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2: Define
∥x∥ = inf{1/s : s > 0, sx ∈ B}

Claim: 0 ∈ B :
Take some v ̸= 0, then exists some t > 0 such that given α ∈ F and |α|≤ t
we have αv ∈ B. (Using (*)). Setting α = 0, we get 0 ∈ B.

To show ∥·∥ is a norm, we need to check (Definition 2.1 [1]). Let x, y ∈ X
and α ∈ F.

(a) ∥x∥ ≥ 0 :
Since the set {1/s : s > 0, sx ∈ B} only contains positive real num-
bers, its infimum must be greater than or equal to zero.

(b) ∥x∥ = 0 if and only if x = 0 :
We have shown above that 0 ∈ B.
Let x = 0, then 0 = s ∈ B for any s > 0. So norm ∥0∥ = inf{s >
0} = 0. Hence, ∥x∥ = 0.

Let x ̸= 0 then there exists t > 0 such that for α ∈ F, |α|≤ t if and
only if αx ∈ B. Which gives inf{1/s : s > 0, sx ∈ B} ≥ 1/t. Hence
∥x∥ > 0.

(c) ∥αx∥ = |α|∥x∥ :
Suppose α(̸= 0) ∈ F and x ̸= 0.

∥αx∥ = inf{1/s : s > 0, sαx ∈ B}

= inf{1/s : s > 0, s|α| α
|α|

x ∈ B}

= inf{|α|/r : r > 0, r
α

|α|
x ∈ B}

= |α|inf{1/r : r > 0, r
α

|α|
x ∈ B}

By property (*) there is t > 0 such that for β ∈ F, |β|≤ t if and only
if βx ∈ B. So, if r α

|α|x ∈ B, then rx ∈ B.
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∥αx∥ = |α|inf{1/r : r > 0, rx ∈ B}
= |α|∥x∥

If either α = 0 in the field or x = 0 in X then αx = 0 and |α|∥x∥ =
∥0∥ = ∥αx∥.

(d) ∥x+ y∥ ≤ ∥x∥+ ∥y∥ :
Let x ̸= 0, y ̸= 0. Since ∥x∥ is the infimum of the set {1/s : s >
0, sx ∈ B}. If we take ∥x∥ + δ1 for any δ1 > 0, we get x

∥x∥+δ1
∈ B.

Similarly, y
∥y∥+δ2

∈ B for any δ2 > 0. Now using the convexity of B,

for t ∈ [0, 1].

t

(
x

∥x∥+ δ1

)
+ (1− t)

(
y

∥y∥+ δ2

)
∈ B

Set t = (∥x∥+δ1)/(∥x∥+∥y∥+δ1+δ2), then 1−t = (∥y∥+δ2)/(∥x∥+
∥y∥+ δ1 + δ2)

1

(∥x∥+ ∥y∥+ δ1 + δ2)

(
(∥x∥+ δ1)

(
x

∥x∥+ δ1

)
+ (∥y∥+ δ2)

(
y

∥y∥+ δ2

))
∈ B

1

(∥x∥+ ∥y∥+ δ1 + δ2)
(x+ y) ∈ B

So,
(∥x∥+ ∥y∥+ δ1 + δ2) ∈ {1/s : s > 0, s(x+ y) ∈ B}

Then ∥x+ y∥ = inf{1/s : s > 0, s(x+ y) ∈ B} ≤ ∥x∥+ ∥y∥+ δ1 + δ2.
This works for all δ1 > 0 and δ2 > 0. Hence, ∥x+ y∥ ≤ ∥x∥+ ∥y∥.

For the second part, we must show B = {x ∈ X : ∥x∥ ≤ 1}.
Let x ∈ B, then 1 · x ∈ B. Which means 1 ∈ {1/s : s > 0, sx ∈ B} and
∥x∥ ≤ 1.

Suppose x ∈ X such that ∥x∥ ≤ 1. For δ > 0, x
∥x∥+δ = x

1+δ ∈ B.

Condition (*) tells us there exists t > 0 such that for α ∈ F, |α|≤ t if and
only if αx ∈ B. Then 1

1+δ ≤ t. Taking δ arbitarily small 1 ≤ t. Finally
set α = 1, then 1 · x = x ∈ B.

3: Let 0 < p < 1 and let S be the vector space of all sequences in F. For
x = (x1, x2, ...) is in S, set

∥x∥ =

( ∞∑
k=1

|xk|p
)1/p

Let X = {x ∈ S : ∥x∥ < ∞}.
Let us show that d(x, y) = ∥x− y∥p defines a metric on X. We need to
check the conditions on Def 1.17 of [1].

Let x, y, z ∈ X,
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(a)

d(x, y) = ∥x− y∥p =

( ∞∑
k=1

|xk − yk|p
)

Since we are summing over non negative terms, d(x, y) ≥ 0. Also,
since x ∈ X the sum is finite.

(b) Look at the equivalence( ∞∑
k=1

|xk − yk|p
)

= 0 ⇔ xk = yk ∀k = 1, 2, ...

If for any k, xk ̸= yk then we will have a postive term. Since each
term is non negative, the sum will be positive.

This shows that d(x, y) = 0 if and only if x = y (that is xk = yk for
all k = 0, 1, ...).

(c) Since |xk − yk|= |yk − xk| we have

d(x, y) =

( ∞∑
k=1

|xk − yk|p
)

=

( ∞∑
k=1

|yk − xk|p
)

= d(y, x)

(d) First we see the triangle inequality the field for a, b ∈ F.

|a+ b|p= |a+ b|
|a+ b|1−p

≤ |a|+|b|
|a+ b|1−p

≤ |a|
|a|1−p

+
|b|

|b|1−p
≤ |a|p+|b|p

Now let us look at the triangle inequality the vector space

d(x, z) =

∞∑
k=1

|xj − zj |p

=

∞∑
k=1

|(xj − yj)− (zj − yj)|p

≤
∞∑
k=1

|(xj − yj)|p+|(zj − yj)|p

≤
∞∑
k=1

|(xj − yj)|p+
∞∑
k=1

|(zj − yj)|p

≤ d(x, y) + d(y, z)

Hence, d is a metric on X.

To show X is a subspace of S. It is enough to show x − αy ∈ X for

3



x, y ∈ X and α ∈ F.

∥x− αy∥ = (

∞∑
k=1

|xj − αyj |p)1/p

≤ (

∞∑
k=1

|xj |p+
∞∑
k=1

α|yj |p)1/p

≤ 2(

∞∑
k=1

|xj |p)1/p + 2α(

∞∑
k=1

|yj |p)1/p

< ∞

Hence, X is a subspace of S.

Finally, consider a = (1, 0, 0, ...) and b = (0, 1, 0, 0, ...). Then ∥a∥ = (1p +
0p + 0p + ...)1/p = 1 and ∥b∥ = (0p + 1p + 0p + ...)1/p = 1. So a, b ∈ X.
Now ∥a+ b∥ = (1p + 1p + 0p + ...)1/p = 21/p. Note that ∥a∥+ ∥b∥ = 2 <
21/p = ∥a+ b∥. This breaks the triangle inequality if this was a norm.
Hence, ∥·∥ can not be a norm.
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