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Selected problems from Dummit and Foote [1].
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Chapter 7: Introduction to Rings

7.1: Basic definitions and examples

Let R be a ring with 1.
1: By proposition 1 (3), we have (=1)(—=1) =1-1=1. Hence (—1)? = 1.

2: Let w be a unit of R. There exists v € R such that uwv = vu = 1. By
proposition 1 (3) we have (—u)(—v) = wv = 1. Similarly, (—v)(—u) = 1.
Therefore, —u is a unit.

3: Let u be a unit in S. There exists v € S such that uv = 1. By the inclusion
i of Sin R we get i(u-gv) = (i(u)) ‘r (¢(v)) = u-gvand i(1l) = 1. So
u-pv = 1. Similarly, v -g u = 1. Hence, v is a unit in R.

Consider, the subring Z C Q. The subring Z contains the identity 1. The
element 2 € Z is not a unit in Z, but it is a unit in Q as

(1/2)-r2=2-p(1/2)=1.

11: Simplify (z—1)(z+1) = 2> —z+x—1=2%—1=0. Since R is an integral
domain, it has no zero devisors. Then either xt—1 = 0 or x4+1 = 0. Hence,
r ==+£1.

12: Any field F is an integral domain: a non zero element v € F' is a unit so
it is not a zero devisor. Let S be a subring of F' such that 1 € S. Suppose
a,b € S such that a-gb = 0. Then by the inclusion map, we get a-pb =0,
which tells us either a or b must be 0 in F'. Hence, by injectivity of the
inclusion map, a or b must be 0 in S.

13: (a): By the commutativity of integers, (ab)* = a*b* = (a*b)b(k —1)
nbk —1). By taking modulo n we get (ab)* =0 mod n. So (ab)*
(ab)* mod n =0 mod n = 0. Hence, ab is nilpotent.

(b): We can represent n as a multiple of primes as p{*...py* where p; are
primes and a; are positive integers.

Suppose, all the prime divisors p;s of n divides a. Then a = pl{j pzk
where by, are positive integers. There exists a positive integer m such

that mb; > a; for all j. Then a™ = szl___kp;”bj = szlmkp?ﬁ(mbj_aj) =

Hj:L..k p;j Hj:l...k p§'mbjiaj) = nHj:l...k p§'mbjiaj) = 0 mod n.
Hence, @ is nilpotent.

(c): Let f € R be a non zero element. Then there exists a * € X such
that f(z) = a where a € F' is not zero. Since a € F' it is a not a zero
divisor. Hence it can not be a nilpotent element. Suppose f™ = 0,
then f™(x) = (f(x))™ = o™ = 0. This gives us a contradiction as a
can not be nilpotent.

14: Let m € Z*1 be the smallest number such that ™ = 0. That means
(x™=1) £ 0. We take o’ =1 for any a € R.



(a): We have 2™ = x(x™~ ') = 0. Then x is either zero or nilpotent as

™1 is not zero.

(b): As R is commutative, (rz)™ = r™z™ =r™0 = 0.

(c): Let k > m be a odd number. 1 =1+2z% = (1+2)(z* "1 —2*"2..+1).
Hence, (1 4+ z) is a unit.

(d): Let u be a unit. Then u + 2 = u(1 +u~'x), by (b) we get v~z is a
unit and then by (c) we get (1 +u~'z) is a unit. Product of units is
a unit. Hence u + z is a unit.

15: Let a,b € R where R is a boolean ring. Then (a +b) = (a + b)? =
a’ +ab+ba+b> = a+ab+ ba +b. Then ab + ba = 0. Also note
at+a=(a+a)?=a’+a*+a®>+a*>=a+a+a+a. Sowegeta+a=0.
Which means a = —a. Using this, ab = —ba = b(—a) = ba. Hence, the R
is commutative.

16: Let R be a boolean ring which is an integral domain. Let a € R be a
non zero element. Then a? = a and 0 = a? — a = a(a — 1). Since R is
an integral domain and a is non zero, we have a — 1 = 0. Hence, a = 1.
Therefore, any non zero element is 1. Which means there are only two
elements in the group, ie, 0 and 1 and 12 = 1. Therefore, R is Z/2Z.

26: (a): Lets look at v(1) = v(1-1) = v(1) + v(1), so v(1) = 0. Also,
0=v(l)=v(-1--1)=2v(-1),s0v(-1)=0. So 1,-1 € R.
Given non zero elements a,b € R, v(a+b) > min{v(a),v(b)}. Hence,
a+be R, asv(a+b) > 0. For additive inverse, v(—a) = v(—1-a) =
v(—1) +v(a) = v(a) > 0. Hence, a € R. Therefore, R C K forms an
abelian group in addition.
For multiplication, v(ab) = v(a) + v(b) > 0 which implies ab € R.
Hence, multiplication is closed in R. Therefore, the injection of R in
K is a ring homomorphism and R is subring of K.

(b): Let # € K be non zero. By 0 = v(1) = v(z-271) = v(z) + v(z™1),

we get v(z) = —v(z~1). Hence, atlease one of them is non negative.
(c): Let u € R be a unit, which means v(u) > 0 and v(u=1) > 0. As seen
above, v(z) = —v(z~1t). Hence, v(z) = 0.

7.2 Examples: polynomial rings, matrix rings,and group
rings

Let R be a commutative ring with 1.

1: For (a), p(z) + q(z) = 923 — 322 + 37z — 9.
For (b), p(z) + q(z) = 23 + 2% +x + 1.
For (c), pl) + q(z) = 2.



For (a), p(z)q(x) = 142% — 212° — 1523 + 14422 + 1812 + 20.
For (b), p(z)q(z) = 2° + 2° + 2.
For (¢), p(z)q(z) = 225 + 1z + 2.

: (a): We can check that R][[x]] is an abelian group in addition. And with
the multiplication defined, it has a ring structure as the distributive
law follows just like the polynomials. We can check that ag = 1 and
a; = 0 for all j > 0 is the identity for R[[z]]. Commutative follows

because
n n
E akbn,k = E bjan,j
k=0 =0

(b): Let us multiply (1 — z) with 1 + 2 + 22 + ... . Say the product is
Zle‘j; if j > 0 then cj = aobj + albj_l =1—-1=0. And ¢y = 1.
Hence, the product is identity.

(¢): Say thesum >772  a;27 is a unit. Then it has an inverse, say > bja”.
Their product must be 1. In particular, the last term agbg = 1. Hence
ap must be a unit in R.

Say ap is a unit in R. Let by = aal. We recursively define b; =

—aal Zi:l arbj_. Then we can check the product of the formal
series is 1.

tLet a = (3272 a27) and B = (3072,b;27). Suppose aff = 0. Then

Zi:o arbj_, = 0. In particular, agbg = 0. Since R is an integral domain,
we must have either ag or by is zero.

Now suppose the first &k — 1 coefficients are zero for o or 5. Say they are
zero for a: then 0 = arbg +ar_1b1 + ... + agbp = arbg. Then either a =0
or byp = 0. Suppose ax # 0, then 0 = ax11bp + arb + ... + agbp+1 = axby
gives by = 0. Iteratively, 0 = ar4mbo + Gprm—1b1 + ... + aobgrm = arbm
gives b, = 0 where m < k. Hence, the first k coefficients are zero for « or
B.

By induction this holds for any positive integer k. Therefore, either « or
3 must be zero.

: Let (a;;) and (b;;) be two matrices such that a;; = 0 when ¢ > j and
bi; =0 when ¢ + k > j for some k < n.

Let (c¢;j) denote their product

n
cij = E aixb;
k=1

Take 7 and j such that ¢ + k+1 > j.

i = Za”b” - Zailblj + Z aib; =0+0
=1 =1

l=i+1



Therefore, we have ¢;; = 0 when i + (k + 1) > j.

If A is an upper triangular matrix then by inducting on the above state-
ment, we get A™ has all its elements zero. As for any ¢ and j we have
¢4+ n > jin an n X n matrix.

7.3 Ring homomorphisms and Quotient rings

Let R be a ring with 1 # 0.

1: Let ¢ be an homomorphism from 27 to 3Z. Suppose ¢(2) = 3m where
m € Z.

6m = $(2) + 6(2) = B2 +2) = 9(2-2) = B(2) - $(2) = Im?

So 6m —9m? = 0 and 3m (2 — 3m) = 0. Since Z is an integral domain, we
have m = 0. As ¢(2) = ¢(0) =0, ¢ is not an isomorphisms.

2: By proposition 4, the units of Z[z| are the units of Z which is the single-
tonset {1}. Similarly, the units of Q[z] are the units of Q. Every non zero
element is a unit in Q.

Let ¢ be an isomorphism from Q[z]| to Z[z]. Note ¢(1) = ¢(1-1) =
d(1)¢p(1), either ¢(1) =0 or ¢(1) =1 (as Z is a integral domain). Since
¢ is an isomorphism then ¢(1) must be 1. Let u € Q[z] be a unit, then
d(1) = p(u-u=t) = ¢(u) * p(u~'). This shows that a unit maps to a unit.
Since an isomorphism is a bijection the number of units must be the same
in both the rings. Which is not the case here. Hence we can not have an
isomorpisms.
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