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1.1: Let Ω be a domain in C and K = K̂Ω. We have seen that K̂Ω is K union
with relatively compact compontents of Ω \ K. Since K̂Ω = K, Ω \ K
doesn’t contain any component that is relatively compact in Ω.

Let M ⊂ K be a connected component of K. To show M is holomorphi-
cally convex it is enough to show M = M̂Ω. Or equivalently, Ω \M has
no relatively compact compontents in Ω.

Suppose U be a connected component of Ω \M that is relatively compact
in Ω. We have Ω \ K ⊂ Ω \ M since K ⊃ M . As M is a connected
compontent of K, there are open sets that seperate M and K \M . Say
VM is a neighbourhood ofM in this seperation andWM is a neighbourhood
of K \M such that VM ∩WM = ∅. Then VM \M ⊂ Ω \K.

Note U ∩ (VM \M) is not empty. Because U ∩M ̸= ∅ as Ω is connected

and U is a component of Ω\M . Now U ∩ (VM \M) ⊂ Ω\K. Let Ũ be the
component of Ω \K that contains U ∩ (VM \M). Now as Ω \K ⊂ Ω \M ,

we get Ũ ⊂ U . Finally, Ũ ⊂ U ⊂ Ω. Hence, Ũ is relatively compact in Ω
and is a component of Ω \K which contradicts K being holomorphically
convex. So Ω\M can not any relatively compact components in Ω. Which
tells us that M is holomorphically convex in Ω.

1.2: Let u ∈ C2(Ω) on Ω, where Ω ⊂ C is a domain.

(i) Suppose ∆u ≥ 0. Let G ⊂ Ω be a relatively compact subdomain, h
be a continuous function on G such that u ≤ h on bG. Consider the
function

v(z) = u(z)− ϵ+ δ|z|2

where ϵ > 0 and δ ∈ (0, ϵ/R) with R = sup{|z|2: z ∈ bG}.
Calculate ∆v = ∆u(z)+δ∆|z|2= ∆u(z)+δ∆x2+y2 = ∆u(z)+δ4 ≥
4δ > 0. Hence ∆v > 0. And also v ≤ u on bG by the condition on R
given.

We will show v ≤ h on G. Note ∆(v − h) = ∆v −∆h = ∆v > 0 and
v − h ≤ 0 on bG. We will show that v − h can not attain maximum
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on any point of G. This will show supG(v − h) ≤ supbG(v − h) ≤ 0.
Hence, we will get v ≤ h on G.

Denote f = v − h on G. We have ∆f ≥ 4δ > 0. Let z ∈ G.

Define average A(r) := 1
2πr

∫
bB(z,r)

fdS where S is the boundary

measure and r > 0 such that B(z, r) ⊂ G. As f is a continuous

function, limiting r → 0, we get limr→0 A(r) = f(z)S(bB(z,r))
2πr = f(z)

as the measure of bB(z, r) = 2πr.

Let us look at the derivate of A. Since f is a continuous function
over a compact interval, we can differentiate inside the integral

A(r) =
1

2πr

∫
bB(z,r)

f(ζ)dS(ζ)

=
1

2πr

∫
[0,2π]

f(z + r(cos t, sin t))rdt

=
1

2π

∫
[0,2π]

f(z + r(cos t, sin t))dt

A′(r) =
1

2π

∫
[0,2π]

d

dr
f(z + r(cos t, sin t))dt

=
1

2π

∫
[0,2π]

∇f(z + r(cos t, sin t)) · (cos t, sin t)dt

=
1

2πr

∫
[0,2π]

∇f(z + r(cos t, sin t)) · (cos t, sin t)rdt

=
1

2πr

∫
bB(z,r)

∇f(ζ) · η(ζ)dS(ζ)

Here η is the unit normal to the boundary. Using the divergence
theorem (integration by parts in 2 variables) we get:

A′(r) =
1

2πr

∫
B(z,r)

∇ · ∇f(β)dµ(β)

=
1

2πr

∫
B(z,r)

fxx(β) + fyy(β)dµ(β)

=
1

2πr

∫
B(z,r)

∆fdµ(β)

≥ 1

2πr

∫
B(z,r)

4δdµ(β)

≥ 1

2πr
4δπr2

≥ 4δr

> 0

where µ is the area measure. Since A has derivate strictly postive. We
get A is strictly monotone. Which gives A(r) > limr→0 A(r) = f(z).
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Suppose f had a maxima at z ∈ G. The choose r > 0 such that
B(0, r) ⊂ G. Then we get A(r) > f(z). But this is impossible as f
attains maxima at z.

A(r)− f(z) =
1

2πr

∫
bB(z,r)

f(ζ)− f(z)dS(ζ)

≤ 0

So the average must be lesser than or equal to f(z). This contradicts
that f attains maxima at z. Hence, f can not attain maxima at z and
supremum of f is only attained on the boundary (as G is compact).
But on the boundary f ≤ 0. This gives f ≤ 0 on G. Therefore v ≤ h
on G.

So we have that v is a subharmonic function on G. First take δ → 0,
then the resulting function is decreasing limit of subharmonic fuctions
hence is subharmonic. Then adding ϵ to the limit function we get u.
Which shows that u is subharmonic.

(ii) Suppose ∆u(a) < 0 for some a ∈ Ω. Then consider by continuity of
∆u we get ∆u < 0 in a small ball say B = B(a, ro). Then ∆(−u) > 0
on G. Following the calculation as above we get

−u(a) <
1

2πro

∫
bB

−udS

And hence

u(a) >
1

2πro

∫
bB

udS

Suppose h is harmonic on B(a, ro) such that h = u on bB. By the
MVT of harmonic functions we get

h(a) =
1

2πro

∫
bB

hdS

Suppose u is subharmonic, we must have h ≥ u on B. With the
previous equation

u(a)− h(a) >
1

2πro

∫
bB

(u− h)dS = 0

So u(a) > h(a) this contradicts h ≥ u on B. Hence, u can not be
subharmonic.

1.3: Let L1 = {z ∈ C2 : (z, a) = b} where a ∈ C2 \ {0} and b ∈ C. Suppose
u, v ∈ L1 such that u ̸= v. Denote w = u − v = (w1, w2) ∈ C2. As
u ̸= v, WLOG we can take w2 ̸= 0. We have (u, a) = b and (v, a) = b. So
(u− v, a) = (w, a) = 0. Which gives w1ā1 + w2ā2 = 0 =⇒ a2 = − w̄1

w̄2
a1.

Hence a = (a1,− w̄1

w̄2
a1). Also note that a1 ̸= 0 as a ̸= 0. Now to get
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a condition on b: (u, a) = u1ā1 + u2ā2 = b. Dividing by ā1, we get
u1 + (−w1

w2
)u2 = b

ā1
.

Now suppose, we have another line L2 = {z ∈ C2 : (z, α) = β} where
α ∈ C2\{0} and β ∈ C. And suppose u, v ∈ L2. With the same arguments
as above, we get α = (α1,− w̄1

w̄2
α1) with α1 ̸= 0 and u1 + (−w1

w2
)u2 = β

ᾱ1
.

Which gives β
ᾱ1

= b
ā1
. Finally look at the equivalence

(z, a) = b ⇔ (z, a)
ᾱ1

ā1
= b

ᾱ1

ā1
⇔ (z, a

α1

a1
) = β ⇔ (z, α) = β

Therefore, L1 = L2.

1.4: Part (i) First we see that d is a metric. Let f, g, h ∈ O(D). Non negativity
d(f, g) ≥ 0: this follows as all terms in the sequence are non negative. Also
d(f, f) = 0: as |f − f |K= 0, so each term in the sequence is zero. If f ̸= g
then there exists a point a ∈ D such that |f(a)− g(a)|> 0. So d(f, g) > 0
as there exists a j such that a ∈ Kj and the jth term would be non zero
in the sequence as |f − g|Kj

> 0 and hence the sequence is greater than
zero.

d(f, h) =

∞∑
j=1

2−j |f − h|Kj

1 + |f − h|Kj

=

∞∑
j=1

2−j(1− 1

1 + |f − h|Kj

)

≤
∞∑
j=1

2−j(1− 1

1 + |f − g|Kj+|g − h|Kj

)

≤
∞∑
j=1

2−j |f − g|Kj
+|g − h|Kj

1 + |f − g|Kj+|g − h|Kj

≤
∞∑
j=1

2−j |f − g|Kj

1 + |f − g|Kj+|g − h|Kj

+ 2−j |g − h|Kj

1 + |f − g|Kj+|g − h|Kj

≤
∞∑
j=1

2−j |f − g|Kj

1 + |f − g|Kj

+

∞∑
j=1

2−j |g − h|Kj

1 + |g − h|Kj

≤ d(f, g) + d(g, h)

Hence d is a metric.

Now let us show that the metric induces the topology of compact conver-
gence.

Say fn → g in the topology of compact convergence on O(D) where fn, g ∈
O(D). Then let us show that d(fn, g) → 0. Given ϵ > 0. Find J such
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that 1/2J < ϵ/2.

d(fn, g) =

∞∑
j=1

2−j |fn − h|Kj

1 + |fn − h|Kj

=

J∑
j=1

2−j |fn − h|Kj

1 + |fn − h|Kj

+

∞∑
j=J+1

2−j |fn − h|Kj

1 + |fn − h|Kj

≤
J∑

j=1

2−j |fn − h|Kj

1 + |fn − h|Kj

+

∞∑
j=J+1

2−j

≤
J∑

j=1

2−j |fn − h|Kj

1 + |fn − h|Kj

+ 2−J

≤
J∑

j=1

2−j |fn − h|Kj

1 + |fn − h|Kj

+ ϵ/2

Now for each j ∈ {1, ..., J} choose Nj such that for all n ≥ Nj we have

2−j |fn − h|Kj

1 + |fn − h|Kj

< ϵ/(2J)

This can be choosen as |fn − h|Kj
→ 0 for each j. Now choose N =

max{N1, ..., NJ}.
Then for n ≥ N :

d(fn, g) ≤
J∑

j=1

2−j |fn − h|Kj

1 + |fn − h|Kj

+ ϵ/2 ≤
J∑

j=1

ϵ/(2J)+ ϵ/2 ≤ ϵ/2+ ϵ/2 = ϵ

Hence d(fn, g) → 0.

Conversely, say d(fn, g) → 0. Take K ⊂ D compact. Now given ϵ > 0, we
will find N such that n ≥ N we have |fn− g|K< ϵ. This will show fn → g
uniformly on K.

As {Kj} exhaust D, we can find J such that K ⊂ KJ . Find M such
that n ≥ M implies d(fn, g) <

ϵ
1+ϵ2

−J . Then specifically, since the terms

are non negative, we have 2−J |fn−h|KJ

1+|fn−h|KJ
< ϵ

1+ϵ2
−J . Since t/(1 + t) is

an increasing function on t > 0. We get |fn − h|KJ
< ϵ. Hence fn → g

uniformly on K.

So d induces the same topology as compact convergence on O(D).

Part (ii) Say Σ is bounded.

Given any K compact in D. Find J such that K ⊂ KJ . Set r = 2−J−1.
We can find λ > 0 such that Σ ⊂ λB(0, r). Given f ∈ Σ we have
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d(0, f/λ) < r. Then looking at a single term we get

2−J |f/λ|KJ

|f/λ|KJ
+1

< r = 2−J−1

|f/λ|KJ

|f/λ|KJ
+1

< 1/2

|f |KJ
< λ

Given any function f ∈ Σ we have got |f |K≤ |f |KJ
< λ. Hence sup{|f |K :

f ∈ Σ} ≤ λ < ∞.

Suppose sup{|f |K : f ∈ Σ} < ∞ for all K compact in D. Let Mj =
sup{|f |Kj

: f ∈ Σ}. Take any r ∈ (0, 1). Let J be big enough such that
2−J < r/2. Choose λ big enough such that

2−j Mj/λ

1 +Mj/λ
< r/2J

for j = 1, ..., J . Then as shown in part (i). We get

d(0, f/λ) =

J∑
j=1

2−j |f/λ|Kj

1 + |f/λ|Kj

+

∞∑
j=J+1

2−j |f/λ|Kj

1 + |f/λ|Kj

≤
J∑

j=1

2−j |f/λ|Kj

1 + |f/λ|Kj

+

∞∑
j=J+1

2−j

≤
J∑

j=1

2−j Mj/λ

1 +Mj/λ
+ 2−J

<

J∑
j=1

r/2J + r/2

< r

Hence f/λ ∈ B(0, r). That is f ∈ λB(0, r). So Σ ⊂ λB(0, r). Therefore
Σ is bounded.

1.5: Let Ω = D2(0, 1) \ D2(0, r) for 0 < r < 1, be a domain in C2. Suppose
f ∈ O(Ω).

(i) and (ii) Fix z1 with |z1|< 1, we consider two cases

Case 1 r < |z1|< 1 : Then for any given |z2|< 1, we get (z1, z2) ∈ Ω.
Since we have f ∈ O(Ω), it is holomorphic in each variable; we have
z2 7→ f(z1, z2) is holomorphic at the set of points

{z2 : (z1, z2) ∈ Ω} = {z2 : |z2|< 1}
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Hence, we can write z2 7→ f(z1, z2) as a power series on the unit ball.
Once we fix z1, we get a power series in z2; so the coefficients of the
power series are dependent on z1. We get

z2 7→ f(z1, z2) =

∞∑
n=0

an(z1)z
n
2

We can let an(z1) = 0 when n is a negative integer. Giving us

z2 7→ f(z1, z2) =

∞∑
n=−∞

an(z1)z
n
2

Now we must show that an are continuous functions of z1. Since we
have a power series about zero, we can calculate an by taking the
following integral:

an(z1) =
1

2πi

∫
|ζ|=r+δr

f(z1, ζ)

ζj+1
dζ

where δr > 0 such that r + δr < 1.

We must show that this function is continuous in z1. Let wn → zo

|an(wn)− an(zo)| ≤ 1

2π

∫
|ζ|=r

∣∣∣∣f(wn, ζ)− f(zo, ζ)

ζj+1

∣∣∣∣ dζ
≤ 1

2πrj+1

∫
|ζ|=r+δr

|f(wn, ζ)− f(zo, ζ)|dζ

Since f is continuous, it is uniformly continuous on the compact set
{(z1, z2) : z1 ∈ D(zo, ϵo) and |z2|= r} for some small epsilon that
such that D(zo, ϵo) ⊂ D(0, 1). Given ϵ > 0, we find some δ > 0
such that for u,w in this compact set such that |u − w|< δ gives
|f(u)− f(w)|< ϵ.

Choose wn close enough such that |wn − uo|< δ:

|an(wn)− an(zo)| ≤ 1

2πrj+1

∫
|ζ|=r+δr

|f(wn, ζ)− f(zo, ζ)|dζ

≤ 1

2πrj+1

∫
|ζ|=r+δr

ϵdζ

≤ 1

rj
ϵ

So an(wn) → an(zo) as wn → zo. Hence, an is continuous.

Case 2 |z1|≤ r : For this case we will get an annulus. Then for r <
|z2|< 1 we get (z1, z2) ∈ Ω. We get z2 7→ f(z1, z2) is holomorphic in
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this annulus. Take the Laurents series expansion about zero. When
r < |z2|< 1.

z2 7→ f(z1, z2) =

∞∑
n=−∞

an(z1)z
n
2

Where

an(z1) =
1

2πi

∫
|ζ|=r+δr

f(z1, ζ)

ζj+1
dζ

Note (z1, ζ) ∈ Ω for all |ζ|= r+ δr. Again, with the same calculation
as before we get ans are continuous functions in z1.

Remark: we can not take

an(z1) =
1

2πi

∫
|ζ|=r

f(z1, ζ)

ζj+1
dζ

As this evaluatest f at (z1, ζ) where |ζ|= r and |z1|≤ r. In this case
(z1, ζ) /∈ Ω. I fixed the issue by taking |ζ|= r + δr.

(iii) To show an is holomorphic in z1 it is enough to check ∂
∂zan = 0.

∂

∂z
an(z1) =

1

2πi

∂

∂z

∫
|ζ|=r+δr

f(z1, ζ)

ζj+1
dζ

We can take the differential operator inside the integral as the func-
tion is continuously differentiable in the compact region of integration
and is bounded above.

∂

∂z
an(z1) =

1

2πi

∫
|ζ|=r+δr

∂

∂z

f(z1, ζ)

ζj+1
dζ = 0

As z1 7→ f(z1, ζ) is holomorphic. Also note that, since |ζ|= r + δr
and (z1, ζ) ∈ Ω, an can also be defined for all z1 ∈ D(0, 1) = D. So
an ∈ O(D).

(iv) For j < 0, since aj ∈ O(D) and aj = 0 on |z1|> r, which contains a
limit point, we get that aj is identically zero on D.

(v) Take |z1|≤ r. Consider the Laurents series expansion we have given
before. When r < |z2|< 1.

z2 7→ f(z1, z2) =

∞∑
n=−∞

an(z1)z
n
2

But since aj is identically zero for j < 0, we will get this map as a
power series.

z2 7→ f(z1, z2) =

∞∑
n=0

an(z1)z
n
2
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The radius of convergence given by the root test would match the
one we had for the annulus. Which tells us that this map is analytic
on the unit disc.

Hence we can define f(z1, z2) for any point |z2|< 1. So we can extend
f to all points |z1|< 1 and |z2|< 1. Let us denote it by f̃ : D2 → C.

f̃(z1, z2) =

∞∑
n=0

an(z1)z
n
2

It is clear that it is holomorphic in z2 for any fixed |z1|< 1. If we fix
|z2|< 1, then we have

∂

∂z1
f̃(z1, z2) =

∞∑
n=0

∂

∂z1
an(z1)z

n
2 = 0

As an is holomorphic on D. So it partially holomorphic in each
variable. This is a holomorphic function on D2(0, 1) using Hartogs
theorem.

Remark: we don’t need to use Hartogs Theorem here, we can show
that f is continuous by a sequential argument as ans are continuous.
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