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Chapter 7: Introduction to Rings

7.1: Basic definitions and examples

Let R be a ring with 1.

1: By proposition 1 (3), we have (−1)(−1) = 1 · 1 = 1. Hence (−1)2 = 1.

2: Let u be a unit of R. There exists v ∈ R such that uv = vu = 1. By
proposition 1 (3) we have (−u)(−v) = uv = 1. Similarly, (−v)(−u) = 1.
Therefore, −u is a unit.

3: Let u be a unit in S. There exists v ∈ S such that uv = 1. By the inclusion
i of S in R we get i(u ·S v) = (i(u)) ·R (i(v)) = u ·R v and i(1) = 1. So
u ·R v = 1. Similarly, v ·R u = 1. Hence, v is a unit in R.

Consider, the subring Z ⊂ Q. The subring Z contains the identity 1. The
element 2 ∈ Z is not a unit in Z, but it is a unit in Q as
(1/2) ·R 2 = 2 ·R (1/2) = 1.

11: Simplify (x−1)(x+1) = x2−x+x−1 = x2−1 = 0. Since R is an integral
domain, it has no zero devisors. Then either x−1 = 0 or x+1 = 0. Hence,
x = ±1.

12: Any field F is an integral domain: a non zero element u ∈ F is a unit so
it is not a zero devisor. Let S be a subring of F such that 1 ∈ S. Suppose
a, b ∈ S such that a ·S b = 0. Then by the inclusion map, we get a ·F b = 0,
which tells us either a or b must be 0 in F . Hence, by injectivity of the
inclusion map, a or b must be 0 in S.

13: (a): By the commutativity of integers, (ab)k = akbk = (akb)b(k − 1) =
nb(k− 1). By taking modulo n we get (ab)k = 0 mod n. So (ab)k =
(ab)k mod n = 0 mod n = 0. Hence, ab is nilpotent.

(b): We can represent n as a multiple of primes as pa1
1 ...pak

k where pj are
primes and aj are positive integers.

Suppose, all the prime divisors pjs of n divides a. Then a = p
bj
1 ...pbkk

where bk are positive integers. There exists a positive integer m such

thatmbj ≥ aj for all j. Then am =
∏

j=1...k p
mbj
j =

∏
j=1...k p

aj+(mbj−aj)
j =∏

j=1...k p
aj

j

∏
j=1...k p

(mbj−aj)
j = n

∏
j=1...k p

(mbj−aj)
j = 0 mod n.

Hence, a is nilpotent.

(c): Let f ∈ R be a non zero element. Then there exists a x ∈ X such
that f(x) = a where a ∈ F is not zero. Since a ∈ F it is a not a zero
divisor. Hence it can not be a nilpotent element. Suppose fm = 0,
then fm(x) = (f(x))m = am = 0. This gives us a contradiction as a
can not be nilpotent.

14: Let m ∈ Z+ be the smallest number such that xm = 0. That means
(xm−1) ̸= 0. We take α0 = 1 for any α ∈ R.

2



(a): We have xm = x(xm−1) = 0. Then x is either zero or nilpotent as
xm−1 is not zero.

(b): As R is commutative, (rx)m = rmxm = rm0 = 0.

(c): Let k ≥ m be a odd number. 1 = 1+xk = (1+x)(xk−1−xk−2...+1).
Hence, (1 + x) is a unit.

(d): Let u be a unit. Then u+ x = u(1 + u−1x), by (b) we get u−1x is a
unit and then by (c) we get (1 + u−1x) is a unit. Product of units is
a unit. Hence u+ x is a unit.

15: Let a, b ∈ R where R is a boolean ring. Then (a + b) = (a + b)2 =
a2 + ab + ba + b2 = a + ab + ba + b. Then ab + ba = 0. Also note
a+ a = (a+ a)2 = a2 + a2 + a2 + a2 = a+ a+ a+ a. So we get a+ a = 0.
Which means a = −a. Using this, ab = −ba = b(−a) = ba. Hence, the R
is commutative.

16: Let R be a boolean ring which is an integral domain. Let a ∈ R be a
non zero element. Then a2 = a and 0 = a2 − a = a(a − 1). Since R is
an integral domain and a is non zero, we have a − 1 = 0. Hence, a = 1.
Therefore, any non zero element is 1. Which means there are only two
elements in the group, ie, 0 and 1 and 12 = 1. Therefore, R is Z/2Z.

26: (a): Lets look at ν(1) = ν(1 · 1) = ν(1) + ν(1), so ν(1) = 0. Also,
0 = ν(1) = ν(−1 · −1) = 2ν(−1), so ν(−1) = 0. So 1,−1 ∈ R.

Given non zero elements a, b ∈ R, ν(a+b) ≥ min{ν(a), ν(b)}. Hence,
a+ b ∈ R, as ν(a+ b) ≥ 0. For additive inverse, ν(−a) = ν(−1 · a) =
ν(−1) + ν(a) = ν(a) ≥ 0. Hence, a ∈ R. Therefore, R ⊂ K forms an
abelian group in addition.

For multiplication, ν(ab) = ν(a) + ν(b) ≥ 0 which implies ab ∈ R.
Hence, multiplication is closed in R. Therefore, the injection of R in
K is a ring homomorphism and R is subring of K.

(b): Let x ∈ K be non zero. By 0 = ν(1) = ν(x · x−1) = ν(x) + ν(x−1),
we get ν(x) = −ν(x−1). Hence, atlease one of them is non negative.

(c): Let u ∈ R be a unit, which means ν(u) ≥ 0 and ν(u−1) ≥ 0. As seen
above, ν(x) = −ν(x−1). Hence, ν(x) = 0.

7.2 Examples: polynomial rings, matrix rings,and group
rings

Let R be a commutative ring with 1.

1: For (a), p(x) + q(x) = 9x3 − 3x2 + 37x− 9.
For (b), p(x) + q(x) = x3 + x2 + x+ 1.
For (c), p(x) + q(x) = x.
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For (a), p(x)q(x) = 14x6 − 21x5 − 15x3 + 144x2 + 181x+ 20.
For (b), p(x)q(x) = x5 + x3 + x.
For (c), p(x)q(x) = 2x6 + 1x+ 2.

3: (a): We can check that R[[x]] is an abelian group in addition. And with
the multiplication defined, it has a ring structure as the distributive
law follows just like the polynomials. We can check that a0 = 1 and
aj = 0 for all j > 0 is the identity for R[[x]]. Commutative follows
because

n∑
k=0

akbn−k =

n∑
j=0

bjan−j

(b): Let us multiply (1 − x) with 1 + x + x2 + ... . Say the product is∑
cjx

j ; if j > 0 then cj = a0bj + a1bj−1 = 1 − 1 = 0. And c0 = 1.
Hence, the product is identity.

(c): Say the sum
∑∞

j=0 ajx
j is a unit. Then it has an inverse, say

∑∞
j=0 bjx

j .
Their product must be 1. In particular, the last term a0b0 = 1. Hence
a0 must be a unit in R.

Say a0 is a unit in R. Let b0 = a−1
0 . We recursively define bj =

−a−1
0

∑j
k=1 akbj−k. Then we can check the product of the formal

series is 1.

4: Let α = (
∑∞

j=0 ajx
j) and β = (

∑∞
j=0 bjx

j). Suppose αβ = 0. Then∑j
k=0 akbj−k = 0. In particular, a0b0 = 0. Since R is an integral domain,

we must have either a0 or b0 is zero.

Now suppose the first k − 1 coefficients are zero for α or β. Say they are
zero for α: then 0 = akb0+ak−1b1+ ...+a0bk = akb0. Then either ak = 0
or b0 = 0. Suppose ak ̸= 0, then 0 = ak+1b0 + akb1 + ...+ a0bk+1 = akb1
gives b1 = 0. Iteratively, 0 = ak+mb0 + ak+m−1b1 + ... + a0bk+m = akbm
gives bm = 0 where m ≤ k. Hence, the first k coefficients are zero for α or
β.

By induction this holds for any positive integer k. Therefore, either α or
β must be zero.

8: Let (aij) and (bij) be two matrices such that aij = 0 when i ≥ j and
bij = 0 when i+ k ≥ j for some k ≤ n.

Let (cij) denote their product

cij =

n∑
k=1

aikbkj

Take i and j such that i+ k + 1 ≥ j.

cij =

n∑
l=1

ailblj =

i∑
l=1

ailblj +

n∑
l=i+1

ailblj = 0 + 0
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Therefore, we have cij = 0 when i+ (k + 1) ≥ j.

If A is an upper triangular matrix then by inducting on the above state-
ment, we get An has all its elements zero. As for any i and j we have
i+ n ≥ j in an n× n matrix.

7.3 Ring homomorphisms and Quotient rings

Let R be a ring with 1 ̸= 0.

1: Let ϕ be an homomorphism from 2Z to 3Z. Suppose ϕ(2) = 3m where
m ∈ Z.

6m = ϕ(2) + ϕ(2) = ϕ(2 + 2) = ϕ(2 · 2) = ϕ(2) · ϕ(2) = 9m2

So 6m− 9m2 = 0 and 3m(2− 3m) = 0. Since Z is an integral domain, we
have m = 0. As ϕ(2) = ϕ(0) = 0, ϕ is not an isomorphisms.

2: By proposition 4, the units of Z[x] are the units of Z which is the single-
tonset {1}. Similarly, the units of Q[x] are the units of Q. Every non zero
element is a unit in Q.

Let ϕ be an isomorphism from Q[x] to Z[x]. Note ϕ(1) = ϕ(1 · 1) =
ϕ(1)ϕ(1), either ϕ(1) = 0 or ϕ(1) = 1 ( as Z is a integral domain). Since
ϕ is an isomorphism then ϕ(1) must be 1. Let u ∈ Q[x] be a unit, then
ϕ(1) = ϕ(u ·u−1) = ϕ(u) ∗ϕ(u−1). This shows that a unit maps to a unit.
Since an isomorphism is a bijection the number of units must be the same
in both the rings. Which is not the case here. Hence we can not have an
isomorpisms.
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