the true stan-
dard error o = SD,{f} perfectly. Let CV(6) be the coef-
ficient of variation of &, unconditional now, averaging over
the possrble realizations of y [e.g., if n = 20, § =
X ~ N(O 1), then CV(§) = (1/40)"2 = .16]. The uncon-
ditional CV of 45 is then approximated by

ES + 2] 12

5 9.2)

Table 5 displays CV(d) for various choices of B and
CV(6), assuming that E§ = 0. For values of CV(6) =

CV(6,) = [CVZ(a) +
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Table 5. Coefficient of Variation of 65, the Bootstrap Estimate of
Standard Error, as a Function of B, the Number of Bootstrap
Replications, and CV(é), the Limiting CV as B — «

B—

CV(3s) 25 50 100 200 @
.25 29 .27 .26 .25 .25
.20 .24 .22 .21 .21 .20
15 .21 .18 A7 .16 .15
10 A7 14 A2 11 .10
.05 15 1 .09 .07 .05

0 14 .10 .07 .05 0

NOTE: These data are based on (9.2), assuming that £§ = 0.

.10, typical in practice, there is little improvement past B
= 100. In fact, B as small as 25 gives reasonable results.

Now we return to bootstrap confidence intervals. In the
Monte Carlo situation the bootstrap cdf G must be esti-
mated from bootstrap replications 67, 65, . . . , 63, say
by

Gy(s) = #{0F < s}/B. (9.3)

As B — o, then G5 — G, the ideal bootstrap cdf we have
been using in the previous sections. Let §5[«] be the level
a endpoint of either the BC or BC, interval obtained from
G5(s) by substitution in (3.8), (3.9).

The following formula for the conditional CV of 05[a]
— 0 assumes that G is roughly normal and that z, and a
are known, for example, from (8.8) and (6.5) or (7.3):

L1 a(l — a)]"?
- BIIZIZ(a)I{ 0(z@)? } , (94

0(z) = exp(—32z2)/V2x. Notice that since we condition
on y, the only random quantity on the left side of (9.4) is
0p[]. Formula (9.4) measures the variability in 63[a] —
6 due to taking only B bootstrap replications, rather than
an infinite number.

Here is a brief tabulation of (9.4) x B'%:

a .75 90 .95 .975
(9.4) x B2 :2.02 1.33 128 1.36

If B = 1,000, for instance, then CV{05[.95] — 6|y =
1.28/10002 = .040. Reducing B to 200 increases the con-
ditional CV to .091. This last figure may be too big. The
whole purpose of developing a theory better than (1.1) is
to capture second-order effects. As the examples have
indicated, these become interesting when the asymmetry
ratio R/L is larger than say, 1.25, or smaller than .80. In
such borderline situations, an extra 9% error in each tail
due to inadequate bootstrap sampling may be unaccept-
able.

If the bias-correction constant z, is estimated by Monte
Carlo directly from z, = ®~1(G(d)), rather than from
(8.8), then

CV{0[a] — 0| y}

CV{05[a] — 0 |y}

(9.5)

21 - a)
9(0)p(z)

g "‘)}m (9.6)

.1 1
Bz {(0(0)2 9(z@y
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for @ > .50. This gives larger CV’s than (9.4):

a 75 .90 95 975
(9.6) x B¥2:3.04 197 175 1.71

Comparing (9.7) with (9.5) shows that we need B to be
about twice as large to get the same CV if z, is estimated
rather than calculated. Formula (8.8) can be very helpful!

Both (9.4) and (9.6) assume that the bootstrap cdf is
estimated by straightforward Monte Carlo sampling, as in
(9.3). M. V. Johns (personal communication) has devel-
oped importance sampling methods that greatly accelerate
the estimation of G in some situations.

10. ONE-PARAMETER FAMILIES

We return to the simple situation 6 ~ fo, where there
are no nuisance parameters and where we want a confi-
dence interval for the real-valued parameter 6 based on a
real-valued summary statistic §. This section gives a more
extensive discussion of the acceleration constant a, which
has played a basic role in our considerations. Three fa-
miliar types of one-parameter families will be investigated:
exponential families, translation families, and transfor-
mation families.

Efron (1982b) considered the following question: for a
given family § ~ fq, do there exist mappings é = g, q.’)
= h(6) such that ¢ = ¢ + 049(Z), Z ~ N(0, 1), as in
(4.8)? This last form, a General Scaled Transformation
Family (GSTF), generalizes the concept of the ideal nor-
malization, where ¢ = ¢ + Z.[We now add the conditions
q(0) = 0, ¢'(0) = 1, as in Efron (1982b).]

The question is answered in terms of the diagnostic func-
tion D(z, 6) = [p(0)/p(2)][Fy(05)/ Fo(us)). Here p(2) is
the standard normal density (27) "2 exp( — z%/2); Fe is the
cdf Fg(s) = Pry{0 = s}; Fy(s) = (8/80) Fy(s); a = ®(2);
6% is the 100 - a percentile of 0 given 0, 6 = Fe Ya);
and Ho is the median of 6 given 0, u, = 6§ 5 = F71(.5).
It is shown that the form of o, and g(z) in (4.8) can be
inferred from D(z, 0), the main advantage being that D(z,
0) is computed without knowledge of the normalizing
transformations g, 4.

The connection of transformation family theory with the
acceleration constant a is the following: define

g9 = (8/02)D(z, 0)|,=0. (10.1)

If g(z) in (4.8) is symmetrically distributed about zero, a
situation called a symmetric scaled transformation family
(SSTF), then

(9.7)

&g = do,sldg (10.2)

(see Efron 1982b, eq. 4.11). A more complicated rela-
tionship holds for the GSTF case.

Notice that (10.2) is quite close to our original descrip-
tion of “a” as the rate of change of standard deviation on
the normallzed scale. As a matter of fact, we can transform
(3.6), (3.7) into an SSTF by considering the statistic

2y ~
=¢+
1 - az, 9% =9

$=0d+ 2 (1 + af),
2y

1 —
(10.3)
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instead of ¢ itself. Then it is easy to show that
b=0¢+ A+ ed)Z & =all - az), (10.4)

an SSTF with 6, = 1 + &¢, 64, = ¢ for all ¢. [The
quantity &, has the same definition in (10.4) as in (4.11).]

Example. For § ~ 0x%/19 as in Table 2, ¢, = .1090
for all ¢ [using Eq. (10.6)]. In addition, z, = ®~! Pr{y%
< 19} = .1082. The relationship a = &/(1 + &z,) ob-
tained by solving for a in (10.4) gives a = .1077, the value
used in Table 2. This family is nearly in SSTF (see Remark
E, Sec. 11).

We show below that under reasonable asymptotic con-
ditions,

SKEW,(l,)/6 = &, (10.5)

where & = (3/8z)D(z, 0)|.-o, as in (10.1). This last def-
inition of &, can be evaluated for any family 6 ~ fo, as-
suming only that the necessary derivatives exist. The main
point here is that SKEW,(/,)/6 always approximates &,
(10.1), and in SST families ¢, has the acceleration inter-
pretation (10.2).

Now to show (10.5). It is possible to reexpress (10.1)
as

e = 20
©T defo(to)

where i, = (d/dO)u,, the rate of change of the median u,
with respect to 6. For notational convenience suppose that
6 = 0. Instead of 0, consider the statistic X = i o(0)iy,
where i, equals the Fisher information E,l(f)%. The pa-
rameter g, is invariant under one-to-one transformations
of §, so we can evaluate the right side of (10.6) in terms
of X, &g = —p(0) 5 () fi (uf).

For 6 = 0, X has expectatlon EyX = 0 and standard
deviation ¢ = ig'?; in addition, [£(0) = 0, since X = 0
implies that @ = 0 is a solution of the MLE equation.
Assuming the usual asymptotic convergence properties, as
in (5.1), (5 3) we have the following approx1mat10ns
mo= 15 pf = —yfig6; fE(uf) = o(0)id?; IF(u¥) =
— Vi y§/6. These are derived from standard Edgeworth
and Taylor series arguments, which w1ll not be presented
here. Taken together they give ¢, = SKEW,(/ §)6 =
SKEWo(l )/6, which is (10.5). The quantity SKEWo(l )/6
is O(n~'?), and the error of approximation in (10.5) is
quite small,

& = [SKEW,({o)/6][1 + O(n-1)]. (10.7)

Approximation (10.5) is particularly easy to understand
in one-parameter exponential families. Suppose that x;,
Xy, . . . , X, are iid observations from such a family, with
sufficient statistic y = ¥ having density f,(y) = exp{n[6y
= (O} fo(y). In this case formula (10.6) becomes

L oke(®) [ = ul
O A
where 1§ = Ey{y}, uf = mediang{y}, 4} = 9u}/60, and

so forth. The term [(A; — uf)lod] = yi/6[1 + O(n~1)],
and ajo0)a fi(ud) = 1 + O(n™), both of the calcu-

Lo(o) (10.6)

(10.8)
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lations being quite straightforward. Thus & = 6[1
O(n‘l)] Since / g(y) = n[y — 4], we have SKEW,,(I o(»))

= SKEW,(y) = y¢, verifying (10.5) for one-parameter
exponential families.

Example. 1f Y ~ Poisson(f), 6 = 15, then SKEW,
({9)/6 = 1/(6 - 62) = .0430. For the continued version of
the Poisson family used in Efron (1982b; note Corrigenda,
p. 1032), (8/02)D(z, 0)|,-o = .0425 for 6 =

Translation Families. Suppose that we observe a trans-
lation family f = { + W, as in (3.12). Express W as a
function q(Z) of Z ~ N(0, 1), for simplicity assuming
that q(O) 0 and ¢'(0) = 1, as in Efron (1982b). Then
zo = ®-Pr{{ < ¢} = 0. In this case it looks like methods
based on the percentiles of the bootstrap distribution must
give wrong answers, since if W is long-tailed to the right
then the correct interval (3.13) is long-tailed to the left,
and vice versa. However, the BC, method produces at
least roughly correct intervals, as we saw in the proof of
Lemma 1.

What happens is the following: for any constant A the
transformatlon ga(?) = (exp(Ar) — 1)/A gives ¢ = ga(0),

= 84(0), and Z, = g4(W) satisfying

b=1¢+ 0} Zy,, =1+ A¢. (10.9)

The Taylor series for W = g(Z) begins W = Z + (yy/
6)Z* + ---, where y = SKEW(W). Then Z, = Z + (yw/
6)°Z* + (A2)Z? +
The choice A = a = —ypy/3resultsin Z, = Z + cZ°
+ -+, the quadratic term canceling out; Z, is then ap-
proximately normal, so (10.9) is approximately situation
(3.6), (3.7), with z; = 0, a = —yy/3. But we know that
the BC, intervals are correct if we can transform to situation
(3 6), (3.7). An application of Lemma 2, assuming that
~ N(0, 1), shows that a = —yu/3 = SKEW(/,({))/6
for the translation family { = ¢ + W, reverifying (4.4).
[(If Z, ~ N(0, 1) in (10.9), then a must equal ¢, the constant
value of ¢, (10.1), for the translatlon family £ = ¢ + W,
one can show directly that ¢ = —yy/3 for such a family.]
In the example § ~ 6x2/19, the two constants z, and a
are nearly equal. This is no fluke.

Theorem 2. 1If § is the MLE of 6 in a one-parameter
problem having standard asymptotic properties (5.1) or
(5.3), then z; = a,

SKEW,(/,)

2= ®7IPr{f < 6} = >

[1 + O(n1)).

(10.10)

Proof.  We follow the notation and results of DiCiccio
(1984): thus k,, k,, k, equal the first three cumulants of
lgunder 6; ky,, ko, kos the first three cumulants of Io; koo,
the first cumulant of /,; and k,, = covy(ly, I4). (So ky =
iy, the Fisher information.) All cumulants are assumed to
be O(n). Then the relative bias of 9 is

Ef0 — 0)  koy — 2k

— - 3 -
iy T VR G

(10.11)
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and 6 has skewness
koyw — k
Yo = '—0—017(‘%72——3 + 0O(n=3?).
Both b and y, are O(n~1?2).
Standard Edgeworth theory now gives

(10.12)

Pr,{0 < 6}

B(=b) = CoB)E* = 1) + O™

= .5+ ¢(0) (2k; — kOOl;k';Z(kom - k;)
+ 0(n‘3’2)
= .5+ ¢(0) 6k3’2 + O(n=32).

Since SKEW,(I,) = k,/ k32, this verifies (10.10).

In multiparameter problems it is no longer true that z,
= a. The geometry of the level surface ¢; adds another
term to z,, as in (8.8).

1. REMARKS

Remark A. Suppose that instead of (3.6), (3.7) we
have o, = 7(1 + A¢), so oo = 7 (z # 1). The transfor-
mations ¢' = /1, ¢' = ¢/, give ' = ¢' + oy (Z —
z), where oy = 1 + a¢’ and a = Ar, so we are back in
form (3.6), (3.7). Notice that the derivative d(a,/0,)/d(¢/
0op) = a, as in (4.7). In a similar way we can transform
(3.6), (3.7) so that g4, = 1 at any point ¢,; the resulting
value of a satisfies (4.7).

Remark B. Instead of using ¢ to estimate ¢ in (3.6),
(3.7) we might change to the estimator ¢© = ¢ — cay,
for some constant c. It turns out that we are still in situation
(3.6), (3.7): ¢© = ¢ + oH(Z — z{?), where

0P =1+ a9 — ¢), ¢ = c/(l - ao),
(11.1)

and a© = a(l — ac), z{) = z; + ¢§. The choice ¢ =
—zo/(1 — az,) gives z(‘) = 0, as in (10.3), (10.4). The
choice ¢ = a gives approximately the MLE of ¢. Inter-
estingly enough, the BC, interval for ¢ based on ¢ is the
same for all choices of c. Minor changes in the choice of
estimator seem to have little effect on the BC, intervals
in general, though for computational reasons it is best not
to use very biased estimators having large values of z,.

Remark C. Section 6 uses the MLE 6 = ¢(}). This has
one major advantage: the BC, interval for 0, based on 0,
stays the same under all multivariate transformations (6.11).
Stein (1956) noted that the least favorable direction f
transforms in the obvious way under (6.11), r = Dg,
where D is the matrix with ijth element 3:7,/317,},, -4, from
which it is easy to check that formula (6.5) is invariant:
the constant a is assigned the same value no matter what
transformations (6.11) are applied. The bootstrap distri-
bution G is similarly invariant, as shown in Efron (1985)
and so is z,. This implies that the BC, intervals are invari-
ant under transformations (6.11).
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Remark D. The multiparametric theory of Section 5
gives an interesting result when applied to location-scale
families; y = (x, 5), = (0, o), and family of densities
f»(y) of the form

foo(x, ) = (1/6*)fo((x — 0)/a,s/0),

fo(x, s) being a known bivariate density function.

Suppose that we wish to set a confidence interval for
the location parameter @ on the basis of its MLE 6. Par-
ametric bootstrap intervals are based on the distribution
of 6* when sampling from fos(x*, s*). The BC interval
essentially amounts to pretending that ¢ is known (and
equal to ¢) in (11.2) and that we have only a location
problem to deal with, rather than a location-scale problem.
In contrast, the BC, interval takes account of the fact that
o is unknown. In particular the least favorable direction
i1, plotted in the (6, ¢) plane, is not parallel to the 6 axis.
It has a component in the ¢ direction, whose magnitude
is determined by the correlation between x and s. This
means that Stein’s least favorable family (6.4) does not
treat o as a constant.

Table 6 relates to the following choice of fy(x, 5):

x~x%/30 — 1,  s|x~1+ x)(xL/149)"2, (11.3)

the two y? variates being independent. This is a compu-
tationally more tractable version of the problem discussed
in Efron (1982, tables 4 and 5). Approximate central 90%
intervals are given for 6, having observed (x, s) = (0, 1).
For any other observed (x, s) the intervals transform in
the obvious way, 0,[a] = x + s6y[a]. Line 3 of Table 6
shows the exact interval, based on inverting the distribu-
tion of the pivotal quantity T = (§ — )/6 for situations
(11.2), (11.3).

In this case the BC, method makes a large ‘“‘second-
order ¢ correction,” as in Example 2 of Section 6, shifting
the BC interval a considerable way rightward and achiev-
ing the correct R/L ratio. The length of the BC, interval
is 90% the length of the T interval. This deficiency is a
third-order effect, in the spirit of the familiar Student-¢
correction. It arises from the variability of & as an estimate
of g, rather than the second-order effect due to the cor-
relation of & with 4.

(11.2)

Remark E. Section 3 says that the family § ~ 6y3/19
can be mapped into form (3.6), (3.7). What are the ap-
propriate mappings? It simplifies the problem to consider
the equivalent family 6 ~ 9()(19/c0), where ¢, = 18.3337
= median(y%). Then ¢ = g,(0), { = g,(0), and W =
81(x%/c,) give a translatlon family (3.12), with median(W)

Table 6. Central 90% Intervals for 6, Having Observed
(x, s) = (0, 1) From the Location-Scale Family
(11.2), (11.3) so 8 = 0 and & = .966

RL Length
1. BC interval [-.336, .501] 1.49 .837
2. BG, interval [-.303, .603] 1.99 .906
3. Tinterval [—-.336, .670] 1.99 1.006

NOTE: Line 3 is based on the actual distribution of the pivotal quantity T = (6 — 6)/é.
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= 0, for any mapping g;(f) = (log t)/c,. Choosing ¢, =
.3292 results in W = g(Z) having q(0) = 0, ¢'(0) =

as in the discussion of translation families in Section 10.

Section 10 suggests normalizing a translation family by

84(H) = (exp(At) — 1)/A, a good choice for A being the
-constant &, (10.1), which equals .1090 for all § in the
family § ~ 6(x%/c,). The combined transformation g
= ga(g(9)) is g(¢) = 9.1746[+*'* — 1]. The transformed
family ¢ = g(0), ¢ = g(0) is of form (3.6), (3.7),

d=¢ + (1+.109 - ¢)Z,
Z = 9.1746[(x%/co)®1 — 1]. (11.4)

Numerical calculations verify that Z as defined in (11.4)
is very close to a standard normal variate. In fact we have
automatically recovered, nearly, the Wilson-Hilferty cube
root transformation (Johnson and Kotz 1970). Using (11.4),
it is not difficult to show that g(¢), as defined previously,
gives approximately (3.6), (3.7) when applied to the family
0 ~ 6(x%/19) considered in Section 3, with constants z,
and a as stated. Schenker (1985) gave almost the same
result.

Remark F.  Suppose thaty = (x;, x,, . . . , X,,), where
the x; are an iid sample from a regular one-parameter
family f,(x.), and that d(y) is a first-order efficient esti-
mator of 6, like the MLE. The score function i  appearing
in (4.4) is that based just on @, rather than the score
function based on the entire data set y. However, it is easy
to show from considerations like those in Efron (1975)
that the two score functions are asymptotically identical.
Their skewnesses differ only by amount O,(n~?). Itis often
more convenient to calculate a from the score function for
y rather than for 6, as was done, for example, in (6.5).

Remark G. McCullagh (1984) and Cox (1980) gave an
interesting approximate confidence interval for 6, which
for the simple case 6 ~ f, has endpoint

eApp[a] = é + 1/\/’]%_2

o (3]}5 + 21}00]) + ]%0012(‘1)2
X {z() + oka”

Here 6 is the MLE of 6; if ky(0) = E,l3, the Fisher in-
formation, then k, = k,(9) and k} = dk2(0)/d0|9 ¢; and
koo = (Eglg)g ¢- Formula (11.5) is based on higher-order
asymptotic approximations to the distribution of the MLE
(see also Barndorff-Nielsen 1984).

It can be shown, as indicated in Section 12, that 6 []
also closely matches (11.5), (Ogc,[a] — GApp[a])/a =

O,(n™"). We see again that the BC, method offers a way
to avoid theoretical effort, at the expense of increased
numerical computations.

} . (11.5)

12. PROOF OF THEOREM 1

A monotonic mapping d; = g(é), ¢ = g(6) transforms
the exact confidence interval in the obvious way, dex[a]
= g(ﬁEx[a]) likewise for the BC, interval. By using such
a mapping we can always make ¢ = 0 and the distribution

Journal of the American Statistical Association, March 1987

of pgivend = 0 perfectly normal. Because of (5.3), which
says that the distributions of § are approaching normality
at the usual O(n~'?) rate, the normalizing transformation
g is asymptotically linear, g(0) = 0 + c,0* + c;6° +
= 0n '), c; = O(n™Y).
We will assume that the problem is already in the form
6 = 0, with the cdf of 6 for 6 = 0 normal, say

Gy~ N(-2z, 1). (12.1)

Here z, = ® 'Py{f < 0} must be included because it is
not affected by any monotonic transformations; z, = y,/
6 is O(n~"?) by (5.3). A simple exercise, using the mean
value theorem of calculus, shows that if (5.4) is true in the
transformed problem (12.1), then it is true in the original
problem.

Assuming (5.3), = 0, and (12.1), we will show that
the exact interval has endpoint

zy + z©

e R N (N TCC
+(60/2)(zg + 2@), (12.2)
compared with
. Zy + Z(a)
= 12.
0BC,[a] 1 — 6’0(20 + Z(a)) ( 3)
for the BC, interval. In this section the symbol “=" in-

dicates accuracy through O(n~!) or O,(n""), with errors
O(n=?) or 0,(n~%?). Then

Osc,[o] — O o]
gy
= Onc,[al{oozo + fo + (30/6)(z? — 1)}
— (60/2)(zg + z@)3,

which is O,(n""), as claimed in Theorem 1.
The proof of (12.2) begins by noting that (12.1) implies

(12.4)

that fy = —z, 09 = 1, y = 0, &, = 0. Then (5.3) gives
Efd =0+ 8=+ po)0 —
g9 =1+ 600 + 5,6%2,
Yo = 108, 8y =0, (12.5)

for 8 = O(1) [i.e., for 6 a bounded function of n, in the
sequence of situations referred to in (5.3)]. The 100 - «
percentile of § given 6 is

0 = (0 + B) + 0sfz® + (3/6)(z? - 1)}
= [(1 + Bo)0 — zo] + [1 + 608 + (60/2)67]
X [2@ + (5,6/6)(z®* - 1)], (12.6)

using a Cornish-Fisher expansion and (12.5). The 6, how-
ever, that has §{ = 0 is by definition 0z,[1 — a]. Solving
the lower expression in (12.6) for 0 and substituting 1 —
a for a gives (12.2).

The proof of (12.3) follows from (3.8), (3.9), and (12.1)
[which says that G ~ N(—z,, 1)], if we can establish that
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a = ¢,. In fact, we show below that
g =0a, for 0 = O(n=1?),

which combines with a =
required result.

Formula (12.7) follows from (12.5), which gives the sim-
pler expressions

Egé=0 — 2o,

(12.7)
e/ (1 + &2zg) = g to give the

09514‘600, ))gio, 6g=0

(12.8)
for § = O(n=?). The cdf of 0 given 6 is calculated to be
Gi(0) = P(z9)20 — (W/O)(z5 — 1), (12.9)

zg=(0 — 0 — By)loy, 2y = (3/30)z,. Straightforward
expansions give
1+ 6029 + By + (/6)(z2 — 1)
1+ Bo — 7/6 ’
(12.10)

from which &, = (8/02)D(z, 0) |,—0 = 6o/(1 + o — o/
6), verifying (12.7), (12.3), and the main result (12.4).

The proof that f5c [«] also matches the Cox—McCullagh
formula (11.5) is similar to the proof of Theorem 1 and

will not be presented here. The main step is an expression
for Opc,[a] involving Lemma 5,

Opc,[e] = 2@ + (ks/6k3*){z? + 1}

D(z@®, §) =

+ (ky/6k32)22@ + (03},
[Received November 1984. Revised December 1985.]
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NATHANIEL SCHENKER*

Comment

It is a pleasure for me to discuss Bradley Efron’s schol-
arly article. Efron proposes the BC, method, which is an
improvement over his previously proposed bootstrap con-
fidence intervals in that it relaxes certain assumptions
about pivotal quantities by using the acceleration con-
stant a.

My discussion is divided into three sections. Section 1
relates the BC, method to other methods of constructing
confidence intervals using percentiles of the bootstrap dis-
tribution. The assumptions underlying these methods are
discussed with special reference to a traditional graphical
construction of exact confidence intervals. An alternative
to the BC, method for parametric problems based on di-
rectly approximating the graphical construction is de-
scribed in Section 2. The direct approximation is more
general than the BC, method, and it does not require
computer simulation when the family of densities of § is
given as is assumed in most of Efron’s theoretical devel-
opment. For more complicated problems, the direct ap-
proximation requires more computing than the BC,
method, and the amount of computation could be prohib-
itive in multiparameter problems in which the number of
parameters is not small. The BC, method potentially has
more value than the direct approximation in such multi-
parameter problems and in nonparametric problems. I
look forward, therefore, to the development of a theo-
retical justification for the BC, method in these more com-
plicated situations. Section 3 discusses whether it is
necessary to use the bootstrap distribution for all of the
BC, method calculations and suggests a diagnostic tool for
the BC, method.

1. BOOTSTRAP INTERVALS AND THE GRAPHICAL
CONSTRUCTION OF EXACT INTERVALS

Suppose that the data y are a sample from an unknown
distribution with cdf F. In parametric problems, where F
is known to belong to a family {Fy}, the bootstrap idea is
to approximate the sampling distribution of any function
R(y, F) by the bootstrap distribution of R(y*, F), with
F = F;. The nonparametric bootstrap uses the sample cdf
as Fin calculating the bootstrap distribution. When R(y,
F) =0 -0, the bootstrap approximates the sampling
distribution of § — @ by the bootstrap distribution of §*
— 0. Combining this approx1mat10n with the usual con-
fidence interval inversion yields

20 — G-(1 — a),20 - G~Y(a)] (1)

as a nominal 1 — 2a confidence interval for 6§, where G

* Nathaniel Schenker is with the Undercount Research Staff, Statis-
tical Research Division, U.S. Bureau of the Census, Washington, DC
20233. The author thanks David F. Findley for helpful comments on a
previous version of this work, Maureen P. Lynch for preparing Figure
1, and David L. Wallace for several enlightening conversations about
inference and the bootstrap.

is the bootstrap cdf of §*. Interval (1) is criticized in Re-
mark D of Efron (1979) in the context of estimating the
median and is discussed in general in Schenker (1983),
Loh (1984), and Tibshirani (1984). A problem with this
interval is that F is not the same as F and, depending on
how the sampling distribution of § — 6 changes when F
changes, the bootstrap approximation will be better or
worse.

A related but more fundamental point is that confidence
intervals should be constructed by considering how the
distribution of § changes as F (or §) changes. The statis-
tician can then determine what values of 0 are reasonable
given the observed value of §. This approach is described
in the parametric context in Cramér (1946, chap. 34). Fig-
ure 1 displays graphs of G5!(a) and G7'(1 — «) versus
0, where Gy is the cdf of 0 given @; this is a variation on
Cramér’s (1946) figure 33. Suppose that these quantile
graphs are continuous and monotone. If the horizontal
line with vertical coordinate @ is drawn through the quan-
tile graphs, an exact 1 — 2« confidence interval for 0 is
obtained as shown in Figure 1. This is the exact interval
construction mentioned in Efron’s Section 5.

The bootstrap approximation provides only the points
of the quantile graphs having horizontal coordinate 0 (see
Fig. 1). The following question thus arises: How is it pos-
sible to draw reasonable inferences about 4 based on just
the bootstrap distribution? The answer is that extra as-
sumptions are needed to extrapolate from the points of
the quantile graphs provided by the bootstrap to the other
points of the graphs. For example, the validity of interval
(1).depends on R(y, F) = 6 — 0 being a pivotal quantity,
that is, having the same sampling distribution for all values
of 6. In terms of Figure 1, interval (1) assumes that the
quantile graphs are linear with unit slope. Schenker (1983,
1985) and Tibshirani (1984) applied the nonparametric
bootstrap to R(y, F) = /6, where 0 is the variance of F
(see Efron’s Sec. 7, Example 3). The resulting intervals
had reasonable coverage properties for simulated N(0, 1)
data, since 6/0 is pivotal under the normal family.

In many applications, the exact form of a pivotal quan-
tity, assuming one exists, is unknown. Efron’s (1981, 1982)
BC method seeks to alleviate this problem by assuming
that for some monotone-increasing transformation g
(which need not be known), R(y, F) = g(0) — g(0) is a
normal pivotal quantity; see Efron’s (2.2). Thus when the
axes of Figure 1 are transformed to the g scale, the quantile
graphs are linear with unit slope and the distance between
the lines is determined by the normal distribution. The
BC interval

[G-1(®(2z) — 2079)), G7(@Q2z = 2] (2)
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Figure 1. Graphical Construction of the Exact 1 — 2a Confidence
Interval [6gla), 051 — o] for 6 Given 6. The arrows show the points of
the quantile graphs that are provided by the bootstrap.

(see Efron’s Sec. 3) is related to (1) as follows. First, 0 is
transformed to the normal scale by the mapping ®~'G.
Interval (1) is then formed on the normal scale, resulting
in [2z, — 279, 2z, — z¥]. Finally, the interval is trans-
formed to the original scale by the mapping G ~'®.
Efron’s (1981, 1982) percentile method interval

(G-, G711 - a)] 3)

(see Efron’s Sec. 3) does not explicitly reflect a sampling
distribution of 9 about 0 in any way. It is more similar to
a Bayesian posterlor interval with the bootstrap distribu-
tion of §* treated as the posterior distribution of 6. In fact,
Rubin (1981) showed that the nonparametric bootstrap
distribution of §* is quite similar to the posterior distri-
bution for 6 obtained from a specific Bayesian analysis
involving strong prior assumptions. Rubin (1981) argued
that since the validity of inferences based on the nonpar-
ametric bootstrap depends on the validity of the prior
assumptions, the bootstrap is not a panacea for avoiding
sensitivity of inferences to model assumptions

The percentile method interval (3) is the reflection of
interval (1) about 4. If  — 6 i is pivotal with distribution
symmetric about zero, then G represents a distribution
symmetric about § and (1) and (3) coincide. Efron (1981,
1982) pointed out that the percentile method is valid under
the more general condition that there exists a monotone
increasing transformation g such that g(4) — g(6)is pivotal
with distribution symmetric about zero. Thus the method
is valid if transforming the axes in Figure 1 to the g scale
yields quantile graphs that are linear and equidistant from
the line through the origin with unit slope.

Every method discussed so far relies on the existence
of a pivotal quantity R(y, F) for its validity. To bootstrap
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R(y, F) directly, the exact form of the pivotal quantity
must be known; the sampling distribution of R(y, F) can
remain unknown since it is approximated by the bootstrap.
In contrast, the BC and percentile methods impose re-
strictions on R(y, F) and its sampling distribution so that
the exact form of R(y, F) need not be known.

Unfortunately, a transformation g(9) — g(6) to a nor-
mal pivotal quantlty does not always exist. For instance,
when @ is the variance of a normal distribution, log(f) —
log(0) is pivotal but not normal, whereas 01 — 6 is
approximately normal but not pivotal (see Schenker 1983,
1985). Efron’s newly proposed BC, method allows R(y,
F) to deviate from being a pivotal quantity in a particular
way. The assumptions underlying the BC method are re-
laxed by allowing the scaling of the sampling distributions
of g(d) — g(6) to vary linearly with g(0) at rate a; see
Efron’s (2.3). This induces curvature in the quantile graphs
of Figure 1 (when the axes are transformed to the g scale),
with the curvature greater for larger values of a.

As Efron’s article and the discussion in this section
show, inferences for 0 cannot be drawn solely on the basis
of the bootstrap distribution. Assumptions need to be
made about the distribution of § under alternative values
of 0. Thus the bootstrap is not an assumption-free method.

2. AN ALTERNATIVE TO THE BC, METHOD FOR
PARAMETRIC PROBLEMS

Most of the theoretical development in Efron’s article
is based on the family of densities of 6, say {g,}, being
given. (I depart from Efron’s notation and use g, as the
density of § to distinguish it from f,, the density of the
data.) Given the form of g,, either an analytic expression
for Gy is available or G, can be computed by numerical
integration. This allows the quantile graphs of Figure 1
and the exact interval for 6 to be constructed without any
bootstrapping or simulation at all. Thus, as pointed out in
Efron’s Section 2, the bootstrap is not needed when {g,}
is given. In fact, the logic of using knowledge of {g,} in
the BC, method seems circular since the basic purpose of
the bootstrap is to approximate G,. For these reasons, the
potential value of the BC, method depends on the efficacy
of the extensions to more complicated situations discussed
in Efron’s Sections 6—8 and Remark F of Section 11.

Efron (Sec. 2) describes ways in which the problem of
setting a confidence interval for # can be made more
complicated. One way is to assume that only the family
of densities {f,} of the data is given rather than {g,}. In
such a case, the following computer-intensive method
based on the graphical construction in Figure 1 can be
used to simulate directly the exact interval for 6 without
bootstrapping. Let 6(b;) (b; = 1, B;) be B, values
of 0 spaced throughout a range w1de enough to include
the exact interval with certainty, say 6 € § + 56. For fixed
b;, draw independent samples y*(by, by) (b, = 1,

B,) from fy,, and compute 0(y*(b1, b,)) for each of the
B, draws. For every real s, let

# {é(y*(bl, b)) = s}
Bz '

Gopy(s) =
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Evaluate Gj})(2) and Gy}, (1 — o) and graph them
against 0(b,). If this is done for b, = 1, ..., B, an
approximation to the quantile graphs of Figure 1 is ob-
tained. Thus simulation can be used to approximate the
exact interval for 6 directly without the extra assumptions
underlying the BC, method.

As By, B, — =, the direct approximation approaches
the exact interval. Of course, although B; and B, can be
made very large in principle, they should be kept as small
as possible in practice. If the quantile graphs are reason-
ably smooth, it should be feasible to simulate G;'(«) and
G;Y(1 — a) for just a few values of 6 (i.e., small B;) and
then fit a curve through the points for « and a curve
through the points for 1 — «. For many situations including
those considered by Efron, the quantile graphs should be
smooth. Furthermore, B, need not be any larger than the
number of replications needed for the bootstrap (see Ef-
ron’s Sec. 9). Thus the direct approximation requires
about B; times as much computation as the bootstrap,
where B, is often small.

The other more complicated cases considered by Efron
are the multiparameter and nonparametric situations. In
principle, the method presented in this section of directly
approximating the exact interval for 0 can be extended to
multiparameter cases. When more than just a few param-
eters are involved, however, the amount of computing
could become prohibitive, even given the current spirit of
intensive computation. It does not seem possible to extend
the method of direct approximation to nonparametric
problems. Thus the BC, method could prove to have
greater value than the method of direct approximation in
multiparameter problems and especially in nonparametric
problems.

Efron (Sec. 2) states that it is quite easy to extend the
BC, method to complicated situations. In Section 6, he
suggests an extension to multiparameter problems that
replaces the multiparameter family of densities of the data
by its least favorable one-parameter subfamily. For non-
parametric problems (Sec. 7 and 8), he applies the mul-
tiparameter extension to the multinomial family having
support given by the values in y. These are elegant ideas,
but it is not clear that the extensions are valid. As Efron
points out in Sections 6 and 7, the theory developed in his
article showing second-order validity of the BC, method
for the simple case § ~ g, has not been extended to the
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multiparameter and nonparametric situations. Since these
are the situations in which the BC, method potentially has
more value than the method of directly approximating the
exact interval, I look forward to Efron developing the
theory for these situations completely.

3. THE ROLE OF THE BOOTSTRAP DISTRIBUTION IN
THE BC, METHOD

A traditional principle of the bootstrap is that inferences
are drawn based on quantities computed from the boot-
strap distribution of *. Efron’s current article, for ex-
ample, describes how to obtain the BC, interval from such
bootstrap calculations. Consideration of Efron’s proof of
Lemma 1 shows that the use of G~!(-) in (3.8) is necessary
to avoid having to know the transformation g. It may not
be necessary, however, to derive the bias correction z, and
the acceleration constant a used in (3.9) from the bootstrap
distribution, at least in one-parameter situations. Under
conditions (3.5)—(3.7), it should be possible to calculate
Zy and a from the sampling distribution of 0 under any
value of 6. Specifically, (4.3) shows that z, = ®~1(G,(0))
for any 0 and the argument following the statement of
Lemma 2 implies that SKEW,._, in (4.4) can be replaced
by SKEW;, for any 0.

Perhaps computing z, and a from the bootstrap distri-
bution is important in that (3.5)-(3.7) might only be a
good approximation to the sampling distributions of 6 un-
der values of € in a neighborhood of @. If this is so, then
it may be useful to calculate ®~1(G,(0)) and SKEW,(/,)
for a few values of 0 in the neighborhood of § as a diag-
nostic tool. If either of these quantities were to vary greatly
with 6, the use of (3.5)—(3.7) as a local approximation
would be called into question.
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Advanced Statistics: Bootstrapping Confidence
Intervals for Statistics with “Difficult’’ Distributions

Jason S. Haukoos, MD, MS, Roger J. Lewis, MD, PhD

Abstract

The use of confidence intervals in reporting results of
research has increased dramatically and is now required or
highly recommended by editors of many scientific journals.
Many resources describe methods for computing confidence
intervals for statistics with mathematically simple distribu-
tions. Computing confidence intervals for descriptive
statistics with distributions that are difficult to represent
mathematically is more challenging. The bootstrap is
a computationally intensive statistical technique that allows
the researcher to make inferences from data without making
strong distributional assumptions about the data or the
statistic being calculated. This allows the researcher to

The use of confidence intervals in reporting the results
of biomedical research has increased dramatically
over the past several years. It is well known that
confidence intervals provide more information than
p-values, and editors of many scientific journals are
now requiring or highly recommending their use.'?
While a number of articles report methods by which
to calculate confidence intervals , they primarily focus
on estimating confidence intervals for statistics with
mathematically simple distributions, at least when the
data themselves have a straightforward sampling
distribution (e.g., normal or binomial distribution).>*

In a recent publication, Okada et al. reported confi-
dence intervals around Spearman rank correlation
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estimate confidence intervals for statistics that do not have
simple sampling distributions (e.g., the median). The
purposes of this article are to describe the concept of
bootstrapping, to demonstrate how to estimate confidence
intervals for the median and the Spearman rank correlation
coefficient for non-normally-distributed data from a recent
clinical study using two commonly used statistical software
packages (SAS and Stata), and to discuss specific limitations
of the bootstrap. Key words: bootstrap; resampling; median;
Spearman rank correlation; SAS; Stata; NOSIC Score;
confidence intervals. ACADEMIC EMERGENCY MEDI-
CINE 2005; 12:360-365.

coefficients.” The primary objective of their study
was to develop and evaluate a neurologic outcome
measure, called the Neurologic Outcome Scale for
Infants and Children (NOSIC), for pediatric research
subjects with neurologic deficits. The NOSIC scale
ranges from 3 to 100 and was applied independently
by two clinical investigators to a cohort of patients in
order to assess its reliability. The first rater (rater 1)
applied the NOSIC to 157 patients and the second
rater (rater 2) applied it to 84 of the 157 patients. These
data are shown in Figures 1-3. It is evident from
Figures 1 and 2 that the distributions are highly
skewed, making reporting of the medians and Spear-
man rank correlation coefficient more valid than
reporting the means and Pearson correlation coeffi-
cient for characterizing each rater’s scores and the
interrater reliability.

The confidence intervals for the Spearman rank
correlation coefficients were estimated using the boot-
strap, a statistical method based on resampling that can
be used to perform statistical inference.® The purpose of
this article is to describe the steps in bootstrapping, to
demonstrate how to estimate confidence intervals
using two commonly used statistical software packages
(SAS’ and Stata'?) using the data from the Okada study,
and to briefly discuss some limitations of the technique.

BOOTSTRAPPING

Bootstrapping was introduced in 1979 as a computa-
tionally intensive statistical technique that allows
the researcher to make inferences from data without
making strong distributional assumptions.®!" There
are two distributions to consider. The first is the
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Figure 1. Frequency histogram of scores using the Neurologic
Outcome Scale for Infants and Children (NOSIC) for rater 1
(n=157). The mean value is 90 (standard deviation = 16) and
the median value is 97 (interquartile range: 92-100).

underlying distribution of the data themselves, which
is frequently described as a probability function (e.g.,
normal, binomial, or Poisson) that shows all the
values that the variables can have and the likelihood,
or probability, that each will occur. The second is the
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Figure 2. Frequency histogram of scores using the Neurologic
Outcome Scale for Infants and Children (NOSIC) for rater 2
(n = 84). The mean value is 95 (standard deviation = 10) and
the median value is 98 (interquartile range: 95-100).
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Figure 3. Neurologic Outcome Scale for Infants and Children
(NOSIC) scores for rater 1 and rater 2 (n = 84). Data points are
“'smeared’’ using a normally-distributed random number
generator to improve the representation of exactly overlap-
ping data. As a result, some data points exceed 100. The
Pearson correlation coefficient is 0.97 and the Spearman
correlation coefficient is 0.77.

distribution of the statistic (e.g., the median) calcu-
lated from the data. Both the items of data and the
calculated statistic will vary in ways that can be
described mathematically under the assumption that
new sets of data were obtained or “sampled” and, for
each set of data, a new statistic was calculated. More
precisely, the statistic’s sampling distribution is the
probability of all possible values of the estimated
statistic calculated from a sample of size n drawn
from a given population.!? Bootstrapping uses resam-
pling with replacement (also known as Monte Carlo
resampling) to estimate the statistic’s sampling distri-
bution. The sampling distribution, if it can be de-
termined, may then be used to estimate standard
errors and confidence intervals for that particular
statistic.

The steps for estimating confidence intervals using
the bootstrap are as follows (Figure 4): First, one uses
resampling with replacement to create m resampled
data sets (also known as bootstrap samples) that
contain the same number of observations (n) as the
original data set. To perform resampling with replace-
ment, an observation or data point is randomly selected
from the original data set and copied into the re-
sampled data set being created. Although that data
pointhasbeen “used,” itis not deleted from the original
data set or, using the usual terminology, is “replaced.”
Another data point is then randomly selected, and the
process is repeated until a resampled data set of size nis
created. As a result, the same observation may be
included in the resampled data set one, two, or more
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Figure 4. Schematic depiction of the steps in the bootstrap.

times, or not at all. Second, the descriptive statistic of
choice is computed for each resampled data set. Third,
a confidence interval for the statistic is calculated from
the collection of values obtained for the statistic. At this
point in the analysis, there are several options for
computing confidence intervals, including the normal
approximation method, the percentile method, the
bias-corrected (BC) method, the bias-corrected and
accelerated (BC,) method, and the approximate boot-
strap confidence (ABC) method.®

Each bootstrap sample should have the same sam-
ple size as the original data set. If the bootstrap sample
sizes differ from the sample size of the original data
set, the calculated estimation for the confidence in-
terval may be biased.'® A correction for this bias has
been described, although there seems to be no practi-
cal advantage gained by performing the analysis in
this manner.!#

The normal approximation method computes an
approximate standard error using the sampling dis-
tribution resulting from all the bootstrap resamples.
The confidence interval is then computed using the
z-distribution (original statistic = 1.96 X standard
error, for a 95% confidence interval). The percentile
method uses the frequency histogram of the m
statistics computed from the bootstrap samples. The
2.5 and 97.5 percentiles constitute the limits of the
95% confidence interval. The BC, method adjusts for
bias in the bootstrapped sampling distributions rela-
tive to the actual sampling distribution, and is thus
considered a substantial improvement over the per-
centile method.® The BC, confidence interval is an
adjustment of the percentiles used in the percentile
method based upon the calculation of two coeffi-
cients called “bias correction” and “acceleration.”
The bias correction coefficient adjusts for the skew-
ness in the bootstrap sampling distribution. If the
bootstrap sampling distribution is perfectly symmet-
ric, then the bias correction will be zero.® The

acceleration coefficient adjusts for nonconstant var-
iances within the resampled data sets.® The ABC
method is an approximation of the BC, method that
requires fewer resampled data sets than the BC,
method.®

As a general guideline, 1,000 or more resampled
data sets should be used when calculating a BC,
confidence interval.'! As a result of not having to
calculate bias correction, a smaller value, in the range
of 250, can be used when using the percentile method
for estimating a confidence interval.'> As the number
of resampled data sets decreases, more variability is
introduced into the confidence interval estimation
(i.e., the variability is inversely related to the number
of resampled data sets).313

Example 1: Determining a Confidence Interval
around a Median Value. A median value is defined
as the observation at the 50th percentile in a set of
data ordered from the lowest value to the highest
value.!’® This measure of center for a set of values
is commonly reported and is considered a more valid
definition of center when the frequency distribution
of the variable is skewed (i.e., not symmetric around
its center). Unlike the mean, there is no simple method
for calculating the 95% confidence interval (95% CI)
for the median, and it is not valid to use a 95% CI
calculated from the standard error to represent the
95% confidence for the median value, unless the
distribution of the underlying data is normal. As a
result, the bootstrap can be used to estimate the
sampling distribution of the median. The central limit
theorem states that as the number of resampled data
sets increases, the distribution of the resulting statistic,
in this case the median, will become approximately
normal.’® This subsequently allows for a relatively
unbiased estimation of the confidence interval.

The steps required to bootstrap the 95% CI for
a median value are: 1) to resample with replacement
from the original data set, creating m bootstrapped
data sets; 2) to independently compute the median
value for each bootstrapped data set; and 3) to
compute the 95% CI from the set of computed median
values from the bootstrapped data sets using either
the normal approximation method, the percentile
method, the BC method, the BC, method, or the
ABC method.

These steps can be accomplished using the SAS
software program (SAS Institute, Inc., Cary, NC) as
follows. The SAS macro JACKBOOT, which can be
obtained from the SAS Web site, must be invoked
prior to performing a bootstrap analysis in SAS.'® A
“macro” is a program that can be executed by SAS
and that may be modified by the user, while a SAS
procedure is a “fixed” program that performs a spe-
cific statistical calculation or other task. The JACK-
BOOT macro requires another macro (called ANALYZE)
to be written that provides it with the procedure
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whose result (e.g., the median of the original data set)
requires bootstrapping. The univariate procedure
(PROCUNIVARIATE) in SAS is used to compute the median
value for a group of observations. The following is the
ANALYZE macro, modified to bootstrap a 95% CI around
a median value for the variable “normscrl” (NOSIC
score for rater 1):

$macro analyze (data=, out=);

proc univariate noprint data=&data;
output out=&out (drop=_freqg _type_)
median=median;
var normscrl;
$bystmt;

run;

$mend ;

In SAS, the “%macro” term indicates the beginning
of a macro, and is followed by its title (i.e., “analyze”).
The “%mend” term indicates the end of a macro, and
all text between “%macro” and “%mend” is called
macro text. In this example, PROC UNIVARIATE is invoked
with the “noprint” option. The “data=&data” term
references the original data set through the jackBoOT
macro using the “%boot” term (see below). The
“output” statement directs SAS to create a temporary
output file for only the median values, as indicated
by the term “median=median,” for the variable
“normscrl.” The “%bystmt” term references a macro
within the JACKBOOT macro that computes a statistic (in
this case, the median) for the original data set and for
each resampled data set.

The ANALYZE macro is followed immediately by the
following bootstrap commands:

$boot (data=temp, samples=2500) ;
$bootci (percentile);
%bootci (bca) ;

In this example, the ANALYZE macro is used by the
JACKBOOT macro to apply the statistical procedure (PrOC
UNIVARIATE) to the original data set (data=temp, refer-
enced in the “%boot” statement). The “%boot” com-
mand invokes the bootstrap procedure, resulting in
2,500 bootstrapped samples, and the “%bootci” com-
mand invokes the bootstrap confidence interval pro-
cedure. The first “%bootci” command uses the
percentile method to compute a 95% ClI for the median
and the second “%bootci” command uses the BC,
method to compute a 95% CI for the median of the
variable “normscrl.” The median value was 97 [inter-
quartile range (IQR): 92-100, range 32-100], and the
95% ClIs for the median were 96-98 (percentile) and 97
to 98 (BC,).

Using Stata (Stata Corporation, College Station, TX)
to perform the same calculations is substantially
simpler. The following Stata commands compute the
median value for the variable “normscrl” and boot-
strap the 95% ClIs using the normal, percentile, and
BC, methods using 2,500 resamples'”:

363

centile normscrl
bs ‘‘centile normscrl’’ ‘‘r(c_1)""’,
rep(2500)

The “centile” command calculates the median value
for the variable “normscrl.” The “bs” command
calculates a bootstrapped confidence interval for the
median value for the variable “normscrl.” The primary
code appears in the first quotations, “‘r(c_1)" refers to
the reference statistic for which the 95% CI will be
calculated, and “rep(2500)” indicates the number of
resampled data sets. After the primary command has
been executed, the command “return list” can be used
to display the codes for each of the resulting statistics
for the primary command. In this example, “c_1" is the
code that refers to the median value calculated by the
“centile” command.

Example 2: Determining a Confidence Interval
around a Spearman Rank Correlation Coefficient.
The Spearman rank correlation coefficient is the non-
parametric counterpart to the parametric Pearson
correlation coefficient.’> The Pearson correlation co-
efficient is a valid statistical technique for determining
correlation between two normally-distributed contin-
uous variables. On the other hand, the Spearman rank
correlation coefficient is a valid statistical technique
for determining correlation between two non-normally-
distributed continuous variables.

The ProC CORR procedure in SAS is used to
compute the Pearson correlation coefficient, and
there are two methods for computing the Spearman
rank correlation coefficient. The first method simply
involves incorporating the option “spearman” into
the PROC CORR statement. The second method involves
ranking the data, using PROC RANK, prior to using
PROC CORR.

The following illustrates the ANALYZE macro used
by the JACKBOOT macro to perform the bootstrap in SAS:

$macro analyze (data=, out=);

proc rank data=&data out=tempdata;
var normscrl normscr2;
$bystmt;

proc corr noprint
data=tempdata
out=&out (rename=(_type_=stat
_name_=with));
var normscrl normscr2;
$bystmt;

run;

gmend;

The macro text in this example includes the ProC
RANK command for variables “normscrl” and
“normscr2.” This command is followed by the rroc
CORR command, which performs correlation of the two
ranked variables for each resampled data set. The
“out=tempdata” term writes a temporary output file
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of all ranked resampled data sets. This is read as an
input file using the term “data=tempdata” in the ProC
CORR command.

Again, the ANALYZE macro is followed immediately
by the bootstrap commands:

%boot (data=temp, id=stat with,
samples=2500) ;

%bootci (percentile, id=stat with) ;
%bootci (bca, id=stat with) ;

In this example, 2,500 bootstrapped samples were
created, and the percentile and BC, methods were used
to compute 95% Cls for the Spearman rank correlation
coefficient between the variables “normscrl” and
“normscr2” (NOSIC score for rater 2). The Spearman
rank correlation coefficient was 0.77 for the original
data set and the 95% ClIs were 0.62-0.88 (percentile)
and 0.62-0.87 (BC,).

Again, it is simpler to perform this calculation using
Stata. The following Stata commands compute the
Spearman rank correlation coefficient between
“normscrl” and “normscr2,” and bootstrap the 95%
confidence intervals using the normal, percentile, and
BC, methods using 2,500 resamples:

spearman normscrl normscr2
bs '‘'spearman normscrl normscr2’’
‘*r(rho)'’, rep(2500)

The “spearman” command calculates the Spearman
rank correlation coefficient for “normscrl” and
“normscr2.” The primary code appears in the first
quotations, “r(rho)” refers to the reference statistic for
which the 95% CI will be calculated, and “rep(2500)”
indicates the number of resampled data sets.

Limitations of the Bootstrap. Although the idea of
the bootstrap has been around for nearly two centu-
ries, theoretical work on the bootstrap is relatively
recent and, therefore, the limitations of the bootstrap
are not entirely understood.! The bootstrap is a tool
used, in part, to calculate confidence intervals for
point estimates of descriptive statistics. The bootstrap
should not be used to compute point estimates
themselves, however. The sampling distribution of
the bootstrapped statistics is frequently not symmet-
ric. Thus, computing point estimates in this manner
may reflect, as opposed to alleviate, biased estimation
from the samples.”! The extent of bias can be
estimated but is subject to high variability, making
bias correction infeasible.®

The most important limitation of the bootstrap is
the assumption that the distribution of the data
represented by the sample is a reasonable estimate
of the population distribution function from which
the data are sampled. In other words, the sample
must reflect the variety and range of possible values
in the population from which it was sampled. If the
distribution of data from the sample does not reflect

the population distribution function, then the random
sampling performed in the bootstrap procedure may
add another level of sampling error, resulting in
invalid statistical estimations.’® This emphasizes the
importance of obtaining quality data that accurately
reflect the characteristics of the population being
sampled.

Additionally, the smaller the original sample, the
less likely it is to represent the entire population.
Thus, the smaller the sample, the more difficult it
becomes to compute valid confidence intervals. The
bootstrap relies heavily on the tails of the estimated
sampling distribution when computing confidence in-
tervals, and using small samples may jeopardize the
validity of this computation.'®

Random sampling performed in the bootstrap pro-
cedure also adds another level of potential sampling
error. This, as mentioned previously, is reflected in
the variation and bias estimates commonly performed
during a bootstrap analysis.

CONCLUSIONS

The bootstrap is a relatively simple statistical concept
that requires computationally intensive procedures
to implement. Modern statistical software packages
now allow researchers to employ relatively simple
programming to compute confidence intervals for
statistics with inconvenient or unknown sampling
distributions.

The authors gratefully thank Pamela ]. Okada, MD, and Kelly D.
Young, MD, MS, for providing the original NOSIC data, and
Stephen P. Wall, MD, MPH, for providing programming sugges-
tions in Stata.
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SUMMARY

Simulation studies use computer intensive procedures to assess the performance of a variety of statistical
methods in relation to a known truth. Such evaluation cannot be achieved with studies of real data alone.
Designing high-quality simulations that reflect the complex situations seen in practice, such as in prognostic
factors studies, is not a simple process. Unfortunately, very few published simulation studies provide
sufficient details to allow readers to understand fully all the processes required to design a simulation
study. When planning a simulation study, it is recommended that a detailed protocol be produced, giving
full details of how the study will be performed, analysed and reported. This paper details the important
considerations necessary when designing any simulation study, including defining specific objectives of the
study, determining the procedures for generating the data sets and the number of simulations to perform.
A checklist highlighting the important considerations when designing a simulation study is provided.
A small review of the literature identifies the current practices within published simulation studies.
Copyright © 2006 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Simulation studies use computer intensive procedures to test particular hypotheses and assess the
appropriateness and accuracy of a variety of statistical methods in relation to the known truth. These
techniques provide empirical estimation of the sampling distribution of the parameters of interest
that could not be achieved from a single study and enable the estimation of accuracy measures,
such as the bias in the estimates of interest, as the truth is known [1]. Simulation studies are
increasingly being used in the medical literature for a wide variety of situations, (e.g. References
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[2—4]). In addition, simulations can be used as instructional tools to help with the understanding
of many statistical concepts [5, 6].

Designing high-quality simulations that reflect the complex situations seen in practice, such as
in randomized controlled trials or prognostic factor studies, is not a simple process. Simulation
studies should be designed with similar rigour to any real data study, since the results are expected
to represent the results of simultaneously performing many real studies. Unfortunately, in very few
published simulation studies are sufficient details provided to assess the integrity of the study design
or allow readers to understand fully all the processes required when designing their own simulation
study. Performing any simulation study should involve careful consideration of all design aspects of
the study prior to commencement of the study from establishing the aims of the study, the procedures
for performing and analysing the simulation study through to the presentation of any results
obtained. These are generic issues that should be considered irrespective of the type of simulation
study but there may also be further criteria specific to the area of interest, for example survival data.

It is important for researchers to know the criteria for designing a good quality simulation study.
The aim of this paper is to provide a comprehensive evaluation of the generic issues to consider
when performing any simulation study, together with a simple checklist for researchers to follow
to help improve the design, conduct and reporting of future simulation studies. The basic concepts
underpinning the important considerations will be discussed, but full technical details are not pro-
vided and the readers are directed towards the literature (e.g. References [7, 8]). General considera-
tions are addressed rather than the specific considerations for particular situations where simulations
are extremely useful, such as in Bayesian clinical trials designs (e.g. Reference [9]), sample size
determination (e.g. References [3, 10]), or in studies of missing data (e.g. Reference [4]). A small
formal review of the current practice within published simulation studies is also presented.

2. ISSUES TO CONSIDER WHEN DESIGNING A SIMULATION STUDY

When planning any simulation study, as with randomized controlled trials, a detailed protocol
should be produced giving full details of how the study is to be performed, analysed and reported.
The protocol should document the specific objectives for the simulation study and the procedures
for generating multivariate data sets and, if relevant, with censored survival times. The choices for
the different scenarios to be considered, for example different sample sizes, and the methods that
will be evaluated should also be included in the protocol together with the number of simulations
that will be performed. It is also important to give careful consideration to which data and results
will be stored from each run, and which summary measures of performance will be used. If an aim
of the study is to judge which is the best of two or more methods, then the criteria should be pre-
specified in the protocol, where possible. The rationale behind all the decisions made throughout
the design stage should be included in the protocol.

Each of the preceding considerations will be discussed in more detail in the following sections.
A checklist of the important issues that require consideration when designing a simulation study
is provided in Figure 1.

2.1. Clearly defined aims and objectives

Establishing clearly defined aims for the simulation study prior to its commencement is an essential
part of any research. This focuses the study and avoids unnecessary repetition and time wasting
from having to repeat simulations when new aims are conceptualized.

Copyright © 2006 John Wiley & Sons, Ltd. Statist. Med. 2006; 25:4279-4292
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0. Detailed protocol of all aspects of the simulation study

a. Justifications for all the decisions made

p—

. Clearly defined aims and objectives

2. Simulation procedures

a. Level of dependence between simulated datasets
b. Allowance for failures

c. Software to perform simulations

d. Random number generator to use

e. Specification of the starting seeds

. Methods for generating the datasets

3

4. Scenarios to be investigated

5. Statistical methods to be evaluated
6.

. Estimates to be stored for each simulation and summary
measures to be calculated over all simulations
7. Number of simulations to be performed
8. Criteria to evaluate the performance of statistical methods for different
scenarios
a. Assessment of bias
b. Assessment of accuracy
c. Assessment of coverage

9. Presentation of the simulation results

Figure 1. Important considerations when designing any simulation study.

2.2. Simulation procedures

Once the aims and objectives have been formalized, the procedures for performing the simulations
can be considered including the level of dependence between simulations, the allowance for failures,
the choice of random number generator, starting seeds and the software package to be used. The
statistical software package must be able to handle the complexities involved in the proposed
simulation study and have a reliable random number generator.

All simulation studies involve generating several independent simulated data sets. These gener-
ated data sets should also be completely independent for the different scenarios considered, such
as different sample sizes. However, when more than one statistical methodology is being inves-
tigated, there is an added complication of determining the level of dependence of the simulated
data sets for the different methods, although still retaining independent data sets for each scenario
studied. Two feasible simulation strategies are possible. Firstly, fully independent simulated data
sets involve generating a completely different set of independent data sets for each method and
scenario considered. Secondly, moderately independent simulations use the same set of simulated

Copyright © 2006 John Wiley & Sons, Ltd. Statist. Med. 2006; 25:4279-4292
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independent data sets to compare a variety of statistical methods for the same scenario, but a
different set of data sets is generated for each scenario investigated. These moderately dependent
samples are like a matched pair design where the within sample variability is eliminated and
therefore are sensitive to detecting any differences between methods. The relationship between the
generated samples should form an important consideration when designing the study.

The simulation procedures should have some allowance for failing to estimate the outcome or
parameter of interest, e.g. due to rare events or lack of convergence of models, to avoid premature
stopping of the study. The simulations can be set up so that a failed sample is discarded and the
whole process is repeated. The number of failures that occur should be recorded to gauge how
likely this could happen in practice in order to judge whether the applied statistical procedure
can reliably be used in the situation being investigated. If many failures occur for a particular
scenario causing the early termination of the simulation study, researchers must consider whether
in their situation the failures would lead to bias, and hence unacceptable results, or unbiased but
imprecise results in order to determine the usefulness of the results from the partial set of completed
simulations. Failures for some simulations may result in a post hoc change of the protocol to omit
scenarios, which cannot be simulated reliably.

2.2.1. Random number generation. A fundamental part of any simulation study is the ability
to generate random numbers. The many different types of random number generator have been
detailed elsewhere [11,12]. Any random number generator should be long in sequence before
repetition and subsets of the random number sequence should be independent of each other [13].
A variety of statistical tests for randomness exist, including Marsaglia’s Diehard battery of tests
for randomness [14], which each random number generator must pass before it can be reliably
adopted as a means of generating random numbers.

A random number generator must be able to reproduce the identical set of random numbers
when the same starting value, known as a seed, is specified [13]. This is also essential when
performing simulation studies to enable the generated data sets and hence results to be reproduced,
if necessary, for monitoring purposes. The specification of the starting seed also facilitates the
choice of simulation strategy. The simulations will be fully independent if completely different
starting seeds are used to generate the data sets for each scenario and method combination con-
sidered or moderately independent if the same starting seeds are used to compare various methods
for the same scenario but different seeds are employed for alternative scenarios. Any simulation
strategy involves running several independent simulations for the same scenario, known as par-
allel simulations, which require independent sequences of random numbers. Random numbers
can be generated for parallel simulations by setting different starting values for the individual
simulations that are greater than the number of random numbers required for each simulation,
which reduces the possibility of correlations between samples [13]. For example, if each sim-
ulated data set had a sample size of 500, then each of the 250, say, simulations would require
500 random numbers, therefore the starting seed for each simulation should be separated by at
least 500.

2.3. Methods for generating the data sets

The methods for obtaining simulated data sets should be carefully considered and a thorough
description provided in both the protocol and any subsequent articles published. Simulating data
sets requires an assumed distribution for the data and full specification of the required parameters.

Copyright © 2006 John Wiley & Sons, Ltd. Statist. Med. 2006; 25:4279-4292
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The simulated data sets should have some resemblance to reality for the results to be generalizable
to real situations and have any credibility. A good approach is to use a real data set as the motivating
example and hence the data can be simulated to closely represent the structure of this real data
set. The actual observed covariate data could be used and only the outcome data generated or just
certain aspects, such as the covariate correlation structure, could be borrowed. Alternatively, the
specifications could be arbitrary, but the generated data set may be criticized for not resembling
realistic situations. The rationale for any choices made regarding the distributions of the data,
parameters of any statistical models and the covariate correlation structure used to generate the
data set should accompany their specifications. The generated data should be verified to ensure
they resemble what is being simulated, for example using summary measures for the covariate
distributions, Kaplan—Meier survival curves for survival data or fitting appropriate regression
models.

2.3.1. Univariate data. Simple situations may involve generating a vector of random numbers
sampled from a known distribution. Demirtas [15] provides procedures for obtaining a variety of
univariate distributions from initial values generated from the uniform distribution, if the required
distribution is unavailable within the statistical package.

2.3.2. Multivariate data. Generating multivariate data involves the additional specification of cor-
relations between covariates unless the covariates are assumed fully independent, which is unlikely
in practice. The specification of the means and associated covariance matrix is more straightforward
if based on real data, especially with a large number of covariates, and the generated data will
reflect reality. Conversely, the choice of the correlations between covariates can be arbitrary but it
is often problematic to determine what are valid relationships. The simplest approach to generate
multivariate covariate data with a specified mean and correlation structure is to assume a multi-
variate normal distribution. Any continuous but non-normally distributed variables in the real data
should be transformed to make the assumption of normality more appropriate. Binary variables can
be generated as latent normal, i.e. generated as continuous variables and then dichotomized, but
the covariate correlation structure used to generate the continuous variable needs to be adjusted to
provide the correct correlation with the resulting binary variable [16]. For example, the correction
factor for a continuous variable that is to be dichotomized with a 50:50 split is 0.80, suggesting
that the correlation between a continuous variable and a binary variable is 20 per cent less than
the correlation between two continuous variables [16].

2.3.3. Time to event data. When the outcome is time to an event, such as in prognostic modelling,
several additional considerations must be addressed. The simulations require the specification of
a model for the multivariate covariate data and a distribution for the survival data, which may be
censored. In order to simulate censored survival data, two survival distributions are required, one
for the uncensored survival times that would be observed if the follow-up had been sufficiently
long to reach the event and another representing the censoring mechanism.

The empirical survival distribution from a similar real data set would provide a reasonable
choice for the survival distribution. The uncensored survival distribution could be generated to
depend on a set of covariates with a specified relationship with survival, which represents the true
prognostic importance of each covariate. Time-dependent covariates could also be simulated and
incorporated following the procedures described by Mackenzie and Abrahamowicz [17]. Bender
et al. [18] discuss the generation of survival times from a variety of survival distributions including

Copyright © 2006 John Wiley & Sons, Ltd. Statist. Med. 2006; 25:4279-4292
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the exponential for constant hazards, Weibull for monotone increasing or decreasing hazards and
Gompertz for modelling human mortality, in particular for use with the Cox proportional hazards
model.

Random non-informative right censoring with a specified proportion of censored observations
can be generated in a similar manner to the uncensored survival times by assuming a particular
distribution for the censoring times, such as an exponential, Weibull or uniform distribution but
without including any covariates. Determining the parameters of the censoring distribution given
the censoring probability is often achieved by iteration. However, Halabi and Singh [10] pro-
vide formulas for achieving this for standard survival and censoring distributions. The censoring
mechanism can also be extended to incorporate dependent, informative censoring [19].

The survival times incorporating both events and censored observations are calculated for each
case by combining the uncensored survival times and the censoring times. If the uncensored
survival time for a case is less than or equal to the censored time, then the event is considered
to be observed and the survival time equals the uncensored survival time, otherwise the event is
considered censored and the survival time equals the censored time.

2.4. Scenarios to be investigated and methods for evaluation

Simulation studies usually examine the properties of one or more statistical methods in several
scenarios defined by values of various factors such as sample size and proportion of censoring.
These factors are generally examined in a fully factorial arrangement. The number of scenarios
to be investigated and the methods for evaluation must be determined and justifications for these
choices provided in the protocol. The scenarios investigated should aim to reflect the most common
circumstances and if possible cover the range of plausible parameter values. The number of
scenarios and statistical methods to investigate will depend on the study objectives but may be
constrained by the amount of time available, the efficiency of the programming language and the
speed and availability of several computers to run simulations simultaneously [20].

2.5. Estimates obtained from each simulation

It is essential to plan how the estimates will be stored after each simulation. Storing estimates
enables consistency checks to be performed and allows for the identification of any errors or
outlying values and the exploration of any trends and patterns within the individual simulations
that may not be observed from the summary measure alone. Storing estimates also allows different
ways of summarizing the estimates to be calculated retrospectively, if necessary, without the need
to repeat all the simulations. A thorough consideration at the design stage of the possible estimates
that may be of interest can ensure that all the required estimates are included, analysed and the
results stored, and will avoid the risk of needing to repeat simulations. The estimate of interest, ﬁ R
could include the mean value of a variable, the parameter estimate after fitting a regression model,
the log hazard ratio for survival models or the log odds ratios for logistic regression models. An
associated within simulation standard error (SE) for the estimate of interest, SE(ﬁi), is generally
required.

It is also important to establish how to summarize these estimates once all simulations have
been performed. Many published simulation studies report the average estimate of interest over

the B simulations performed, e.g. ﬁ = ng:] ﬁi /B as a measure of the true estimate of interest.
Simulations are generally designed to mimic the results that could have been obtained from a
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single study and therefore an assessment of the uncertainty in the estimate of interest between
simulations, denoted SE(f), is usually the empirical SE, calculated as the standard deviation of

the estimates of interest from all simulations, \/ [1/(B —1)] Zf:l (,31- - [3’)2. Alternatively, the

average of the estimated within simulation SE for the estimate of interest Zle SE(ﬁi) /B could
be used. The empirical SE should be close to the average of the estimated within simulation SE
if the estimates are unbiased [21] and therefore, it may be sensible to consider both estimates of
uncertainty. Alternatively, if using the mean and SE of the estimates over all simulations is not
considered appropriate then non-parametric summary measures using quantiles of the distribution
could be obtained.

2.6. Number of simulations required

The number of simulations to perform can be based on the accuracy of an estimate of interest, e.g.
a regression coefficient, as with determining the sample size for any study [22,23]. The number
of simulations (B) can be calculated using the following equation:

2
B— (%) (1)

where 0 is the specified level of accuracy of the estimate of interest you are willing to accept, i.e.
the permissible difference from the true value B, Z;_(42) is the 1 — (2/2) quantile of the standard
normal distribution and o2 is the variance for the parameter of interest [22, 23]. A realistic estimate
of the variance may be obtained from real data if the simulations are based on a real data set
and are trying to maintain the same amount of variability. If the variance is unknown or cannot
be estimated reliably then it may be possible to perform an identical simulation study to obtain
realistic estimates for the variance or consider the measure of accuracy as a percentage of the SE.
For example, if the variance from fitting a single covariate in a Cox regression model was 0.0166,
then the number of simulations required to produce an estimate to within 5 per cent accuracy of
the true coefficient of 0.349 with a 5 per cent significance level would be only 209. To estimate
the regression coefficient to within 1 per cent of the true value would require 5236 simulations.
Alternatively, the number of simulations could be determined based on the power (1 — 0) to detect
a specific difference from the true value as significant [22], such that

B ((Zl—(a/2) + Zl—0)0)2

0

In fact, this formula is equivalent to equation (1) if the power to detect a specified difference is
assumed to be 50 per cent.

The number of simulations to perform is thus dependent on the true value of the estimate of
interest, the variability of the estimate of interest, and the required accuracy. For example, more
simulations are needed if the regression coefficient is small or the estimate has little variability.
Increasing the number of simulations will reduce the SE of the simulation process, i.e. SE(/§) / «/E,
but this can be computational expensive and therefore variance reduction techniques could be
employed [24]. The rationale for the number of simulations to perform should be included in the
protocol.

Copyright © 2006 John Wiley & Sons, Ltd. Statist. Med. 2006; 25:4279-4292
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2.7. Evaluating the performance of statistical methods for different scenarios

After the simulations have been performed, the required estimates stored after each replication and
summary measures calculated, it is necessary to consider the criteria for evaluating the performance
of the obtained results from the different scenarios or statistical approaches being studied. The
comparison of the simulated results with the true values used to simulate the data provides a measure
of the performance and associated precision of the simulation process. Performance measures that
are often used include an assessment of bias, accuracy and coverage. Collins et al. [4] emphasized
the importance of examining more than one performance criterion such as mean square error
(MSE), coverage and width of the confidence intervals in addition to bias, as results may vary
across criteria. In general, the expectation of the simulated estimates is the main interest and hence
the average of the estimates over all simulations is used to calculate accuracy measures, such as
the bias. When judging the performance of different methods, there is a trade-off between the
amount of bias and the variability. Some argue that having less bias is more crucial than producing
a valid estimate of sampling variance [25]. However, methods that result in an unbiased estimate
with large variability or conversely a biased estimate with little variability may be considered of
little practical use. The most commonly used performance measures are considered in turn. Table I
provides a summary of the most applicable performance measures and formulas.

Table I. Performance measures for evaluating different methods.

Evaluation criteria Formula
BIAS ~
Bias o= ﬁ —-p
Percentage bias %ﬁ * 100
Standardized bias B=BY 100
SE(f)
ACCURACY ~
Mean square error ([;’ — [3)2 + (SE([?))2
COVERAGE Proportion of times the 100(1 — )% confidence interval

B = Z1_,pSE(B;) include B, for i=1,..., B.

Y2 2Z1_,nSEp)
B

Average 100(1 — o)%

confidence interval length

Key: f is the true value for estimate of interest, /?: Zile ﬁi/B, B is the number of
simulations performed, f5; is the estimate of interest within each of the i = 1,..., B
simulations, SE(f}) is the empirical SE of the estimate of interest over all simulations,

SE(ﬁi) is the SE of the estimate of interest within each simulation and Z;_(,/7) is the
1 — (o/2) quantile of the standard normal distribution.
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2.7.1. Assessment of bias. The bias is the deviation in an estimate from the true quantity, which can
indicate the performance of the methods being assessed. One assessment of bias is the difference

between the average estimate and the true value, i.e. d = B — f (Table I). The amount of bias that
is considered troublesome has varied from %SE(ﬁA) [21] to ZSE(ﬁ) [26]. Another approach is to
calculate the bias as a percentage of the true value (Table I), providing the true value does not equal
to zero. The percentage bias could have a detrimental effect on the results if the bias is greater
than the amount specified when determining the number of simulations required. Alternatively, the
bias as a percentage of the SE(ﬁ) (Table I) can be more informative, as the consequence of the
bias depends on the size of the uncertainty in the parameter estimate [4]. A standardized bias of
greater than 40 per cent in either direction has been shown to have noticeable adverse impact on
the efficiency, coverage and error rates [4].

Testing the significance of the amount of bias in the estimates [27] or obtaining a 95 per cent

~

confidence interval using the average parameter estimate, 5, seem counterintuitive, since these

statistics are based on the number of simulations through the SE(B) = SE(B) /~/B and hence these
statistics can be improved or penalized by changing the number of simulations performed (see
Section 2.6). Collins et al. [4] warned that with a large number of simulations, the bias may be
deemed statistically significant but not be practically significant. Therefore do not rely solely on
the p-value but consider the amount of bias as well.

2.7.2. Assessment of accuracy. The MSE provides a useful measure of the overall accuracy
(Table I), as it incorporates both measures of bias and variability [4]. The square root of the
MSE transforms the MSE back onto the same scale as the parameter [4].

2.7.3. Power, type I and Il errors. The empirical power of a test, where relevant, can be determined
as the proportion of simulation samples in which the null hypothesis of no effect is rejected at the
nominal, usually 5 per cent, significance level, when the null hypothesis is false (e.g. References
[3,28]). Hence the empirical type II error rate is l-power. The empirical type I error can be
calculated as the proportion of p-values from testing the null hypothesis of no difference on
each simulated sample that are less than the nominal 5 per cent significance level, when the null
hypothesis is true (e.g. Reference [29]).

2.7.4. Assessment of coverage. The coverage of a confidence interval is the proportion of times
that the obtained confidence interval contains the true specified parameter value (Table I). The
coverage should be approximately equal to the nominal coverage rate, e.g. 95 per cent of samples
for 95 per cent confidence intervals, to properly control the type I error rate for testing a null
hypothesis of no effect [4]. Over-coverage, where the coverage rates are above 95 per cent, suggests
that the results are too conservative as more simulations will not find a significant result when
there is a true effect thus leading to a loss of statistical power with too many type II errors. In
contrast, under-coverage, where the coverage rates are lower than 95 per cent, is unacceptable
as it indicates over-confidence in the estimates since more simulations will incorrectly detect
a significant result, which leads to higher than expected type I errors. A possible criterion for
acceptability of the coverage is that the coverage should not fall outside of approximately two
SEs of the nominal coverage probability (p), SE(p) =+/p(l — p)/B [27]. For example, if 95
per cent confidence intervals are calculated using 1000 independent simulations then SE(p) is
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0.006892 and hence between 936 and 964 of the confidence intervals should include the true
value.

The average length of the 95 per cent confidence interval for the parameter estimate f§ (Table I)
is often considered as an evaluation tool in simulation studies (e.g. References [4,30]). If the
parameter estimates are relatively unbiased then narrower confidence intervals imply more precise
estimates, suggesting gains in efficiency and power [30].

2.8. Presentation of the simulation results

Simulation studies can generate a substantial amount of results that need to be summarized and
displayed in a clear and concise manner for the conclusions to be understood. The appropriate
format is highly dependent on the nature of the information presented and hence there is a lack of a
consistency in the literature. Structuring a report of any simulation study using separate subheadings
for the objectives, methods, results and discussion provides clarity and can aid interpretation.

3. REVIEW OF CURRENT PRACTICE

A small formal review of articles published during 2004 in the Statistics in Medicine journal that
included ‘simulation’ in the title, abstract or as a keyword was carried out to identify the current
practices within published simulation studies. Of all 270 articles published in 2004, 58 (21 per cent)
were identified as reporting a simulation study; their characteristics are summarized in Table II.

The specifics of the random number generator and the choice of starting seeds were generally
omitted from the publications. Only one of the 58 articles explicitly stated the random number
generator that was used; drand48 on the Unix/LINUX system [31]. Twenty-two articles gave some
indication of the software package that was being used to generate the data or for the analysis,
but it was unclear in the remaining 36 articles what statistical package was used to conduct
the simulations. The relationship between generated samples was rarely stated within published
simulation studies. Only one article stated that the simulations started with different seeds [32],
whilst two other articles reported that independent samples were generated but did not explicitly
mention anything about the starting seeds.

The number of simulations performed varied from 100 to 100000 replications, with the most
common choices being 1000 (19 articles) and 10000 (12 articles) replications. It was unclear in
four articles how many simulations were performed. Only six of these 58 articles provided any
justification for the number of simulations performed. Three articles based their justifications on
the expected SE given the number of simulations [33—35]. Two articles provided a justification
in terms of the power to detect differences of a specified level from the true value as statistically
significant [36, 37]. The last considered the chosen number of simulations to be sufficient, as they
were not aiming to estimate any quantities with high accuracy [38].

The distributions and parameter specifications for generating the data were based on a real data
set in eight of the simulation studies. In a further 16 articles, the simulated data intended to be
typical of real data, although not explicitly based on a particular data set. The remaining 34 articles
had no clear justification for the choices of parameters for the specified models used to generate
the simulated data sets.

Generally the results from only a small proportion of the scenarios investigated were reported
in an article, probably due to the limited space available. The choice of results to publish is fairly
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Table II. Summary of results from review of 58 articles.

Criteria Frequency

Random number generator
drand48 on the Unix/LINUX system 1
Not stated 57

Statistical Software used for analysis
Splus
SAS
R
STATA
Mathematica
BUGS
MLWIN
MATLAB
Standalone package
Not stated

AN = == ==L NN

(8]

Dependence of samples/starting seed
Samples independent
Different seeds used
Not stated 5

[V )

Number of simulations
100
200
400
500
1000
5000
10000
50000
100 000
Unclear

—_— —_—
A== WO 0~ W

Any justification for number of simulations
Yes 6
No 52

Justification for data generation
Based on a real data set 8
Typical of real data 16
Not stated 34

arbitrary and can depend on the important conclusions to be portrayed. However, one article has
made available the full set of simulation results, which can be downloaded from a website specified
in the article [3].

4. DISCUSSION

The advances in computer technology have allowed simulation studies to be more accessible.
However, performing simulations is not simple. In any simulation study, many decision are required
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prior to the commencement of simulations, but there is generally no single correct answer. The
choices made at each stage of the simulation process are open to criticism if not supplemented
with thorough justifications.

Monte Carlo methods encompass any technique of statistical sampling employed to give
approximate solutions to quantitative problems. They include, in addition to simulations, the Monte
Carlo Markov chain methods such as Gibbs sampling, which are explicitly used for solving com-
plicated integrals [39, 40]. This paper discusses simulation studies where data sets are formulated
to imitate real data. Resampling studies [41, 42], where multiple data sets are sampled from a large
real data set, require the same rigorous planning as simulation studies, differing from simulation
studies only in terms of the generation of the data sets. Hence, similar considerations as discussed
throughout this manuscript are relevant. Simulations are also useful in decision-making and engi-
neering systems, where computer experiments are used to model dynamic processes in order to
assess the effects over time and of varying any inputs (e.g. Reference [43]). Specific considerations
for designing these studies in terms of formulating the problem, defining and designing the model
and the choice of inputs and outputs have been discussed elsewhere (e.g. References [43, 44]).

This paper has discussed the important considerations when designing a simulation study. They
include the choice of data to simulate and the procedures for generating the required data. Choices
of distributions, parameters of any models, and covariate correlation structures used to generate
the data set should be justified. Before commencing simulations, careful consideration should be
given to the identification of the estimates of interest, the appropriate analysis, the methods for
comparison, the criteria for evaluating these methods, the number of situations to consider, and
the reporting of the results. In addition, every simulation study should have a detailed protocol,
documenting the specific objectives and providing full details of how the study will be performed,
analysed and reported. Modifications of the simulation processes, such as altering the number
of simulations or collecting additional parameters or choices of scenarios, as a consequence of
emerging data are possible, but can be time-consuming if they require all simulations to be rerun.
Therefore, thorough planning at the start of any simulation study can ensure that the simulations
are performed efficiently and only the necessary criteria and scenarios assessed. This paper has
provided a concise reference (Figure 1) for researchers to follow when designing simulation studies.

A small review of published articles in one journal has suggested that the majority of simulation
studies reported in the literature are not providing sufficient details of the simulation process to allow
exact replication or clear justifications for the choices made. Future published simulation studies
should include details of all the simulation procedures to enable the results to be reproduced. Using
separate subheadings for the objectives, methods, results and discussion, irrespective of whether
it is the main focus of the article, as in Reference [33], provides clarity and can aid interpretation.
In addition, encouraging researcher to consider the suggested criteria (Figure 1) might encourage
more sound and reliable simulation studies to be performed and reported with credible results.
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Chapter 6 ,,
Writing a Paper :

-

«

The title of a book is its special tag, its distinguishing label.
The choice of words is limited only by the number of words in the English
language, yet how few of them show up in titles.

— ELSIE MYERS STAINTON, A Bag for Editors (1977)

Go straight to the point, rather than begin with an
historical reference or resounding banality

('There is much research interest at present in the
biochemistry of memory"’).

— BERNARD DIXON, Sciwrite (1973)

To write a reference, you must have

the work you're referring to in front of you.

Do not rely on your memory. Do not rely on your memory.

Just in case the idea ever occurred to you, do not rely on your memory.

— MARY-CLAIRE VAN LEUNEN, A Handbook for Scholars (1992)

It was said of Jordan’s writings that

if he had 4 things on the same footing
as (a, b, ¢, d) they would appear as

a, M3, ez, TI{ 5.

— J. E. LITTLEWOOD, Littlewood's Miscel/any9 (1986)

May all writers learn the art (it is not easy) of
preparing an abstract containing the
essential information in their compositions.

— KENNETH K. LANDES, A Scrutiny of the Abstract. I (1966)

9See [34].
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We write scientific papers to communicate our ideas and discoveries. Our
papers compete for the readers’ attention in journals, conference proceed-
ings and other outlets for scholarly writing. If we can produce well-organized
papers that are expressed in clear, concise English, and that convey our en-
thusiasm and are accessible to people outside our particular speciality, then
our papers stand a better than average chance of being read and being ref-
erenced. It is generally accepted that the standard of scientific writing is
not high'® [63], [71], [191], [299], so a well-written paper will stand out
from the crowd. :

In this chapter I examine issues specific to writing a paper, as opposed
to the general principles discussed in the previous chapters. Much of the
chapter is applicable to writing a thesis (see also Chapter 9), book, or
review. After considering the general issues of audience and organization
I explore the building blocks of a research paper, from the title to the
reference list.

6.1. Audience

Your first task in writing a paper is to determine the audience. You need
to identify a typical reader and decide the breadth of your intended read-
ership. Your paper might be written for a mathematics research journal,
an undergraduate mathematics magazine, or a book for pre-university stu-
dents. The formality of the prose and mathematical developments will need
to be different in each of these cases. For research journals, at one extreme,
you might be writing a very technical paper that builds upon earlier work
in a difficult area, and you might be addressing yourself only to experts in
that area. In this case it may not be necessary to give much motivation, to
put the work in context, or to give a thorough summary and explanation
of previous results. At the other extreme, as when you are writing a survey
paper, you do need to motivate the topic, relate it to other areas, and ex-
plain and unify the work you are surveying. The requirements set forth in
the “Guidelines for Authors” for the journal SIAM Review (prior to 1998)
are even more specific:

In their introductory sections, all papers must be accessible to
the full breadth of STAM’s membership through the motivation,
formulation, and exposition of basic ideas. The importance
and intellectual excitement of the subject of the paper must

10T 1985, the editor of the British Medical Journal said “The 5000 or so articles we
see at the BMJ every year are mostly dreadfully written, with numerous faults in English
and overall construction” {180, p. 232].
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be plainly evident to the reader. Abstraction and specializa-
tion must illuminate rather than obscure. The primary threads
of the intellectual fabric of the paper can never be hidden by
jargon, notation, or technical detail.

The goals described in the last three sentences are worth striving for, what-
ever your audience. -

The audience will determine the particular slant of your paper. A paper
about Toeplitz matrices for engineers would normally phrase properties and
results in terms of the physical problems in which these matrices arise,
whereas for an audience of pure mathematicians it would be acceptable to
consider the matrices in isolation from the appligation.

The language you use will depend on the audience. For example, whereas
for linear algebraists I would write about the least squares problem
ming || Az — b||2 with its least squares solution z, for statisticians I would
translate this to the linear regression problem min, || Xb —yl|2 and the least
squares estimate b of the regression coefficients. Failing to use the nota-
tion accepted in a given field can cause confusion and can make your work
impenetrable to the intended readership.

A good question to ask yourself is why a member of your intended au-
dience should want to read your paper. If the paper is well focused you will
find it easy to answer this question. If you cannot find an answer, consider
altering the aims of the paper, or doing further work before continuing with
the writing.

Whatever your audience, it is worth keeping in mind the words of Ivars
Peterson, the editor of Science News [223]:

The format of most journal papers seems to conspire against
the broad communication of new mathematical ideas .. .. The
titles, abstracts and introductions of many mathematical papers
say: “Outsiders keep out! This is of interest only to those few
already in the know.”

With a little effort it should be possible to make your work at least partially
understandable to non-experts.

6.2. Organization and Structure

At an early point in the writing of your paper you need to think about
its high-level organization. It is a good idea to rank your contributions, to
identify the most important. This will help you to decide where to put the
emphasis and how to present the work, and it will also help you to write
the title and abstract.
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At the outset you should have some idea of the length of the paper. The
larger it is the more important it is that it be well organized. However, it
can be harder to write a good short paper than a good long one, for it is
difficult to be simultaneously thorough, lucid and concise.

You need to decide in what order to treat topics and how to present
results. You should aim to minimize the length by avoiding repetition; to
obtain general results that provide others as special cases (even if the latter
are more interesting); and to emphasize similarities and differences between
separate analyses.

In addition to considering the first-time reade;,@you must think about
the reader who returns to the paper some time after first studying it. This
reader will want to skim through the paper to check particular details.
Ideally, then, your paper should not only be easy to read through from
beginning to end, but should also function as a reference document, with
key definitions, equations and results clearly displayed and easy to find.

6.3. Title

According to Kerkut [150], for every person who reads the whole text of a
scientific paper, five hundred read only the title. This statistic emphasizes
the importance of the title. The title should give a terse description of
the content, to help someone carefully scanning a journal contents page
or a reference list decide whether to read the abstract or the paper itself.
Ideally, it should also be catchy enough to attract the attention of a browser.
Achieving a balance between these two aims is the key to writing an effective
title. Kelley [147] mentions that he published an abstract with the title “A
Decomposition of Compact Continua and Related Results on Fixed Sets
under Continuous Mappings”. After Paul Halmos suggested to him that it
is not a good idea to put the whole paper into the title, he changed it to
“Simple Links and Fixed Sets” for the published paper.

A note on the interpolation problem is too vague a title: what is the
breakthrough heralded by A note, and which interpolation problem is under
discussion? Similarly, Approzimation by cubic splines is too vague (except
for a thorough survey of the topic), since the approximation problem being
addressed is not clear. Here are some examples of real titles, with my
comments.

o Computing the eigenvalues and eigenvectors of symmetric arrowhead
matrices [D. P. O’Leary and G. W. Stewart. J. Comp. Phys., 90:497-
505, 1990}. This is a lively and informative title. It is good to have
action words in the title, such as computing or estimating.
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o How and how not to check Gaussian quadrature formulae [Walter
Gautschi. BIT, 23:209-216, 1983]. “How to” titles immediately arouse
the reader’s interest.

o Gaussian elimination is not optimal [V. Strassen. Numer. Math., 13:
354-356, 1969]. If you can summarize your paper in a short sentence,
that sentence may make an excellent title.

> How near is a stable matrix to an unstable matrix? [Charles F. Van
Loan. In Linear Algebra and Its Role in Sysgems Theory, B. N. Datta,
editor, volume 47 of Contemporary Math., Amer. Math. Soc., 1985,
pages 465-478]. A title that asks a question is direct and enticing.

e Regression Diagnostics: Identifying Influential Data and Sources of
Collinearity [D. A. Belsley, E. Kuh, and R. E. Welsch. Wiley, New
York, 1980]. This title has the classic form “general statement fol-
lowed by colon and more specific information”. Dillon [70] defines
such a title to have “titular colonicity” and suggests that “To achieve
scholarly publication, a research title should be divided by a colon
into shorter and longer pre- and postcolonic clauses, respectively, the
whole not to fall below a threshhold [sic] of 15-20 words minimum.”
This paper appears in the August (not the April) issue of American
Psychologist and appears not to be a spoof.

e ALGOL 68 with fewer tears [Charles H. Lindsey. Computer Journal,
15:176-188, 1972]. This is an excellent title—it announces that the
paper is about the programming language ALGOL 68 and whets the
reader’s appetite for a demystifying explanation. This paper has the
distinction of being a syntactically valid ALGOL 68 program!

e Nineteen dubious ways to compute the exponential of a matrix [Cleve
B. Moler and Charles F. Van Loan. SIAM Review, 20(4):801-836,
1978]. A classic paper in numerical analysis, with a memorable title.

o Can you count on your calculator? [W. Kahan and B. N. Parlett.
Memorandum No. UCB/ERL M77/21, Electronics Research Labora-
tory, College of Engineering, University of California, Berkeley, April
1977]. Puns rarely make their way into titles, but this one is effective.

e Performing armchair roundoff analyses of statistical algorithms [Webb
Miller. Comm. Statist. Simulation Comput., B7(3):243-255, 1978].
An otherwise drab title transformed by the word armchair. It sug-
gests a gentle approach to the error analysis.
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e Tricks or treats with the Hilbert matrix [Man-Duen Choi. Amer.
Math. Monthly, 90:301-312, 1983]. This is another attractive and
imaginative title.

e Can one hear the shape of a drum? [Marc Kac. Amer. Math. Monthly,
73(4, Part II):1-23, 1966]. The meaning of this attention-grabbing
title is explained on the third page of Kac’s expository paper:

You can now see that the “drum” of my title is more like a
tambourine (which is really a memprane) and that stripped
of picturesque language the problem is whether we can de-
termine € if we know all the eigenvalues of the eigenvalue
problem

%sz—i—)\Uzo in Q,
U=0 on T.

This paper won its author the Chauvenet Prize and the Lester R. Ford
Award (see Appendix E). Kac’s question is answered negatively in
“One cannot hear the shape of a drum” [Carolyn Gordon, David L.
Webb, and Scott Wolpert. Bull. Amer. Math. Soc., 27(1):134-138,
1992|, and his “hearing” terminology is used in “You can not hear the
mass of a homology class” [Dennis DeTurck, Herman Gluck, Carolyn
Gordon, and David Webb. Comment. Math. Helvetici, 64:589-617,
1989].

e The perfidious polynomial [James H. Wilkinson. In Studies in Numer-
ical Analysis, G. H. Golub, editor, volume 24 of Studies in Mathemat-
ics, Mathematical Association of America, Washington, D.C., 1984,
pages 1-28]. A delightful alliteration for a paper that explains why
numerical computations with polynomials can be treacherous. This
paper won its author the Chauvenet Prize (see Appendix E).

o Fingers or fists? (The choice of decimal or binary representation)
[W. Buchholz. Comm. ACM, 2(12):3-11, 1959]. An analogy and an
alliteration combine here to make an appealing title.

See Appendix E for many more examples of good titles.

A few years ago I submitted for publication a manuscript titled “Least
Squares Approximation of a Symmetric Matrix”. A referee objected to the
title because it does not fully define the problem, so I changed it to “The
Symmetric Procrustes Problem”, which is even less informative if you are
not familiar with Procrustes problems, but is perhaps more intriguing.
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Unless the title is short it will have to be broken over two or more lines
at the head of the paper (or on the front cover of a technical report). Rules
of thumb are that a phrase should not be split between lines, a line should
not start with a weak word such as a conjunction, and the lines should not
differ too much in length. If the title is to be capitalized then all words
except articles, short prepositions and conjunctions'should be capitalized.
Here are some examples, the first of each pair being preferable. The quotes
at the beginning of each chapter provide further examples of the choice of
line breaks.

<

On Real Matrices with
Positive Definite Symmetric Component

On Real Matrices with Positive
Definite Symmetric Component

An Tteration Method for the
Solution of the Eigenvalue Problem of
Linear Differential and Integral Operators

An Iteration Method for the Solution of
the Eigenvalue Problem of
Linear Differential and Integral Operators

Numerically Stable Parallel Algorithms
for Interpolation

Numerically Stable Parallel Algorithms for
Interpolation

In 1851 Sylvester published a paper with the title “Explanation of the
Coincidence of a Theorem Given by Mr Sylvester in the December Number
of This Journal, with One Stated by Professor Donkin in the June Number
of the Same” [268]. Thankfully, titles are generally shorter nowadays.

6.4. Author List

In 1940, over 90% of papers reviewed in Mathematical Reviews had one
author [120]. Today that figure is about 50%, showing that the proportion
of jointly authored works in mathematics has increased greatly.

There are no hard and fast rules about the order in which the authors
of a multiply authored paper are listed. Sometimes the person who did the
greatest part of the work is listed first. Sometimes the academically senior
person is listed first. In some disciplines and institutions the senior person
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The Spotlight Factor

It is the custom in the theoretical computer science community to or-
der authors alphabetically. In a tongue-in-cheek article, Tompa [273]
defines the spotlight factor of the first author of a paper in which the &
authors are listed alphabetically to be the probability that if k—1 coau-
thors are chosen independently at random they will all have surnames
later in the alphabet than the first author. According to Tompa, the
best (smallest) spotlight factor of 0.0255 in theoretical computer science
belongs to Santoro, for his paper “Geometric ?:Qntainment and vector
dominance” [Nicola Santoro, Jeffrey B. Sidney, Stuart J. Sidney, and
Jorge Urrutia. Theoretical Computer Science, 53:345-352, 1987]. This
value is calculated as

(1~.santoro)® = 1—(19+_1_+ 14 + 20 + 16 +£+_1_6_> ’
‘ N 27 272 273 T 974 T 275 ' 976 T 277

where a = 1, ..., z = 26 and blanks or punctuation are represented
by zero. By comparison, of those publications in the bibliography of
this book, the best spotlight factors are the 0.1829 of O'Leary [211],
the 0.2679 of Strunk [263] and the 0.3275 of Knuth [164].

(typically the director of a laboratory) is listed last. Perhaps most often,
the authors are listed alphabetically, which is the practice I favour.

In their book Computer Architecture [137], Hennessy and Patterson
adopt an unusual solution to the problem of deciding on author ordering:
they vary the ordering in the book and in advertisements, even alternating
the order when they reference the book! They comment that “This reflects
the true collaborative nature of this book ... We could think of no fair
way to reflect this genuine cooperation other than to hide in ambiguity—a
practice that may help some authors but confuses librarians.”

Being the first-named author is advantageous because the first name
is easier to find in a reference list and the paper will be associated solely
with that name in citations of the form “Smith et al. (1992)”. Also, some
citation services ignore all names after the first (see §14.3).

Make sure that you use precisely the same name on each of your pub-
lications. I declare myself as Nicholas J. Higham, but not N. J. Higham,
N. Higham or Nick Higham. If you vary the name, your publications may
not all be grouped together in bibliographic lists and indexes and there may
be confusion over whether the different forms represent the same person.
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Whether to spell out your first name(s) is a matter of personal preference.
Chinese and Japanese authors need to decide whether to Westernize their
name by putting the surname (family name) after the Christian (given)
name, or to maintain the traditional ordering of surname first.

6.5. Date

Always date your work. If you give an unpublished paper to others they
will want to know when it was written. You may not be able to distinguish
different drafts if they are not dated. The date is usually placed on a
line by itself after the author’s name, or in a-footnote. Spell the month
out, rather than using the form “xx-yy-zz”, since European and American
authors interpret xx and yy in the opposite senses.

6.6. Abstract

The purpose of the abstract is to summarize the contents of the paper. It
should do so in enough detail to enable the reader to decide whether to
read the whole paper. The reader should not have to refer to the paper to
understand the abstract.

Frequently, authors build an abstract from sentences in the first section
of the paper. This is not advisable. The abstract is a mini-paper, and
should be designed for its special purpose. This usually means writing the
abstract from scratch once the paper is written. The shorter it is, the better,
subject to the constraint of it being sufficiently informative. Most abstracts
occupy one paragraph. Many mathematics journals state a maximum size
for the abstract, usually between 200 and 300 words.

Some specific suggestions are as follows.

o Avoid mathematical equations in the abstract if possible, particularly
displayed equations. One reason is that equations may cause difficul-
ties for the review services that publish abstracts (though not those,
such as Mathematical Reviews, that use TEX).

o Do not cite references by number in the abstract, since the list of refer-
ences will not usually accompany the abstract in the review journals.
If a paper must be mentioned, spell it out in full:

An algorithm given by Boyd [Linear Algebra and Appl., 9:95-101,
1974] is extended to mixed subordinate matrix norms.

e Try to make the abstract easy to understand for those whose first
language is not English. Also, keep in mind that the abstract may
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be translated into another language, for a foreign review journal, for
example.

e Some journals disallow the word we in abstracts, preferring the pas-
sive voice (usually necessitating 4t). If you are writing for such a
journal it pays to adopt the required voice; while a copy editor will
convert as necessary, the conversion may lessen the impact of your
sentences.

e Obviously, the abstract should not make claims that are not justified
in the paper. Yet this does happen—possibly when the abstract is
written before the paper is complete and is not properly revised.

e The abstract should give some indication of the conclusions of the pa-
per. An abstract that ends “A numerical comparison of these methods
is presented” and does not mention the findings of the comparison is
uninformative.

e Your abstract should lay claim to some new results, unless the paper
is a survey. Otherwise, if you submit the paper to a research journal,
you are making it easy for a referee to recommend rejection.

e Try not to start the abstract with the common but unnecessary
phrases “In this paper” or “This paper”. Some journals make this
request in their instructions to authors.

The suggestions above are particularly relevant for an abstract that is
submitted to a conference and appears in a conference programme. Such
an abstract will be read and judged in isolation from the paper, so it is
vital for it to create a strong impression in isolation.

An intriguing opening paragraph of an abstract is the one by Knuth
(1979) in [158]:

ABSTRACT. Mathematics books and journals do not look as beautiful
as they used to. It is not that their mathematical content is unsatisfactory,
rather that the old and well-developed traditions of typesetting have become
too expensive. Fortunately, it now appears that mathematics itself can be
used to solve this problem.

If inspiration fails you, you could always use the following generic ab-
stract from [246]:

ABSTRACT. After a crisp, cogent analysis of the problem,
the author brilliantly cuts to the heart of the question with
incisive simplifications. These soon reduce the original complex
edifice to a [s]mouldering pile of dusty rubble.
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6.7. Key Words and Subject Classifications

Some journals list key words supplied by the author, usually after the ab-
stract. The number of key words is usually ten or less. Since the key words
may be used in computer searches, you should try to anticipate words for
which a reader might search and make them specific enough to give a good
indication of the paper’s content. '

Some journals also require subject classifications. The AMS Mathe-
matics Subject Classifications (1991) divide mathematics into 61 sections
with numbers between 0 and 94, which are further divided into many sub-
sections. For example, section 65 covers numerical analysis and has 106
subsections; subsection 65F05 covers direct methods for solving linear sys-
tems while subsection 65B10 covers summation of series. The classifications
are listed in the Annual Subject Index of Mathematical Reviews and can
be downloaded from the American Mathematical Society’s e-MATH service
(see §14.1).

Other classification schemes exist, such as the one for computer science
from the journal Computing Reviews. The Computing Reviews Classifica-
tion System (1987) is a four-level tree that has three numbered levels and
an unnumbered level of descriptors. The top level consists of eleven nodes,
denoted by letters A (General Literature) to K (Computing Milieux). An
example of a category is

G.1.3 [Numerical Analysis|: Numerical Linear Algebra—sparse
and very large systems.

This specifies the Numerical Linear Algebra node of the Numerical Analysis
area under G (Mathematics of Computation), and “sparse and very large
systems” is one of several descriptors for G.1.3 listed in the definition of
the classification scheme.

6.8. The Introduction

Perhaps the worst way to begin a paper is with a list of notation or def-
initions, such as Let G be an abelian group and H be a subgroup of G, or
Let F be the complex field C or the real field R, and let Frxn be the linear
space of all m x n matrices over F. If A € Frmxn we use A™ to denote the
conjugate transpose of A. It can be argued that the first sentence should
be the best in the paper—its job is to entice the uncommitted reader into
reading the whole paper. A list of notation will not achieve this aim, but
a clear, crisp and imaginative statement may. King [152] gives a slightly
different specification for the first sentence: “The first sentence has a dual
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function: it must carry some essential information, particularly the prob-
lem under consideration, and at the same time gently translate the reader
into the body of the article.”

Ideally, an introduction is fairly short—say a few hundred words. It
should define the problem, explain what the work attempts to do, and
outline the plan of attack. Unless there is good reason not to do so, it is
advisable to summarize the results achieved. Knowing the problem and the
progress made on it, the reader can decide after reading the introduction
whether to read the whole paper. You may want to leave the punch-line to
the end, but in doing so you risk the reader losing interest before reaching it.

Here is an example of a compelling opening paragraph that strongly
motivates the work. It is from Gautschi’s paper “How and How Not to
Check Gaussian Quadrature Formulae”, mentioned on page 81.

The preparation of this note was prompted by the appear-
ance, in the chemistry literature, of a 16-digit table of a Gaus-
sian quadrature formula for integration with measure d\(t) =
exp(—t3/3) dt on (0, oc), a table, which we suspected is accurate
to only 1-2 decimal digits. How does one go about convincing
a chemist, or anybody else for that matter, that his Gaussian .
quadrature formula is seriously defective?

It can be appropriate to begin with a few definitions if they are needed
to state the problem and begin the analysis. As an example, here is the
beginning of the paper “Estimating the Largest Eigenvalue of a Positive
Definite Matrix” by O’Leary, Stewart and Vandergraft [211].

Let A be a positive definite matrix of order n with eigenvalues
AL 2 A > o>\, >0 corresponding to the orthonormal
system of eigenvectors z1, z3, ..., T,. In some applications, one
must obtain an estimate of A\; without going to the expense of
computing the complete eigensystem of A. A simple technique
that is applicable to a variety of problems is the power method.

In the next four sentences the authors define the power method, state that
the theory of the method is well understood, and note that convergence of
the method can be hindered in two ways, which are then analysed. This
introduction is effective because it defines the problem and motivates the
analysis without a wasted word, and leads quickly into the heart of the
paper. The introduction is not labelled as such: this is a three and a half
page paper with no section headings.

A possible way to improve an introduction is to delete the first one or
more sentences, which are often unimportant general statements. Try it!
As an example, consider the following opening two sentences.
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Polynomials are widely used as approximating functions in many
areas of mathematics and they can be expressed in various bases.
We consider here how to choose the basis to minimize the error
of evaluation in floating point arithmetic.

This opening is not a bad one, but the first sentence is general and unex-
citing. Under the reasonable assumption that the reader knows the impor-
tance of polynomials and need not be reminded, it is better to combine and
shorten the two sentences and pose a questiorn .

In which basis should we express a polynomial to minimize the
error of evaluation in floating point arithmetic?

Unless the paper is very short it is advisable to outline its organization
towards the end of the introduction. One approach is to write, for each
section, a sentence describing its contents. The outline can be introduced
by a sentence such as “The outline of this paper is as follows” or “This
paper is organized as follows.” It is best not simply to list the section
titles; instead, give a summary that could only be obtained by reading the
sections.

Note that some journals prefer the symbol § to the word section when
referring to specific sections: §2.1 is written instead of Section 2.1. The
plural of § is §§: “see §§2.1 and 2.2.”

6.9. Computational Experiments

Many papers describe computational experiments. These may be done for
several reasons: to gain insight into a method, to compare competing meth-
ods, to verify theoretical predictions, to tune parameters in algorithms and
codes, and to measure the performance of software. To achieve these aims,
experiments must be carefully designed and executed. Many decisions have
to be made, ranging from what will be the objectives of the experiments
to how to measure performance and what test problems to use. One edi-
tor of a numerical analysis journal commented that his primary reason for
rejecting papers is that the computational experiments are unsound; this
underlines the importance of proper design and reporting of experiments.
When you report the results of a computational experiment you should
give enough detail to enable the results to be interpreted and the exper-
iment to be reproduced. In particular, where relevant you should state
the machine precision (working accuracy) and the type of random num-
bers used (e.g., normal (0,1) or uniform (—1,1)). If you wish to display
the convergence of a sequence it is usually better to tabulate the errors
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rather than the values themselves. Error measures should be normal-
ized. Thus, for an approximate solution T to Az = b, the relative residual
lb— Az /(| Al|IZ]|+|b]|) is more meaningful than the scale-dependent quan-
tity ||b — AZ||. If you are measuring the speed of a numerical algorithm it
is important to show that the right answers are being produced (otherwise
the algorithm “the answer is 42” is hard to beat).

You may also wish to state the programming language, the version of
the compiler used, and the compiler options and optimizations that were
selected, as these can all have a significant influence on run-times. In areas
where attaining full precision is not the aim (such as the numerical solution
of ordinary differential equations), it is appropriate to consider both speed
and accuracy (e.g., by plotting cost versus requested accuracy).

One of the difficulties in designing experiments is finding good test
problems—ones which reveal extremes of behaviour, cover a wide range
of difficulty, are representative of practical problems, and (ideally) have
known solutions. In many areas of computational mathematics good test
problems have been identified, and several collections of such problems have
been published. For example, collections are available in the areas of nonlin-
ear optimization, linear programming, ordinary differential equations and
partial differential equations. Several collections of test matrices are avail-
able and there is a book devoted entirely to test matrices. For references
to test problem collections see [140].

In your conclusions you should make a clear distinction between ob-
jective statements and opinions and speculation. It is very tempting to
extrapolate from results, but this is dangerous. As you analyse the results
you may begin to formulate conclusions that are not fully supported by
the data, perhaps because they were not anticipated when the experiments
were designed. If so, further experimentation will be needed. When eval-
uating numerical algorithms I have found that it pays to print out every
statistic that could conceivably be of interest; if I decide not to print out a
residual or relative error, for example, I often find a need for it later on.

Further guidelines on how to report the results of computational ex-
periments can be found in the journals ACM Transactions on Mathemat-
ical Software [65] and Mathematical Programming [146], and in an arti-
cle by Bailey [12]. Perhaps the best advice is to read critically the pre-
sentation of experimental results in papers in your area of interest—and
learn from them.

6.10. Tables

Many of the principles that apply to writing apply also to the construction
of tables and graphs. However, some particular points should be considered
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when designing a table.

To maximize readability the table design should be as simple as possi-
ble. Repetition should be avoided; for example, units of measurement or
descriptions common to each entry in a column should go in the column
header. Compare Tables 6.1 and 6.2. It is best to minimize the number
of rules in the table. Two busy examples are shown in Table 6.3 and Ta-
ble 6.5. The simplified versions, Table 6.4 and Table 6.6, are surely more
aesthetically pleasing. Table 6.3 is taken from [159, p. 366],'! where it is
given without any rules and is still perfectly readable.

It is easier to compare like quantities ifsthey are arranged in columns
rather than rows. Research reported by Harfley [132], [134] supports this
fact, and Tables 6.7 and 6.8 provide illustration, Table 6.8 being the easier
to read. The difference between row and column orientation is more pro-
nounced in complex tables. Of course, the orientation may be determined
by space considerations, as a horizontal orientation usually takes less space
on the page. If a vertical table is too tall, but is narrow, it can be broken
into two pieces side by side:

g; — | PiP2

It is also helpful to put columns or rows that need to be compared next to
each other.

Only essential information should be included in a table. Omit data
whose presence cannot be justified and state only as many digits as are
needed (this number is often surprisingly small). In particular, do not
state numerical results to more significant figures than are known for the
data. As an example, in Table 6.1 there is no need to quote the timings and
speedups to six significant figures, so Table 6.2 gives just one decimal place.
Note that there is justification for showing so many digits in Tables 6.3 and
6.4: (z) in this table is the number of primes less than or equal to z, and
nearly all the digits of m(10%) are needed to show the error in Riemann’s
formula. Displaying the first one or two digits of the fractional parts of the
approximations emphasizes that the approximations are not integers.

If you need to present a large amount of data in tabular form, consider
displaying it in an appendix, to avoid cluttering the main text. You could
give smaller tables in the text that summarize the data. Large sets of
data are often better displayed as graphs, however, particularly if it is the
trends rather than the numerical values that are of interest. Tufte [275,

11Donald E. Knuth, The Art of Computer Programming, vol. 2, ©1981 by Addison-
Wesley Publishing Co. Reprinted by permission of Addison-Wesley Publishing Co., Inc.,
Reading, MA. The form of the original table is not reproduced exactly here.



92 WRITING A PAPER

Table 6.1. Timings for a parallel algorithm.

# processors Time Speedup
p=1 28.352197 secs —
p=4 7.218812 secs 3.9275
p=28 3.634951 secs 7.7999
p=16 1.929347 secs fl4.6952

-

Table 6.2. Timings for a parallel algorithm.

No. of processors Time (secs) Speedup

1 28.4 —
4 7.2 4.0
8 3.6 7.8
16 1.9 14.7

Table 6.3. Approximations to m(z).

T 7(z) z/lnz L(z) | Riemann’s formula |
108 168 144.8 176.6 168.36
108 78498 72382.4 78626.5 78527.40
109 | 50847534 | 48254942.4 | 50849233.9 50847455.43

Table 6.4. Approximations to 7(z).

T | m(x) z/Inx L(z) Riemann’s formula
0° | 168 1443 176.6 168.36
106 | 78498 72382.4 78626.5 78527.40
10° | 50847534 48254942.4 50849233.9 50847455.43
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Table 6.5. Results for inverting a lower triangular matrix on a Cray 2.

Mflops
n 128 256 512 1024
Method 1 (np = 1) 95 162 231 283

Method 2 (np = 1) | 114 211 289 330

k variant (np =1) | 114 157 178 191
Method 1B (n = 64) | 125 246 343 405
Method 2C (n, = 64) | 129 269 378 428

k variant (ny = 64) | 148 263 344 383

Table 6.6. Mflop rates for inverting a lower triangular matrix on a Cray 2.

n 128 256 512 1024

Unblocked: Method 1 95 162 231 283
Method 2 114 211 289 330

k variant 114 157 178 191

Blocked: Method 1B | 125 246 348 405
(ny = 64) Method 2C | 129 269 378 428
k variant 148 263 344 383

Table 6.7. SI prefixes (1071-10'%). Row orientation.
Multiple | 102 10° 106 10° 107}

Prefix tera giga mega kilo deci
Symbol | T G M K d

Table 6.8. SI prefixes (1071-10'?). Column orientation.

Multiple Prefix Symbol

10%2 tera T
10° giga G
108 mega M
103 kilo K
107! deci d
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p. 56] advises that tables are usually better than graphs at reporting small
data sets of twenty numbers or less.

The caption should be informative and should not merely repeat infor-
mation contained in the table. Notice the simplification obtained by moving
the word “Mflops” from the table to the caption in Table 6.6.

Give a clear reference to the table at an appropriate place in the text—
you cannot rely on the reader to refer to the table automatically. It is
helpful if you explain the salient features of the table in words. The reader
will appreciate this guidance, especially if the table contains a lot of data.
However, you should not summarize the wholestable—if you do, the table
might as well be omitted. oo

Further Reading

The Chicago Manual of Style [58] devotes a whole chapter to tables and
offers much useful advice. Another good reference is A Manual for Writ-
ers [278, Chap. 6]. Bentley [21, Chap. 10] gives a good example of how to
redesign a table. References that discuss the preparation of graphs include
Bentley [21, Chaps. 10, 11}, Hartley [132], [134], MacGregor [187], [188],
and Tufte [275], [276], [277].

6.11. Citations

The two main styles of citation in mathematics journals are by number (as
used in this book) and by name and year, which is the Harvard system.
Examples of the Harvard system are These results agree with an existing
study of Smith (1990) and These results agree with an existing study (Smith,
1990). If more than one paper maps to Smith (1990), the papers are distin-
guished by appending a letter to the year: Smith (1990a), Smith (1990b),
and so on. In the number-only system, the number is usually placed in
square brackets, though some styles require it to be superscripted.

The main requirement is that a citation does not intrude upon a sen-
tence. For example, This method was found [17] to be unstable is better
written as This method was found to be unstable [17]. There are circum-
stances, however, where a citation has to be placed part-way through a
sentence to convey the correct meaning. A good test for whether a cita-
tion is well placed is to see whether the sentence reads properly when the
citation is deleted. The style of citation inevitably affects how you phrase
sentences, so it is worth checking in advance what style is used by the
journal in which you wish to publish. Knuth [164] explains that when his
paper “Structured programming with go to statements” [Computing Sur-
veys, 6:261-301, 1974] was reprinted in a book, he made numerous changes
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to make sentences read well with the citation style used in the book.

When you cite by number, it is good style to incorporate the author’s
name if the citation is more than just a passing one. As well as saving the
reader the trouble of turning to the reference list to find out who you are
referring to, this practice has an enlivening effect because of the human
interest it introduces. Examples: -

Let AIl = QR be a QR factorization with column pivoting [10].
(Passing reference to a textbook for this standard factorization.)
The rate of convergence is quadratic, as shown by Wilkinson
[27]. (Instead of “as shown in [27]".) -

-
The sentence “This question has been addressed by [5]” is logically incorrect
and should be modified to “addressed by Jones [5]” or “addressed in [5]”.

When you cite several references together it is best to arrange them so
that the citation numbers are in increasing order, e.g., “several variations
have been developed [2], [7], [13].” Ordering by year of publication serves
no purpose when only citation numbers appear in the text. If you want to
emphasize the historical progression it is better to add names and years:
“variations have been developed by Smith (1974) [13], Hall (1981) [2], and
Jones (1985) [7].”

It is important to be aware that the reference list says a lot about a
paper. It helps to define the area in which the paper lies and may be used
by a reader to judge whether the author is aware of previous work in the
area. Some readers look at the reference list immediately after reading the
title, and if the references do not look sufficiently familiar, interesting or
comprehensive they may decide not to read further. Therefore it is desirable
that your reference list contain at least a few of the key papers in the area
in which you are writing. Papers should not, however, be cited just for
effect. Each citation should serve a purpose within the paper. Note also
that if you cite too often (say, for several consecutive sentences) you may
give the impression that you lack confidence in what you are saying.

There are several conventions for handling multiple authors using the
Harvard system. One such convention is as follows [45], [68, Chap. 12].
For one or two authors, both names are given (e.g., “see Golub and Van
Loan (1989)"). If there are three authors, all three are listed in the first
citation and subsequent citations replace the second and third names by
“et al.” (e.g., “see Knuth, Larrabee and Roberts (1989),” then “see Knuth
et al. (1989)"). For four or more authors, all citations use the first author
with “et al.” These conventions can also be used when naming authors in
conjunction with the numbered citation system.

If you make significant use of a result from another reference you should
give some indication of the difficulty and depth of the result (and give the
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author’s name). Otherwise, unless readers look up the reference, they will
not be able to judge the weight of your contribution.

When you make reference to a specific detail from a book or long paper
it helps the reader if your citation includes information that pinpoints the
reference, such as a page, section, or theorem number.

For further details on the subtleties of citation consult van Leunen [283].

6.12. Conclusions

If there is a conclusions section (and not every paper needs one) it should
not simply repeat earlier sections in the same words. It should offer another
viewpoint, discuss limitations of the work, or give suggestions for further
research. Often the conclusions are best worked into the introduction or
the last section. It is not uncommon to see papers where the conclusions
are largely sentences taken from the introduction, such as We show that
X's result can be extended to a larger class . ..; this practice is not recom-
mended.

The conclusions section is a good place to mention further work: to
outline open problems and directions for future research and to mention
work in progress. Be wary of referring to your “forthcoming paper”, for
such papers can fail to materialize. A classic example of a justified reference
to future work is the following quote from the famous paper'? by Watson
and Crick [290] (Nature, April 25, 1953) in which the double helix structure
of DNA was proposed:

It has not escaped our notice that the specific pairing we
have postulated immediately suggests a possible copying mech-
anism for the genetic material.

Full details of the structure, including the conditions as-
sumed in building it, together with a set of co-ordinates for the
atoms, will be published elsewhere.

The promise “will be published elsewhere” was fulfilled shortly afterwards,
in the May 30, 1953 issue of Nature.!3

6.13. Acknowledgements

Be sure to acknowledge any financial support for your work: grants, fel-
lowships, studentships, sponsorship. A researcher might write “This re-

12For some comments by Crick on the writing of this and subsequent papers by Watson
and Crick, see [64].

13pyke [231] points out that the words “It has not escaped our notice that” can be
removed.
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search was supported by the National Science Foundation under grant
DCR-1234567": grant agencies like authors to be this specific. A Ph.D. stu-
dent supported by the Engineering and Physical Sciences Research Council
(UK) might write “This work was supported by an EPSRC Research Stu-
dentship.” In SIAM journals this type of acknowledgement appears in a
footnote on the first page. Other acknowledgements usually appear in a
section titled Acknowledgements at the end of the paper. (An alternative
spelling is acknowledgments.)

It is customary to thank anyone who read the manuscript in draft form
and offered significant suggestions for improvement (as well as anyone who
helped in the research), but not someone who was just doing his or her
normal work in helping you (for example, a secretary). The often-used “I
would like to thank” can be shortened to “I thank.” Note that if you say
“] thank X for pointing out an error in the proof of Theorem Y,” you are
saying that the proof is incorrect; “in an earlier proof” or “in an earlier
attempted proof” is what you meant to say.

The concept of anonymous referee sometimes seems t0 confuse authors
when they write acknowledgements. An anonymous referee should not be
thanked, as is often the case, for his suggestions—it may be a she. One
author wrote “I thank the anonymous referees, particularly Dr. J. R. Ock-
endon, for numerous suggestions and for the source of references.” Another
explained, not realising the two ways in which the sentence can be read, “I
would like to thank the unknown referees for their valuable comments.”

6.14. Appendix

An appendix contains information that is essential to the paper but does
not fit comfortably into the body of the text. The most common use of an
appendix is to present detailed analysis that would distract the reader if it
were given at the point where the results of the analysis are needed. An
appendix can also be used to give computer program listings or detailed
numerical results. An appendix should not be used to squeeze inessential
information into the paper (though this may be acceptable in a technical
report or thesis).

6.15. Reference List

Preparing the reference list can be one of the most tedious aspects of writ-
ing a paper, although it is made much easier by appropriate software (see
§13.3). The precise format in which references are presented varies among
publishers and sometimes among different journals from the same publisher.
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Here are four examples.

SIAM journals: J. H. WILKINSON, Error analysis of floating-pownt com-
putation, Numer. Math., 2 (1960), pp. 319-340.

IMA journals: WILKINSON, J. H. 1960 Error analysis of floating-point
computation. Numer. Math. 2, 319-340.

Elsevier journals: J. H. Wilkinson, Error analysis of floating-point com-
putation, Numer. Math. 2:319-340 (1960).

Springer-Verlag journals: Wilkinson, J. H.+(1960): Error analysis of
floating-point computation. Numer. Math. 2, 319-340.

All journals that I am familiar with ask for the use of their own format but
will accept other formats and copy edit them as necessary. All publishers
have a minimum amount of information that they require for references, as
defined in their instructions for authors. It is important to provide all the
required information, whatever format you use for the references.

Here are some comments and suggestions on preparing reference lists.
For further details I strongly recommend the book by van Leunen [283],
but keep in mind that her recommendations may conflict with those of
publishers in certain respects.

1. Do not rely on secondary sources to learn the contents of a reference
or its bibliographic details—always check the original reference. In
studies on the accuracy of citation, the percentage of references con-
taining errors has been found to be as high as 50% [95]. A 1982 paper
by Vieira and Messing in the journal Gene had been cited correctly
2,212 times up to 1988, but it had also been cited incorrectly 357 times
under “Viera”; these errors led to the paper being placed too low in a
list of most-cited papers [98]. In another well-documented case in the
medical literature, the Czech title “O Uplavici” (“On Dysentery”) of
an 1887 paper in a Czech medical journal was taken by one writer
to be the author’s name, and the mistake propagated until it was
finally exposed in 1938 [135], [239]. If a secondary source has to be
used (perhaps because the reference is unavailable), it is advisable to
append to the reference “cited in [ss]”, where [ss] is the secondary
source.

9. Always provide the full complement of initials of an author, as given
in the paper or book you are referencing.

3. Some authors are inconsistent in the name they use in their papers,
sometimes omitting a middle initial, for example. In such cases, my
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preference is to use the author’s full name in the reference list when it
is known, to avoid ambiguities such as: Is A. Smith the same author
as A. B. Smith?

4. Some sources contain typographical errors or nonstandard usage. Ti-
tles should be given unaltered. For examptle, the title “Van der Monde
systems and numerical differentiation” [J. N. Lyness and C. B. Moler,
Numer. Math., 8:458-464, 1966] appears to be incorrect because the
name is usually written Vandermonde, but it should not be altered (I
have occasionally had to reinstate “Van der Monde” in my reference
list after a copy editor has changed it), A typographical error in an
author’s name is rare, but not unknown. It seems reasonable to cor-
rect such an error, but to provide some indication of the correction
that has been made, such as a note at the end of the reference.

5. Copy bibliographic information of a journal article from the journal
pages, not the cover of the journal. The cover sometimes contains
typographical errors and you cannot deduce the final page number of
the article if the journal puts blank pages between articles or begins
articles part-way down a page.

6. Electronic journals do not usually cause any difficulties in referencing,
since it is in the journals’ interests to make clear how papers should
be referenced. For example, the journal Electronic Transactions on
Numerical Analysis provides papers in PostScript form, and each pa-
per has a clearly defined page range, volume and year; papers are
therefore referenced just like those in a traditional journal. It may
help readers if a URL for an electronic journal is appended to the
reference, but the journal in which you are publishing may delete it
to save space.

It is more difficult to decide how to reference email messages and
unpublished documents or programs on the Web. The following sug-
gestions are adapted from those in Electronic Styles [178]. I assume
that an email address and a URL are both clearly identifiable as such
by the @ and http, respectively, so I omit the descriptors “email” and
“URL”. There are so many different types of item on the Web that
no referencing scheme can cover all possibilities.

(a) A publication available in print and online.

Nicholas J. Higham. The Test Matrix Toolbox for MAT-
LAB (version 3.0). Numerical Analysis Report No. 276,
Manchester Centre for Computational Mathematics, Manch-
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ester, England, Sept. 1995; also available from ftp://
ftp.ma.man.ac.uk/pub/narep/narep276.ps.gz

(b) A publication available online only.

Melvin E. Page. A Brief Citation Guide for Internet
Sources in History and the Humanities (Version 2.1),
http://h-net.msu.edu/"africa/citation.html, 1996.

(c) A publication on CD-ROM.

A. G. Anderson, Immersed interface methods for the
compressible equations. In Prqceedings of the Eighth
SIAM Conference on Parallel Processing for Scientific
Computing (Minneapolis, MN, 1997), CD-ROM, Soci-
ety for Industrial and Applied Mathematics, Philadel-
phia, PA, 1997.

(d) A piece of software.
Piet van Oostrum. BTEX package fancyhdr. CTAN archive

(e.g., http://www.tex.ac.uk/tex-archive), macros/
latex/contrib/supported/fancyhdr.

(e) An item in a discussion list, digest or newsgroup.
David Hough. Random story. NA Digest, 89 (1), 1989.
na.help@na-net.ornl.gov, http://www.netlib.org/
index.html

(f) A standard email message. The title is taken from the Subject:

line.

Desmond J. Higham (aas96106@ccsun.strath.ac.uk).

Comments on your paper. Email message to Nicholas J.
Higham (higham@ma.man.ac.uk), August 18, 1997.

(g) A forwarded email message.

Susan Ciambrano (ciambran@siam.org). Reader’s com-
ments on HWMS. (Original message A. Reader, Hand-
book of Writing.) Forwarded email message to Nicholas
J. Higham (higham@ma.man.ac.uk), October 20, 1995.

7. When you reference a manuscript or technical report that is more

than a few months old, check to see if it has appeared in a journal.
An author will usually be happy to inform you of its status. If it has
appeared, check whether the title has changed. The referees may have
asked for a better title, or the copy editor may have added a hyphen,
combined a hyphenated pair of words, or changed British spelling to
American or vice versa.
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Take care to respect letters and accented characters from other lan-
guages. Examples: A 4 B 6 06, 0 0.

If you maintain a database of references (for example, in BIBTEX
format—see §13.3), it is worth recording full details of a reference,
even if not all of them are needed for journal reference lists. For a
journal article, record the part (issue) number as well as the volume
number; this extra information can speed the process of looking up a
reference, especially if the journal issues are unbound. For a technical
report, the month of publication is useful to know.

Be sure you are using the correct journal name and watch out for
journals that change their names. For example, the STAM Journal on
Scientific and Statistical Computing (1980-1992) became the SIAM
Journal on Scientific Computing in 1993.

In book titles, van Leunen recommends that a colon be added if it is
needed to separate a title from a subtitle, and an awkward comma or
colon separating a title from a subtitle should be removed. Thus On
Writing Well An Informal Guide to Writing Nonfiction (as copied
from the title page of [304]) needs a colon added after Well, and the
colon should be removed from Interpolation Theory: 5.

Van Leunen recommends simplifying the names of major publishers
to the bare bones, so that John Wiley & Sons becomes Wiley, and
Penguin Books becomes Penguin. She also recommends omitting the
city for a major publisher; I usually include it because many journals
require it. For obscure publishers it is best to give as complete an
address as possible.

For a book, the International Standard Book Number (ISBN) is worth
recording, as it can be used to search library and publishers’ cata-
logues. (Note, though, that hardback and softback editions of a book
usually have different ISBNs.) An ISBN consists of ten digits, ar-
ranged in four groups whose size can vary. The first group specifies
the language group of the publisher (0,1 = English speaking coun-
tries, 2 = French speaking, 3 = German speaking, etc.). The second
group (2-7 digits) identifies the publisher (e.g., Oxford University
Press is 19) and the third group (1-6 digits) identifies the particu-
lar title. The last digit is a checksum. If the ISBN is expressed as
d1d2 .. .d10 then

9
dig = [s/11] %11 — s, where s= Z(ll —1)d,

=1
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([z] denotes the smallest integer greater than or equal to z). A value
dio = 10 is written as “X”. This book has the ISBN 0-89871-420-6:
89871 identifies STAM as the publisher and 420 is the book’s individ-
ual number. An International Standard Serial Number (ISSN) iden-
tifies a serial publication such as a journal, yearbook or institutional
report. An ISSN has eight digits. :

14. The date to quote for a book is the latest copyright date (excluding
copyright renewals)—ignore dates of reprinting. Always state the
edition number if it is not the first. "

-

15. Make sure that every reference is actually cited in the paper. Some
copy editors check this, as you may see from their pencilled marks on
the manuscript when you receive the proofs.

16. Most mathematics journals require the reference list to be ordered
alphabetically by author. Many science journals order by citation, so
that the nth paper to be cited is nth in the reference list.

17. A list of standard abbreviations for mathematics journals can be
found in Mathematical Reviews (see §14.3).

6.16. Specifics and Deprecated Practices

Capitalization

References to proper nouns should be capitalized: See Theorem 1.5, the
proof of Lemma 3.4 and the discussion in Section 6. References to common
nouns (generic objects) should not: Nezt we prove the major theorems of
the paper.

Dangling Theorem

The term dangling theorem [147] (or hanging theorem [121]) refers to a
construction such as the following one, where a theorem dangles or hangs
from the end of a sentence.

This result is proved in the following
Theorem 3.13. If f is a twice continuously differentiable func-
tion ...

Halmos argues that while the practice can be defended, some readers dislike
it, and it is not worth risking annoying them for the sake of avoiding the
extra word theorem.
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The following example does not strictly dangle, but is even more irri-
tating.

5.1. Accuracy of the Computed Solution. [t depends on
the machine precision and the conditioning of the problem.

Section headings stand alone and should not be taken as part of the text.
The obvious solution

5.1. Accuracy of the Computed Solution. The accuracy
of the computed solution depends on the machine precision and
the conditioning of the problem.

is inelegant in its repetition, but this could be avoided by rewriting the
sentence or the title.

Footnotes

Footnotes are used sparingly nowadays in mathematical writing, and some
journals do not allow them (see page 78 for an example of a footnote). It is
bad practice to use them to squeeze more into a sentence than it can happily
take. Their correct use is to add a note or comment that would deflect from
the main message of the sentence. Donald W. Marquardt, the author of
the 92nd most-cited paper in the Science Citation Index 1945-1988 [An
algorithm for least-squares estimation of nonlinear parameters. J. Soc.
Indust. Appl. Math., 11(2):431-441, 1963], has stated that a critical part
of the algorithm he proposed was described in a footnote and has sometimes
been overlooked by people who have programmed the algorithm [97].

Numbering Mathematical Objects

Generally, you should number only those equations that are referenced
within the text. This avoids the clutter of extraneous equation numbers
and focuses the reader’s attention on the important equations. Occasionally
it is worth numbering key equations that are not referenced but which
other authors might want to quote when citing your paper. Except in
very short papers it is best to number equations by section rather than
globally (equation (2.3) instead of equation (14)), for this makes referenced
equations easier to find. The same applies to the numbering of theorems
and other mathematical objects. Whether equation numbers appear on the
left or the right of the page depends on the journal.
Two possible numbering sequences are illustrated by
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Definition 1, Lemma 1, Theorem 1, Remark 1, Definition 2,
Lemma 2, ...
Definition 1, Lemma 2, Theorem 3, Remark 4, Lemma 3, ...

Opinions differ as to which is the best scheme. The last has the advantage
that it makes it easier to locate a particular numbered item, and the equa-
tion numbers themselves can even be included in the sequence for complete
uniformity. The disadvantage is that the scheme mixes structures of a dif-
ferent character, which makes it difficult to focus on one particular set of
structures (say, all the definitions); and on reading Remark 24 (say), the
reader may wonder how many previous remarks there have been. A com-
promise between the two schemes is to number “all lemmas, theorems and
corollaries in one sequence, and definitions, remarks and so on in another.
Some typesetting systems control the numbering of mathematical objects
automatically. IATEX does so, for example, and the numbering sequence for
definitions, lemmas, theorems, etc., can be specified by BTEX commands.

Plagiarism

Plagiarism is the act of publishing borrowed ideas or words as though they
are your own. It is a major academic sin. In writing, if you copy a sentence
or more you should either place it in quotes and acknowledge the source via
a citation, or give an explicit reference such as “As Smith observed ...." In
the case of a theorem statement it is acceptable to copy it word for word if
you cite the source, but before copying it you should see whether you can
improve the wording or make it fit better into your notation and style.

Regarding when to quote and when to paraphrase, van Leunen [283]
advises “Quote what is memorable or questionable, strange or witty. Para-
phrase the rest.” When you wish to paraphrase, if is best to put the source
aside, wait a reasonable period, and then rewrite what you want to say in
your own words.

If you rework what you yourself have previously published without citing
the source, thus passing it off as new, that is self-plagiarism, which is no
less a sin than plagiarism.

Plagiarism has led to the downfall of many a career, in academia and
elsewhere. Some notable cases are described in Mallon’s Stolen Words [192]
and LaFollette’s Stealing into Print {169]. The former includes the ironic
news, quoted from the New York Times of June 6, 1980, that

Stanford University said today it had learned that its teaching
assistant’s handbook section on plagiarism had been plagiarized
by the University of Oregon. ... Oregon officials apologized and
said they would revise their guidebook.
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Fraud is another serious malpractice, though apparently and under-
standably rare in mathematical research. Numerous cases of scientific fraud
through history are catalogued in Betrayers of the Truth by Broad and
Wade [39], while allegations that the psychologist Cyril Burt acted fraud-
ulently are examined carefully in [189]. -

The Invalid Theorem

Avoid the mistake of calling a theorem into question through sentences such
as the following: ®

“

The theorem holds for any continuously differentiable function f.
Unfortunately, the theorem is invalid because S is not path con-
nected.

A theorem holds and is valid, by definition. A theorem might be applicable
to any continuously differentiable function or its invocation may be invalid
because S is not path connected.

99

«This Paper Proves ...

In the abstract and introduction it is tempting to use wording such as
“this paper proves’ or “Section 3 shows” in place of “we prove” or “we
show”. This usage grates on the ear of some readers, as it is logically
incorrect (though “Theorem 2 gives” cannot be criticized). The grating
can be avoided by rewriting, but care is required to avoid a succession of
sentences beginning “we”.
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GEOLOGICAL NOTES

A SCRUTINY OF THE ABSTRACT, I

KENNETH K. LANDES®
Ann Arbor, Michigan

ABSTRACT

A partial biography of the writer is given. The inadequate abstract is discussed. What should be
covered by an abstract is considered. The importance of the abstract is described. Dictionary definitions
of “abstract” are quoted. At the conclusion a revised abstract is presented.

For many years I have been annoyed by the
inadequate abstract. This became acute while I
was serving a term as editor of the Bulletin of
The American Association of Petroleum Geolo-
gists. In addition to returning manuscripts to au-
thors for rewriting of abstracts, I also took 30

minutes in which to lower my ire by writing, “A -

Scrutiny of the Abstract.”® This little squib has
had a fantastic distribution. If only one of my
scientific outpourings would do as well! Now the
editorial board of the Association has requested a
revision. This is it,

The inadequate abstract is illustrated at the
top of the page. The passive voice is positively
screaming at the reader! It is an outline, with
each item in the outline expanded into a sentence.
The reader is told what the paper is about, but
not what it contributes. Such abstracts are mere-
ly overgrown titles. They are produced by writers
who are either (1) beginners, (2) lazy, or (3)
have not written the paper yet.

To many writers the preparation of an abstract
is an unwanted chore required at the last minute
by an editor or insisted upon even before the
paper has been written by a deadline-bedeviled
program chairman. However, in terms of market
reached, the abstract is the most important part
of the paper. For every individual who reads or

listens to your entire paper, from 10 to 500 will
read the abstract.

If you are presenting a paper before a learned
society, the abstract alone may appear in a pre-
convention issue of the society journal as well as
in the convention, program; it may also be run by
trade journals. The abstract which accompanies a
published paper will most certainly reappear in
abstract journals in various languages, and per-
haps in company internal circulars as well. It is
much better to please than to antagonize this
great audience. Papers written for oral presenta-
tion should be completed prior to the deadline
for the abstract, so that the abstract can be pre-
pared from the written paper and not from raw
ideas gestating in the writer’s mind.

My dictionary describes an abstract as “a sum-
mary of a statement, document, speech, etc. . ..”
and that which concentrates in itself ihe es-
sential information of a paper or article. The
definition I prefer has been set in italics. May all
writers learn the art (it is not easy) of preparing
an abstract containing the essential information
in their compositions. With this goal in mind, I
append an abstract that should be an improve-
ment over the one appearing at the beginning of
this discussion.

ABSTRACT

The abstract is of utmost importance, for it is read by 10 to 500 times more people than hear or
read the entire article. It should not be a mere recital of the subjects covered. Expressions such as
“is discussed” and “is described” should never be included! The abstract should be a condensation and
concentration of the essential information in the paper,

*Revised from K. K. Landes’ “A Scrutiny of the
Abstract,” first published in the Bulletiz in 1951
(Bulletin, v. 35, no. 7, p. 1660). Manuscript re-
ceived, June 3, 1966; accepted, June 10, 1966.

Editor’s note: this abstract is published together
with The Royal Society’s “Guide for Preparation

and Publication of Abstracts” to give Bullelin authors
two viewpoints on the writing of abstracts,

* Professor of geology and mineralogy, University
of Michigan. Past editor of the Builetin.
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A scrutiny of the introduction

By JON F. CLAERBOUT
Stanford University
Stanford, California

Abstract

The introduction to a technical paper should be an in-
vitation to readers to invest their time reading it. Typically
this invitation has three parts (1) the review, (2) the claim,
and (3) the agenda. In the claim, the author should say why
the paper’s agenda is a worthwhile extension of its histori-
cal review. Personal pronouns should be used in the claim
and anywhere else the author expresses judgment, opinion,
or choice.

Introduction

Throughout the years, [ have participated in reading committees
of more than a hundred doctoral dissertations. Additionally,
reports of the Stanford Exploration Project contain about 60 papers
a year, and I am nominally in charge of making them presentable.
In all this activity, I have seen many poor abstracts and, in each
case, I have spared myself and the author much struggle by refer-
ring to the short paper A scrutiny of the abstract by Kenneth Lan-
des (AAPG Bulletin 1966, 1990), which was formerly distributed
by the SEG to all its aspiring authors. I rarely rewrite authors’ ab-
stracts any more—it’s usually enough to have them read Landes’
paper and rewrite it themselves. Landes’ own abstract is worth
quoting:
The abstract is of the utmost importance, for it is read by 10

to 100 times more people than hear or read the entire article. It

should not be a mere recital of subjects covered. Expressions such

as ‘‘is discussed’’ and ‘‘is described”” should never be included.

The abstract should be a condensation and concentration of the

essential information in the paper.

Introductions are not easy to write either. I am pleased to report
that in recent years, I have developed a formula for the introduc-
tion. With this paper expounding my formula, I am hoping to
reduce the need for one-on-one tutoring. You might be able to
produce a good introduction without following my formula but if
you have trouble producing one that pleases other people (and you
would like to finish it and get on with your life), then I suggest
you follow my formula.

First, I describe the three essential parts of an introduction and

GEOPHYSICS: THE LEADING EDGE OF EXPLORATION

then I offer some tips on overall organization. You will see why
introductions are so difficult to write once you understand how in-
troductions depend on that most embarrassing of all words, ‘‘[.”

The body of an introduction

My formula for an introduction is a sequence of three parts.
They are (1) the review, (2) the claim, and (3) the agenda.

The review. Pick out about 3-10 papers providing a back-
ground to your research and say something about each of them.
You could paraphrase a sentence or two from each abstract. The
review is not intended to be a historical review going back to New-
ton or Descartes. Try to find a few papers by your office mates,
your advisor, your predecessors, or other associates. That way
you might find somebody to give you helpful criticism!

Anyone can follow these instructions and write a review that
looks presentable. Where intelligence and skill are required is in
organizing the review so that it leads up to something, namely
your claim.

The claim. The most important part of the introduction is
buried in the middle. It is the claim. The claim is where you claim
your work is a worthwhile extension of the review you just wrote.
If someone says your writing is ‘‘unmotivated,’’ they aren’t in-
sulting your humanity, it just means they can’t find your claim.

In your claim, you should use the personal pronoun ‘‘I"” (or
“we’’ if you aren’t the sole author). The word ‘‘I"’ tells people
where common knowledge runs out and your ideas begin. If you
are writing a doctoral dissertation or an article for a refereed jour-
nal, then you should be making a new contribution to existing
knowledge. Your paper is not acceptable without an identifiable
claim.

Whether your ideas are solid as bedrock or speculative as
clouds, you need first-person pronouns. Where your ideas are
speculative, the pronouns signal a disclaimer. Where your ideas
are solid, the pronouns signal that you may be credited for them.
When your friends see your personal pronouns, they will know
just where they should offer their questions and suggestions.

You may use personal pronouns elsewhere in your paper, too.
Generally, you should use a personal pronoun whenever you are
expressing an opinion or exercising judgment. Another time to use
“I”’ is whenever there is a simple matter of choice. For example,
““To test the theory, I selected some data,” or ““To examine the
theory, I programmed the equations,”” or *‘To evaluate the hypoth-
esis, I made some synthetic seismograms.”’

Good scientific papers contain many types of statements rang-
ing from ancient axioms to common knowledge to speculations

(Serutiny continued on p. 41)
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(Scrutiny continued from p. 39)

and outright guesses. It is the writer’s fault if a casual reader can-
not distinguish these types of statements. Personal pronouns are
good words to keep the distinctions clear. Other good words for
this purpose are ‘‘should, could, would, might, may, can, is,
does...”” Use them all and pick the best for each purpose.

Some editors of scientific papers mechanically introduce the
personal pronoun ‘‘I’’ to avoid the passive voice. I don’t agree
with them. For example, such editors will change ‘‘Substitution
of equation (1) into equation (2) gives...”’ into ‘‘Substituting equa-
tion (1) into equation (2), I find...”” The first wording states a
simple fact but the second wording hints that someone else might
get a different result.

The agenda. An agenda is found at the end of many introduc-
tions. It summarizes what you will show the reader as your paper
progresses. Your agenda will be dull if it is merely a recital of the
topics you will cover. Instead, it should tell how your paper works
to fulfill your claim. In this way, your agenda should clarify your
claim.

The agenda is not as important as the review and the claim.
Keep it short.

Occasionally, you will be fortunate enough to be writing about
something in which some of your conclusions can be made in
simple statements. If so, state them early, right after your agen-
da. You aren’t trying to write a mystery! Many more people will
begin reading your paper than will finish reading it. Motivate them
to finish! Unfortunately, many technical papers do not lend them-
selves to early conclusions.

After the introduction

Of course, you want people to read beyond your introduction,
too. So think carefully about the order of your material and how
you say things. (Notice this tiny paragraph is a small abstract of
what follows.)

Order of material. You could write your paper so that each
part builds on earlier parts. Like the axiomatic approach to
geometry, you could refuse to refer to things not yet proven. But,
rather than write your paper that way, it is wiser to maximize your
readership. Since many more people will begin your paper than
will plow through ail the way to the end, try to state results before
you prove them. Put off complicated derivations and digressions
until the end. Complicated mathematical derivations, especially if
marginal to your main thesis, should be relegated to appendices.

What is central and what is peripheral? In your paper, you
might want to include digressions, possible applications, etc.
That's nice. But be sure to include language that labels them as
peripheral. If you don’t, you may find people (and not just critics
and enemies) missing your main point.

Conclusion

This short article is not a typical technical paper, but you might
like to look back at the introduction to see if I follow my own
advice. lE
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Simple confidence intervals for lognormal means and their
differences with environmental applications
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SUMMARY

The lognormal distribution has frequently been applied to approximate environmental data, with inference focusing
on arithmetic means. Confidence interval estimation involving lognormal means in small to moderate sample sizes
has received much attention over the years without a simple procedure in sight. We therefore propose a closed-form
procedure for constructing confidence intervals for a lognormal mean and a difference between two lognormal
means. The advantage of our procedure is that it only requires confidence limits for a normal mean and variance.
The results of a numerical study show that our method performs as well as the generalized confidence interval (GCI)
approach, which relies completely on computer simulation. Two real datasets are used to illustrate the methodology.
Copyright © 2008 John Wiley & Sons, Ltd.

KEY WORDS: generalized confidence interval; log-normal; coverage; bootstrap

1. INTRODUCTION

It has become a tradition to fit the lognormal distribution to empirical data in environmental sciences
(e.g., El-Shaarawi and Viveros, 1997; El-Shaarawi and Lin, 2007), due largely to the multiplicative
central limit theorem (Limpert ez al., 2001) in the sense that multiplication of a large number of random
variables will result in a composite variable which can be approximated by the lognormal distribution.

A simple approach to analyzing lognormal data would be to log-transfer the data prior to employing
standard statistical methods. The resultant inference would then be in terms of the median, which is less
than the mean, and thus may provide substantial underestimates if the mean is the parameter of interest.

Inference in terms of lognormal means has received widespread attention in the literature, with two
volumes devoted to the topic (Aitchison and Brown, 1957; Crow and Shimizu, 1988). Statistical methods
for inference involving lognormal means have also appeared frequently in this journal, ranging from
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computationally intensive methods such as the Gibbs sampler and bootstraps (Wild et al., 1996) to a
t-distribution-based method (El-Shaarawi and Lin, 2007). It seems evident that the results for single
lognormal means are not entirely satisfactory. Furthermore, there has not been much discussion on
methods of comparing two lognormal means.

The purpose of this paper is to present a closed-form confidence interval procedure for a single
lognormal mean and a difference between two lognormal means. We show that this closed-form proce-
dure, requiring only confidence limits for a normal mean and variance, performs at least as well as the
generalized confidence interval (GCI) approach which relies entirely on computer simulation.

The rest of the paper is structured as follows. Section 2 presents the new procedure, after summarizing
the GCI (Krishnamoorthy and Mathew, 2003) and the modified Cox method (Armstrong, 1992; El-
Shaarawi and Lin, 2007). In Section 3, we perform simulation studies to compare the performance of
our method with previous ones. Two real datasets in an environmental context are used to illustrate the
methods in Section 4. The paper closes with a discussion.

2. METHODS
Let Yy, Y2, ..., Y, be independent and identically distributed (iid) as lognormal with parameters x and
o2. This is to say that the log-transformed variables X; =InY;, Xo =InYs, ..., X;, =InY, are iid

normal, denoted here as N(u, 02). It is well known that the lognormal mean is M = E(Y) = exp(u +
o2 /2), estimated by

M= exp ()‘c+ s2/2)

where X and s? are the sample mean and variance obtained using the log-transformed observations. Note
that ¥ and s2 are independent of each other.

2.1. Confidence interval for a single lognormal mean

2.1.1. Existing methods. Land (1971) proposed an exact confidence interval by inverting the uniformly
most powerful unbiased test. The procedure is computationally tedious and requires extensive tables.
Thus, Land (1972) searched for simple approximate approaches and ended up with the one suggested by
DR Cox in a personal communication showing promising performance. This method uses the property
that X and s> are independent, with respective variances given by s>/n and s*/[2(n — 1)]. Thus, as n
becomes large, the 100(1 — «)% confidence limits for . + o /2 are given by

(& +52/2) £ 21022/ + 54121 - D)}

where z1_y/2 is the 1 — /2 quantile of the standard normal distribution. These limits can then be
exponentiated to obtain a confidence interval for exp(u + o%/2).

As pointed by Land (1972), this method is not entirely satisfactory, particularly in the case of small n
or large 0. To improve the performance in small samples, Armstrong (1992) and El-Shaarawi and Lin
(2007) suggested replacing z1_/2 with critical values from the #-distribution. This approach ignores
the fact that the sampling distribution for s2, which is distributed as chi-squared, is right-skewed.
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Recently, a computer simulation-based method termed GCI appeared to perform very well. Krish-
namoorthy and Mathew (2003) provide an algorithm as follows:

1. Obtain % and s? from log-transformed data.
2. Compute

T =ex <X—Z-S+S2>
P U/n—1 n  202/(n—1)

where Z and U? are random numbers generated independently from the standard normal and chi-
square distribution with n — 1 degrees of freedom, respectively.
. Repeat step 2 a large number () of times.
4. Sort the values of T. The m(a/2)™ and m(1 — «/2)™ values are the 100(1 — «)% confidence limits
for exp(u + a2 /2).

W

2.1.2. The proposed method. Before presenting our method for a single lognormal mean, we propose
a general approach to setting confidence limits for a sum of two parameters, 01 + 6;.
The conventional 100(1 — «)% two-sided limits are

01 + 6y — Z—a/2\/ var(91) + var(6)

and

01 + 6> + Zl—a/2\/ var(6)) + var(6>)

assuming 91 and 92 are independent of each other. Besides the application of the central limit theorem,
these limits are immediate results of assuming 9 (i=1,2)and Var(O ) are statistically independent of
each other. Except for a normal mean X, this is unlikely to hold in general.
Our idea is to exploit the dependence betweeAn 0; gnd var(6;) in confidence interval construction.
Specifically, we strive to estimate the variance of 91 + 6; in the vicinity of the limits (L, U) for 61 + 65.
By the duality between hypothesis testing and confidence interval construction, we recognize L as
the minimum and U as the maximum value of 0; + 6, such that

~ 2
[01 + 6, — (61 + 62)] 2
= = ~ Z],a/z (D
var(61) + var(62)

Thus, we should estimate the variances for 51 and 52 in the vicinity of min(f; 4 6,) for L and that of
max(6; + 6») for U.

Now suppose the confidence limits for 6; are readily obtained as (/;, u;), for i = 1, 2. Among the
plausible values provided by the two pairs of confidence limits (/1, #1) and (I, u2), the plausible mini-
mum isly + 1 Aand the plausible maximum is #1 + u5. This implies that to obtain L, we need to estimate
vaI(Q1) + var(Qz) under the condition 6; = /1 and 8, = [>. Similarly, to obtain U, we need to estimate
var(6) + var(6,) under the condition ; = u; and 6, = u;.
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Again by the duality between hypothesis testing and confidence interval construction, /; is min(6;)
satisfying

@i_li)z ~ 2

= ~ -
var(6;) 1=a/2

which results in the estimated variance \Ta\r(@,-) under the condition 6; = [; of

~ 2
. L
var;(6;) ~ @271)

U—a/2

Similarly, the estimated variance \721\1(5,-) under the condition 6; = u; is

(ui —6)°

2
U—a/2

var, (0;) ~

Substituting these variance estimates back into Equation (1) yields the confidence limits (L, U) for
01 + 6, as

L=0+0,- \/(51 — 1)+ (62— b)?

. ! ? @
U =0 +8 + /i — 002 + (uz — 622

These limits can now be applied in the current context, where ) = u and 6, = o2 /2, with re-
spective confidence intervals given by (I, u1) = (X — Z1—a/2V/ 52/, X + 21—gj27/s%/n) and (I, uz) =
(n—l)s2 (n—l)s2
2X%70{/2¢n71 ’ 2X§/2,n71
mean. Specifically, the limits (LL, UL) are given by

. Exponentiation of these limits yields a confidence interval for the lognormal

172

2 2 2 2 2
~ 21— S s n—1)s
LL = Mexp |— 1“/2+<—(2)> 3)
n 2 2Xi_gpn-1
and
5 s 5 ) 1/2
~ Z{_g/2S n—1)s s
UL=Mexp | [ -2 +<( > ) —) )
n 2Xot/2,n—1 2
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The Cox method can be obtained the same way by replacing the confidence interval for o2 /2 with

1 1 1 1
(Ir, up) = <52 lz —zl_a/z\/E] ,s2 3 + 21-a/2 2(11—1)1>

This is equivalent to treating the confidence interval of o as symmetric, indicating that for n < 8 a
95% confidence interval contains negative variance values. Replacing z1_4 /2> with the #-value will not
reduce the problem since the 7142 ,—1 is larger than that of a Normal distribution.

2.2. Confidence intervals for a difference between two lognormal means

Denoting a difference between two lognormal means as
A = exp(u1 + 07/2) — exp(ua + 03 /2)
the correspondent estimator is
A = exp(x; + 51/2) — exp(¥2 + 53/2)

with ()"cl,s%) and (X, s%) computed from the log-transformed observations from two independent
samples.

2.2.1. Generalized confidence interval approach. Krishnamoorthy and Mathew (2003) proposed the
following algorithm for obtaining a 100(1 — «)% confidence interval for A:

1. Compute (X1, s%) and (X, s%).
2. Compute

T, exp | x Zi il + S%
A= X — :
Ui/mi—1 Jn1 - 203 /(ny)

7 2
—exp | X2 — 2 2 + 22
Up//na—1 Jmy  2U3/(n2)

where Z; and Ui2 are random numbers generated independently from the standard normal and chi-
squared distribution with n; — 1 degrees of freedom from two independent samples (i = 1, 2);
. Repeat step 2 a large number of, say m, times.
4. Sort the T, values from step 3. The confidence limits are given by the m(cr/2)™ and m(1 — a/2)"
T values.

W

2.2.2. The proposed method. Our alternative is first to obtain confidence limits for M| = exp(u +
o% /2) and M, = exp(u2 + a% /2) using Equations (3) and (4), then to treat M as 1 and —M> as 6, in
the application of Equation (2). Note here that the limits for M, obtained using Equations (3) and (4),
must be multiplied by —1 and then switched positions before plugging into Equation (2).
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Straightforward algebra yields the 100(1 — «)% confidence interval (La, Ua) for the difference
between two lognormal means as

La=M; —My—/(My — LL? + (ULy — M)

and
Ua = My — My +\/(ULy — M1)2 + (Ms — LL5)>
where
172
2 2 ) 2\ 2
- 25 S . )2
LLi = Miexp |—| == 4 (Sz’—(';’ i )
ni 2X1 a2 mi—1
and
172
2 2 2 2 2
- 5 nS? )82 ,
UL; = My exp 1—a/2%i i ((”12 )s; _ Sl>
ni 22— 2
fori =1, 2.

3. SIMULATION

The confidence interval procedures described above are all asymptotic, meaning that their performance
such as average percentage and tail errors may depend on sample size and parameter values. Before
making any recommendations, we must evaluate their performance in finite sample sizes. For this
purpose, we use Monto Carlo simulations to compare the procedures for the 95% confidence interval
in terms of the percentage of times the interval contains the parameter value (coverage%). For a given
parameter value, we assess the performance of a procedure using the percentage of times the confidence
interval lies completely below or above the parameter value, termed left and right tail errors, respectively.
We used 10 000 replicates for each parameter combination, with 10 000 resamples for the GCI approach.
Using two standard errors of the nominal coverage rate as the criterion, we regarded coverage as within
(.95 +2,/0.95 x 0.05/10000), or (94.6-95.4) as adequate.

The second criterion is the balance between left and right tail errors (Jennings, 1987; Efron, 2003). We
used confidence width as the third criterion to distinguish procedures satisfying the first and second cri-
teria equally. Without loss of generality (Land, 1972, p. 147), we set u = —o2/2 in the simulation study.

For a single lognormal mean, we considered n = 10, 15, 25, and 50; 02 =0.1,0.5,1.0,1.5,and 2.0.
The performance of the modified Cox method, our proposed method, and the generalized confidence
interval are shown in Table 1. These results indicate that all three methods have acceptable coverage
percentages. As expected, the modified Cox method has unbalanced tail errors, while the other two
methods deliver reasonably balanced tail errors, with the proposed method showing consistently
narrower average width.
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Table 1. Comparative performance of three procedures for constructing a 95% two-sided confidence interval for
a lognormal mean with © = —o?/2 based on 10 000 runs
n=10 n=15 n =25 n =50
0% Method Cover (ML, MR) W Cover(ML,MR) W Cover(ML,MR) W Cover (ML,MR) W
0.1 MCox 95.23(3.31,1.46) 0.46 95.33(3.03,1.64) 0.36 94.90 (3.15,1.95) 0.27 95.08 (2.88,2.04) 0.18
Proposed 93.27 (3.87,2.86) 0.44 93.85(3.53,2.62) 0.34 94.13 (3.32,2.55) 0.26 94.55(2.96, 2.49) 0.18
GCI 95.10(2.20,2.70)  0.50 95.00(2.27,2.73) 0.37 94.88 (2.38,2.74) 0.27 94.92 (2.33,2.75) 0.19
0.5 MCox 94.88 (4.48,0.64) 129 94.93(4.29,0.78) 0.94 94.84 (3.87,1.29) 0.68 94.44 (3.97, 1.59) 0.46
Proposed 94.50 (3.24,2.26) 1.67 94.54(3.30,2.16) 1.05 94.79 (2.97,2.24) 0.71 94.54 (3.20,2.26) 0.47
GCI 94.84 (1.94,3.22) 190 94.76(2.33,291) 1.14 95.03(1.95,3.02) 0.75 94.57 (2.62,2.81) 0.48
1.0 MCox 93.99 (5.82,0.19) 2.53 94.44(5.17,0.39) 1.67 94.69 (4.70,0.61) 1.14 94.89 (3.89, 1.22) 0.73
Proposed 94.68 (3.39,1.93) 5.36 94.89(3.12,1.99) 2.28 95.02(3.18,1.80) 1.30 94.87 (2.80, 2.33) 0.77
GCI 94.49 (2.40,3.11) 6.12 94.42(2.23,3.35) 249 94.86(2.42,2.72) 1.37 94.77 (2.29,2.94) 0.79
1.5 MCox 93.76 (6.19,0.05) 4.84 94.24(5.58,0.18) 2.60 94.07 (5.40,0.53) 1.63 95.00 (4.05,0.95) 1.01
Proposed 95.37 (2.94, 1.69) 24.34 95.28 (2.89, 1.83) 4.48 94.74 (3.08,2.18) 2.06 94.99 (2.64,2.37) 1.11
GCI 94.89 (2.06,3.05) 27.52 95.18 (2.04,2.78) 491 94.53(2.34,3.13) 2.17 95.04 (2.11,2.85) 1.14
2.0 MCox 93.32 (6.65,0.03) 10.63 93.71 (6.16,0.13) 4.14 94.58 (5.02,0.40) 2.27 94.72 (4.50,0.78) 1.31
Proposed 95.15 (2.98, 1.87) 497.08 94.83 (3.09,2.08) 9.84 95.24 (2.73,2.03) 3.19 94.82(2.70,2.48) 1.49
GCI 94.71 (2.15,3.14) 899.26 94.38 (2.41,3.21) 10.80 95.07 (2.14,2.79) 3.38 94.64 (2.41,2.95) 1.53

MCox, the modified Cox method; GCI, generalized confidence interval; ML, the confidence interval lies completely below the
parameter; MR, the confidence interval lies completely above the parameter; W, average interval width.

For a difference between two lognormal means, we considered n; = 10, 15, 20, 25, and 50; ny =

10, 20, 25, and 50; 012 =0.1,0.5,1.0, 1.5, 2.0; a% = 0.5, 1.5, and 2.0. The performance of the gen-
eralized confidence interval method and the proposed method with modified Cox method for single
means for these 300 parameter combinations are presented using summary statistics (Table 2). These
results clearly show that the Modified Cox method provides severely unbalanced tails with coverage
percentage ranging from 93.17 to 98.11%. Our proposed method is very competitive with the computer
simulation-based GCI, both having coverage rates outside the range of 94.6 to 95.4% when n < 15.

Table 2. Comparative performance of three procedures for constructing a 95% two-sided confidence interval for
a difference between two lognormal means with i; = —02/2,i = 1, 2 (summary of 300 parameter combinations
with 10000 runs for each combination)

Method Mean Min 10th petl ~ 25thpetl  S50th petl ~ 75thpetl ~ 90th petl Max
MCox Cover  95.57 93.17 94.55 95.09 95.63 96.13 96.52 98.11
ML 1.86 0.04 0.25 0.66 1.50 2.85 3.98 6.19
MR 2.57 0.07 0.49 1.09 242 3.86 4.90 6.76
Width 2.36 0.49 1.05 1.46 2.11 2.96 3.90 8.25
Proposed  Cover  95.32 94.26 94.92 95.13 95.32 95.52 95.75 96.32
ML 2.28 1.74 1.97 2.12 227 242 2.59 3.17
MR 2.40 1.69 2.06 2.19 2.36 2.59 2.84 3.42
Width 4.11 0.49 1.13 1.73 292 532 9.54 29.67
GCI Cover 95.25 94.29 94.86 95.03 95.23 95.48 95.71 96.18
ML 2.40 1.76 2.04 2.18 2.35 2.59 2.83 3.40
MR 2.34 1.82 2.06 2.16 2.32 2.51 2.68 3.25
Width 4.47 0.51 1.18 1.83 3.07 591 10.81 33.10

MCox, the modified Cox method; GCI, generalized confidence interval; ML, the confidence interval lies completely below the
parameter; MR, the confidence interval lies completely above the parameter.
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4. ILLUSTRATIVE EXAMPLES

As an example of a simple lognormal mean, we consider air lead levels (n g/m3) of n = 15 sites at
the Alma American Labs, Fairplay, Colorado on 23 February 1989 (Krishnamoorthy ez al., 2006): 200,
120, 15,7, 8, 6, 48, 61, 380, 80, 29, 1000, 350, 1400, 110. The lognormal distribution was found to fit
the data well. Log-transformation of the data yields X = 4.333 and s = 1.739. Therefore, we have the
95% confidence limits for 6; = u given by [4.333 — 1.96 x 1.739/+/15, 4.333 + 1.96 x 1.739/+/15],
i.e., (3.452584,5.213141) and that for 6, = o2/2 given by:

1|(15—=1)x 1.739% (15—1) x 1.7392
2

)

X(2).975,14 X%4025,14

that is, (0.8108892, 3.762765). Substituting these limits into Equations (3) and (4) yields the 95% two-
sided confidence interval for exp(u + 02/2) as (112, 3873), comparable with the GCI of (122, 4280)
based on 100 000 simulations.

As an example for a difference between two lognormal means. We consider a dataset from the
Data and story Library (http://lib.stat.cmu.edu/DASL). In April-May 1993, an oil refinery near San
Francisco submitted n = 31 daily CO emission measurements from its stacks to the Bay Area Air
Quality Management District for establishing a baseline. It was of interest to see whether the refinery
had over-measured CO emission, as compared to nine measurements taken by the Management District
person between September 1990 to March 1993. The data are given as:

Refinery (n1 = 31): 45, 30, 38, 42, 63, 43, 102, 86, 99, 63, 58, 34, 37, 55, 58, 153, 75, 58, 36, 59,
43,102, 52, 30, 21, 40, 141, 85, 161, 86, 71.

District management (n, = 9): 12.5, 20, 4, 20, 25, 170, 15, 20, 15.

Recognizing the temporal dependence among the measurements, we nevertheless treat them as
independent for illustration purposes. The lognormal distribution fits both dataset well (Krishnamoorthy
and Mathew, 2003), with X1 = 4.074252, s% = 0.252081, X = 2.963333, and s% = 0.949618. Using
our approach, the estimated mean and 95% confidence interval of the refinery data are given by
66.70583 (55.57714, 81.69155) and that of the district Management data are given by 31.12906
(15.66019, 128.6178). Application of our procedure yields the difference and 95% confidence interval
of 35.58 (—62.55, 57.11). Again, comparable with those from the GCI (—79.15, 57.47) based on
100 000 simulations.

5. DISCUSSION

We have presented a simple approach to confidence interval estimation concerning lognormal means.
The resultant procedures for a single lognormal mean and a difference between two lognormal means
are in closed-form, requiring only methods found in introductory textbooks. The performance of
our procedure has been shown to do at least as well as the GCI approach, which relies on com-
puter simulation. Moreover, although exact in theory, even with the same dataset the latter approach
may result in different answers from different analysts or the same analyst performing analyses at
different times.

We note that the method we described here can be readily applied to lognormal regression mod-
els (Bradu and Mundlak, 1970; El-Shaarawi and Viveros, 1997; El-Shaarawi and Lin, 2007). Exten-
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sions and applications of this method in other contexts can be found elsewhere (Zou, 2007; Zou and
Donner, 2008).

We did not consider bootstrap methods for lognormal data, as it has been revealed that such methods
fail even for a normal variance (Schenker, 1985). It is then inevitable for bootstrap to fail for the
lognormal mean because it is a function of the normal mean and variance. We refer to Zhou and Dinh
(2005) for simulation results showing that bootstrap methods fail terribly in the case of lognormal data.
Interestingly, many papers have appeared by merely implementing a bootstrap method, as if it is the gold
standard. This practice is a result of overlooking the fact that bootstrap is also asymptotically reliable
and requires evaluation on a case-by-case basis (DiCiccio and Efron, 1996).
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1. Introduction

There exists a large literature on confidence interval estimation involving binomial proportions. For a single proportion,
there are several choices. The firstis given by adding to and subtracting from the maximum likelihood estimator the standard
normal quantile multiplied by its estimated standard error. This procedure is commonly referred to as the Wald method. The
second is the interval based on inverting the approximate normal test that uses the standard errors estimated at the lower
and upper limits. This procedure is commonly referred to as Wilson score method (Wilson, 1927). The score confidence
interval has now become very popular, especially after the expositions by Agresti and Coull (1998) and Newcombe (1998b).
With an attempt to ease classroom teaching, Agresti and Coull (1998) suggested an adjusted Wald method by adding two
successes and two failures and then using the Wald formula. Despite the terminology, the adjusted Wald method is actually
an approximation of the score method.

The superior performance of the Wilson method has been carried over to cases of a difference between two
proportions (Newcombe, 1998a) and a difference between two differences (Newcombe, 2001). It is interesting to note that
this seemingly ad hoc procedure has become more popular than the rigorous score interval for a difference between two
proportions (Mee, 1984; Miettinen and Nurminen, 1985; Gart and Nam, 1990), caused largely by the computation involved
in obtaining the latter.

Due to its important practical value, confidence interval construction for a linear function of binomial proportions has
received some attention recently (Price and Bonett, 2004; Tebbs and Roths, 2008). The purpose of this note is to extend the
argument of Zou and Donner (2008) to a linear function of parameters, and in particular to binomial proportions. Since our
main idea is to recover variance estimates from readily available confidence limits for single parameters, we refer to the
approach as the MOVER, the method of variance estimates recovery. As shown below, the MOVER will not only shed some
light to Newcombe (1998a) and Newcombe (2001) but also provide an alternative to Price and Bonett (2004) who proposed

* Corresponding address: Robarts Clinical Trials, Robarts Research Institute, P. 0. Box 5015, 100 Perth Drive, London, Ontario, Canada N6A 5K8. Tel.: +1
519 663 3400x34092; fax: +1 519 663 3807.
E-mail address: gzou@robarts.ca (G.Y. Zou).

0167-9473/$ - see front matter © 2008 Elsevier B.V. All rights reserved.
doi:10.1016/j.csda.2008.09.033
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a procedure for a linear function of proportions based on the adjusted Wald interval for single proportions (Agresti and Coull,
1998). We will show that the confidence interval for a linear function of binomial proportions based on the Wilson method
is narrower than that of Price and Bonett (2004). We will not consider the approach by Tebbs and Roths (2008) because of
its inherent drawbacks such as involved computation, restriction in parameter ranges, and undercoverage.

2. The MOVER and its application to linear functions of binomial proportions

__ Suppose we wish to construct an approximate 100(1—a)% two-sided confidence interval for 6, +6,, where the estimates
01 and 6, are assumed to be independent. By the central limit theorem, the lower limit (L) is given by

L=0,+06, —za/z\/var@) + var(6). (1)

Inspired by the score method for interval estimation (Bartlett, 1953; Gart and Nam, 1990), we can estimate the variance
needed for L at 6; + 0, = L. This has at least one disadvantage that it is in general an iterative procedure, which can be an
obstacle to wide application in practice as what happened to the score interval for a difference between two proportions.
Therefore, we proceed with estimating the variance in the neighborhood of L.

Now, suppose that the 100(1 — )% two-sided confidence intervals (I;, u;) for single parameters 6;,i = 1, 2 are available.
Note that there is no need to specify the approaches taken to obtain (I;, u;). Among all the plausible parameter values of 6,
provided by (I, u;) and that of 6, provided by (L, u;), I; + L is usually closer to L than 6; + 6,. As a result, for L, we can
estimate var(6;) at 6; = l; and var(6,) at 6, = I,.

Furthermore, we can recover the required variance estimates from éj(li, u;),i = 1, 2, as follows. By the central limit
theorem and letting z,, be the upper «/2 quantile of the standard Normal distribution, we have

i =6 — Zo 2/ var(6;),

which gives a variance estimate for 6; at 6; = [; as

van (@) = 6 — l,»)z/zi/z

U = 0 + 242/ Var (6y),

which gives a variance estimate at 6; = u; as

\fa\ru(a) = (1 —’9\1')2/22/2-

and

Note that the recovered variance estimates var (/9\,-) and var, (/9\1-) are different, except when the interval (I;, u;) is symmetric
about ;. Symmetric intervals are known to perform poorly in finite samples for most problems in practice. In fact, it was
stated (Efron and Tibshirani, 1993, p. 180) that symmetry is the most serious error in confidence interval construction. The
Wald interval for a binomial proportion is a perfect example. In contrast, the Wilson interval is asymmetric as a consequence
of estimating variances at the lower and upper limits separately.

Plugging the recovered variance estimates into Eq. (1) results in

L=0+06,— za/z\/var@) + var(6,)

= B0+ 02— 2 1 — 1222, + @ — /22,

=040 =@ — 1)+ @ — b

Analogous steps with the notion that u; + u; is in the vicinity of U yield the upper limit U as

U :/9\1 +/9\2 +\/(U1 —/9\1)2 + (U2 —52)2.

Rewriting 6; —6, as 8,4 (—6,) and noting that the confidence limits for —6, are given by (—u,, —I,), we obtain confidence
limits for 6; — 6, as

L=8— 8 — /@ — 1)? + (1 — 6,)?

and

U="0 —/9\24-\/(”1 — 02+ (0 — h)2.
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This confidence interval, apparently first presented by Howe (1974), has been applied by Newcombe (1998a) and
by Newcombe (2001) to binomial proportions. There has been no analytic justification for its general applicability until
recently (Zou and Donner, 2008).

Regarding 61 + 6, and 61 — 0, as ¢10; + c,6,, where ¢y and ¢, are constants, we can rewrite the intervals as

L= ci01 + cf — \/[6151 — min(cih, c1un) I + [60, — min(cala, caup) P2

and

U= C1§1 + C2’9\2 + \/[C1§1 — max(cq1ly, crup)]? + [Czlg\z — max(cly, cauz)1%.

For a 100(1 — «)% confidence interval for Z}g:] cit;, where g > 2, an application of mathematical induction results in

g
L= C,'Q,' — [Ciei — min(c,-li, Ciui)]z
1

—_

g g

-~ -~ 2

U= cb; Z [ci6; — max(cil;, ciup)]”
1 i=1

i=

Because L and U are derived using the recovered variance estimates, we can refer to the method as the MOVER, standing
for method of variance estimates recovery. A further extension of the MOVER to incorporate dependence between 6; and 6;
(i #j) has been applied to measures of additive interaction in epidemiology (Zou, 2008).

We can now apply the confidence interval in (2) to linear functions of binomial proportions. Since there are at least
three intervals for a single proportion, i.e., Wald, adjusted Wald (Agresti and Coull, 1998) and Wilson, we end up with three
procedures for linear functions of binomial proportions.

Specifically, let Y; (i = 1,2, ..., g) be independent binomial variates with parameters (n;, p;), and let p; = Y;/n; be
the sample estimates for p;. A linear function of binomial proportions may be defined as Z§:1 cipi, where the c; are known
constants. Using the equations in (2), the 100(1 — «)% Wald confidence interval can be obtained by settinga =D = Yi/n;,

li = Di — Zuj2/Pi(1 — D) /i, and u; = Pi + Za/2+/Pi(1 — Py /1.

The Wilson interval for Z‘,-g:] c;p; may be obtained by setting@ =i = Yi/n;

b = (B 220/ @) F Zaja [ IB1 = B) + 22,5/ () /) /(14 223/,

The adjusted Wald interval for 2,521 cip; (Price and Bonett, 2004) may be obtained by setting@ =pi=;+2/k)/(n; +
4/k) (where k is the number of nonzero elements in ¢;), l; = p; — Zy/2+/Pi(1 — Pi) /ni, and u; = p; 4z 24/Pi(1 — pi) /ni. Note
that the adjusted Wald method for a single proportion is an approximation of the Wilson score method for 95% interval,
see Agresti and Coull (1998) for its motivation and derivation. We also must point out that this method has the potential to
provide confidence limits that are out of parameter space.

It is fair to say that the superior performance of Newcombe (1998a) originates from that of the Wilson method for a single
proportion (Agresti and Coull, 1998; Newcombe, 1998b). On the same token, we can postulate that applying Wilson interval
for cases of more than two binomial proportions will be very competitive to that of Price and Bonett (2004).

To evaluate this claim, we conducted a numerical study to compare the performance of these two procedures in finite
samples for 90%, 95%, and 99% two-sided confidence intervals, in terms of mean coverage, minimum coverage, and mean
interval width as defined here.

For a 100(1 — «)% interval (L, U) for Z;g:l cip;, the coverage is defined by

n g g
n; .
Coverage = 100 Z e Z H ( f)p{‘(l — p)" I (L < Zcipi < U) ,

where I(.) is an indicator function which takes values of 1 or 0 as the event in the brackets is true or not.
The expected interval width is defined as

Width = i e Xg: ﬁ (;‘) pi'(1=p)" YU — D).

y1=0 yg=0 i=1 !

We conducted the evaluation by first randomly sampling 1000 sets of p;’s from the uniform (0,1) distribution, and then
applied the above two definitions to each set. We did not arbitrarily truncate the adjusted Wald confidence limits when they
fell out of the parameter space. With respect to each method, we obtained the mean coverage, minimum coverage, and the
mean interval width using these 1000 sets of values for coverage and width.
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Table 1

Performance of the method of variance estimates recovery in constructing two-sided confidence intervals (CI) for a linear function of binomial parameters,
Z; ¢;pi, using confidence limits for single proportions obtained by the adjusted Wald and Wilson methods. Entries in each row are based on 1000 sets
of p;’s randomly sampled from uniform (0,1), and each set evaluated by exact calculation.

Group sizes 90% CI 95% CI

ni/ny/ns Adjusted Wald Wilson Adjusted Wald Wilson
c=(1/3,1/3,1/3)

5/5/5 92.04 (80.18,0.32)* 90.58 (82.60, 0.31) 96.12 (91.24, 0.38) 94.99 (86.34, 0.36)
5/5/10 91.65 (83.59, 0.29) 90.45 (85.36, 0.29) 95.95 (88.12, 0.35) 95.07 (89.55, 0.33)
5/10/15 91.53 (84.60, 0.25) 90.69 (87.42, 0.25) 95.86 (92.93, 0.30) 95.26 (90.65, 0.29)
5/10/20 91.63 (86.89, 0.25) 90.80 (87.37,0.24) 95.88 (92.51, 0.29) 95.31(91.02, 0.28)
5/15/20 91.57 (84.34,0.23) 90.80 (84.39, 0.23) 95.83(90.95, 0.28) 95.30 (90.51, 0.27)
5/20/20 91.53 (83.99, 0.23) 90.72 (87.15, 0.22) 95.73 (84.97,0.27) 95.27 (91.50, 0.26)
c=(1,-1/2,-1/2)

5/5/5 92.29 (80.22, 0.67) 90.82 (85.45, 0.65) 96.19 (86.68, 0.79) 95.14 (89.23, 0.75)
5/5/10 91.97 (84.26, 0.64) 90.84 (84.63, 0.62) 95.91 (89.26, 0.77) 95.27 (89.48,0.72)
5/10/15 92.00 (82.28, 0.60) 91.06 (86.44, 0.58) 95.87 (86.43, 0.72) 95.31(91.04, 0.67)
5/10/20 92.00 (82.74, 0.60) 91.06 (85.77,0.57) 95.83(87.82,0.71) 95.33 (91.62, 0.66)
5/15/20 92.00 (82.28, 0.59) 91.06 (86.34, 0.56) 95.75 (88.50, 0.70) 95.27 (91.63, 0.65)
5/20/20 92.13(81.69, 0.58) 91.13(85.68, 0.55) 95.80 (86.75, 0.69) 95.27 (91.15, 0.64)
c=(-1,1/2,2)

5/5/5 92.08 (79.06, 1.25) 90.94 (86.88, 1.20) 95.91 (86.89, 1.49) 95.19 (89.05, 1.39)
5/5/10 91.52 (85.49, 1.00) 90.67 (86.58, 0.98) 95.81(91.28, 1.19) 95.24 (89.05, 1.15)
5/10/15 91.33(85.15, 0.88) 90.64 (87.14, 0.87) 95.66 (91.82, 1.05) 95.29 (88.53, 1.02)
5/10/20 91.35(85.32, 0.82) 90.72 (87.51,0.81) 95.71(92.89, 0.98) 95.32(90.85, 0.95)
5/15/20 91.29 (82.82,0.81) 90.65 (87.98, 0.80) 95.67 (92.39, 0.97) 95.23 (91.42, 0.94)
5/20/20 91.29 (85.58, 0.81) 90.65 (86.88, 0.80) 95.66 (90.11, 0.96) 95.30 (90.18, 0.93)
c=(1,1,-1)

5/5/5 92.04 (80.36, 0.95) 90.56 (81.21, 0.93) 96.19 (92.21, 1.13) 95.15 (86.22, 1.08)
5/5/10 91.74 (85.12, 0.88) 90.64 (85.70, 0.86) 95.96 (89.78, 1.04) 95.18 (89.86, 1.00)
5/10/15 91.49 (84.88, 0.76) 90.71 (87.33, 0.74) 95.78 (87.97, 0.90) 95.26 (90.45, 0.87)
5/10/20 91.49 (85.56, 0.74) 90.76 (86.80, 0.72) 95.80(92.41, 0.88) 95.29 (90.54, 0.84)
5/15/20 91.42 (85.05, 0.70) 90.69 (86.68, 0.69) 95.70(90.10, 0.84) 95.20 (91.24, 0.80)
5/20/20 91.59 (85.28, 0.68) 90.82 (87.43, 0.66) 95.82 (88.32,0.81) 95.26 (90.77, 0.78)

* Mean coverage % (minimum coverage %, mean confidence interval width) based on 1000 sets of proportion parameters randomly sampled from uniform
(0,1) distribution.

For linear functions of 3 binomial proportions, results in Table 1 show consistently that the intervals for linear functions
based on the Wilson score method have mean coverage closer to the nominal levels, with narrow average width. For group
sizes considered, the minimum coverage for the adjusted Wald can be as low as 79.06% for 90% nominal level, and 84.97% for
95% nominal level. For confidence interval based on the Wilson method, the minimum coverage can be as low as 81.21% for
90% nominal level, and 86.22% for 95% nominal level. Results from constructing confidence intervals for linear functions of
4 binomial proportions in Table 2 show again that the procedure based on Wilson score method performed better in terms
of mean coverage and interval width, as well as minimum coverage. For example, the minimum coverage for the adjusted
Wald can be as low as 77.16% for 90% nominal level, compared to that of 83.23% for Wilson score method. Similar trends
were observed with nominal level of 99% (results not shown). One possible explanation for our results is that the adjusted
Wald method was proposed to approximate the Wilson score method at 95% level, on the rationale that the middle point of
Wilson interval is a weighted average of p and 0.5, and that 1.962 ~ 4 (Agresti and Coull, 1998, p. 122).

3. Examples

In the light of the above numerical results, we now compare confidence intervals using two examples from Price and
Bonett (2004).

Example 1. This data set arose from a study in which rats are fed with different types of diets. The diets are controlled by
two factors, namely fiber and fat. Each rat is observed to determine if it has developed a tumor during the study period.
The outcome of the experiment is summarized in Table 3 (each group had 30 rats). It is of interest to construct confidence
intervals for the main effects of fiber and fat, as well as their interaction. Here we can obtain the 95% confidence intervals
using the MOVER for the linear functions of proportions. The results are shown in Table 3, which shows that the intervals
obtained using the Wilson method for single proportions are narrower than those using the adjusted Wald method for
single proportion. This is consistent with the results in our evaluation study. In fact, the Wilson method based intervals are
all contained in that based on the adjusted Wald method for single proportions in this moderate size study.

Example 2. This example arose from the Framingham heart study. As an alternative to conventional generalized linear
model with logistic link function, Price and Bonett (2004) approached the problem with a linear function of binomial
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Table 2
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Performance of the method of variance estimates recovery in constructing two-sided confidence intervals (CI) for a linear function of binomial parameters,
Z:L] ¢;pi, using confidence limits for single proportions obtained by the adjusted Wald and Wilson methods. Entries in each row are based on 1000 sets

of p;’s randomly sampled from uniform (0,1), and each set evaluated by exact calculation.

Group sizes

ny/ny/n3/ny

90% CI

95% Cl

Adjusted Wald

Wilson

Adjusted Wald

Wilson

c=(1/4,1/4,1/4,1/4)

5/5/5/5
5/5/10/10
5/5/15/15
5/5/15/20
5/10/15/20

c=(=1,1,-1,1)
5/5/5/5
5/5/10/10
5/5/15/15
5/5/15/20
5/10/15/20

c=(1/3,1/3,1/3,1)
5/5/5/5

5/5/10/10

5/5/15/15

5/5/15/20
5/10/15/20

c=(=3,-1,1,3)
5/5/5/5
5/5/10/10
5/5/15/15
5/5/15/20
5/10/15/20

91.27 (81.65, 0.28)
91.03 (87.49, 0.24)
91.01(87.61,0.23)
91.11(88.33,0.22)
90.84 (86.26, 0.20)

91.33 (85.72, 1.10)
91.03 (83.19, 0.96)
91.11(87.96,0.91)
91.08 (87.41, 0.89)
90.86 (87.58, 0.81)

91.33 (77.16, 0.63)
90.82 (86.51, 0.49)
90.64 (87.56, 0.44)
90.74 (88.44, 0.40)
90.48 (88.76, 0.39)

91.34 (83.03, 2.44
90.94 (83.95, 2.14
91.01 (82.16, 2.01
90.92 (83.77, 1.96
91.08 (83.32, 1.91)

o=

90.24 (83.23,0.27)
90.33 (85.65, 0.24)
90.53 (86.71, 0.22)
90.67 (87.18, 0.22)
90.57 (87.66, 0.20)

90.29 (82.48, 1.08)
90.37 (85.96, 0.95)
90.67 (86.77, 0.89)
90.71 (87.05, 0.88)
90.51 (87.68, 0.80)

90.87 (86.18, 0.61)
90.52 (87.43, 0.49)
90.29 (87.33, 0.43)
90.25 (86.91, 0.40)
90.29 (87.89, 0.38)

90.89 (83.44, 2.38
90.80 (87.55, 2.10

)
)
90.80 (87.95, 1.96)
)
)

o e o

90.77 (88.24, 1.90
91.02 (88.56, 1.86

95.63 (92.16, 0.33)
95.48 (93.03, 0.29)
95.45 (92.91, 0.27)
95.50 (93.10, 0.26)
95.33 (90.52, 0.24)

95.70 (92.91, 1.31)
95.49 (92.68, 1.15)
95.50 (92.51, 1.08)
95.50 (92.45, 1.06)
95.37 (91.86, 0.97)

95.29 (84.48, 0.75)
95.23 (90.73, 0.59)
95.22 (93.25, 0.52)
95.34(93.10, 0.48)
95.12 (93.65, 0.46)

95.49 (90.28, 2.90)
95.23(88.85, 2.55)
95.24 (86.35, 2.40)
95.13 (86.91, 2.33)

95.15 (85.88, 2.27)

s e e =

94.86 (88.56, 0.31)
95.07 (90.18, 0.28)
95.13 (91.33, 0.26)
95.25 (91.75, 0.26)
95.27 (91.64, 0.23)

95.09 (88.82, 1.25)
95.09 (90.56, 1.11)
95.24 (91.47, 1.04)
95.26 (91.74, 1.02)
95.17 (91.40, 0.94)

95.15 (89.89, 0.70)
95.16 (91.24, 0.57)
95.10 (91.60, 0.51)
95.07 (90.91, 0.47)
95.15 (92.17, 0.45)

95.20 (89.81, 2.76
95.32 (91.50, 2.44

)
)
95.22 (90.66, 2.29)
)
)

P

95.19 (91.50, 2.22
95.36 (91.06, 2.16

* Mean coverage % (minimum coverage %, mean confidence interval width) based on 1000 sets of proportion parameters randomly sampled from uniform

(0,1) distribution.

Table 3
Confidence intervals for effects of factors in the diet-tumor study.
Fiber Fat Di Gi
Fiber x Fat Fiber Fat
Yes High 20/30 1 1/2 1/2
Low 14/30 -1 1/2 —1/2
No High 27/30 1 —1/2 1/2
Low 19/30 -1 —1/2 —1/2
Interval for ) ¢;p;:
Adj Wald —0.3806, 0.2516 —0.3516, 0.0355 0.0677, 0.3839
Wilson —0.3790, 0.2386 —0.3459, 0.0375 0.0691, 0.3773
Table 4

Framingham heart study.

Systolic BP Number of subjects Number with heart disease
115 156 3
121 252 17
131 284 12
141 271 16
151 139 12
161 85 8
176 99 16
190 43 8

proportions. Specifically, if the population proportion of heart disease is considered a linear function of systolic blood
pressure, the slope is ) ¢;p;, which is a linear function of the proportions p; of heart disease of systolic blood pressure
groups, where ¢; = (x; — Y_x;/g)/ >_(x; — >_x;/g)? and x; is the value of the quantitative factor in group i. Using the data
in Table 4, we obtained the 95% confidence interval for the population slope using the adjusted Wald method as 0.0010 to
0.0032, comparable to that of using the Wilson method as 0.0012 to 0.0034 in such a large study.
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4. Concluding remarks

The confidence interval for a general linear function of binomial proportions introduced here is a simple application of
a more general idea presented by Zou and Donner (2008). The basic idea is to recover variance estimates needed for linear
functions of proportions from the confidence limits for single proportions. Since the Wilson interval procedure has been
strongly recommended for single proportions (Agresti and Coull, 1998; Newcombe, 1998b; Santner, 1998), it is thus natural
to extend it to linear functions of binomial proportions. By use of the MOVER, we have provided a very competitive procedure
to that of Price and Bonett (2004), whose procedure can be seen as an application of the MOVER based on the adjusted Wald
method for single proportions. The MOVER has also provided an analytic justification for Newcombe (1998a, 2001).

It should also be noted that the derivation of the MOVER relies only on the validity of confidence limits for single
parameters such that variance estimates can be recovered by normal distributions. The direct implication is that one can
apply the MOVER to linear functions of other discrete distribution parameters, e.g., Poisson rates (Stamey and Hamilton,
2006; Tebbs and Roths, 2008), and linear functions of normal mean and variance, e.g., lognormal means (Zou and Donner,
2008).
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Giving an Effective Presentation

David Giltinan (ENAR), Member of the Local Organizing Committee of IBC2000

Introduction

Several articles in the statistical litera-
ture contain tips on giving an effective
statistical presentation.An excellent re-
cent example, by Becker and Keller-
McNulty, appears in The American Statis-
tician (1996, pages 112-115). So why did
| agree to attempt another essay on this
topic, for speakers intending to present
at IBC2000? In part, because my experi-
ence at recent statistical meetings
strongly suggests that most of us could
benefit from a reminder of the common
pitfalls that can mar a presentation.
While | have been lucky to attend some
excellent talks at recent meetings, these
have not been in the majority. None of
the following advice is novel, but | hope
that a short review of common presen-
tation mistakes may be helpful. If there
is one essential message, it can be

summarized in this exhortation to speak-
ers — “always be considerate of your
audience”.

To avoid a monotonous litany of “do’s
and don’ts”, | have tried to inject some
humor into the following remarks. This
does not mean that | think the generally
low prevailing standard of statistical pre-
sentations is not a serious matter. On
the contrary, | believe effective presen-
tation is one of the most important chal-
lenges facing any statistician. Until clear
communication becomes a top priority,
we cannot hope to achieve the degree
of influence, or make the type of effec-
tive contribution, that society needs
from our profession.

Today’s airport bookshop is typically
stocked with a plethora of titles along

the lines of “Jesse Ventura’s eight secrets
for charismatic communication” or “Darth
Vader’s seven steps to effective leadership”.
It appears that the modern business pro-
fessional expects advice to be packaged
in snappy bite-sized nuggets, suitable for
digestion on a plane. Accordingly, this
essay follows the organizational struc-
ture: “Ten tips for a truly dreadful presen-
tation”. Those who aspire to the status
of truly dreadful presenter (abbreviated
as TDP from here on) should try to
implement as many of these tips as pos-
sible. Speakers interested in improving
the quality of their presentations, on the
other hand, would be better served by
rigorous avoidance of the types of mis-
behavior described in this essay.

| have grouped these into categories, only
one of which is specific to statistical pre-
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sentations. For concreteness, illustra-
tions below assume use of overhead
transparencies; however, most points
apply equally to other types of visual aids.

Ten tips for a truly
dreadful presentation

Sensory deprivation

1. Small is beautiful

A key component of this technique is
information overload. Here, the defin-
ing characteristic is to cram as many
words/numbers/symbols onto each
overhead as possible.Audience members
will be delighted by the wealth of detail
and the resulting chance to practice their
speed-reading skills. Handwritten
overheads should aspire to a cramped,
wobbly, style that evokes the drama of
an airplane flying through extreme tur-
bulence. This effect is harder to achieve
using presentation software, but much
can be accomplished by creative use of
novel font styles and tiny font sizes.

2. Confusion through color

For handwritten overheads, the optimal
choice of pen color is clearly yellow, as
it can generally be relied on to yield text
which is not just unreadable, but also
virtually invisible. Other color options
may achieve a similar effect, though some
experimentation may be needed to find
the best combination (light and pastel
shades hold the most promise). If forced
to use dark-colored pens when prepar-
ing overheads, the experienced TDP will
know to choose non-waterproof pens,
sometimes known as“smudgies”.The re-
sulting combination of densely written
material, ambient humidity and/or per-
spiration during presentation virtually
guarantees enhanced illegibility through
smudging. Initially, this option might seem
to be available only for handwritten
overheads. However, trial and error
should reveal the potential of one’s soft-
ware package to generate color combi-
nations for which distinguishing text
from background is an impossibility. No
self-respecting TDP will leave this poten-
tial unrealized.

3.The human shield

Occasionally, one may be provided with
clear, legible presentation aids, prepared
by someone else.Without some neutral-
izing tactic, this carries a genuine risk of

conveying information clearly to the au-
dience.A simple countermeasure in this
situation is the “human shield” approach,
wherein the presenter blocks all visibil-
ity by standing directly in front of the
projector while speaking. Static imple-
mentation of this tactic can be challeng-
ing, as it may be hard to ignore the pro-
gressively louder bleats of protest from
the audience. A preferred alternative is
thus the so-called “random Wimbledon”
variation, in which the speaker darts ran-
domly from one blocking position to
another. This has the added benefit of
keeping audience members alert, while
giving a good calisthenic workout to
their neck muscles.

Audience alienation

4. Cultural insensitivity

Opening with a sexist joke can usually
be relied on to alienate most of the au-
dience. An alternative tactic is the con-
sistent use of gendered language to per-
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petuate some demeaning stereotype of
women’s roles and abilities; for further
discussion, see the 1997 article by Ham-
mer (The American Statistician, pages 13-
18).“Humor™ that reinforces some other
negative cultural stereotype or ethnic
prejudice may be effective in offending
remaining audience members.

5.Avoid eye contact

Making eye contact with individual audi-
ence members is discouraged for sev-
eral reasons. It could be taken as indi-
cating a genuine desire to communicate.
Worse, it could provide a real-time check
on audience reaction to the presenta-
tion, which, if acted upon, could slow
progress through the remaining
overheads. Finally, it is particularly criti-
cal to avoid eye contact with the ses-
sion chair,who may be actively trying to
put a premature end to your presenta-
tion.

Continued on p. 14
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Giving an Effective Presentation

Continued from p. 8

6.The illiterate audience

A tactic which never fails to amuse is to
present certain overheads in a manner
which conveys the obvious belief that
members of the audience can't read.Typi-
cally, this calls for the speaker to read
aloud each and every word of text
shown overhead, at an excruciatingly
slow pace, adopting the tone of a par-
ticularly conscientious kindergarten
teacher. Clearly, the audience irritation
potential of this tactic is quite wasted if
it is deployed simultaneously with the
human shield technique described above.
Judicious alternation of the two meth-
ods, on the other hand, may have the
potential for a superadditive irritant ef-
fect.

Presentation style

7. Keep them on their toes

« Give no context, background, or moti-
vation for the problem you discuss.You
don’t want to deprive your audience
of the fun of trying to puzzle it out.

« Similarly, provide no clues about the
relative importance of different parts
of your talk. Alert listeners should be
able to distinguish the important from
the trivial without your help.

« \Waste no time on ‘signposting’ devices
such as a presentation outline, or sub-
division of your talk into sections.
They’ll know you have finished when
you sit down.

» Adopt a variable pacing strategy, alter-
nating between vastly accelerated and
excruciatingly slow delivery. Devote
least time to the overheads with the
highest density of content.

8. Rehearsal is for amateurs

Conscientious amateurs, worried about
such petty trivia as time restrictions,
abstract notions of “fairness” towards
the session chair and other speakers,and
consideration for the audience, may feel
impelled to practice their presentations
several times beforehand. Some fanatics

have even been known to seek input
from colleagues on issues such as em-
phasis, organization, clarity, length, poten-
tial “early stopping points”, etc.This type
of weakness is for lesser mortals — re-
member, you are a professional. Noth-
ing as mundane as rehearsal should be
allowed to interfere with the delightful
spontaneity which is the hallmark of your
oratory. As for time constraints, these
are imposed with other, less experienced,
speakers in mind. The session chair
should understand that they do not ap-
ply to you. If not, simply cease to ac-
knowledge the chair’s existence.

Statistical specialties

9.The power of notation

Although most audiences are familiar
with the conventional deployment of
Greek symbols in statistics, the experi-
enced TDP still has no difficulty in har-
nessing the full power of notation to
bewilder and confuse. This is possible,
even when sticking to notational con-
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ventions which are technically legitimate.
Strategies sure to amuse and challenge
one’s audience include

« Refusal to be bound by conventions of
“standard” usage. General recognition
of a particular choice of symbols as
conventional does not make alterna-
tive choices invalid. There’s nothing il-
legal about denoting the mean by s and
the standard deviation by L.

* Giving equal time to the lesser-known
Greek letters. Consider using your talk
as a vehicle for pursuing the rehabilita-
tion of ¢, &, w, Y, and v, as partial re-
dress for years of neglect.

* Including each and every detail of the
technical conditions needed for your
main convergence result, especially
those ugly higher-moment assumptions.
After all, the audience deserves noth-
ing less than the complete story.

« Subtly changing the symbol for a key
parameter half-way through your pre-
sentation.

10.Tables and graphs

When deciding how to summarize in-
formation for one’s presentation, it may
be helpful to remember these general
points about communicating information
intelligibly

« The more densely packed with infor-
mation, the harder a table is to assimi-
late, particularly if displayed for a maxi-
mum of 30 seconds.

« Mislabeling, or failure to label, rows and
columns of a tabular display can greatly
enhance audience confusion.

« Most simulations defy clear, concise
summarization. Their potential for au-
dience confusion thus greatly exceeds
that of real data examples.

« Graphs generally provide more audi-
ence-friendly summaries than tables.

« The potential superiority of graphical
displays to communicate information
is easily sabotaged by techniques such
as (i) mislabeling axes (ii) omitting axis
labels altogether (iii) using a micro-

scopic font for axis labels (iv) mislead-
ing choice of scale (v) confusing choice
of symbols, connecting lines, shading
patterns etc. This list is in no way ex-
haustive.

« Including lots of irrelevant detail makes
both tables and graphs harder to un-
derstand.

« Use of the “show ‘n whisk” presenta-
tion style to tease audience members
(for instance, by limiting display time
for information-laden overheads to 30
seconds) can greatly reduce their
chances of assimilating the information
displayed, whether summarized in tabu-
lar or graphical form.

Presenting effectively

Giving an effective presentation can in-
deed be difficult. However, if you can
resist the temptation to misbehave in the
various ways described in this essay, you
will be well on your way. Looking for-
ward to some truly excellent talks at
IBC2000!
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Reference sheet for natbib usage
(Describing version 8.1 from 2007,/10/30)

For a more detailed description of the natbib package, EXTEX the source file natbib.dtx.

Overview
The natbib package is a reimplementation of the IXTEX \cite command, to work with both author—year

and numerical citations. It is compatible with the standard bibliographic style files, such as plain.bst, as
well as with those for harvard, apalike, chicago, astron, authordate, and of course natbib.

Loading

Load with \usepackage [options]{natbib}. See list of options at the end.

Replacement bibliography styles

I provide three new .bst files to replace the standard IXTEX numerical ones:

plainnat.bst abbrvnat.bst unsrtnat.bst

Basic commands

The natbib package has two basic citation commands, \citet and \citep for textual and parenthetical
citations, respectively. There also exist the starred versions \citet* and \citep* that print the full author
list, and not just the abbreviated one. All of these may take one or two optional arguments to add some
text before and after the citation.

\citet{jon90} = Jones et al. (1990)

\citet[chap. 2]{jon90} = Jones et al. (1990, chap. 2)
\citep{jon90} = (Jones et al., 1990)
\citep[chap.~2]{jon90} = (Jones et al., 1990, chap. 2)
\citep[see] [J{jon90} = (see Jones et al., 1990)
\citep[see] [chap.~2]1{jon90} = (see Jonmes et al., 1990, chap. 2)
\citet*{jon90} = Jones, Baker, and Williams (1990)
\citep*{jon90} = (Jones, Baker, and Williams, 1990)

Multiple citations

Multiple citations may be made by including more than one citation key in the \cite command argument.

\citet{jon90, jam91} = Jones et al. (1990); James et al. (1991)
\citep{jon90, jam91} = (Jones et al., 1990; James et al. 1991)
\citep{jon90,jon91} = (Jones et al., 1990, 1991)
\citep{jon90a, jon90b} = (Jones et al., 1990a,b)
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Numerical mode

These examples are for author—year citation mode. In numerical mode, the results are different.

\citet{jon90} = Jones et al. [21]
\citet[chap.~2]{jon90} = Jones et al. [21, chap. 2]
\citep{jon90} = [21]
\citep[chap.~2]1{jon90} = [21, chap. 2]
\citepl[see] [1{jon90} = [see 21]

\citeplsee] [chap.~2]1{jon90} = [see 21, chap. 2]
\citep{jon90a, jon90b} = [21, 32]

Suppressed parentheses

As an alternative form of citation, \citealt is the same as \citet but without parentheses. Similarly,
\citealp is \citep without parentheses.

The \citenum command prints the citation number, without parentheses, even in author—year mode, and
without raising it in superscript mode. This is intended to be able to refer to citation numbers without
superscripting them.

\citealt{jon90} = Jones et al. 1990
\citealt*{jon90} = Jones, Baker, and Williams 1990
\citealp{jon90} = Jomes et al., 1990
\citealp*{jon90} = Jones, Baker, and Williams, 1990
\citealp{jon90, jam91} = Jones et al., 1990; James et al., 1991
\citealp[pg.~32]1{jon90} = Jones et al., 1990, pg. 32
\citenum{jon90} = 11

\citetext{priv.\ comm.} = (priv. comm.)

The \citetext command allows arbitrary text to be placed in the current citation parentheses. This may
be used in combination with \citealp.

Partial citations

In author—year schemes, it is sometimes desirable to be able to refer to the authors without the year, or vice
versa. This is provided with the extra commands

\citeauthor{jon90} = Jones et al.

\citeauthor*{jon90} = Jones, Baker, and Williams
\citeyear{jon90} = 1990
\citeyearpar{jon90} = (1990)

Forcing upper cased names

If the first author’s name contains a von part, such as “della Robbia”, then \citet{dRob98} produces “della
Robbia (1998)”, even at the beginning of a sentence. One can force the first letter to be in upper case with
the command \Citet instead. Other upper case commands also exist.
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when \citet{dRob98%} = della Robbia (1998)

then \Citet{dRob98} = Della Robbia (1998)
\Citep{dRob98} = (Della Robbia, 1998)
\Citealt{dRob98} = Della Robbia 1998

\Citealp{dRob98} = Della Robbia, 1998
\Citeauthor{dRob98} = Della Robbia

These commands also exist in starred versions for full author names.

Citation aliasing

Sometimes one wants to refer to a reference with a special designation, rather than by the authors, i.e. as
Paper I, Paper II. Such aliases can be defined and used, textual and/or parenthetical with:

\defcitealias{jon90}{Paper~I}
\citetalias{jon90} = Paper I
\citepalias{jon90} = (PaperI)

These citation commands function much like \citet and \citep: they may take multiple keys in the
argument, may contain notes, and are marked as hyperlinks.

Selecting citation style and punctuation

Use the command \setcitestyle with a list of comma-separated keywords (without spaces) as argument.

Citation mode: authoryear or numbers or super

Braces: round or square or open={char},close={char}
Between citations: semicolon or comma or citesep={char}
Between author and year: aysep={char}

Between years with common author: yysep={char}

Text before post-note: notesep={tezt}

Defaults are authoryear, round, comma, aysep={; 1}, yysep={,}, notesep={, }

Example 1, \setcitestyle{square,aysep={},yysep={;}} changes the author—year output of
\citep{jon90, jon91, jam92}

into [Jones et al. 1990; 1991, James et al. 1992].

Example 2, \setcitestyle{notesep={; },round,aysep={},yysep={;2}} changes the output of
\citep[and references therein]{jon90}

into (Jones et al. 1990; and references therein).

Other formatting options

Redefine \bibsection to the desired sectioning command for introducing the list of references. This is
normally \section* or \chapter*.

Define \bibpreamble to be any text that is to be printed after the heading but before the actual list of
references.

Define \bibfont to be a font declaration, e.g. \small to apply to the list of references.
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Define \citenumfont to be a font declaration or command like \itshape or \textit.

Redefine \bibnumfmt as a command with an argument to format the numbers in the list of references. The
default definition is [#1].

The indentation after the first line of each reference is given by \bibhang; change this with the \setlength
command.

The vertical spacing between references is set by \bibsep; change this with the \setlength command.

Automatic indexing of citations

If one wishes to have the citations entered in the . idx indexing file, it is only necessary to issue \citeindextrue
at any point in the document. All following \cite commands, of all variations, then insert the corresponding
entry to that file. With \citeindexfalse, these entries will no longer be made.

Use with chapterbib package

The natbib package is compatible with the chapterbib package which makes it possible to have several
bibliographies in one document.

The package makes use of the \include command, and each \included file has its own bibliography.
The order in which the chapterbib and natbib packages are loaded is unimportant.

The chapterbib package provides an option sectionbib that puts the bibliography in a \section* instead
of \chapterx*, something that makes sense if there is a bibliography in each chapter. This option will not
work when natbib is also loaded; instead, add the option to natbib.

Every \included file must contain its own \bibliography command where the bibliography is to appear.
The database files listed as arguments to this command can be different in each file, of course. However,
what is not so obvious, is that each file must also contain a \bibliographystyle command, with possibly
differing arguments.

As of version 8.0, the citation style, including mode (author—year or numerical) may also differ between
chapters. The \setcitestyle command can be issued at any point in the document, in particular in
different chapters.

Sorting and compressing citations

Do not use the cite package with natbib; rather use one of the options sort, compress, or sort&compress.

These also work with author—year citations, making multiple citations appear in their order in the reference
list.

Long author list on first citation

Use option longnamesfirst to have first citation automatically give the full list of authors.

Suppress this for certain citations with \shortcites{key-list}, given before the first citation.
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Local configuration

Any local recoding or definitions can be put in natbib.cfg which is read in after the main package file.

Options that can be added to \usepackage

round (default) for round parentheses;

square for square brackets;

curly for curly braces;

angle for angle brackets;

semicolon (default) to separate multiple citations with semi-colons;

colon the same as semicolon, an earlier mistake in terminology;

comma to use commas as separators;

authoryear (default) for author—year citations;

numbers for numerical citations;

super for superscripted numerical citations, as in Nature;

sort orders multiple citations into the sequence in which they appear in the list of references;
sort&compress as sort but in addition multiple numerical citations are compressed if possible (as 3-6, 15);

compress to compress without sorting, so compression only occurs when the given citations would produce
an ascending sequence of numbers;

longnamesfirst makes the first citation of any reference the equivalent of the starred variant (full author
list) and subsequent citations normal (abbreviated list);

sectionbib redefines \thebibliography to issue \section* instead of \chapterx*; valid only for classes
with a \chapter command; to be used with the chapterbib package;

nonamebreak keeps all the authors’ names in a citation on one line; causes overfull hboxes but helps with
some hyperref problems.



Words and expressions: Less is more

July 15, 2009

a-eonsiderable-amount-of — much

a-great-deal-of — much
abselutely-essential — essential
aceountedfor-bythefaet — because
adjacent—teo — near, next to
along—thetines—of — like
as-a-conseqience-of — because
as-a-matter-of fact — in fact
as—a-reswit—of — because

aste — about

at—present — now
based-on-the-faet-that — because
beeatse—of thefaetthat — because
by-means-of — by, with
eansalfactor — cause

eognizant — aware of
eompletelyfull — full
eontingent—tupon — depend on
despite-thefaet-that — although
due-to-thefact-that — because
during-the-eourse-of — during, while
elueidate — explain

employ — use

end-restlt — result

endeaver — try

fabrieate — make

faecilitate — help

firstof-alt — first

firstly — first

for-the-purpese-of — for
for the reasenthat — because

'Compiled from How to write and publish a scientific
paper (6th ed) by Day and Gastel, 2006

fromthepoint-ofview—-of — for
give-an-aeceetnt—of — describe

give-riseto — cause
has-been-engaged—inastudy — has studied
has-the-eapability of — can
has-the-potential to — can, may
have-the-appearanee—of — look like, resemble
inease — if

in-elose-preximity+te — close, near
intight-ef the-faetthat — because
in-enly-asmall number-of-eases — rarely
nerderto —to

inrelatien—+to — toward, to

inrespeet-teo — about

nterms—of — about

in-the-absenee—of — without
inthe-event—that — if

in-this-day-and-age — today

in—view—of thefaet-that — because
inasmuehas — for, as

initiate — begin, start
t-has-beenreported-bySmith — Smith reported
it-is-apparently-that — apparently, clearly
it—is-believed—that — I think

it-is-my understanding that — [ understand that
#-is-oftenthe-ease — often

o | L i thi Lot —
note that

t-may be-that — [ think
it-may—however,be-noted-that — but
jein-together — join

laeked-the-abilityte — could not

met-with — met

needlessto-say
new-initiative — initiative



no-latter than — by

of great-theoretical-and practieal — useful
enbehalfof — for

on-the-basis—of — by
on-the-groundsthat — because
owingto-thefaet-that — because
perform — do

pooled-together — pooled
referred-to—as — called

seaste — to
take-into-eonsideration — consider
the-reason—is-beeause — because
the-vast-majority—of — most, almost all
there-is-reasento-believe — I think
threugh-the-use-of — by, with
utilize — use

we-wish-to-thank — thank
whether-ernot — whether
with-a—view—te — to

with-regard—+te — concerning, about
with-respeetto — about
with-the-exeeption—of — except
with-the-result-that — so that
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