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1. Introduction and the statements of the results

A closed subset S of Cn is said to be a Carleman set if for f ∈ C(S,C) and strictly
positive real valued continuous function ϵ, there exists g ∈ O(Cn) such that

|f(z)− g(z)| < ϵ(z) ∀z ∈ S.

In 1927 Carleman showed that the set R allows Carleman approximation as a subset
of C [1]. In one variable such sets are well understood. A set S ⊂ C is Carleman set if
and only if it is polynomially convex, locally connected at infinity and IntS = ∅. In
higher dimensions: Totally real affince subspaces of Cn are Carleman sets (Hoischen [?
], Scheinberg [? ]). A necessary condition for Carleman approximation is polynomial

convexity. A compact subsetK is said to be polynomially convex ifK = K̂ := {z ∈ Cn :
|p(z)|≤ supK |p| ∀p ∈ C[z1, . . . , zn]}. A closed subset M ⊂ Cn is called polynomially
convex if there is a sequence {Km} of polynomially convex compact subsets such that
Km ⊂ Km+1, ∪Km =M . Magnusson and Wold [5] proved that a stratified totally real
set allows Carleman approximation if and only if it is polynomially convex and has
bounded E-hulls.

• A closed set M ⊂ Cn is said to have bounded E-hull if for any compact set

K ⊂ Cn the set K̂ ∪M \ (K ∪M) is bounded.
• A subset of C is said to be a stratified totally real set if there are closed sets
X0 ⊂ X0 ⊂ . . . ⊂ Xn = X such that Xj \Xj−1 is totally real.

For a given closed set, it is extremely difficult to show whether it is polynomially convex
or whether it has bounded E-hull. In this paper we consider two different setting for
proving Carleman approximation directly:

(i) Finite union of maximal totally real subspaces in Cn. Here we will assume
polynomial convexity.

(ii) Union of two Lipschitz graphs.

We now describe both of them in details.

1.1. The union of finitely many totally real subspaces. Let L1, ..., Lm be maxi-
mal totally real subspaces such that Lk∩Lj = {0} for all k ̸= j ∈ {1, ...,m} and ∪mj=1Lj
is polynomially convex. One of the aim of this article is to show that ∪mj=1Lj allows
Carleman approximation by entire functions in Cn. Clearly, ∪mj=1Lj is a stratified to-
tally real set. It is not clear and very difficult to determine if it has bounded E-hull.
Hence the question makes sense. For the union of two totally real maximal subspaces
the answer was given by Manne [7]. The union of two totally real subspaces L1 and
L2 of real dimension n which intersect only at the origin allows Carleman approxima-
tion when L1 ∪ L2 is polynomially convex [7]. The polynomial convexity of L1 ∪ L2 is
completely classified [1]. Let L1 and L2 be totally real subspaces of real dimension n
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such that they intersect only at the origin. First, take L1 = Rn. Let L2 have a basis
(w1, . . . , wn) = (u1 + iv1, . . . , un+ ivn), where ujs and vjs are real, and let (a1, . . . , an)
be a basis of Rn. So, the set (w1, . . . , wn, a1, . . . , an) is a basis of Cn as L1∩L2 = {0}. It
follows that (v1, . . . , vn) spans Rn. Find the real matrix A such that uj = Avj . Finally,

L2 = (A+ iI)Rn

Let M(A) = (A + iI)Rn. It follows that A + iI is invertible. For the general case,
find an invertible C-linear map that maps L1 to Rn. Two totally real subspaces of
dimension n that intersect only at the origin can be seen as Rn and M(A) under an
invertible C-linear map.

Weinstock [1] showed that Rn ∪M(A) is polynomially convex if, and only if, A does
not have an eigenvalue of the form it where t ∈ R and |t|> 1. Carleman approximation
has been studied on the union of two maximal totally real subspaces in [7] when they are
polynomially convex. We show a result for the union of multiple totally real subspaces:

Theorem 1.1. Let L1, ..., Lm ⊂ Cn be maximal totally real subspaces such that Lk ∩
Lj = {0} for all k ̸= j ∈ {0, ...,m} and ∪Lj is polynomially convex. Then ∪Lj allows
Carleman approximation by entire functions in Cn.

In general determining polynomial convexity of union of finitely many totally real
subspaces is very difficult. However, an open set of three tuples of totally real planes
whose union is polynomially convex is given by Gorai [3]. For union of finitely many
totally real planes there are some classes where polynomial convexity is shown [4].

To investigate this deeper for three maximal totally real subspaces: We will look
at the polynomial convexity of three totally real planes in C2 in Theorem 5.1 and
Theorem 5.2.

1.2. The union of two Lipschitz graphs. The other problem we study in this paper
is Carleman approximation for union of two Lipschitz graphs. Our initial interest was
to look at union of two totally real submanifolds but the polynomial convexity becomes
much tougher compared to the local polynomial convexity.

Let ψ : C1(Rn,Rn) follows the Lipschitz condition, ie, for all x1, x2 ∈ Rn

|ψ(x1)− ψ(x2)| < α|x1 − x2|

where α ∈ (0, 1). Let Γψ = {x + iψ(x) : x ∈ Rn}, the graph of ψ over the imaginary
coordinates.

We say a set L is a Lipschitz graph if L is related to Γψ under an invertible C-linear
map for some ψ as defined above. We can identify a totally real submanifold locally
with a Lipschitz graph. Lipschitz graphs have interesting properties:

• (Thm 1.6.9 [9]) Given K ⊂ Γψ compact, P(K) = C(K).
• (Section 5 [6]) Γψ allows Carleman approximation as a subset of Cn.

This article will study Carleman approximation on the union of two Lipschitz graphs
L1 and L2 which intersect only at the origin such that L1 ∪L2 is polynomially convex.
The article also discusses the polynomial convexity of L1 ∪ L2.

Let L1 and L2 be two Lipschitz graphs, that intersect only at the origin, given by

L1 = {x+ iψ1(x) : x ∈ Rn} (1.1)

L2 = (A+ iI){x+ iψ2(x) : x ∈ Rn}
= {(A+ iI)x+ i(A+ iI)ψ2(x) : x ∈ Rn} (1.2)
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Just like before, A is a real matrix with no eigenvalue which is purely imaginary and
has modulus greater than 1 and, let ψ1, ψ2 ∈ C1(Rn,Rn) which follow the Lipschitz
condition, ie, for all x1, x2 ∈ Rn

|ψj(x1)− ψj(x2)| < αj |x1 − x2|
where αj ∈ (0, 1) for j = 1, 2 and ψj(0) = 0.

Further, If Dψ1(0) = 0 and Dψ2(0) = 0, then the above represents two Lipschitz
graphs whose tangent spaces at the origin is polynomially convex.

• When is L1 ∪ L2 polynomially convex?
• Can we choose appropriate αj to ensure this?

Proposition 1.2. Let L1 and L2 be Lipschitz graphs on C2 such that they only intersect
at the origin and be given by

L1 = {x+ iψ1(x) : x ∈ Rn}

L2 = {(A+ iI)x+ i(A+ iI)ψ2(x) : x ∈ Rn}
where

• The matrix A is a real 2 × 2 matrix, that doesn’t have an eigenvalue which is
purely imaginary and has modulus greater than one. (ie, (A + iI)R2 ∪ R2 is
polynomially convex - [1])

• For j = 1, 2, the function ψj is Lipschitz with coefficient αj such that αj is less
than a constant that depends on A.

Then L1 ∪ L2 is polynomially convex.

Suppose we take L1 and L2 as in Proposition 1.2. Then by the Lipschitz condition,
setting one point to 0, we get ∥ψj(x)∥≤ αj∥x∥, for x ∈ Rn. So we have

L1 = {x+ iψ1(x) : x ∈ Rn}
⊂ {x+ iy ∈ Cn : ∥y∥≤ α1∥x∥}

Similarly,

L2 = {(A+ iI)(x+ iψ2(x)) : x ∈ Rn}
⊂ (A+ iI){x+ iy ∈ Cn : ∥y∥≤ α2∥x∥}

As (A+ iI)Rn∩Rn = {0}, we can choose α1 > 0 and α2 > 0 small enough such that

{x+ iy ∈ Cn : ∥y∥≤ α1∥x∥}
⋂

(A+ iI){x+ iy ∈ Cn : ∥y∥≤ α2∥x∥} = {0}(1.3)

Theorem 1.3. Let L1 and L2 be two Lipschitz graphs as in Proposition 1.2. Then
L1 ∪ L2 allows Carleman approximation by entire functions in Cn when α1 > 0 and
α2 > 0 are chosen such that

• α1 < 1/3 and α2 < 1/3
• α1 and α2 small enough such that (1.3) holds.
• α1 and α2 small enough such that Proposition 1.2 holds (for the polynomial
convexity of L1 ∪ L2)

2. Technical preliminaries

Theorem 2.1. Let L be a Lipschitz graph as follows

L = {x+ iψ(x) : x ∈ Rn}
where ψ : Rn → Rn is C1 with the Lipschitz condition ∥ψ(x)−ψ(y)∥≤ α∥x− y∥ for all
x, y ∈ R and 0 < α < 1. Then L allows Carleman approximation.
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This is proved in section 5 of [6]. The following proposition from this proof would
aid us

Proposition 2.2. Let L = {(x+iψ(x)) : x ∈ Rn}, where ψ ∈ C1(Rn,Rn). Let f ∈ C(L)
have compact support and ϵ > 0. Define

ht(z) :=

(
1

t
√
π

)n ∫
L

f(u) exp(−(z − u)2

t2
)du

Then ht ∈ O(Cn) and ht → f uniformly on L as t→ 0+.
Further, for δ > 0, define

Aδ := {z ∈ Cn : Re(z − w)2 ≥ δ ∀w ∈ supp(f)}
Then ht → 0 uniformly on Aδ.

This also hints the polynomial convexity of L. The polynomial convexity of L follows
Theorem 1.6.9 of [9]:

Theorem 2.3. Let K ⊂ L be compact. Then K is polynomially convex.

This can also be proved using Proposition 2.2 as follows:

Proof. To show polynomial convexity it is enough to check P(K) = C(K) (Theorem
1.2.10 [9]). Take f ∈ C(K), we can extend f to a compactly supported continuous
function on whole of Rn using Tietze’s Extension Theorem (Theorem 20.4 [8]). Then
we may apply Proposition 2.2 to show f is a limit of polynomials. □

A compact set K ⊂ L1 ∪ L2 can be seen as K1 ∪ K2 where Kj ⊂ Lj is compact.
As K1 and K2 are polynomially convexity, Kallin’s lemma could be used to check if
K = K1 ∪K2 is polynomially convex.

The following is the Kallin’s lemma (Theorem 1.6.19 [9]).

Lemma 2.4 (Kallin). Let K1 and K2 be two polynomially convex compact set in Cn.
Let P be a holomorphic polynomial on Cn such that Yj = ̂(P (Kj)) for j = 1, 2 meet at
at most at the origin, which is a boundary point for both the sets. If the set P−1(0) ∩
(K1 ∪K2) is polynomially convex, then K1 ∪K2 is polynomially convex.

The following version follows from the previous lemma

Lemma 2.5 (Kallin). Let K1 and K2 be two polynomially convex compact set in Cn.
Let P be a holomorphic polynomial on Cn such that:

• P−1(0) ∩ (K1 ∪K2) is polynomially convex
• P (K1) ⊂ {z ∈ C : Im(z) < 0} ∪ {0}
• P (K2) ⊂ {z ∈ C : Im(z) > 0} ∪ {0}

Then K1 ∪K2 is polynomially convex.

As Lj is a maximal totally real subspace, we can find a invertible C-linear map
ϕj such that ϕj(Lj) = Rn. Maximal totally real subspace are like Rn. Here is an
approximation result for compactly supported continuous functions on Rn.

Proposition 2.6. Let f ∈ C(Rn) have compact support and ϵ > 0. Define

ht(z) :=

(
1

t
√
π

)n ∫
Rn

f(u) exp(−(z − u)2

t2
)du

Then ht ∈ O(Cn) and ht → f uniformly on Rn as t→ 0+.
Further, for δ > 0, define

Aδ := {z ∈ Cn : Re(z − w)2 ≥ δ ∀w ∈ supp(f)}
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Then ht → 0 uniformly on Aδ.

Proof. For t > 0, the following holds(
1

t
√
π

)n ∫
Rn

exp(−u
2

t2
)du = 1

Take ϵ > 0. The function f is uniformly continuous as f is continuous and compactly
supported. Say, it is bounded by M > 0. Find δ > 0 such that d(f(x), f(y)) < ϵ/2 for
x, y ∈ Rn such that d(x, y) < δ.

|ht(x)− f(x)| =

(
1

t
√
π

)n ∣∣∣∣∫
Rn

f(u) exp(−(u− x)2

t2
)du−

∫
Rn

f(x) exp(−(u− x)2

t2
)du

∣∣∣∣
≤

(
1

t
√
π

)n ∫
Rn

|(f(u)− f(x))|exp(−(u− x)2

t2
)du

=

(
1

t
√
π

)n ∫
B(x,δo)

+

∫
B(x,δo)

c

|(f(u)− f(x))|exp(−(u− x)2

t2
)du

< ϵ/2 +

(
1

t
√
π

)n
exp(−δ

2
o

t2
)2M |supp(f)|

We can choose t > 0 small enough such that the second term is less than ϵ/2. This
shows ht → f uniformly as t→ 0+. Suppose u ∈ Aδ, then

|ht(u)| =

∣∣∣∣( 1

t
√
π

)n ∫
Rn

f(u) exp(−(z − u)2

t2
)du

∣∣∣∣
≤

(
1

t
√
π

)n ∫
supp(f)

M exp(− δ

t2
)du

≤
(

1

t
√
π

)n
exp(− δ

t2
)M |supp(f)|

We can choose t > 0 small enough such that the above is less than ϵ. This shows ht → 0
uniformly on Aδ.

□

Lemma 2.7. Let a, b, c ∈ R such that ab > c2. Then ax2+ by2+2cxy = 0 if, and only
if, (x, y) = (0, 0). Where x, y ∈ R.

Proof. The proof is an application of AM-GM inequality.
Assume a > 0. Then b > 0 and

√
ab > |c|.

• Case 1: x ̸= 0, y ̸= 0:
By AM-GM inequality on ax2 and by2, we get:

ax2 + by2 ≥ 2
√
ab|xy|> 2|c||xy|

• Case 2: either x = 0 or y = 0 but not both zero:
Say x = 0 and y > 0,

ax2 + by2 = by2 > 0 = 2|c||xy|

If we have ax2 + by2 + 2cxy = 0 then ax2 + by2 = 2|c||xy| which only happens when
(x, y) = (0, 0).

When a < 0, we replace a with −a, b with −b and c with −c and the proof follows.
□
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3. The union of finitely many totally real planes

Proposition 3.1. Let L1, ..., Lm be as in Theorem 1.1. Fix R > 1, and let

K = {z ∈ (∪Lj) : |z|≤ R} and Kj = {z ∈ Lj : 1 ≤ |z|≤ R}

Then there exists δ > 0 such that for any continuous function f ∈ C(∪Lj) with
compact support in ∪Kj and any ϵ > 0 there is an entire function h ∈ O(Cn) such that
|h− f |K< ϵ and |h(z)|< ϵ for |z|≤ δ.

Proof. For 0 ≤ j ≤ m, we will map Kj to a subset of Rn via ϕj to use Proposition 2.6
for approximating f on Kj . Before doing so, we will define some neighbourhoods of
Kj .

We can choose γ > 0 such that

d(ϕj(Kj), ϕj(Lk)) > 3γ

for 0 ≤ i, j ≤ m where i ̸= j as ϕj is a homeomorphism, Kj is compact, Lk is closed
and they are disjoint.

We define a neighbourhood of K

Ωo = {z ∈ Cn : d(z,K) < η}

where η > 0 is taken so small that

ϕj(Ωo) ⊂ {z ∈ Cn : d(z, ϕj(K)) < γ}

for 0 ≤ j ≤ m. It is possible to do so as ϕjs are continuous.

For 0 ≤ j ≤ m, define two open sets Ũj and Ṽj such that they cover ϕj(K).

Ũj = {z ∈ Cn : d (z, ϕj(K)) < γ and d (z, ϕj(Kj)) < 2γ}

Ṽj =

{
z ∈ Cn : d (z, ϕj(K)) < γ and d (z, ϕj(Kj)) >

3

2
γ

}
Observe that, ϕj(Kj) ⊂ Ũj , ϕj(Lk ∩K) ⊂ Ṽj for k ̸= j and 0 ∈ Ṽj .
In the lines of Proposition 2.6, define

h̃
(t)
j (z) :=

(
1

t
√
π

)n ∫
Rn

f ◦ ϕ−1
j (u)e−

(z−u)2

t2 du

Consider all limits as t → 0+. Now by Proposition 2.6 we have h̃
(t)
j ∈ O(Cn), and

h̃
(t)
j → f ◦ ϕ−1

j uniformly on ϕj(Lj) = Rn. Let W̃j = Ṽj ∩ Ũj , we will show W̃j ⊂ A γ2

4

with the notation of Proposition 2.6; this gives us h̃
(t)
j → 0 uniformly on W̃j . Let

z ∈ W̃j , u ∈ ϕj(Kj) ⊂ Rn, say z = (x1 + iy1, ..., xn + iyn) and u = (u1, ..., un) ∈ Rn.

Re(z − u)2 = Re
n∑
l=1

(zl − ul)
2

=
n∑
l=1

(xl − ul)
2 − y2l

=

n∑
l=1

(xl − ul)
2 −

n∑
l=1

y2l
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As z ∈ W̃j ⊂ Ṽj , d(z, u) >
3
2γ which gives

n∑
l=1

(xl − ul)
2 +

n∑
l=1

y2l >
9

4
γ2

By definition of Uj , d(z, ϕj(K)) < γ and d(z, ϕj(Kj)) < 2γ. By the choice of γ,
d(ϕj(Kj), ϕj(Lk)) > 3γ for k ̸= j; this implies d(z, ϕj(Lk)) > γ. That leaves us with
d(z, ϕj(Kj)) < γ.

n∑
l=1

y2l = d(z,Rn) = d(z, ϕj(Lj)) < d(z, ϕj(Kj)) < γ

Combining both the inequalities,
∑n

l=1(xl − ul)
2 > 5

4γ
2. Finally,

Re(z − u)2 =

n∑
l=1

(xl − ul)
2 −

n∑
l=1

y2l >
5

4
γ2 − γ2 =

γ2

4

This proves W̃j ⊂ Aγ2/4 and h̃
(t)
j → 0 uniformly (Proposition 2.6).

The set K is polynomially convex as it is a compact subset of ∪Lj . We can find a
pseudoconvex domain Ω such that K ⊂ Ω ⊂ Ωo by a polynomial polyhedra.

Let 0 ≤ j ≤ m. Set Uj = Ω ∩ Ũj , Vj = Ω ∩ Ṽj and Wj = Vj ∩ Uj = Ω ∩ ϕ−1
j (W̃j).

Then Uj ∪ Vj = Ω and h̃
(t)
j ◦ ϕj → 0 uniformly on Wj .

Consider the linear operator T : O(Uj)
⊕

O(Vj) → O(Wj) given by

T (α, β) = (α− β)|Wj

The Cousin I problem can be solved on the pseudoconvex set Ω with {Uj , Vj}; This
shows the surjectivity of T . Which allows us to use the open mapping theorem for

Fréchet spaces. As h̃
(t)
j ◦ϕj → 0 in O(Wj), we can solve for (α̃

(t)
j , β̃

(t)
j ) ∈ O(Uj)

⊕
O(Vj)

with

T (α̃
(t)
j , β̃

(t)
j ) = (α̃

(t)
j − β̃

(t)
j )|Wj= h̃

(t)
j ◦ ϕj

such that (α̃
(t)
j , β̃

(t)
j ) → 0, ie, α̃

(t)
j → 0 in O(Uj) and β̃

(t)
j → 0 in O(Vj).

We have seen that 0 ∈ Vj for all j. Take δ > 0 such that the closed ball B(0, δ) ⊂⊂ Vj

for all j. Define h
(t)
j ∈ O(Ω) with h

(t)
j = h̃

(t)
j ◦ ϕj − α̃

(t)
j on Uj and h

(t)
j = −β̃(t)j on Vj .

This is well defined due to the Cousin’s I problem.

Then h
(t)
j → 0 in O(Vj); this gives: h

(t)
j → 0 uniformly on Lk ∩K ⊂⊂ Vj for k ̸= j,

and h
(t)
j → 0 uniformly on B(0, δ) ⊂⊂ Vj for k ̸= j. Further, h

(t)
j → f uniformly on

compact subsets of Lj ∩ Vj as f = 0 on Lj −Kj .

The entire function h̃
(t)
j ◦ ϕ → f uniformly on Lj and α̃

(t)
j → 0 in O(Uj) which

implies h
(t)
j → f uniformly on compact subsets of Lj∩Uj . Combining with the previous

argument, h
(t)
j → f uniformly on Lj ∩K, h

(t)
j → 0 uniformly on Lk ∩K for k ̸= j, and

h
(t)
j → 0 uniformly on B(0, δ).

Define h(t) :=
∑n

j=1 h
(t)
j . Then h(t) → f uniformly on Lj ∩ K for all j. Hence,

h(t) → f uniformly on K and h(t) → 0 uniformly on B(0, δ).
□

Corollary 3.2. For Ro > 1, we can choose δ for which the following holds. If fo ∈
C(∪Lj) such that fo(z) = 0 for |z|≤ r for some r > 0. Then there exists ho ∈ O(Cn)
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such that |ho(z) − fo(z)|< ϵ for z ∈ (∪Lj) ∩ {z ∈ Cn : |z|≤ rRo}, and |ho(z)|< ϵ for
|z|≤ rδ.

Proof. We define

f(z) := fo(z/r)ρRo(|z|)

where ρRo : [0,+∞) → [0, 1] is a continuous function that is 1 on [0, Ro] and 0 on
[Ro + 1,+∞). Let R = Ro + 1; it follows that supp(fo) ⊂ ∪Kj with the notations of
Proposition 3.1. By the proposition, we have δ > 0 corresponding to R. Then there
is an entire function h ∈ O(Cn) such that |f − h|K< ϵ and |h|B(0,δ)< ϵ. Define entire
function ho(z) := h(rz). We have |f(z) − h(z)|< ϵ for z ∈ (∪Lj) ∩ {z ∈ Cn : |z|≤ R}.
Replacing f with fo, |fo(z/r)− ho(z/r)|< ϵ for z ∈ (∪Lj)∩ {z ∈ Cn : |z|≤ Ro}. Which
is |fo(z)−ho(z)|< ϵ for z ∈ (∪Lj)∩{z ∈ Cn : |z|≤ rRo} and |ho(z)|< ϵ for |z|≤ rδ. □

Proof of Theorem 1.1. :
We are given f ∈ C(∪Lj) and ϵ ∈ C(∪Lj ,R>0). Let R = Ro and δ as chosen in

Corollary 3.2. Take an increasing sequence of positive reals {rη} such that rη+2 = Rrη.
We define continuous functions ρη : [0,+∞) → [0, 1] such that ρη(t) is 0 for t ∈ [0, rη]
and 1 for t ∈ [rη+1,+∞).

Construct an exhaustion of ∪Lj by compacts

Kη = {z ∈ ∪Lj : |z|≤ rηR}

for which the corresponding closed ball as in Corollary 3.2 will be

Bη = B(0, rηδ) and ϵη = min
t∈Kη

ϵ(t)

As K0 is polynomially convex, we can approximation f on K0 by an entire function
h0 such that

|h0(z)− f(z)|< ϵ0/2 ∀z ∈ K0

We want an entire function h1 such that

|h1(z)− ρ0(|z|)(f(z)− h0(z))|< ϵ1/2
2 ∀z ∈ K1

and |h1|B1≤ ϵ1/2
2. Such a h1 can be found using Corollary 3.2 as fo(z) = ρ0(|z|)(f(z)−

h0(z)) satisfies the conditions with r = r0.
This process can be done inductively to get hη an entire functions such that

|hη(z)− ρη(|z|)(f(z)−
η−1∑
l=1

hl(z))|< ϵη/2
η+1 ∀z ∈ Kη

and |hη|Bη< ϵη/2
η+1.

Define h =
∑

η∈N hη. Given any compact set A ⊂ Cn, we can find η such that

A ⊂ Bη. So, h converges uniformly on A as |
∑

j>η hj |A< ϵη/2
η. Which mean, h is an

entire function.
We are done if we show |h(z) − f(z)|< ϵ(z) for z ∈ ∪Lj . Take any z ∈ ∪Lj , say

rηo < |z|≤ rηo+1.
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|h(z)− f(z)| =

∣∣∣∣∣∣
∞∑
η=0

hη(z)− f(z)

∣∣∣∣∣∣
≤

∞∑
η>ηo

|hη(z)|+

∣∣∣∣∣∣
ηo∑
η=0

hη − f(z)

∣∣∣∣∣∣
≤ ϵ/2ηo+1 +

∣∣∣∣∣∣hηo(z)− ρηo(z)

f(z)− ηo−1∑
η=0

hη(z)

∣∣∣∣∣∣
+(1− ρηo(z))

∣∣∣∣∣∣
ηo−1∑
η=0

hη(z)− f(z)

∣∣∣∣∣∣
≤ ϵ(z)/2ηo+1 + ϵ(z)/2ηo+1

+(1− ρηo(z))

∣∣∣∣∣∣hηo−1 − ρηo−1(z)

f(z)− ηo−2∑
η=0

hη(z)

∣∣∣∣∣∣
≤ ϵ(z)/2ηo+1 + ϵ(z)/2ηo+1 + ϵ(z)/2ηo ≤ ϵ(z)

□

4. The union of two Lipschitz graphs

4.1. polynomial convexity of the union of two Lipschitz graphs. In this section,
the polynomial convexity of L1 ∪ L2 will be studied where L1 and L2 are Lipschitz
graphs as given in ??. Restricting the study to C2, gives the following proposition:

The proof of this proposition generalizes the calculation done in Theorem 1.2 of [2].

Proof. (Proposition 1.2) The matrix A is 2 × 2 real valued. Then A would be similar
to one of the following real matrix:[

λ 1
0 λ

]
λ ∈ R (4.1)[

λ1 0
0 λ2

]
λ1, λ2 ∈ R (4.2)[

s −t
t s

]
s, t ∈ R (4.3)

This can be showed by looking at the different possible Jordan forms for a 2 × 2
matrix with real entries. If the roots for the characteristic polynomial are imaginary
then we get (4.3). If the roots are real and A is not diagonizable then we get (4.1).
Finally, if the roots are real and A is diagonizable we get (4.2).

So, there is an invertible complex 2 × 2 matrix such that SAS−1 has one of the
above forms. First, we look at what happens to (A+ iI)Rn under the action of S. Say
x ∈ Rn, then S(A + iI)x = SAS−1y + iSIS−1y = (SAS−1 + iI)y, where y = S−1x.
Which gives (SAS−1+ iI)Rn = S((A+ iI)Rn). Let us look at what happens to L1 and
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L2 under the action of S.

SL1 = {S(x+ iψ1(x)) : x ∈ Rn}
= {S(x) + iS(ψ1(x)) : x ∈ Rn}
= {y + iS(ψ1(S

−1y)) : y ∈ Rn}
Similarly for L2

SL2 = {S((A+ iI)(x+ iψ2(x))) : x ∈ Rn}
= {S((A+ iI)(S−1y + iψ2(S

−1y))) : y ∈ Rn}
= {S(A+ iI)S−1y + iS(A+ iI)ψ2(S

−1y) : y ∈ Rn}
= {(SAS−1 + iI)y + iS(A+ iI)S−1Sψ2(S

−1y) : y ∈ Rn}
= {(SAS−1 + iI)y + i(SAS−1 + iI)Sψ2(S

−1y) : y ∈ Rn}
If we set A′ = SAS−1, ψ′

j(x) = Sψj(S
−1x), and α′

j = ∥S∥∥S−1∥αj . Then the above
looks like

L′
1 = {(x+ iψ′

1(x))) : x ∈ Rn}
L′
2 = {(A′ + iI)(x+ iψ′

2(x))) : x ∈ Rn}
The Lipschitz condition will still be followed with the constants α′

j

|ψ′
j(x)− ψ′

j(y)| = |Sψj(S−1x)− Sψj(S
−1y)|

= |S(ψj(S−1x)− ψj(S
−1y))|

≤ ∥S∥|ψj(S−1x)− ψj(S
−1y)|

≤ ∥S∥αj |S−1x− S−1y|
≤ ∥S∥αj∥S−1∥|x− y|
≤ αj∥S∥∥S−1∥|x− y|
≤ α′

j |x− y|
Hence, we could consider A to be of the three forms given above. We will have to

work cases for each of (4.1), (4.2), and (4.3).
Case 1: Let A be of type (4.1).
Let λ ∈ R

A =

[
λ 1
0 λ

]
We would like to show any compact set K1 ∪ K2 = K ⊂ L1 ∪ L2 is polynomially

convex for compacts sets K1 ⊂ L1 and K2 ⊂ L2. We would apply the Kallin’s lemma
as stated in Lemma 2.5.

Define G : C2 × C2 → C
G(z, w) = z1w1 + z2w2

We claim that the suitable polynomial for applying Lemma 2.5 is p : C2 → C
p(z) := G((A− iI)z, z)

Or explicitly, if z = (z1, z2) ∈ C2 then computing p(z) we get

p(z) = z1 (z1 (λ− i) + z2) + z22 (λ− i)

We would like to show

p(K1) ⊂ {z ∈ C : Im(z) < 0} ∪ {0} (4.4)

p(K2) ⊂ {z ∈ C : Im(z) > 0} ∪ {0} (4.5)
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for an appropriate choice of α1 > 0 and α2 > 0. This would , by Lemma 2.5, show that
any K1 ∪K2 is polynomially convex.

Let z ∈ L1, then z = (x, y) + iψ1(x, y) for some (x, y) ∈ R2. If we solve for im(p(z))
we get

(4.6)im(p(z)) =
(
ψ
(1)
1 (x, y)

)2
+
(
ψ
(2)
1 (x, y)

)2
+ 2ψ

(1)
1 (x, y)λx

+ 2ψ
(2)
1 (x, y)λy + ψ

(1)
1 (x, y)y + ψ

(2)
1 (x, y)x− x2 − y2

Where ψ1(x, y) = (ψ
(1)
1 (x, y), ψ

(2)
1 (x, y)).

By the Lipschitz condition on ψ1, we have

∥ψ1((x, y))− ψ1((0, 0))∥ ≤ α1∥(x, y)− (0, 0)∥
∥ψ1((x, y))∥ ≤ α1∥(x, y)∥

We will set v = ∥(x, y)∥, then (ψ
(1)
1 (x, y))2 + (ψ

(2)
1 (x, y))2 ≤ α2

1v
2. Further, |x|≤ v,

|y|≤ v, |ψ(1)
1 (x, y)|≤ ∥ψ1(x, y)∥≤ α1v. , and |ψ(2)

1 (x, y)|≤ ∥ψ1(x, y)∥≤ α1v.
Now we make use of this inequality in (4.6). Giving us:

im(p(z)) ≤ v2(α2
1 + 4α1λ+ 2α1 − 1)

Choose α1 small enough such that:

α2
1 + 4|λ|α1 + 2α1 < 1

Then im(p(z)) < 0 for z ̸= 0 ∈ L1.
Now we look at the other Lipschitz graph, let z ∈ L2, say z = (A+ iI)(x, y) + i(A+

iI)ψ2(x, y) for some (x, y) ∈ R2. If we solve for the explicit form of z:

z =

[
iψ(2)(x, y) + y + (λ+ i)

(
iψ(1)(x, y) + x

)
(λ+ i)

(
iψ(2)(x, y) + y

) ]
Now solving for im(p(z)):

(4.7)

im(p(z)) = −
(
ψ
(1)
2 (x, y)

)2
(1 + λ2)−

(
ψ
(2)
2 (x, y)

)2
(1 + λ2)

− 2ψ
(1)
2 (x, y)ψ

(2)
2 (x, y)λ+ 2ψ

(1)
2 (x, y)λ3x+ 3ψ

(1)
2 (x, y)λ2y

+ 2ψ
(1)
2 (x, y)λx+ ψ

(1)
2 (x, y)y + 2ψ

(2)
2 (x, y)λ3y + 3ψ

(2)
2 (x, y)λ2x

+ 6ψ
(2)
2 (x, y)λy + ψ

(2)
2 (x, y)x+ λ2x2 + λ2y2 + 2λxy + x2 + y2

Again we obtain the inequalities.

Set v = ∥(x, y)∥, then (ψ
(1)
2 (x, y))2 + (ψ

(2)
2 (x, y))2 ≤ α2

2v
2. Further, |x|≤ v, |y|≤ v,

|ψ(1)
2 (x, y)|≤ ∥ψ2(x, y)∥≤ α2v. , and |ψ(2)

2 (x, y)|≤ ∥ψ2(x, y)∥≤ α2v.

im(p(z)) ≥ −[α2
2(|λ|+1)2+α2(4|λ|3+6|λ|2+10|λ|+2)−|λ|2]v2+(|λ|x+y)2+(1−|λ|2)x2

Take α2 > 0 so small that

α2
2(|λ|+1)2 + α2(4|λ|3+6|λ|2+10|λ|+2) < |λ|2

so that im(p(z)) > 0 when z ̸= 0 ∈ L2.
Moreover, both these results show that p−1(0) ∩ (K1 ∪K2) = {0} which is polyno-

mially convex. Hence, K1 ∪ K2 is polynomially convex by Kallins Lemma 2.5. This
would work for any K1 ⊂ L1 compact and K2 ⊂ L2 compact.
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Case 2: Let A be of type (4.2).
Let λ1, λ2 ∈ R

A =

[
λ1 0
0 λ2

]
We will mimic the same steps as in Case 1. Take the same polynomial p.

Again like last time, take compacts K1 ⊂ L1 and K2 ⊂ L2

p(K1) ⊂ {z ∈ C : Im(z) < 0} ∪ {0}
p(K2) ⊂ {z ∈ C : Im(z) > 0} ∪ {0}

Let z ∈ L1, then z = (x, y) + iψ1(x, y) for some (x, y) ∈ R2. If we solve for im(p(z))
we get

im(p(z)) =
(
ψ
(1)
1 (x, y)

)2
+
(
ψ
(2)
1 (x, y)

)2
+ 2ψ

(1)
1 (x, y)λ1x+ 2ψ

(2)
1 (x, y)λ2y − x2 − y2

(4.8)

The same inequality shown in case 1 will work here. Using them here:

im(p(z)) ≤ (α2
1 + 2α1|λ1|+2α1|λ2|−1)v2

Choose α1 > 0 small enough such that:

α2
1 + 2α1|λ1|+2α1|λ2|< 1

Then im(p(z)) < 0 for z ̸= 0 ∈ L1.
Now let z ∈ L2, say z = (A + iI)(x, y) + i(A + iI)ψ2(x, y) for some (x, y) ∈ R2. If

we solve for the explicit form of z:

z =

(λ1 + i)
(
iψ

(1)
2 (x, y) + x

)
(λ2 + i)

(
iψ

(2)
2 (x, y) + y

)
im(p(z)) = −

(
ψ
(1)
2 (x, y)

)2
λ21 −

(
ψ
(1)
2 (x, y)

)2
+ 2ψ

(1)
2 (x, y)λ31x

+ 2ψ
(1)
2 (x, y)λ1x−

(
ψ
(2)
2 (x, y)

)2
λ22 −

(
ψ
(2)
2 (x, y)

)2

+ 2ψ
(2)
2 (x, y)λ32y + 2ψ

(2)
2 (x, y)λ2y + λ21x

2 + λ22y
2 + x2 + y2

With the inequalities we get

im(p(z)) ≥ −[α2(1+ |λ1|2+|λ2|2)+ 2α(|λ1|3+|λ2|3+|λ1|+|λ2|)]v2+ v2+ |λ1|x2+ |λ2|y2

If we choose α > 0 small enough such that

α2(1 + |λ1|2+|λ2|2) + 2α(|λ1|3+|λ2|3+|λ1|+|λ2|) < 1

Then im(p(z)) > 0 when z ̸= 0 ∈ L2.
Again, both these results show that p−1(0)∩ (K1 ∪K2) = {0} which is polynomially

convex. Hence, K1 ∪ K2 is polynomially convex by Kallins Lemma 2.5. This would
work for any K1 ⊂ L1 compact and K2 ⊂ L2 compact.

Case 3: Let A be of type (4.3), ie, say s, t ∈ R

A =

[
s −t
t s

]
Take compacts K1 ⊂ L1 and K2 ⊂ L2. We wish to show K1 ∪K2 is polynomially

convex.
Consider the polynomial

p(z) = z21 + z22
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Let z ∈ L1, then z = (x, y) + iψ1(x, y) for some (x, y) ∈ R2. If we solve for im(p(z))
we get

im(p(z)) = 2ψ
(1)
1 (x, y)x+ 2ψ

(2)
1 (x, y)y

and solving for re(p(z)) we get

re(p(z)) = −
(
ψ
(1)
1 (x, y)

)2
−
(
ψ
(2)
1 (x, y)

)2
+ x2 + y2

Using the inequalities here, we get

re(p(z)) ≥ (1− α2
1)v

2

If we choose α1 > 0 small enough such that

α2
1 < 1

Then re(p(z)) > 0 when z ̸= 0 ∈ L1.
Let z ∈ L2, say z = (A + iI)(x, y) + i(A + iI)ψ2(x, y) for some (x, y) ∈ R2. If we

solve for the explicit form of z:

z =

−t(iψ(2)
2 (x, y) + y

)
+ (s+ i)

(
iψ

(1)
2 (x, y) + x

)
t
(
iψ

(1)
2 (x, y) + x

)
+ (s+ i)

(
iψ

(2)
2 (x, y) + y

) 
Now we solve for im(p(z)) and re(p(z)):

im(p(z)) = −2
(
ψ
(1)
2 (x, y)

)2
s+ 2ψ

(1)
2 (x, y)s2x+ 2ψ

(1)
2 (x, y)t2x

− 2ψ
(1)
2 (x, y)x− 2

(
ψ
(2)
2 (x, y)

)2
s+ 2ψ

(2)
2 (x, y)s2y

+ 2ψ
(2)
2 (x, y)t2y − 2ψ

(2)
2 (x, y)y + 2sx2 + 2sy2

re(p(z)) = −
(
ψ
(1)
2 (x, y)

)2
s2 −

(
ψ
(1)
2 (x, y)

)2
t2 +

(
ψ
(1)
2 (x, y)

)2

− 4ψ
(1)
2 (x, y)sx−

(
ψ
(2)
2 (x, y)

)2
s2 −

(
ψ
(2)
2 (x, y)

)2
t2

+
(
ψ
(2)
2 (x, y)

)2
− 4ψ

(2)
2 (x, y)sy + (t2 + s2 − 1)x2 + (t2 + s2 − 1)y2

We consider two subcases now based on if t2 + s2 < 1.
Case 3.1 Say t2 + s2 < 1. Using the inequalities on re(p(z)):

re(p(z)) ≤ [(t2 + s2 − 1)(1− α2
2)− 8α2|s|]v2

Then if choose α2 > 0 so small that

(t2 + s2 − 1)(1− α2
2)− 8α2|s|< 0

Then re(p(z)) < 0 when z ̸= 0 ∈ L2.
Again it is clear that p−1(0) ∩ (K1 ∪ K2) = {0}. By Kallin’s Lemma 2.5 we get

K1 ∪K2 is polynomially convex.
Case 3.2 Say t2 + s2 ≥ 1.
We will show that p(K1) and p(K2) lie in different sectors which only intersect at

the origin. Then we claim K1 ∪K2 is polynomially convex by Kallin’s Lemma 2.5.
Consider the following angular sectors

V1 = {x+ iy ∈ C : |y|≤ ϵ|x|}
V2 = {x+ iy ∈ C : |(t2 + s2 − 1)y − 2sx|≤ ϵ|y|}

Where ϵ > 0 small enough such that V1 ∪ V2 = {0}.



14 HARSHITH ALAGANDALA AND SUSHIL GORAI

We claim for suitable choice of α1 and α2 we get p(L1) ⊂ V1 and p(L2) ⊂ V2.

• Let z ∈ L1. Apply the inequalities on |im(p(z))| which we had calculated

|im(p(z))|≤ 2α1v
2

and on |re(p(z))|
|re(p(z))|≥ (1− α2

1)v
2

If we choose α1 small enough such that such that 2α1 < ϵ(1− α2
1) then

|im(p(z))|≤ ϵ|re(p(z))|

Hence, p(L1) ⊂ V1.
• Let z ∈ L2. Calculating (t2 + s2 − 1)(re(p(z)))− 2s(im(p(z))) =

2ψ(1)(x, y)s4x+ 4ψ(1)(x, y)s2t2x+ 4ψ(1)(x, y)s2x+ 2ψ(1)(x, y)t4x

− 4ψ(1)(x, y)t2x+ 2ψ(1)(x, y)x+ 2ψ(2)(x, y)s4y + 4ψ(2)(x, y)s2t2y

+ 4ψ(2)(x, y)s2y + 2ψ(2)(x, y)t4y − 4ψ(2)(x, y)t2y + 2ψ(2)(x, y)y

Using inequalities, we get

|(t2 + s2 − 1)(re(p(z)))− 2s(im(p(z)))|≤ α2(4s
4 + 8s2t2 + 8s2 + 4t4 + 8t2)v2

Now we find a lower bound for |im(p(z))|. First note that |s|̸= 0; to ensure A
has no eigenvalue which is purely imaginary of modulus greater than 1 we must
have |s|≠ 0. Now we use the inequalities on |im(p(z))|:

|im(p(z))|≥ 2|s|v2 − α2[2α2|s|+4s2 + t2 + 4]v2

We can choose α2 > 0 small such that

ϵ(2|s|−α2[2α2|s|+4s2 + t2 + 4]) ≥ α2(4s
4 + 8s2t2 + 8s2 + 4t4 + 8t2)

This ensures

|(t2 + s2 − 1)(re(p(z)))− 2s(im(p(z)))|≤ ϵ|im(p(z))|

Hence, p(L2) ⊂ V2.

Again, p−1(0)∩ (K1 ∪K2) = {0}. The angular sectors intersected with a closed ball
is polynomially convex. And A1 ∩ A2 = {0}. Hence K1 ∪K2 is polynomially convex
by Kallin’s Lemma 2.4. □

The proof of Theorem 1.3 will follow similar arguments to that of the union of two
totally real subspaces [7]. Before this, we show the following lemma:

Proposition 4.1. Let L1 and L2 be as in Theorem 1.3. Fix R > 1, and let

K = {z ∈ L1 ∪ L2 : |z|≤ R} and Kj = {z ∈ Lj : 1 ≤ |z|≤ R} j = 1, 2

Then there exists δ > 0 such that for any continuous function f ∈ C(L1 ∪ L2) with
compact support in K1 ∪K2 and

any ϵ > 0 there is an entire function h ∈ O(Cn) such that |h− f |K< ϵ and |h(z)|< ϵ
for |z|≤ δ.

Proof. We set ϕ1(z) = z and ϕ2(z) = (A+ iI)−1. Then

ϕ1(L1) = {x+ iψ1(x) : x ∈ Rn}
ϕ2(L2) = {x+ iψ2(x) : x ∈ Rn}
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Let

L̃1 = {x+ iy ∈ Cn : ∥y∥≤ α1∥x∥}
L̃k = (A+ iI){x+ iy ∈ Cn : ∥y∥≤ α2∥x∥}
K̃1 = L̃1 ∩ {z ∈ Cn : 1 ≤ |z|≤ R}
K̃1 = L̃2 ∩ {z ∈ Cn : 1 ≤ |z|≤ R}

Then by (1.3) we can choose γ > 0 such that

d(ϕj(K̃j), ϕj(L̃k)) > 3γ

for i, j = 1, 2 where i ̸= j. As Kj ⊂ K̃j and Lk ⊂ L̃k:

d(ϕj(Kj), ϕj(Lk)) > 3γ

We define a neighbourhood of K

Ωo = {z ∈ Cn : d(z,K) < η}
where η > 0 is taken so small that

ϕj(Ωo) ⊂ {z ∈ Cn : d(z, ϕj(K)) < γ}
for j = 1, 2.

For j = 1, 2, define two open sets Ũj and Ṽj such that they cover ϕj(K).

Ũj = {z ∈ Cn : d (z, ϕj(K)) < γ and d (z, ϕj(Kj)) < 2γ}

Ṽj =

{
z ∈ Cn : d (z, ϕj(K)) < γ and d (z, ϕj(Kj)) >

3

2
γ

}
Observe that, ϕj(Kj) ⊂ Ũj , ϕj(Lk ∩K) ⊂ Ṽj for k ̸= j and 0 ∈ Ṽj .
Define the convolution as per Proposition 2.2:

h̃
(t)
j (z) :=

(
1

t
√
π

)n ∫
L

f ◦ ϕ−1
j (u)e−

(z−u)2

t2 du

Consider all limits as t → 0+. Now by Proposition 2.2 we have h̃
(t)
j ∈ O(Cn), and

h̃
(t)
j → f ◦ ϕ−1

j uniformly on ϕj(Lj). Let W̃j = Ṽj ∩ Ũj , we will show W̃j ⊂ A γ2

4

; this

gives us h̃
(t)
j → 0 uniformly on W̃j .

Let z = (x1+iy1, ..., xn+iyn) ∈ W̃j and η = (u1+iψ
(1)
j (u), ..., un+iψ

(n)
j (u)) ∈ ϕj(Kj).

Re(z − η)2 = Re

n∑
l=1

(zl − ηl)
2

=

n∑
l=1

(xl − ul)
2 − (yl − ψ

(l)
j (u))2

=

n∑
l=1

(xl − ul)
2 −

n∑
l=1

(yl − ψ
(l)
j (u))2

As z ∈ W̃j ⊂ Ṽj , d(z, u) >
3
2γ which gives

n∑
l=1

(xl − ul)
2 +

n∑
l=1

(yl − ψ
(l)
j (u))2 >

9

4
γ2
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Note that d(z, ψj(Kj)) < 2γ, d(ψj(Kj), Lk) > 3γ and d(z, ψj(L1∪L2)) ≤ d(z, ψj(K)) <
γ implies d(z, ψj(Lj)) < γ. With this we get d(z, ψj(Lj)) = ∥y − ψ(x)∥Rn< γ as the
minima is attained when we look at the distance between z and x+ iψ(x) ∈ Lj .

n∑
l=1

(yl − ψ
(l)
j (u))2 = ∥y − ψj(u)∥2Rn

≤ ∥y − ψj(x)∥2Rn+∥ψj(x)− ψj(y)∥2Rn

≤ γ2 + α2
j∥x− u∥2Rn

Combining the last to inequalities,

∥x− u∥2Rn>
5

4
γ2 − α2

j∥x∥2Rn

(1 + α2
j )∥x− u∥2Rn>

5

4
γ2

∥x− u∥2Rn> (1 + α2
j )

−1 5

4
γ2

Finally,

Re(z − u)2 = ∥x− u∥2+∥y − ψj(u)∥2

≥ ∥x− u∥2−γ2 − α2
j∥x− u∥2

≥ (1− α2
j )∥x− u∥2−γ2

≥ (1− α2
j )(1 + α2

j )
−1 5

4
γ2 − γ2

≥ (1− 9α2
j )(1 + α2

j )
−1γ2

If α2
j < 1/3 then W̃j ⊂ Acγ where c = (1− 9α2

j )(1 + α2
j )

−1 and h̃
(t)
j → 0 uniformly on

W̃j (Proposition 2.2).
The set K is polynomially convex as it is a compact subset of ∪Lj . We can find a

pseudoconvex domain Ω such that K ⊂ Ω ⊂ Ωo by a polynomial polyhedra.
Let 0 ≤ j ≤ m. Set Uj = Ω ∩ Ũj , Vj = Ω ∩ Ṽj and Wj = Vj ∩ Uj = Ω ∩ ϕ−1

j (W̃j).

Then Uj ∪ Vj = Ω and h̃
(t)
j ◦ ϕj → 0 uniformly on Wj .

Consider the linear operator T : O(Uj)
⊕

O(Vj) → O(Wj) given by

T (α, β) = (α− β)|Wj

The Cousin I problem can be solved on the pseudoconvex set Ω with {Uj , Vj}; This
shows the surjectivity of T . Which allows us to use the open mapping theorem for

Fréchet spaces. As h̃
(t)
j ◦ϕj → 0 in O(Wj), we can solve for (α̃

(t)
j , β̃

(t)
j ) ∈ O(Uj)

⊕
O(Vj)

with

T (α̃
(t)
j , β̃

(t)
j ) = (α̃

(t)
j − β̃

(t)
j )|Wj= h̃

(t)
j ◦ ϕj

such that (α̃
(t)
j , β̃

(t)
j ) → 0, ie, α̃

(t)
j → 0 in O(Uj) and β̃

(t)
j → 0 in O(Vj).

We have seen that 0 ∈ Vj for all j. Take δ > 0 such that the closed ball B(0, δ) ⊂⊂ Vj

for all j. Define h
(t)
j ∈ O(Ω) with h

(t)
j = h̃

(t)
j ◦ ϕj − α̃

(t)
j on Uj and h

(t)
j = −β̃(t)j on Vj .

This is well defined due to the Cousins I problem.
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Then h
(t)
j → 0 in O(Vj); this gives: h

(t)
j → 0 uniformly on Lk ∩K ⊂⊂ Vj for k ̸= j,

and h
(t)
j → 0 uniformly on B(0, δ) ⊂⊂ Vj for k ̸= j. Further, h

(t)
j → f uniformly on

compact subsets of Lj ∩ Vj as f = 0 on Lj −Kj .

The entire function h̃
(t)
j ◦ ϕ → f uniformly on Lj and α̃

(t)
j → 0 in O(Uj) which

implies h
(t)
j → f uniformly on compact subsets of Lj∩Uj . Combining with the previous

argument, h
(t)
j → f uniformly on Lj ∩K, h

(t)
j → 0 uniformly on Lk ∩K for k ̸= j, and

h
(t)
j → 0 uniformly on B(0, δ).

Define h(t) :=
∑2

j=1 h
(t)
j . Then h(t) → f uniformly on Lj ∩ K for all j. Hence,

h(t) → f uniformly on K and h(t) → 0 uniformly on B(0, δ).
□

Corollary 4.2. For Ro > 1, we can choose δ for which the following holds. If fo ∈
C(L1∪L2) such that fo(z) = 0 for |z|≤ r for some r > 0. Then there exists ho ∈ O(Cn)
such that |ho(z) − fo(z)|< ϵ for z ∈ (L1 ∪ L2) ∩ {z ∈ Cn : |z|≤ rRo}, and |ho(z)|< ϵ
for |z|≤ rδ.

Proof. We define

f(z) := fo(z/r)ρRo(|z|)

where ρRo : [0,+∞) → [0, 1] is a continuous function that is 1 on [0, Ro] and 0 on
[Ro + 1,+∞). Let R = Ro + 1; it follows that supp(fo) ⊂ ∪Kj with the notations of
Proposition 4.1. By the proposition, we have δ > 0 corresponding to R. Then there
is an entire function h ∈ O(Cn) such that |f − h|K< ϵ and |h|B(0,δ)< ϵ. Define entire
function ho(z) := h(rz). We have |f(z)−h(z)|< ϵ for z ∈ (L1∪L2)∩{z ∈ Cn : |z|≤ R}.
Replacing f with fo, |fo(z/r) − ho(z/r)|< ϵ for z ∈ (L1 ∪ L2) ∩ {z ∈ Cn : |z|≤ Ro}.
Which is |fo(z)− ho(z)|< ϵ for z ∈ (L1 ∪ L2) ∩ {z ∈ Cn : |z|≤ rRo} and |ho(z)|< ϵ for
|z|≤ rδ. □

Proof. (Theorem 1.3):
We set M = L1 ∪ L2. We are given f ∈ C(M) and ϵ ∈ C(M,R>0). Let R = Ro and

δ as choosen in Corollary 4.2. Take an increasing sequence of positive reals {rη} such
that rη+2 = Rrη. We define continuous functions ρη : [0,+∞) → [0, 1] such that ρη(t)
is 0 for t ∈ [0, rη] and 1 for t ∈ [rη+1,+∞).

Construct an exhaustion of M by compacts

Kη = {z ∈M : |z|≤ rηR}

for which the corresponding closed ball as in Corollary 4.2 will be

Bη = B(0, rηδ) and ϵη = min
t∈Kη

ϵ(t)

As K0 is polynomially convex, we can approximation f on K0 by an entire function
h0 such that

|h0(z)− f(z)|< ϵ0/2 ∀z ∈ K0

We want an entire function h1 such that

|h1(z)− ρ0(|z|)(f(z)− h0(z))|< ϵ1/2
2 ∀z ∈ K1

and |h1|B1≤ ϵ1/2
2. Such a h1 can be found using Corollary 4.2 as fo(z) = ρ0(|z|)(f(z)−

h0(z)) satisfies the conditions with r = r0.
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This process can be done inductively to get hη an entire functions such that

|hη(z)− ρη(|z|)(f(z)−
η−1∑
l=1

hl(z))|< ϵη/2
η+1 ∀z ∈ Kη

and |hη|Bη< ϵη/2
η+1.

Define h =
∑

η∈N hη. Given any compact set A ⊂ Cn, we can find η such that

A ⊂ Bη. So, h converges uniformly on A as |
∑

j>η hj |A< ϵη/2
η. Which mean, h is an

entire function.
We are done if we show |h(z) − f(z)|< ϵ(z) for z ∈ M . Take any z ∈ M , say

rηo < |z|≤ rηo+1.

|h(z)− f(z)| =

∣∣∣∣∣∣
∞∑
η=0

hη(z)− f(z)

∣∣∣∣∣∣
≤

∞∑
η>ηo

|hη(z)|+

∣∣∣∣∣∣
ηo∑
η=0

hη − f(z)

∣∣∣∣∣∣
≤ ϵ/2ηo+1 +

∣∣∣∣∣∣hηo(z)− ρηo(z)

f(z)− ηo−1∑
η=0

hη(z)

∣∣∣∣∣∣
+(1− ρηo(z))

∣∣∣∣∣∣
ηo−1∑
η=0

hη(z)− f(z)

∣∣∣∣∣∣
≤ ϵ(z)/2ηo+1 + ϵ(z)/2ηo+1

+(1− ρηo(z))

∣∣∣∣∣∣hηo−1 − ρηo−1(z)

f(z)− ηo−2∑
η=0

hη(z)

∣∣∣∣∣∣
≤ ϵ(z)/2ηo+1 + ϵ(z)/2ηo+1 + ϵ(z)/2ηo ≤ ϵ(z)

□

5. Polynomial convexity of three totally real planes

Theorem 5.1. Let P0, P1, P2 be maximal totally real subspaces in C2 as:

P0 = R2

P1 = (A1 + iI)R2

P2 = (A2 + iI)R2

Where A1, A2 ∈ R2×2. Such that P0, P1, P2 are mutually locally polynomially convex
at the origin and the following holds:

• det [A1, A2] < 0
• detAj < 0, for j = 1, 2

Then P0 ∪ P1 ∪ P2 is locally polynomially convex at the origin.

Proof. As detA1 < 0, it has distict non-zero real eigenvalues of different signs. By
Lemma 2.4 of [3], after suitable change of changing coordinates, we get

A1 =

[
λ1 0
0 λ2

]
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And

A2 =

[
s1 q
q s2

]
or

[
s1 −q
q s2

]
where λ1, λ2 ∈ R. With λ1 > 0 and λ2 < 0. Where s1, s2, q ∈ R. But since
det[A1, A2] < 0, it is forced that

A2 =

[
s1 −q
q s2

]
.

We can write

P0 = {(x, y) : x, y ∈ R}
P1 = {((λ1 + i)x, (λ2 + i)y) : x, y ∈ R}
P2 = {((s1 + i)x− qy, qx+ (s2 + i)y) : x, y ∈ R}

Let Kj = B(0, 1)∪Pj for j = 0, 1, 2. We wish to show K0 ∪K1 ∪K2 is polynomially
convex.

For this we will apply Kallin’s lemma. We wish to look at the polynomial convexity
of the union of K0 and K1 ∪K2. Consider the polynomial p(z) = z21 − z22 .

Suppose z ∈ K0, then ℑ(p(z)) = 0. We have p(K0) ⊂ {x : x ∈ R}. And p−1{0} ∩
(K0) = {(x,±x) : x ∈ R} ∩B(0, 1).

Suppose z ∈ K1, for some z = ((λ1 + i)x, (λ2 + i)y) for some x, y ∈ R. Then
ℑ(p(z)) = 2(λ1x

2 + (−λ2)y2). Note that λ1 > 0 and λ2 < 0. We have ℑ(p(z)) > 0
when (x, y) ̸= (0, 0). And p−1{0} ∩K1 = {(0, 0)}.

This shows p̂(K0) ∩ p̂(K1) = {0}. And p−1{0} ∩ (K0 ∪ K1) = {(x,±x) : x ∈
R} ∩B(0, 1).

Suppose z ∈ K2, say z = ((s1 + i)x− qy, qx+ (s2 + i)y). Then
ℑ(p(z)) = −4qxy + 2s1x

2 − 2s2y
2. We have detA2 = s1s2 + q2 < 0. Set a = s1,

b = −s2 and c = −q. We have ℑ(p(z)) = 2(cxy+ax2+by2) and ab > c2. By Lemma 2.7
we get ℑ(p(z)) = 0 if, and only if, (x, y) = (0, 0). Hence ℑ(p(z)) ̸= 0 unless z = (0, 0).
And p−1{0} ∩K2 = {(0, 0)}.

This shows p̂(K0) ∩ p̂(K2) = {0}. And p−1{0} ∩ (K0 ∪ K2) = {(x,±x) : x ∈
R} ∩B(0, 1).

Let K = K1 ∪K2. From the above two results p̂(K0) ∩ p̂(K) = {0}. And p−1{0} ∩
(K0 ∪K) = {(x,±x) : x ∈ R}∩B(0, 1). Which is polynomially convex as any compact
subset of R2 is polynomially convex in C2.

□

Theorem 5.2. Let P0, P1, P2 be maximal totally real subspaces in C2 as:

P0 = R2

P1 = (A1 + iI)R2

P2 = (A2 + iI)R2

Where A1, A2 ∈ R2×2. Such that P0, P1, P2 are mutually locally polynomially convex
at the origin and the following holds:

• det [A1, A2] > 0
• −1 < detA1 < 0
• detA2 > 0

Then P0 ∪ P1 ∪ P2 is locally polynomially convex at the origin.
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Proof. Since detA1 < 0, the matrix A1 has real, non-zero eigenvalues of opposite signs.
And det [A1, A2] > 0. By Lemma 2.5 of [3], after a suitable change of coordinates:

A1 =

[
λ1 0
0 λ2

]
A2 =

[
s1 t
t s2

]
We can write

P0 = {(x, y) : x, y ∈ R}
P1 = {((λ1 + i)x, (λ2 + i)y) : x, y ∈ R}
P2 = {((s1 + i)x+ ty, tx+ (s2 + i)y) : x, y ∈ R}

Define p(z) := z21 + z22 .

Let Kj = B(0, 1)∪Pj for j = 0, 1, 2. We wish to show K0 ∪K1 ∪K2 is polynomially
convex.

Say z ∈ K0, then ℑ(p(z)) = 0. We have p(K0) ⊂ {x : x ∈ R}.
Say w ∈ K1 with the form w = ((λ1 + i)x, (λ2 + i)y). Then calculating p(w)

ℜp(w) = (λ21 − 1)x2 + (λ22 − 1)y2

ℑp(w) = 2λ1x
2 + 2λ2y

2

If ℑp(w) = 0, then x2 = −λ2
λ1
y2. In that case:

ℜp(w) = (λ21 − 1)x2 + (λ22 − 1)y2

= (λ21 − 1)

(
−λ2
λ1
y2
)
+ (λ22 − 1)y2

=
1

λ1
(−λ21λ2 + λ2 + λ1λ

2
2 − λ1)y

2

=
1

λ1
(λ1λ2(λ2 − λ1) + λ2 − λ1)y

2

=
1

λ1
(λ2 − λ1)(λ1λ2 + 1)y2

Since detA1 > −1, λ1λ2 +1 > 0. Hence ℜp(w) < 0 when ℑp(w) = 0 unless w = (0, 0).

p̂(K2) ∩ p̂(K0) = {0} & p−1{0} ∩ (K0 ∪K2) = {(0, 0)}

Say w ∈ K2 with the form w = ((s1 + i)x+ ty, tx+ (s2 + i)y). Then calculating
ℑp(w) = 2s1x

2 +2s2y
2 +4txy. Since detA2 > 0, we have s1s2 > t2. Set a = s1, b = s2

and c = t. Then ab > c2. By Lemma 2.7 we get ℑp(z) = 0 if, and only if, z = 0.

p̂(K1) ∩ p̂(K0) = {0} & p−1{0} ∩ (K0 ∪K1) = {(0, 0)}

Finally, take K = K1 ∪K2 , then

p̂(K) ∩ p̂(K0) = {0} & p−1{0} ∩ (K0 ∪K) = {(0, 0)}

As K is polynomially convex. By Kallin’s lemma, K0 ∪ K1 ∪ K2 is polynomially
convex.

□
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