Math 9054A Assignment 1

Harshith Sairaj Alagandala Student number: 251388575

September 21, 2023

2: Define

$$||x|| = \inf\{1/s : s > 0, sx \in B\}$$

Claim: $0 \in B$:

Take some $v \neq 0$, then exists some t > 0 such that given $\alpha \in \mathbb{F}$ and $|\alpha| \leq t$ we have $\alpha v \in B$. (Using (*)). Setting $\alpha = 0$, we get $0 \in B$.

To show $\|\cdot\|$ is a norm, we need to check (Definition 2.1 [1]). Let $x, y \in X$ and $\alpha \in \mathbb{F}$.

- (a) $||x|| \ge 0$: Since the set $\{1/s : s > 0, sx \in B\}$ only contains positive real numbers, its infimum must be greater than or equal to zero.
- (b) ||x|| = 0 if and only if x = 0: We have shown above that $0 \in B$. Let x = 0, then $0 = s \in B$ for any s > 0. So norm $||0|| = \inf\{s > 0\} = 0$. Hence, ||x|| = 0. Let $x \neq 0$ then there exists t > 0 such that for $\alpha \in \mathbb{F}$, $|\alpha| \leq t$ if and only if $\alpha x \in B$. Which gives $\inf\{1/s : s > 0, sx \in B\} \geq 1/t$. Hence ||x|| > 0.
- (c) $\|\alpha x\| = |\alpha| \|x\|$: Suppose $\alpha \neq 0 \in \mathbb{F}$ and $x \neq 0$.

$$\begin{aligned} \|\alpha x\| &= \inf\{1/s : s > 0, s\alpha x \in B\} \\ &= \inf\{1/s : s > 0, s|\alpha|\frac{\alpha}{|\alpha|}x \in B\} \\ &= \inf\{|\alpha|/r : r > 0, r\frac{\alpha}{|\alpha|}x \in B\} \\ &= |\alpha|\inf\{1/r : r > 0, r\frac{\alpha}{|\alpha|}x \in B\} \end{aligned}$$

By property (*) there is t > 0 such that for $\beta \in \mathbb{F}$, $|\beta| \le t$ if and only if $\beta x \in B$. So, if $r \frac{\alpha}{|\alpha|} x \in B$, then $rx \in B$.

$$\|\alpha x\| = |\alpha| \inf\{1/r : r > 0, rx \in B\} \\ = |\alpha| \|x\|$$

If either $\alpha = 0$ in the field or x = 0 in X then $\alpha x = 0$ and $|\alpha| ||x|| = ||0|| = ||\alpha x||$.

(d) $||x + y|| \le ||x|| + ||y||$:

Let $x \neq 0$, $y \neq 0$. Since ||x|| is the infimum of the set $\{1/s : s > 0, sx \in B\}$. If we take $||x|| + \delta_1$ for any $\delta_1 > 0$, we get $\frac{x}{||x|| + \delta_1} \in B$. Similarly, $\frac{y}{||y|| + \delta_2} \in B$ for any $\delta_2 > 0$. Now using the convexity of B, for $t \in [0, 1]$.

$$t\left(\frac{x}{\|x\|+\delta_1}\right) + (1-t)\left(\frac{y}{\|y\|+\delta_2}\right) \in B$$

Set $t = (\|x\|+\delta_1)/(\|x\|+\|y\|+\delta_1+\delta_2)$, then $1-t = (\|y\|+\delta_2)/(\|x\|+\|y\|+\delta_1+\delta_2)$

$$\frac{1}{(\|x\| + \|y\| + \delta_1 + \delta_2)} \left((\|x\| + \delta_1) \left(\frac{x}{\|x\| + \delta_1} \right) + (\|y\| + \delta_2) \left(\frac{y}{\|y\| + \delta_2} \right) \right) \in B$$
$$\frac{1}{(\|x\| + \|y\| + \delta_1 + \delta_2)} (x + y) \in B$$

So,

$$(||x|| + ||y|| + \delta_1 + \delta_2) \in \{1/s : s > 0, s(x+y) \in B\}$$

Then $||x + y|| = \inf\{1/s : s > 0, s(x + y) \in B\} \le ||x|| + ||y|| + \delta_1 + \delta_2$. This works for all $\delta_1 > 0$ and $\delta_2 > 0$. Hence, $||x + y|| \le ||x|| + ||y||$.

For the second part, we must show $B = \{x \in X : ||x|| \le 1\}$. Let $x \in B$, then $1 \cdot x \in B$. Which means $1 \in \{1/s : s > 0, sx \in B\}$ and $||x|| \le 1$.

Suppose $x \in X$ such that $||x|| \leq 1$. For $\delta > 0$, $\frac{x}{||x||+\delta} = \frac{x}{1+\delta} \in B$. Condition (*) tells us there exists t > 0 such that for $\alpha \in \mathbb{F}$, $|\alpha| \leq t$ if and only if $\alpha x \in B$. Then $\frac{1}{1+\delta} \leq t$. Taking δ arbitarily small $1 \leq t$. Finally set $\alpha = 1$, then $1 \cdot x = x \in B$.

3: Let $0 and let S be the vector space of all sequences in <math>\mathbb{F}$. For $x = (x_1, x_2, ...)$ is in S, set

$$\|x\| = \left(\sum_{k=1}^{\infty} |x_k|^p\right)^{1/p}$$

Let $X = \{x \in S : ||x|| < \infty\}.$

Let us show that $d(x, y) = ||x - y||^p$ defines a metric on X. We need to check the conditions on Def 1.17 of [1].

Let $x, y, z \in X$,

$$d(x,y) = ||x-y||^p = \left(\sum_{k=1}^{\infty} |x_k - y_k|^p\right)$$

Since we are summing over non negative terms, $d(x, y) \ge 0$. Also, since $x \in X$ the sum is finite.

(b) Look at the equivalence

$$\left(\sum_{k=1}^{\infty} |x_k - y_k|^p\right) = 0 \Leftrightarrow x_k = y_k \quad \forall k = 1, 2, \dots$$

If for any $k, x_k \neq y_k$ then we will have a postive term. Since each term is non negative, the sum will be positive.

This shows that d(x, y) = 0 if and only if x = y (that is $x_k = y_k$ for all k = 0, 1, ...).

(c) Since $|x_k - y_k| = |y_k - x_k|$ we have

$$d(x,y) = \left(\sum_{k=1}^{\infty} |x_k - y_k|^p\right) = \left(\sum_{k=1}^{\infty} |y_k - x_k|^p\right) = d(y,x)$$

(d) First we see the triangle inequality the field for $a, b \in \mathbb{F}$.

$$|a+b|^p = \frac{|a+b|}{|a+b|^{1-p}} \le \frac{|a|+|b|}{|a+b|^{1-p}} \le \frac{|a|}{|a|^{1-p}} + \frac{|b|}{|b|^{1-p}} \le |a|^p + |b|^p$$

Now let us look at the triangle inequality the vector space

$$d(x,z) = \sum_{k=1}^{\infty} |x_j - z_j|^p$$

=
$$\sum_{k=1}^{\infty} |(x_j - y_j) - (z_j - y_j)|^p$$

$$\leq \sum_{k=1}^{\infty} |(x_j - y_j)|^p + |(z_j - y_j)|^p$$

$$\leq \sum_{k=1}^{\infty} |(x_j - y_j)|^p + \sum_{k=1}^{\infty} |(z_j - y_j)|^p$$

$$\leq d(x,y) + d(y,z)$$

Hence, d is a metric on X.

To show X is a subspace of S. It is enough to show $x - \alpha y \in X$ for

 $x, y \in X$ and $\alpha \in \mathbb{F}$.

$$||x - \alpha y|| = (\sum_{k=1}^{\infty} |x_j - \alpha y_j|^p)^{1/p}$$

$$\leq (\sum_{k=1}^{\infty} |x_j|^p + \sum_{k=1}^{\infty} \alpha |y_j|^p)^{1/p}$$

$$\leq 2(\sum_{k=1}^{\infty} |x_j|^p)^{1/p} + 2\alpha (\sum_{k=1}^{\infty} |y_j|^p)^{1/p}$$

$$< \infty$$

Hence, X is a subspace of S.

Finally, consider a = (1, 0, 0, ...) and b = (0, 1, 0, 0, ...). Then $||a|| = (1^p + 0^p + 0^p + ...)^{1/p} = 1$ and $||b|| = (0^p + 1^p + 0^p + ...)^{1/p} = 1$. So $a, b \in X$. Now $||a + b|| = (1^p + 1^p + 0^p + ...)^{1/p} = 2^{1/p}$. Note that $||a|| + ||b|| = 2 < 2^{1/p} = ||a + b||$. This breaks the triangle inequality if this was a norm. Hence, $||\cdot||$ can not be a norm.

References

 Bryan Rynne and Martin A Youngson. *Linear functional analysis*. Springer Science & Business Media, 2007.