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2.1: The domain of convergence is the set of all points where the power series
converges in some neighbourhood of that point.

Consider the power series p(x) =
∑∞

k=0 z
k
1z

k
2 . By Abel’s lemma: If (a, b) ∈

Cn such that |akbk|< M < ∞ for any term in the power series p, then p
converges in the polydisc D(0, (|a|, |b|)).
Take (a, b) ∈ Cn such that |ab|< 1. We can choose ϵ > 0 small enough
that |(1 + ϵ)a(1 + ϵ)b|< 1. Set p = (1 + ϵ)a and q = (1 + ϵ)b. . Clearly,
|pkqk|= (pq)k < 1 < ∞. So, the power series converges in the polydisc
D(0, (p, q)). And (a, b) ∈ D(0, (p, q)). Since the polydisc is an open set,
there is some neighbourhood of (a, b) in it. Hence, the power series con-
verges in a neighbourhood of the point.

Suppose (a, b) ∈ Cn such that |ab|≥ 1. Given any neighbourhood U of
(a, b) we can choose ϵ > 0 small enough such that ((1 + ϵ)a, (1 + ϵ)b) lies
in U . At this point, the terms of the power series would have modulus
|(1 + ϵ)2k(ab)k|= |(1 + ϵ)2k||ab|k≥ |(1 + ϵ)2k|> 1. So the power series
can not converge absolutely at this point. Hence, (a, b) will not have any
neighbourhood that the power series converges in.

By the above, the domain of convergence of p is precisely given by

Ω = {(a, b) ∈ Cn : |ab|< 1}

This can not be a polydisc as: It is not convex: (2, 1/3), (1/3, 2) ∈ Ω but

(
2 + 1/3

2
,
2 + 1/3

2
) = (

7

6
,
7

6
) /∈ Ω

Let us take a point (x, y) ∈ A := λ(Ω\{z1.z2...zn = 0}). By the definition
of A we have (z, w) ∈ Ω such that λ(z, w) = (x, y). We know |zw|< 1, so
ln(|zw|) < 0 which gives ln(|z|) + ln(|w|) = x+ y < 0.

Now suppose we are given any points (a, b) ∈ R2 with a + b < 0, then as
a point in C2, (exp a, exp b) ∈ Ω as exp (a+ b) < 1.

Therefore A = {(x, y) ∈ Rn : x + y < 0}. This is a half-plane and is
convex.
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2.2: (i) We have A ⊂ Cn:

A =

∞⋃
j=1

{zn = 1/j}

and f is a holomorphic function on Cn such that f |A= 0.

Fix any z′ = (z1, z2, ..., zn−1). Then the map

zn → f(z′, zn)

is holomorphic in one variable on C. Since f is zero on A. This
one variable function is zero at 1/j for all j ∈ N. We know the set
of zeros of a non-constant holomorphic function in one variable can
not have a limit point. But zn = 0 is a limit point of the zeros of
zn → f(z′, zn). Hence, the function is constant, so it must be the
zero function. Which tells us that f(z′, zn) = 0 for all zn ∈ C. This
works for any choice of z′. Hence f ≡ 0.

(ii) Consider the points

A = {(1/j1, 1/j2, ..., 1/jn) ∈ Cn : j1, j2..., jn ∈ N}

We see that 0 is a limit point for this set. Suppose f is holomorphic
in Cn such that f |A= 0. Fix j1, ..., jn−1, then the function

zn → f(1/j1, ..., 1/jn−1, zn)

must be a zero function as it is a holomorphic function in one variable
whose zero set {1/j : j ∈ N} has a limit point 0. This can be done
for any choice of the first n− 1 coordinates in A. So f is zero on the
set

A1 = {(1/j1, ..., 1/jn−1, zn) ∈ Cn : j1, j2..., jn−1 ∈ N, z ∈ C}

Now fix the first n − 2 term as per A and fix any z′n ∈ C, then the
function

zn−1 → f(1/j1, ..., 1/jn−2, zn−1, z
′
n)

must be a zero function as the function is zero on zn−1 = 1/j for
j ∈ N, as f is zero on A1. So f is zero on the set

A2 = {(1/j1, ..., 1/jn−2, zn−1, zn) ∈ Cn : j1, j2..., jn−2 ∈ N, zn−1, zn ∈ C}

Continuing this process we get f is zero on Cn.

2.3: Let M1 and M2 be closed connected complex submanifolds of Cn. Let
us define a set A ⊂ Cn as the set of points in M1 ∩ M2 such that for
any point p ∈ A there exists a neighbourhood U in Cn about p such that
M1 ∩ U = M2 ∩ U .
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Note on dimensions: Since M1 and M2 match in some neighbourhood U
in Cn. They would locally be represented as the zero set of the same set of
holomorphic functions. Hence the dimension of M1 and M2 are the same.
Let us suppose it is 0 < k < n.

We are given that A is not empty. For j = 1, 2, we will show that A is
closed and open in Mj . Since A ⊂ Mj and Mj is connected, we must have
A = Mj . Therefore, M1 = M2.

The set A is open in M1: given p ∈ A, we have a neighbourhood U in
Cn. Then consider Up = M1 ∩ U . This is a neighbourhood of p in M1.
For any point in q ∈ Up, the same open set U works, that is, q ∈ U and
M1 ∩ U = M2 ∩ U . Hence, Up ⊂ A. So, A is open in M1.

The set A is closed in M1: Suppose p ∈ M1 is a limit point of A. By the
definition of submanifold, we have a neighbourhood U1 about p in Cn such
thatM1∩U1 is the zero set of f1, ..., fk where F = (f1, f2, ..., fk, fk+1, ..., fn)
is biholomorphism from U1 to an open set of Cn. Similarly, we have a
neighbourhood U2 about p in Cn such that M2 ∩ U2 is the zero set of
g1, ..., gk where G = (g1, g2, ..., gk, gk+1, ..., gn) is biholomorphism from U2

to an open set of Cn.

Set U = U1 ∩ U2. For convenience, we restrict F and G to U . Then look
at the biholomorphism F ◦G−1.

As U ∩ M1 is open in M1 and p is a limit point of A, we can find q ∈
(U ∩M1)∩A. So we have a neighbourhood Uq in Cn such that M1∩Uq =
M2 ∩ Uq.

On the set V := G(Uq ∩ M1) the first k coordinates of F ◦ G−1 is zero
on {z1 = z2 = ... = zk = 0} ∩ V . More precisely, set H := F ◦ G−1.
Then H = (h1, ..., hn), with h1 = h2 = ... = hk = 0 on {z1 = z2 =
... = zk = 0} ∩ V . Note that hj are holomorphic on G(U). Fixing all
first n − 1 variables in {z1 = z2 = ... = zk = 0} ∩ V we get the map
zn → h1(0, 0, ..., 0, z

′
k+1, ..., z

′
n−1, zn) is a holomorphic map. And since the

zero set would be a non empty open set for this, we have this map to be
zero. Now repeat the same process for zn−1 but this time we have the
liberty to choose any point in the domain for zn. This process will end
up telling us that: h1 = 0 on {z1 = z2 = ... = zk = 0} ∩G(U). Similarly
h2, ..., hk = 0 on {z1 = z2 = ... = zk = 0} ∩ G(U). Which tells us that
the zero set of f1, ..., fk on U is the same as the zero set of g1, ..., gk on U .
Hence U ∩M1 = U ∩M2.

Finally, with the connected argument given before, we have M1 = M2.

2.4: Let us show that ϕ : Bn → Cn

ϕ(z′, zn) =

(
z′

1 + zn
, i
1− zn
1 + zn

)
is a biholomorphism onto H.
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This is a holomorphic map from Bn → Cn as each of the coordinates is a
rational function defined on Bn.

Let us see that the range of ϕ is in H. Let w = ϕ(z), for z = (z1, ..., zn) ∈
Bn. Let us calculate ℑ(wn). By the formula for ϕ, we get wn = i 1−zn

1+zn
.

ℑ(wn) =
1

2i
(wn − wn)

=
1

2i

(
i
1− zn
1 + zn

− i
1− zn
1 + zn

)
=

i

2i

(
1− zn
1 + zn

+
1− z̄n
1 + z̄n

)
=

1− |zn|2

|1 + zn|2

Let us calculate |w′|2

|w′|2=
∣∣∣∣ z′

1 + zn

∣∣∣∣2 =
|z′|2

|1 + zn|2
=

∑n−1
j=1 |zj |2

|1 + zn|2

Since we are in the unit ball |z|2=
∑n

j=1|zn|2< 1. Which gives 1− |zn|2>∑n−1
j=0 |zj |2. And hence we have ℑ(wn) > |w′|2.

Remark: In the assignment question, H was defined as

H = {z ∈ Cn : yn < |z′|2, z′ = (z1, ..., zn−1)}

But as seen above, the map takes ℑ(wn) > |w′|2. So I will take H to be

H = {z ∈ Cn : yn > |z′|2, z′ = (z1, ..., zn−1)}

Now let us show ϕ is injective. Say ϕ(z) = ϕ(u). Then(
z′

1 + zn
, i
1− zn
1 + zn

)
=

(
u′

1 + un
, i
1− un

1 + un

)
Comparing the second coordinates gives us zn = un. Then we compare
the first one to get z′ = u′. Hence z = u.

Now we show surjectivity. Suppose w ∈ H. Then wn = i 1−zn
1+zn

. After

a bit of algebra we get zn = i−wn

i+wn
. And w′ = z′

1+zn
; solving for z′ by

substituting wn gives z′ = w′
(
1 + i−wn

i+wn

)
. These values are well defined

when w ∈ H as wn ̸= −i and solving for the norm of the inverse gives us
that |z|2< 1 if we take into consideration ℑ(wn) > |w′|2.
Again, the inverse map is holomorphic as it is again a rational function in
each variable that is defined on the domain. Hence ϕ is a biholomorphism.
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