Math 9054A Assignment 3

Harshith Alagandala Student number: 251388575

October 4, 2023

2: We have

$$
Y = \{(a_n) \in X : \sum_{n=1}^{\infty} a_n = 0\}
$$

Suppose $(b_n) \in Y^{\perp}$, then for any $(a_n) \in Y$ we get $((a_n), (b_n)) = 0$. Since $(b_n) \in X$, we have $m \in \mathbb{N}$ such that $b_j = 0$ for $j > m$. Consider $(\tilde{b}_n) \in Y$ defined as $\tilde{b}_j = b_j$ for $1 \leq j \leq m$, $\tilde{b}_j = -b_{j-m}$ for $m+1 \leq j \leq 2m$ and $\tilde{b}_j = 0$ for $j \geq 2m + 1$. Indeed $(\tilde{b}_j) \in Y$: Taking the sum of terms

$$
\sum_{j=1}^{\infty} \tilde{b}_j = \sum_{j=1}^{m} \tilde{b}_j + \sum_{j=m+1}^{2m} \tilde{b}_j + \sum_{j=2m+1}^{\infty} 0 = \sum_{j=1}^{m} b_j + \sum_{j=1}^{m} -b_j = 0
$$

Hence $(\tilde{b}_i) \in Y$. Let us look at $((a_n), (b_n))$:

$$
((\tilde{b}_n), (b_n)) = \sum_{j=1}^{\infty} \tilde{b}_j \bar{b}_j = \sum_{j=1}^{m} \tilde{b}_j \bar{b}_j + \sum_{j=m+1}^{\infty} \tilde{b}_j \bar{0} = \sum_{j=1}^{m} b_j \bar{b}_j = \sum_{j=1}^{m} |b_j|^2
$$

Since $(\tilde{b}_n) \in Y$ we get the inner product to be zero. Hence $\sum_{j=1}^{m} |b_j|^2 = 0$ which implies $|b_j| = 0$ for $j = 1, ..., m$. Which forces $(b_j) = 0$ as all the terms are zero. So any element in Y^{\perp} is zero. Hence $Y^{\perp} = \{0\}.$

Note $\{0\}^{\perp}$ is the whole of X; given any element in $(x_n) \in X$, $(0, (x_n)) = 0$. Hence $(Y^{\perp})^{\perp} = X$.

Finally to see that $X \neq Y$. Note that $(1, 1, 1, 0, 0, 0, ...) \in X$, but not in Y , since the sequence sums to 3.

Hence $(Y^{\perp})^{\perp} = X \neq Y$.

3: Suppose M and N are closed subspaces of a Hilbert space H .

Let $v \in M \cap N$. Take any element $u \in M^{\perp} + N^{\perp}$, then $u = m + n$ then $m \in M^{\perp}$ and $n \in N^{\perp}$. We get $(v, u) = (v, m + n) = (v, m) + (v, n)$. Since $v \in M$ and $m \in M^{\perp}$: $(v, m) = 0$. Similary $(v, n) = 0$. Hence $(v, u) = 0 + 0 = 0$ for all $u \in M^{\perp} + N^{\perp}$ which gives $v \in (M^{\perp} + N^{\perp})^{\perp}$. So $M \cap N \subset (M^{\perp} + N^{\perp})^{\perp}.$

Now take an element $v \in (M^{\perp} + N^{\perp})^{\perp}$. Then let us show that $v \in (M^{\perp})^{\perp}$. Given any element in $m \in M^{\perp}$, we have $m = m + 0 \in M^{\perp} + N^{\perp}$; so $(v, m) = 0$. Since this holds for all $m \in M^{\perp}$, we have $v \in (M^{\perp})^{\perp}$. Now we use a result proved in class regarding closed subspaces of Hilbert space: Since M is a closed subspace we get $M = (M^{\perp})^{\perp}$. Hence $v \in M$. Using the same arguments with M replaced by N we get $v \in N$. Hence $v \in M \cap N$. So $(M^{\perp} + N^{\perp})^{\perp} \subset M \cap N$.

Therefore $(M^{\perp} + N^{\perp})^{\perp} = M \cap N$.

To show that $(M \cap N)^{\perp} = M^{\perp} + N^{\perp}$ may fail, we consider the following argument subspaces of ℓ^2 . Let U and W be as follows:

$$
U = \overline{\operatorname{span}}\{e_{2m} : m \in \mathbb{N}\}
$$

It is clear that U is closed as it is a closure of a set.

Set $v_n = \cos(\frac{1}{n^2})e_{2n} + \sin(\frac{1}{n^2})e_{2n+1}$, and set $V = \overline{\text{span}}\{e_1, v_1, v_2, ...\}.$ Finally, set $W = \{z\}^{\perp} \cap V$. Again W is closed since it is intersection of two closed sets (V is a closed set as it is a closure and perp of any subspace is closed).

In class we have shown that U and W are closed subspaces such that $U + W$ is not closed as $e_1 \notin U + W$ but $e_1 \in \overline{U + W}$.

Now we will consider $M = U^{\perp}$ and $N = W^{\perp}$. Then $(M \cap N)^{\perp}$ is closed as perp of a subspace is always closed. Now $M^{\perp} + N^{\perp} = (U^{\perp})^{\perp} + (W^{\perp})^{\perp}$. Since U is a closed subspace of the Hilbert ℓ^2 , we have $U = (U^{\perp})^{\perp}$, and similary $V = (V^{\perp})^{\perp}$. So $M^{\perp} + N^{\perp} = (U^{\perp})^{\perp} + (W^{\perp})^{\perp} = U + V$. But $U + V$ is not closed. Hence $M^{\perp} + N^{\perp}$ is not closed in this case.

So we can not have $(M \cap N)^{\perp} = M^{\perp} + N^{\perp}$ as one subspace is closed and the other is not. Therefore this maynot be true.