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Abstract

We develop and use three-dimensional event-driven molecular dynamics simula-

tions of dry gravity-driven granular flow. Our system is comprised of mono- and

poly-disperse sets of spherical grains falling down a vertical chute under the influ-

ence of gravity. We observe three phases or states of granular matter: a free-fall

dilute granular gas region at the top of the chute, a granular fluid in the middle

and then a glassy region at the bottom.

We investigate collision time distributions as one approaches the static limit

of steady-state flow of dry granular matter. The collision times fall in a power-law

distribution with an exponent dictated by whether the grains are ordered or dis-

ordered. Remarkably, the exponents have almost no dependence on dimension.

We are also able to resolve a disagreement between simulation and experiments

on the exponent of the collision time power-law distribution. We also investigate

velocity fluctuations in dry granular flow. We find three different classes of ve-

locity distributions depending on factors such as the local density. The class of

the velocity distribution depends on whether the grains are in a free-fall, fluid or

glassy state. The analytic form of the distributions match those that have been

found by other authors in fairly diverse systems. Here, we have all three present

in a single system in steady-state. Power-law tails that match recent experiments

are also found but in a transition area suggesting they may be an artifact of

crossover from one class of velocity distribution to another. We find evidence

that the transition from one class to another may correspond to a second order

dynamical phase transition in the limit that the vertical flow speed goes to zero.

Finally, we investigate constitutive relations in dry granular flow. We examine

local stresses, heat flow, and dissipation in all three phases of our system. We find
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a complete closed set of constitutive relations capable of describing the system in

the different regions and test several proposed constitutive relations in the fluid

and glassy regions. Similar to static sand piles, we find that stresses in the glassy

region are almost entirely determined by directions along which collisions occur.

We show that the static sand pile is the static limit of our glassy state. We also

examine the strain rate and viscosity dependence on the granular temperature.

While finding regimes consistent with experiments, we find that these quantities

do not exhibit a universal power-law relationship. However we do find a universal

power-law relationship between the shear stress and the shear rate in the glassy

region, and likewise between viscosity and shear rate in the glassy region. We

show that there is a yield stress associated with our glassy system and we demon-

strate the stress and energy balance in the different regions of our system. We

show that Fourier’s law for heat flow is obeyed in the glassy region, however care

must be taken in separating energy and heat flow. In the glassy region the con-

ductivity is equal to the volume fraction times the mean collision frequency. In

the fluid region the thermal conductivity has an exponential dependence on the

granular temperature. We finally close our relations by deriving an expression for

the mean collision frequency in terms of the pressure and granular temperature.
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An Epigraph Poem For My Beloved Mother

On Tequila Bay

On Tequila Bay

I sail and sing all day

I think about the birds

Wings flying above

And the tree leaves

With a moistened glow

Dripping water from

The sky’s rain

It’s a music of life

Of high notes and low

To struggle, strain and learn

An inner yearn

To always glimmer hope

And valiantly cope

To live another day

On Tequila Bay

John Jan Drozd

I wrote this poem to remind myself to live life to the fullest and to never

give up a life because you don’t know when your time comes up, as taught by

Ecclesiastes in the Old Testament.
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Chapter 1

Introduction

1.1 Background Literature Review

The physics of granular materials or granular matter comes from a longstanding

history. Eminent scientists such as Coulomb during the reign of Louis XVI,

Faraday, Reynolds, Hagen, Huygens, Rayleigh, and Bagnold in the twentieth

century contributed significantly to the early study of granular materials [1, 2, 3,

4, 5, 6, 7]. Following these early days, the physical approach led to engineering

fields studying granular flows, pattern formation and packing. However, in spite

of these valiant efforts, granular materials to this day are not fully understood.

The reason for encountering such mystery when one attempts to understand

granular matter is that it is a unique, complex material. It is neither a solid

nor a liquid and falls into a realm with material properties of its own. Granular

matter has been coined as a general term to describe a material that is made up of

particles that are at least visible to the naked eye. Granular matter ranges from

grains of a few hundred microns each, to ice floes drifting across the polar seas, to

everyday rocks, sands, seeds, beads, pharmaceutical pills, sugars, to Saturn’s rings

(made of icy particles about 1 cm wide distributed in a band roughly 1 km thick).

The science of granular matter covers several orders of magnitude. Consequently,
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granular matter is a system of interest to people working in many fields including

biologists, physicists, astronomers, engineers, geologists, and material scientists.

It has been proposed that “[t]he fact that aggregates seem to obey ‘universal laws’

applicable over such a wide range of dimensions and characteristics is a strong

incentive to pursue fundamental studies in that area.” [8].

It is important to understand the nature of granular materials not only from a sci-

entific standpoint. There are many important practical applications for studying

granular materials. Statistics indicate that “[t]he processing of granular media

and aggregates consumes roughly 10% of all energy produced on this planet. As

it turns out, this class of materials ranks second, immediately behind water, on

the scale of priorities of human activity. As such, any advance in understand-

ing the physics of granulars is bound to have a major economic impact.” [8, 9].

Jacques Duran, in his book entitled Sands, Powders and Grains describes the

industrial processes involved with granular materials: “The industrial technology

used in the treatment of granular materials involves a number of processes. First

comes the extraction of ores, sands, and gravel, which often relies on dredging.

Next comes crushing and grinding, followed by separation, all of which are com-

monly used with low-value-added materials. ... [M]ethods of transport (fluidized

beds, conveyor belts), storage (silos), and mixing (e.g. cement trucks) figure in all

stages of the industrial processing. For instance, the phenomena of segregation

and intermittent blockages are pervasive in numerous industrial processes involv-

ing granular materials.” [8] The development of these technologies date back

to the nineteenth century. Recent advances, however, have addressed some of

the problems associated with industrial processes. For instance, scientists have

studied force chains in granular materials extensively to address these problems

[10, 11]. Many silo failures are due to large stress fluctuations resulting from

blockages by arching caused by the discharge process of granular materials. Sci-

entists have also modeled avalanches and giant stress fluctuations in silos and
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compared theoretical stress models to experiments [12, 13]. An interesting silo

design, developed by the National University of Mexico, used a hexagonal geom-

etry to relieve the lateral wall stresses. This design was based on the angle of

repose of the granular material [14].

My M.Sc. research at the Applied Mathematics Department at The University

of Western Ontario investigated a food processing application. This involved

studying flow patterns and stresses in the manufacturing of candies [15, 16] and

grinding of bulk chocolate [17] using computer simulations. These simulations

were coupled with physical experiments that were designed and carried out at

the Department of Mechanical and Materials Engineering. Examples of such

collaboration show that with the advent of high performance computers, with its

enormous advances in computing power, the science of granular materials can be

studied in greater depth [18].

Savage and Jeffrey [20] used the concept of the coefficient of restitution to the-

oretically describe the momentum transport of inelastically colliding granular

particles. This allowed physicists to model real-world inelastic granular systems.

Today, scientists and engineers are working hard to obtain a complete descrip-

tion of granular phenomena but there are still serious obstacles that they face.

Theorists who often use Boltzmann equilibrium statistical mechanics to connect

the microscopic level to the macroscopic description of granular materials, use

a Boltzmann scaled temperature kBT which is small compared to the macro-

scopic scales of granular matter. Due to the highly dissipative nature of granular

collisions, without a constant energy input to maintain a steady state balance

with energy dissipation, one can envision that the particles would inelastically

collapse and the system would halt to an ambient temperature. One can perform

a simple calculation using E = kBT = 1
2
mv2 (using a particle mass of say 1 gram

and a room temperature of 300 Kelvin) and show that the velocity of the parti-

cles in such a situation would be on the order of tens of nanometers per second.
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Typically in steady-state, a particle takes approximately 200 seconds to move a

particle diameter in a jammed region. A nanoscale speed is far too low to bring

a configuration of a large number of macroscopic grains into equilibrium. For

comparison, here kBT ¿ ρga, where ρ is the density, g is the acceleration due to

gravity and a is the particle radius.

A related complication with applying the Boltzmann distribution of a determinis-

tic mechanics to granular matter in which granular collisions are inelastic and thus

involve a dissipation of energy, is that this dissipation gives rise to instabilities

and dense clustering. Steady state systems of heated granular gases consisting of

inelastic particles are statistically different from an equilibrium state [21]. Un-

like the Boltzmann distribution, the energy distribution for gases consisting of

inelastic particles exhibits overpopulated high energy tails. These tails are also

evident in velocity distributions obtained by experiments [22, 23, 24, 25] and our

computer simulations [26]. Thus, the Boltzmann distribution and the Boltzmann

equation can only be approximately used to theoretically describe granular gases

for low density systems that have small inelasticity [27].

Esipov and Poschel [28] used a kinetic energy distribution function satisfying the

Boltzmann equation to study a system of inelastic hard spheres. They studied the

kinetic energy distribution function to present the limits of validity of a hydrody-

namic description of granular matter. They reduced the Boltzmann equation to

hydrodynamics without having to consider divergence of transport coefficients.

They assumed their particles behaved isotropically and were in a homogeneous

state, and that the distribution function only depended on the kinetic energy.

They also used a two-dimensional molecular dynamics simulation of 5000 parti-

cles enclosed by a circular wall that was maintained at a constant temperature.

This simulation was used to support their analytical formulations. Their results

suggested that these inelastic systems can be subdivided into phases. They sug-

gested the existence of a dilute granular gas-like phase near the wall, a condensed
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phase of closely packed particles between the bulk center and the wall, and a

collapsing condensed phase close to the center of the container. It is a common

but mistaken belief that there is only a jamming transition in granular materials,

when in fact there are transitions between three regions. There are transitions

between a granular gas and a condensed phase and as well between a condensed

phase and a collapsing condensed phase. We similarly are able to produce three

distinct phases of granular matter in our simulation: a dilute free-falling granular

gas, a granular fluid and a jammed glass, and even a partially crystallized state

when we used identically-sized particles. We find that the transitions between

these three phases have distinct physical properties and we will describe these

throughout the thesis.

Esipov and Poschel’s [28] results were built upon by Noije and Ernst [29] who

solved the nonlinear Enskog-Boltzmann equation for a system of heated inelastic

spheres. They described a buildup of spatial velocity correlations, and found that

their incompressibility assumption was no longer valid beyond a distance that di-

verged in the elastic limit. Further work on the nonlinear Boltzmann equation

was conducted by Ernst and Brito [30] who added stochastic noise to the micro-

scopic equations of motion to study velocity distributions in the different phases

of granular matter. It is clear that more work needs to be done in extending hy-

drodynamic descriptions of granular materials into the inelastic, denser regimes.

It will be demonstrated throughout this thesis that granular matter behaves sig-

nificantly differently in different regions or phases. This is a major contribution

to paving the way to establishing an understanding of how microscopic laws of

motion can combine together to form the macroscopic phenomena of granular

matter.
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1.2 Outline

With this approach in mind, for the purposes of this thesis, a three-dimensional

computer simulation of gravity-driven dry granular flow comprising of approx-

imately 40, 000 discrete hard spheres, was developed to produce various states

or phases of granular matter. The matter was considered as discrete classical

particles in which contact forces and dissipation were key ingredients. Continu-

ous energy input was needed in order to mobilize and maintain the particles in

motion, due to the highly dissipative nature of particle collisions. Gravity was

an essential component to provide constant energy input into the system.

An efficient event-driven molecular dynamics simulation in which the particles

were advanced sequentially by the next shortest collision time was used. Each

collision altered the velocities of the involved particles according to a collision law

which was characterized by coefficients of restitution. During the time intervals

between collisions, the particles would move along known ballistic trajectories.

Thus, the positions of the particles at the time of the next collision could be

computed in one step. This algorithm is outlined in [17, 18, 19].

The states of granular matter that were produced by the simulation include a

range from a dilute freely falling granular gas, to a granular fluidized state, and

finally, a jammed glassy state using poly-disperse (various-sized) particles and

even a crystallized state using mono-disperse (same-sized) particles. Measure-

ments from this simulation allowed us to examine properties of granular matter

in a wide range of different states.

Following is a brief description of the next three chapters that comprise the body

of this thesis. All three chapters are based on results obtained from an event-

driven molecular dynamics computer simulation of gravity-driven dry granular

matter flow. Figure 1.1 shows a visualization of the simulation that was used to
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generate the measurements for the thesis. The simulation is described in detail

within the chapters. Relevant literature reviews are also provided within these

chapters. Briefly, Chapter 2 studies the distributions of collision times in gravity-

driven granular flow in two and three dimensions. Comparisons are made with

an experiment and by relating impulses to collision times, a definitive universal

collision time distribution is established in a granular glassy state. Collision time

distributions are also studied in the fluid state of our simulation. Chapter 3 stud-

ies velocity distributions in the free-fall gas, fluid, and jammed glassy state. It

is clearly shown that the particular form of the velocity distribution depends on

which granular state the measurements are made in. Finally, in Chapter 4, with

the aim of better understanding the equations of mass, momentum and energy

conservation, constitutive relations in dense granular flow are studied and com-

parisons are made to experiment and theory. Our results establish that collision

times, velocity distributions and constitutive relations all behave differently in the

different granular states or phases. Following is some background information for

each of these chapters.

1.3 Relaxation times

Problems in granular materials deal with nonequilibrium situations which re-

quire a detailed understanding of the nonequilibrium processes whereby energy is

transported from one granular particle to another. In granular matter, this energy

transfer process involves particles interacting with each other via collisions.

If we consider a box container filled with hard elastic particles, a reasonable as-

sumption would be that the collisions in particle trajectories would be indepen-

dent, that is a collision for a particle would not depend on its history of previous

collisions. Here we define a collision time as the time between successive collisions
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Figure 1.1: Section of a simulation involving 43 200 grains with 15 % polydisper-
sity. The system size is 32a× 32a× 400a. There are reflective walls at x = 0 and
x = Lx, periodic boundary conditions in the z-direction, and a finite probability
of reflection at the bottom of the chute (at y = 0). The particles are coloured
according to the magnitude of their y-velocity with red balls traveling the fastest
and blue balls slowest.
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for a particle. We will show mathematically below that such an independence

of collisions leads to an exponential distribution of collision times. On the other

hand, if we do not observe an exponential collision time distribution, then the

collisions must be history-dependent.

We now derive the exponential collision time distribution for a particle with

independent collision events. We will follow the derivation given in [31]. Consider

a particle with velocity v. Let P (t) represent the probability that a molecule

survives a time t without collision. P (t = 0) = 1 since a particle has no chance

of suffering a collision at t = 0. As time progresses, the particle is exposed to

the chance of suffering a collision. Let w be the probability per unit time that a

particle will collide, called the collision rate. We will assume that w is independent

of the particle’s past history, that is, it is irrelevant when the particle last collided.

Then w dt is the probability that a particle suffers a collision between time t and

t + dt.

We note that P (t + dt), the probability that a particle does not collide within

a time t + dt, must equal the probability [P (t)] that a particle does not collide

within a time t multiplied by the probability [(1 − w dt)] that the particle does

not collide in the later time interval between t and t + dt.

Hence,

P (t + dt) = P (t)(1− w dt). (1.1)

Thus,

P (t) +
dP

dt
dt = P (t)− P (t)wdt, (1.2)

or
1

P

dP

dt
= −w. (1.3)
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Upon integrating equation (1.3), we get

ln P = −wt + constant

P = Ce−wt (1.4)

Since a particle has no chance of suffering a collision at t = 0, we have P (0) = 1,

so the constant of integration C = 1. Thus, equation (1.4) becomes

P = e−wt. (1.5)

Finally, putting this all together, we have the probability that a particle, after

surviving without collisions for a time t, collides in the time interval between t

and t + dt is

Pcollision dt = e−wtw dt. (1.6)

We let τ be the “collision time” or mean time between collisions, being

τ =

∫ ∞

0

t Pcollision dt

=

∫ ∞

0

t e−wtw dt

=
1

w

∫ ∞

0

e−yy dy

=
1

w
. (1.7)

Equation (1.5) is depicted graphically in Figure 1.2(a). In the glassy region of

our granular system, an exponential collision time distribution was not observed,

leading us to conclude that collisions are history-dependent in a granular glass.
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Figure 1.2: (a) Exponential collision time distribution as found in a granular fluid
and (b) Power-Law collision time distribution as found in a granular glass.

In particular, we observed power-law behaviour in the glassy region:

P (t) ∼ t−α, (1.8)

where t is the collision time. Equation (1.8) is depicted graphically in Fig-

ure 1.2(b) on a log-log scale. In the fluid region, the collision times were dis-

tributed exponentially at the tails, but were power-law at short times. In Chapter

2, we use our simulation to investigate collision time distributions during steady-

state, in a granular glass and in a fluidized state. Poly-disperse simulations (with

different-sized particles) and mono-disperse simulations (with same-sized parti-

cles) are compared. The collision time distributions observed from our simulation

differ from a collision time distribution that was obtained by a granular exper-

iment and we resolve this discrepancy in our paper to arrive at the definitive

collision time distribution.

1.4 Velocity Distributions

The Maxwell-Boltzmann distribution is the most likely velocity distribution for

systems in equilibrium. The Maxwell-Boltzmann distribution, for example, pro-
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vides a good approximation in a gas, and in a fluid region which is in equilibrium.

When Boltzmann derived the Maxwell-Boltzmann distribution he focused on a

general Hamiltonian system, that is, a system of N point particles with an arbi-

trary interaction potential. The state of this system can be described as a phase

point x = (~p1, ..., ~pN , ~q1, ..., ~qN) in a phase space of momenta ~pi and positions ~qi.

By the Hamiltonian equations of motion, this phase point x evolves over time, and

thus describes a trajectory xt. This trajectory lies on a given energy hypersurface

H(x) = E, where H(x) is the Hamiltonian function.

The Maxwell-Boltzmann distribution characterizes the state of a gas of elastic

hard spheres by means of a probability distribution f over the various values of

the particle velocities. It can be expressed as [32]

f (p) = Ce−βEi , (1.9)

where β = 1/kBT with kB being Boltzmann’s constant, p is the momentum, T

the absolute temperature and Ei an eigenvalue energy state of the Hamiltonian

H.

The parameters C and β are determined by evaluating the integrals (using Gaus-

sian integrals and their derivatives):

∫
d3pf (p) = n,

1

n

∫
d3p

p2

2m
f (p) =

E

N
, (1.10)

where n is the density of the gas, and E/N is the energy per particle.
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For our system of granular particles, our Hamiltonian is

H =
∑

i

p2
i

2m
+

∑

i6=j

V (ri, rj), (1.11)

where p is the momentum of a particle, m its mass, and V the hard sphere

potential

V (r1, r2) =





0, |r1 − r2| ≥ 2a

∞, |r1 − r2| < 2a
(1.12)

where a is the particle radius.

By inserting equation (1.11) into equation (1.9), we finally arrive at the Maxwell-

Boltzmann distribution that characterizes our gas of hard spheres

f (p) = Ce−β(
∑

i pi
2/2m+

∑
i 6=j V ), (1.13)

where β = 1/kBT with kB being Boltzmann’s constant, T the absolute tempera-

ture, V the hard sphere potential, and C the normalization constant

C =
∏

i

∫ pmax

pmin

dpi e−β(
∑

i pi
2/2m+

∑
i6=j V ). (1.14)

One would expect that collisions would bring granular particles from a nonequi-

librium situation to an equilibrium situation that satisfies a Maxwell-Boltzmann

velocity distribution. If the potential V is independent of momenta, the velocity

distribution should factorize giving

P (vx, vy, vz) ∼ e
−

m(v2
x+v2

y+v2
z)

2kBT (1.15)

for any given grain.
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Thus we expect a Gaussian distribution of velocities. This is not observed in

our simulations. The reason for this failure can be found by examining equa-

tion (1.10). For an inelastic system, equation (1.10) integrates over a momentum

distribution, but here we have a system where energy is not conserved so this nor-

malization condition is not well-defined. Systems of inelastic granular particles

are statistically different from an equilibrated Gaussian state. The velocity dis-

tribution for gases consisting of inelastic particles has overpopulated tails. This

is observed in experiments [22, 23, 24, 25] and our computer simulations [26].

After investigating the collision time distributions, we used our event-driven sim-

ulation to find appropriate relations for the velocity distributions or fluctuations

in the granular gas, fluid and glass states of our system. Basing our analysis on

the statistical mechanics for our system in steady-state, in chapter 3, we measure

the velocity distribution and compare to theoretical and experimental results.

Several experimental papers [22, 23, 24, 25, 33, 34, 35], as well as theoretical

[28, 29, 30, 36] and simulation results [36], have reported different non-Maxwell

Boltzmann velocity distributions in the fluid and glass states of granular matter.

Using our simulation, we reconcile the different velocity distributions that were

measured by associating them with various phases of granular matter. We relate

and compare the observed velocity distributions in the free-fall gas, granular fluid

and glassy regions with the relevant theory and reconcile conflicting results from

experiments.

1.5 Constitutive Relations

In chapters 2 and 3, we will show that the derived history-independent exponential

collision time distribution given by Equation (1.5), and the Maxwell-Boltzmann

Gaussian velocity distribution given by Equation (1.15), cannot be universally
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applied to all the states of granular matter. This leads us to chapter 4, where we

concentrate on the basic continuum physics equations of momentum conservation,

mass conservation and energy conservation. The continuum equations that we

map our simulation results onto are

∂ρ

∂t
+∇ · (ρv) = 0,

∂t(ρvα) + ∂β(ρvαvβ) = ∂βσαβ + ρgα,

∂t (E) + ∂α (Fα) = I + ρg · v, (1.16)

where ρ is the density, v the velocity, σ is the stress tensor, E is the kinetic energy,

F is the energy flux, I is the dissipation and α and β refer to the x or y or z

components. The Einstein summation convention is used for repeated indices α

and β.

In order to solve these continuum relations we need constitutive relations. These

constitutive relations allow the continuum equations to be solved by relating the

stress σ, dissipation I and energy flux F to the physical variables of density ρ,

velocity v and energy E. We also examine transport coefficients of viscosity and

thermal conductivity which are parameters in the constitutive relations. We study

these constitutive relations in the free-fall gas, fluid and glassy phases of granular

matter because we find that the constitutive relations behave differently in these

different regions. We compare our simulation results to experiments [22, 23] and

theory [37, 38, 39, 40].

For a system of elastic hard spheres, that has a Maxwell-Boltzmann distribution

of velocities and has independent collisions, that is, for “a hard sphere gas”, one

can show that appropriate constitutive relations for pressure can be obtained

from a virial expansion at low densities, and a free-volume theory expression at
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higher densities [37, 38]. Other relations relate shear stress to viscosity

σαβ = η∂αvβ for α 6= β, (1.17)

with the viscosity for a hard sphere gas being [41]

η =
5

64

1

a2

√
mkBT

π
, (1.18)

where a is the particle radius. Others relate the energy flux F to the heat flux Q

Fα = (Qα − σαβvβ) + vαE, (1.19)

with Q given by Fourier’s Law

Q = κ∇T. (1.20)

Here, the thermal conductivity for a hard sphere gas is [41]

κ =
25

128

cV

a2

√
kBT

πm
. (1.21)

One might expect that our fluid region acts as a hard sphere gas. Upon observing

equations (1.18) and (1.21), one would expect that the viscosity and conductivity

should increase with temperature. We will find that for the fluid region in our

simulation, that the viscosity and heat conductivity are not proportional to T 1/2,

and in fact are decreasing functions with temperature. This behaviour is often

associated with a liquid whose viscosity and thermal conductivity increase as the

liquid approaches the solid state.

Finally we look at the glassy state and analyze it using the fixed principal axes

(FPA) model [42, 43] that is used for static sand piles. By comparing the eigen-
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values of the stress tensor in the glassy region, we show agreement between the

FPA model and our simulation data. Thus we effectively show that the static

sand pile is the static limit of our glassy state.

The final chapter concludes by combining the results and provides recommenda-

tions for future work.
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Chapter 2

Simulations of collision times in gravity driven

granular flow

Dense granular matter does not easily fit into our standard classification of matter.

Interest in the physics community was stimulated by the observation that forces

between particles in the system are exponentially distributed suggesting that any

load on the system is carried by a small number of force chains [1, 2]. More recent

studies have suggested that spatial ordering is a key factor in the force response

[3, 4], something that may not be clearly distinguishable from the exponential

tail of the force distribution. Further work, both experimental and theoretical,

has suggested that perhaps it is actually the low end of the force distribution that

should be examined when deciding whether a system is jammed [5, 6, 7].

As the distribution of forces in a static granular system is history dependent [8],

it makes sense to explore the static limit of dynamic models in order to shed light

on the origin of jamming. In this letter, we perform simulations of gravity driven

dense granular flow in two and three dimensions using an event-driven model

involving only binary collisions. We reproduce the known power law relationship

between the mean flow velocity and velocity fluctuations [9] and explain the

discrepancy between the experimentally observed power law for the distribution

of collision times [10] and that found in previous simulations [11]. Further, we
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find that the distribution of collision times is capable of differentiating between

ordered and disordered glassy systems. Moreover, the exponents appear to be

superuniversal in the sense that they are independent of dimension. In addition,

we find that the force distribution turns up at low impulses in the jammed state.

We simulate hard spheres as they fall down a rectangular chute under the influence

of gravity, as shown in Fig. 2.1(a). At the bottom of the chute a sieve is modeled

by having the particles reflecting from the bottom with a probability p (typically

p = 90%). Particles transmitted through the bottom reappear at the top of

the chute once again to fall down through it. Particles reflect off the walls of the

chute with a partial loss, typically 10%, in their vertical velocity. This is a simple,

effective way to model rough walls. The grain polydispersity is varied from 0 to

15% in different simulations [12].

Velocities after collision ṙ′1 and ṙ′2 in terms of velocities before collision, ṙ1 and

ṙ2, are


 ṙ′1

ṙ′2


 =


 ṙ1

ṙ2


 +

(1 + µ)

(m1 + m2)


 −m2 m2

m1 −m1





 ṙ1 · q

ṙ2 · q


q, (2.1)

where m1 and m2 are the particle masses and q = (r2 − r1)/|r2 − r1| [13, 14]. µ

is a velocity-dependent restitution coefficient described by the phenomenological

relation [15, 16],

µ (vn) =





1− (1− µ0) (vn/v0)
0.7 , vn < v0

µ0 , vn > v0.
(2.2)

Here vn is the component of relative velocity along the line joining the grain

centers, µ0 is the asymptotic coefficient at large velocities (typically 0.9 here),

and v0 =
√

2ga, with g being the acceleration due to gravity and a the radius of

the particle [17].
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Figure 2.1: (a) Section of a 3D simulation involving 43 200 grains with 1% poly-
dispersity in a 32a × 32a × 400a system. (b) Average density for 1% (dashed
line) and 15% polydispersity (solid line) along the height of a 3D chute. For 15%
polydispersity, (c) the y−velocity and (d) average acceleration, in units of g and
as measured by the material derivative dvy/dt = ∂tvy + vα∂αvy. The inset in (d)
shows the absolute value of the same data on a log scale, showing the 1g accel-
eration in the free fall region. (e) shows the pressure tensor components Pxx as
the solid line and Pyy as the dashed line. The inset in (e) shows that the pressure
approaches Eq. (2.3) as jamming is approached from the fluid phase [4].
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We examine three simulation geometries: “disks”, a purely two-dimensional sim-

ulation with disks as used in [11]; “spheres in 2D” which are spherical particles in

a three-dimensional (3D) simulation kept in a 2D plane by having reflecting front

and back walls 2.002a apart and with reflecting left and right walls; and “spheres

in 3D” which are spherical particles in a chute with periodic front and back walls

16a and 32a apart and with reflecting left and right walls. In all three types of

simulations a sieve is located at the bottom as described above. For simulations

it is most convenient to use units where g = 1, a = 1, and the grain mass M = 1.

A typical simulation run is 104 − 105 time units, equivalent to 2− 20 minutes of

real time in a system made up of balls 3 mm in diameter.

Steady-state density and velocity profiles for a system similar to that depicted

in Fig. 2.1(a) are shown in Fig. 2.1(b) and (c). These profiles are averaged over

the xz−cross-section of the 32a× 32a chute. Three different regimes are evident.

Grains initially placed at the top are little affected by collisions and accelerate

uniformly with v̇y = −g, as shown in Fig. 2.1(d). This free-fall region ends

abruptly just above the top of the dense column of grains seen in Fig. 3.1(a).

There is then a short fluid region extending about 25a between the free-fall and

glassy region. The grains behave like a simple fluid in this region, with a parabolic

profile of the vy velocity typical of Poiseuille flow (¤’s in Fig. 2(b)). For nearly

monodisperse systems, the density increases rapidly in this region until it reaches

the random close-packed volume fraction of ∼ 0.64. Except for a small region at

the bottom, the remainder of the system has a density greater than 0.64 indicat-

ing partial crystallization. For systems of particles with 15% polydispersity, the

density remains constant at 0.6 and is in a glass-like state. As a result we will

now concentrate on 15% polydisperse systems as they are more uniform.

Fig. 2.2(b) shows the vy plug profile (¥’s) along with the corresponding shear

stress profile in the glassy region of such a system. Clearly, the system supports

a finite shear stress in the central region thus justifying calling this a glass. In
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Figure 2.2: Shear stress and velocity profiles for the 15% polydisperse 3D simu-
lation. Data in the glassy region for h =50, 100, 150, 200 are plotted separately
but fall on top of each other (¥’s). The ¤’s in (b) show the velocity profile in
the fluid region at y = 280 which gives a parabolic profile (solid line).

steady state, the weight of the system, ρg can be supported by either a pressure

gradient ∂yPyy or by a gradient in the shear stress ∂xPxy (pressures and stresses

are measured as in [11]). A comparison of ∂yPyy and ∂xPxy (cf. Fig.s 3.1(e) and

2.2) shows that the shear stress, and hence the walls, carry most (∼ 98%) of the

weight.

As jamming is approached, Donev et al. [4] showed that the pressure in a classical

(conservative) hard sphere glass approaches

P = D(ρkBT )(1− ρ/ρc)
−1, (2.3)

where D is the dimension, kB is Boltzmann’s constant, and ρc is the close-packed

density. As can be seen in the inset in Fig. 2.1(e), the diagonal components of

the pressure tensor do approach this value as ρ approaches ρc. However, there are

small systematic deviations in the glassy phase, probably due to the dissipation

and the fact that the velocities are not Maxwell distributed [18] as assumed in

the derivation of Eq. 2.3.

It is reasonable to doubt the capability of a simple binary collision model to de-
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Figure 2.3: Relationship between fluctuating and flow velocity in the glassy re-
gion. Data were averaged in directions normal to ~g for the 32x32 (?, δv =(
δv2

x + δv2
y + δv2

z

)1/2
) and 16x16 (N, δv = δvy) 15% polydisperse systems. The

fitted lines have slope of 2/3, in agreement with the experiments of [9]. vy is
varied by varying the probability of reflection p from 0.01 to 0.995.

scribe the dense glassy phase [19]. However, it is capable of reproducing a number

of experimental results related to this dense phase. For example, experiments

have shown [9] that the fluctuating velocity δv is related to the flow velocity v by

a power-law relationship δv ∝ v2/3. We observe the same relationship (Fig. 2.3).

Velocity fluctuations are not, however, isotropic. In a equilibrium fluid, fluctua-

tions in the velocity are governed by equipartition and δv2
y = 〈v2

y〉 − 〈vy〉2 is the

same as δv2
x and δv2

z . This is very nearly the case in what we label the fluid region,

but is not at all the case in the unequilibrated free fall region or in the glassy

region. Further measurements, such as that of the kurtosis of the velocity distri-

bution, showed that the distribution of velocities is not Boltzmann-distributed.

Considerable attention has also been focused on relating the force/impulse and

collision time distributions to jamming. A collision time is defined as the time

between two consecutive collisions for a particle. In a simple fluid the collision

times are distributed exponentially and the mean collision time (or “relaxation

time”) is proportional to the mean free path, the typical distance traveled between



28

collisions. This is indeed what we observe in what we call the “fluid” region of the

simulations, as shown in Fig. 2.4(a). The distribution of collision times can be

used to test the validity of many of the assumptions that go into standard kinetic

theories used to describe granular gases and show us how they break down as we

move into the dense glassy regions. As we will show, the distribution can also

distinguish between a disordered glass and a crystalline packing of grains.

The distributions of the collision times N(τ) for binary collisions are shown in

Fig. 2.4. For the glassy region of the 15% polydisperse systems (Fig. 2.4(b)),

N(τ) follows a power law,

N(τ) ∼ τ−α (2.4)

where α is 2.81± 0.06 for distributions of grain-grain collisions in all the geome-

tries, regardless of dimension. The power-law behavior of N(τ) is independent

of the specific choice made for the coefficient of restitution (as long as it is less

than 1), and whether or not we use a constant or velocity-dependent coefficient of

restitution as in Eq. 2.2. We also examined the distribution of the distance parti-

cles travel between consecutive collisions. It has the same power-law behavior as

the collision time distribution and we will therefore concentrate on the collision

time distribution here.

Experiments often refer to systems with less than 5% polydispersity as monodis-

perse. However, truly monodisperse systems eventually crystallize and give a

power law with α = 4 as shown in Fig. 2.4(c) (3D monodisperse systems did

not crystallize over the entire system so the 3D data in Fig.2.4(c) are taken from

a crystallized region). However, we find significant differences between even 1%

polydisperse and truly monodisperse systems and systems with 7.5% polydis-

persity yielded the same power laws as the 15% system. It appears that the

polydispersity is a critical factor in these calculations mainly due to its effect on

breaking up crystalization.
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Figure 2.4: (a) Unnormalized collision time distribution in the fluid region of a
15% polydisperse “3D spheres” simulation showing an exponential distribution.
(b) Unnormalized collision time distributions in the center of the glassy region for
15% polydisperse “disks” (dash-dotted line), “spheres in 2D” (dotted line), and
“3D spheres” (solid line) showing a power-law with exponent 2.85 as indicated
by the thick gray line. (c) Similar to (a) but for monodisperse particles that have
crystallized. The power-law in this case has exponent 4 as indicated by the thick
gray line. Note, plots in (b) and (c) are log-log plots whereas (a) is a semi-log
plot. All distributions are averaged over time in a region slightly larger than a
grain size in the x and y directions and over the entire z direction. The precise
choice of the location, other than it being clearly in the appropriate region, does
not change the result.

The significance of the power-law distribution of collision times lies in the fact

that it implies that collisions are not statistically independent events. If they

were independent, it is straightforward to show (as shown in Chapter 1) that

the distribution of collision times would be exponential, or at least it would have

an exponential tail [20]. This does not necessarily suggest a breakdown of the

model based on binary collisions, suggested for other reasons in Ref. [19]. It does

however suggest a breakdown in any kinetic theory arguments based on the Boltz-

mann equation which relies on the underlying assumption of molecular chaos and

the statistical independence of collisions. Similarly, hydrodynamic descriptions

which are based on a Chapman-Enskog expansion of the Boltzmann distribution

break down. This is due to the breakdown in the statistical independence of col-

lisions, not because ternary collisions are required to describe the system. Thus,

the collision time distribution can differentiate a granular fluid (exponential), a

granular crystal (power law α = 4), and a granular glass (power-law α = 2.8).
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Figure 2.5: (a) Two-dimensional distribution of impulses and collision times (log
scales) for a 15% “spheres in 2D” polydisperse simulation. The horizontal solid
line in (a) indicates the cut-off in impulses, coinciding with the exponential tail
of the 1D impulse distribution shown in the semi-log plot (b), that results in
the 1.5 collision time power-law observed in (c). Integrating the two-dimensional
distribution in (a) over all collision times gives the 1D histogram of impulses
shown in (b). Including only those impulses in the exponential tail of the impulse
distribution (b), we obtain the 1.5 collision time power law as shown by the thick
gray line in (c).

Typically an exponential force distribution or impulse distribution is considered a

signature of jamming. It has been suggested, however [5, 6, 7], that an upturn at

the lower end of the impulse distribution may provide more information. Impulse

distributions from our spheres in 2D simulation, as shown in Fig. 2.5(b), have a

power law upturn at the low impulses and an exponential tail at the high impulses.

The power law at the lower impulses appears to be more a signature of jamming

as even the granular fluid phase exhibits an exponential tail.

Our “spheres in 2D” simulation is a direct analog of the experiment described in

[10], the main difference being that the experiment discharged the grains from

a hopper at the bottom of the chute whereas we use a sieving process at the

bottom. The experiment used a pressure transducer attached to the chute wall to

detect grain-wall collisions, and to measure impulses and times between collisions.

However the experiment primarily sees an exponential distribution of impulses,

although there is an upturn at small impulses for the slower flows. Further, for the

distribution of grain-wall collision times they found a power-law with exponent
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α = 1.5. Based on the distribution of impulses, we explain the main discrepancy

not as a surface versus bulk effect but as a result of experimental response time

and sensitivity of the detector as follows. If we remove collisions with impulses

in the power-law part of the distribution (i.e., the small impulse end that may

be difficult to resolve experimentally) by putting in a cut-off at low impulses, we

also get the 1.5 collision time power law found in the experiment [10], as shown

in Fig. 2.5.

In conclusion, power laws with exponents independent of dimension were found

for the distribution of collision times. Further, polydispersity and disorder are

directly related to the power law exponent. The collision time distribution is

an exponential for a granular fluid, a power-law with exponent α = 4 for a

granular crystal, and a power-law with exponent α = 2.8 for a granular glass. It is

interesting to note that the propagations of stress seems to show a similar ability

to discern crystal and glass [3]. We successfully compared our collision time

power law distribution with the experiment described in [10]. By subtracting

out the collisions with very small impulses that would be difficult to measure

experimentally, we found that the stronger collisions that make up the exponential

tail of the impulse distribution have an associated collision time distribution with

power law exponent 1.5. This highlights the importance of simulations that can

give access to information not easily accessible in experiments. Measurement of

the full collision-time distribution in experiments would require accessibility to

the measurement of very low impulse collisions. In some systems this might be

precluded by inelastic collapse and prolonged contacts. However, groups have

observed peaks in the low end of the force distribution for static systems [5, 7] so

it seems likely that a similar measurement of impulses in the analogous dynamic

case could see the full spectrum of phenomenon we find in simulations.
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Chapter 3

Velocity fluctuations in dense granular flows

3.1 Introduction

Dissipative granular fluids are difficult to characterize because they are typically

not in any sort of equilibrium state. Unlike a closed system of elastic particles,

an initially homogeneous steady-state dissipative granular fluid typically develops

nonuniform, and even singular, spatial variations in density, momentum density,

and temperature [1, 2]. Even static granular systems are typically the result of

such a rapid quench in temperature that they are in glasslike states and hence

not easily described by equilibrium thermodynamics [3]. It is, however, possible

to produce a fairly homogeneous steady-state system if there is a steady energy

input to compensate for the energy lost in collisions. This can be achieved by

vibrating the system (or a wall), shearing the system, allowing grains to fall in a

chute, or adding stochastic noise (in a simulation).

Theoretical and computational studies of steady state suggest that these inelas-

tic systems can be subdivided into phases with different velocity distributions

[4, 5, 6, 7, 8]. For instance, Esipov and Poschel [4] suggested the existence of a

granular gas, a condensed phase and a collapsing condensed phase. They arrived

at these phases by studying analytically the kinetic energy distribution function
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satisfying the Boltzmann equation. They also studied this function numerically

for a system composed of a circular wall maintained at a constant temperature,

enclosing inelastic hard disks with binary collisions and found that their analyt-

ical formulation suited the simple cases of steady-state flows. Noije and Ernst

[5] solved the nonlinear Enskog-Boltzmann equation for a freely evolving and a

heated system of hard disks or spheres and found that their freely evolving system

coincided with the result of Esipov and Poschel. Ernst and Brito [6, 7] analyzed

the nonlinear Boltzmann equation by adding a stochastic noise or stochastic force

to the microscopic equations of motion. They considered three types of ther-

mostats, namely a Gaussian thermostat, a white noise thermostat and a gravity

thermostat and found that the form of the high energy tails in the velocity dis-

tributions, whether it be Gaussian, stretched exponential, or power-law depends

on the type of thermostat and on the type of interaction model. Ben-Naim and

Machta [8] performed theoretical derivations and numerical simulations of in-

elastic gases to study stationary velocity distributions that obey the Boltzmann

equation and found that their velocity distributions have a high-energy tail cor-

responding to a range from high to low velocities, and that steady states can be

realized by injecting energy at high velocities. They randomly raised particles to

high velocities such that energy was injected only at the tail of the distribution.

This did not change the collision dynamics but rather set a scale for the most en-

ergetic particles. While these studies have given insight into granular dynamics,

experiments rarely have an analog of stochastic noise or direct injection at one

end of the spectrum or other easily controlled energy input.

There have been many experiments in which velocity distributions have been

measured. Several experiments have studied granular flow in a vertical channel

[9, 10, 11]. Savage [12] used fiber-optic probes to measure velocity profiles in a

vertical channel at the sidewalls. Natarajan, Hunt and Taylor [9] found that their

velocity measurements showed that the vertical flows had a central uniform flow
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region and a shear flow region close to the vertical side walls. They also found that

the magnitude of the velocity fluctuations in the transverse direction increased

from the center towards the side walls. Menon and Durian [13] used diffusing-

wave spectroscopy to measure fluctuation velocities of glass beads in a vertical

chute and found a power-law relationship between mean fluctuation velocities and

flow velocity. Losert, Cooper, Delour, Kudrolli and Gollub [14] used a vibrated

granular experiment in which they measured velocity statistics for a layer of

inelastic colliding beads driven by a vertically oscillating boundary. They found

that when the external excitation was high enough to generate accelerations 3-

8 times that of gravity, the probability distribution of the horizontal velocity

P (v) ∼ exp (−|v/vc|1.5). For cooler particles in the absence of excitation, they

found an exponential velocity distribution. Rouyer and Menon [15] similarly

used vertical vibration of a vertical plane to measure velocity fluctuations to

arrive at P (v) ∼ C exp [−β (|v|/σ)α] with α = 1.55 ± 0.1 at all the frequencies

and amplitudes that they used. Recently Moka and Nott [16] used video imaging

and particle tracking to measure particle velocity distributions in slowly flowing

granular material down a vertical channel. They found an abrupt change in the

mean velocity in shear layers near the sidewalls, but a constant velocity in the

middle region. However, in contrast to [9, 17, 18], they found velocity fluctuations

to be larger in the center of the channel than at the sidewalls. They found

the velocity distribution to be non-Gaussian and anisotropic, following a power

law at larger velocities, and that this distribution was identical in the outside

shear layer and in the middle core. We will compare our simulation results with

many of these experiments throughout this paper. As we shall show, the velocity

distributions measured in these experiments are very different in different regions

and a consistent interpretation of experiment therefore requires knowledge of what

phase is being studied. One of the advantages of the system we are studying is

that, as we will demonstrate below, we are able to visualize each of these phases

in a steady-state configuration which is easily realized experimentally.
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In this paper we will look at velocity distributions in the gravity-driven flow

shown in Fig. 3.1. The simulation is set up to mimic experiments on chute-flow

[9, 12, 13, 16]. Spherical grains are dropped in from the top of a rectangular

chute and fall under the influence of gravity. There are flat walls at the left and

right (x direction) of the chute and periodic boundary conditions at the front and

back (z direction). At the bottom of the chute (y = 0), there is a sieve which

controls the flow rate. When a particle leaves the bottom a new particle is placed

at the top to maintain a constant number of particles in the system. We studied

a similar system in a recent letter [19] (Chapter 2) and in two dimensions (2D)

in an earlier work [21]. Based on the distributions of times between collisions, we

found our simulation had three regions or phases, which we labeled and justified

as a glassy region, a fluid region and a free-fall region. We found there was a

different collision time distribution for each of these three distinct phases [19].

In the present study we also find these three phases can be characterized by the

form of their respective velocity distributions.

In the first section we describe the simulations and the steady state configuration

of the mean velocity and velocity fluctuations. We then examine the distribution

of velocity fluctuations in detail. Different velocity distributions are found de-

pending on whether the system displays characteristics of a fluid or a glass. The

apparently conflicting results seen in experiments [9, 16] are found to be related

to different phases in our simulations. We then examine the relation of the veloc-

ity fluctuations to the distribution of times between collisions. We find evidence

that the transition from one class to another may correspond to a second order

dynamical phase transition in the limit that the vertical flow speed goes to zero.
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Figure 3.1: Section of a simulation involving 43 200 grains with 15 % polydisper-
sity. The system size is 32a× 32a× 400a. There are reflective walls at x = 0 and
x = Lx, periodic boundary conditions in the z direction, and a finite probability
of reflection at the bottom of the chute (at y = 0).
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3.2 Model

A typical snapshot from one of our simulations is shown in Fig. 3.1. As indicated

in Fig. 3.1, there are three regions, which we label as a glassy region, a fluid region

and a free-fall region. These labels will be referenced throughout this paper and

were justified in our previous study [19]. Spherical grains are dropped in from

the top of a rectangular chute in the free-fall region and the grains accelerate

at 1 g where g is the acceleration due to gravity (units are given in footnote

[20]). There are flat walls at the left and right (x direction) of the chute and

periodic boundary conditions at the front and back (z direction). This geometry

is similar to that studied experimentally in [16] where similarly rough sidewalls

were used. Periodic boundary conditions in z reduce wall effects and allow us a

translationally invariant direction to average data over. In experiments a similar

situation is obtained by having a system much longer in z than x. At the bottom

of the chute (y = 0), grains are reflected with a probability p (typically p = 90%)

which models a sieve at the bottom of the chute. This has the same effect as a

mesh that was used in the chute experiment described by Menon and Durian [13].

By using a sieve to restrict our flow of particles, we are also able to model other

experiments that use a restricting outlet as in the experiment by Moka and Nott

[16]. As detailed later, we were able to reproduce the results of both of these

experiments. We maintain a constant number of particles in our simulation by

having new particles placed at the top of the chute when an old particle leaves the

bottom. We ran simulations with different initial conditions for grains at the top

of the chute, for instance we started particles at rest at the top of the chute and

let them fall under the influence of gravity, gave them random velocities equal to

the grains leaving the system at the bottom, and found no change in our results

that are reported in this paper or in our previous paper [19] (Chapter 2).

The velocities of two grains after collision ṙ′1 and ṙ′2 in terms of the velocities
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before collision, ṙ1 and ṙ2, are


 ṙ′1

ṙ′2


 =


 ṙ1

ṙ2


 (3.1)

+
(1 + µ)

(m1 + m2)


 −m2 m2

m1 −m1





 ṙ1 · q

ṙ2 · q


q,

where q = (r2−r1)/|r2−r1|, and µ is the coefficient of restitution. Such collision

models of granular flow have a long history [22, 23]. µ is a velocity-dependent

restitution coefficient described by the phenomenological relation [24, 25, 26],

µ (vn) =





1− (1− µ0) (vn/v0)
0.7 , vn ≤ v0

µ0 , vn ≥ v0.
(3.2)

Here vn is the component of relative velocity along the line joining the grain

centers, µ0 is the asymptotic coefficient at large velocities, and v0 =
√

2ga [27].

Equation (3.2) effectively makes the ball collisions become more elastic as the

collisions become weaker as seen in experiments [24, 25, 26].

Experiments clearly show that the weight of a dense column of grains is supported

by the walls [28, 29]. This is also desirable in a simulation as it will lead to a

pressure independent of height in the dense glassy region. Specular reflection will

not accomplish this. In experiments, spin and tangential friction would result in

a loss of vertical momentum at rough-surfaced walls. While we do not have spin

and friction in our simulation, we need a vertical loss to model the experiment.

We achieved this by modeling the left and right walls as rough walls by having

particles reflect off the left and right walls of the chute with a partial loss, typically

10% in their vertical (y) velocity. The precise value of the partial loss made

little qualitative difference. Rough walls enabled our flowing grains to see a wall

support and a shearing regime similar to that found in experiments [9, 16].
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Figure 3.2: Average (a) density (volume fraction) for 1% (dashed line) and 15%
polydispersity (solid line) along the height of a 3D chute. For 15% polydispersity,
(b) the y velocity and (c) the average acceleration as measured by the material
derivative. The inset in (c) shows the same data on a log scale, clearly indicating
the acceleration of 1 g down in the free fall region. This justifies the “free fall”
label. Note that this plot takes an absolute value so the acceleration is actually
−1 g and changes sign at a height of 300. This is for a 3D 32a× 32a× 400a 15%
polydisperse simulation with an asymptotic coefficient of restitution µ0 = 0.9.
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A parameter that turns out to be surprisingly important is the polydispersity

of the grain sizes. Here, we use a Gaussian distribution of grain radii and a

polydispersity of 15% means that the standard deviation of the particle radii

is 0.15 if the mean radius is 1. Typically even experiments that use “mono-

disperse” grains have some small polydispersity on order of a few percent. We

have performed simulations at a range of polydispersity from 0 to 15% and find

even a few percent can give significantly different results from pure monodisperse

systems. This is because the geometry in the packing of particles of different

sizes dictates whether particles crystallize (in the monodisperse case) or go into a

glassy state (in the polydisperse case). This has a significant impact on collision

time power laws [19] (Chapter 2).

3.3 Steady State Configuration

We started a configuration with particles racked in a three-dimensional (3D)

rectangular array with a Gaussian distribution of randomized initial velocities

with standard deviation 0.8. From this initial configuration, we ran our simulation

and we plotted the number of collisions over time. When the total number of

collisions per unit time remained level over time, our simulation had reached

steady state. For our 3D system, steady state was achieved after approximately

100 time units, enough time for all grains to move through the system once.

The number of grains was chosen small enough that there would be a large free-

fall region at the top (so the results would not depend on specifics of the injection

at the top) but large enough so that there would also be a large glassy region (50%

- 65% of the volume of the system). Flow velocity is controlled by the reflection

probability p at the sieve. However, the qualitative behavior and division into 3

phases does not depend significantly on the flow velocity until the sieve restriction
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is nearly removed (near p ≤ 0.10).

Typical steady state configurations of the local density, measured as volume frac-

tion, and vertical (y) velocity down the center of the chute are shown in Fig. 3.2

as a function of y (height). A clear difference in the density profile of a nearly

monodisperse (1%) (dashed line in Fig. 3.2(a)) and the system with 15% polydis-

ersity (solid line) is clearly visible. In the more polydisperse system the density in

the region we have labeled as fluid steadily increases until it hits 0.60 volume frac-

tion and is then constant in the main bulk of the column. However, the nearly

monodisperse system shows a steady, nearly linear, increase in density from a

volume fraction of 0.64 to nearly 0.70 near the bottom of the channel. This in-

dicates that the nearly monodisperse system continues to order (i.e., crystallize)

as it travels down the channel, even in the very dense region.

As previously indicated there are three regions, which we label as a glassy region, a

fluid region and a free fall region. These labels were justified in our previous work

[19] (Chapter 2). In the free-fall region the grains accelerate at 1 g and collisions

are rare enough that the acceleration is unimpeded as shown in Fig. 3.2(c). In

the liquid region the density is sufficiently high that collisions mix the grains, but

the distribution of collision times (the time between collisions for a given grain) is

exponential, meaning that collisions are largely independent. In the glass region,

the collision time distribution is a power-law and thus there are collisions at a

wide range of time scales [19]. We should emphasize, as shown in [19] (Chapter

2), that mono-disperse systems continue to crystallize so they are not truly a

glass.

The velocity profile in a cross section of the flow is also very different in the fluid

and glass regions. As can be seen in Figs. 3.3(a) and 3.3(b), in the fluid region the

fluid velocity fits a parabolic flow as expected for a fluid with a constant viscosity

in a pressure gradient (Poiseuille flow) [30]. In the glassy region, jamming or
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Figure 3.3: Vertical velocity profiles along a width of 3D chute in 32 by 32 systems
at different heights. (a) is for 1% polydisperse systems with ¨ in the fluid phase at
y = 250 (averaged over 500 time units), ¥ in the disordered solid phase at y = 200,
and ? in the crystallized phase at y = 150 (averaged over 5 time units). (b) is
for a 15% polydisperse system at different heights with the N in the transition
region of the free-fall to fluid phase at y = 310 (this plug profile was similar in the
transition region of the free-fall to fluid phase for the 1% polydisperse system), ¨
in the fluid phase at y = 290 and the others in the glassy phase. The lines in the
fluid phase are fits to a parabola. The discontinuities in (a) indicate fracture and
while these discontinuities move around somewhat over time, the average profile
does not become smooth.
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plasticity occurs giving way to a plug type profile in the 15% polydisperse case.

More pronounced kinks occurs in the 1% polydisperse (nearly monodisperse) case

as shown by the ?’s in Figure 3.3(a). These kinks are associated with fracture

along crystal domain walls. Similar profiles are seen in two-dimensional flow

where it is easy to see the crystallization and domain walls (see Figure 3.4).

This crystallization is not seen initially in the mono-disperse systems, but once

it develops it persists for the entirety as our longest simulations. This suggests

that once a seed crystal forms, it acts as a template for the material coming out

of the liquid phase. This and our previous work, which demonstrated different

exponents for poly- and monodisperse systems for the power-law distribution of

collision times [19] (Chapter 2), suggests that the dynamics of the very dense

monodisperse and polydisperse systems are significantly different. The dynamics

of the dense polydisperse systems are more akin to regular structural glasses,

whereas the dense monodisperse systems are more similar to fracture dynamics

in crystalline systems.

The flow profile in the free-fall region depends somewhat on the profile that the

grains start with at the top. If the grains start with a uniform distribution of

velocities at the top, independent of their x position, then the profile will start

out flat. As the grains fall down the channel they are slowed at the wall and the

fluidlike phase gradually grows in from the walls. This produces an apparent a

pluglike profile as the fluid phase is approached. However, the plug profile here

is due to very different reasons than those causing the plug profile in the glassy

region. In the glassy region the central portion of the flow is jammed into a true

plug, whereas in the free-fall region the plug flow is from the retention of the input

profile at the top of the column as shown by the top profile (N’s) in Fig. 3.3(b).

The characteristics of the velocity fluctuations
(
δv2

α ≡ 〈(vα − 〈vα〉)2〉) (α = x, y, z)

also vary in the different regions. Figure 3.5 shows the profile of the velocity fluc-

tuations in the different regions. In the fluid region (and the free-fall region which
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Figure 3.4: Visualization of 2D sphere simulation showing (a) random packing
in monodisperse spherical grains at the early stages of the simulation (at time of
200 in simulation units), and (b) crystallization in monodisperse spherical grains
at the later stages of the simulation (at time of 3200).
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is similar) the grains gain enough kinetic energy between collisions (from accel-

eration due to gravity) to more than compensate for the loss in kinetic energy in

collisions. As a result, the system is hotter (δv2 is bigger) in the middle and heat

flows out from the center towards the walls (we define the granular temperature

as T ≡ [〈v2
x〉+〈(vy − 〈vy〉)2 +〈v2

z〉]/2 and heat flow is proportional to ∇T ). In the

glass phase, the system is colder (δv2 is smaller) in the middle and heat flows in

from the shear zones near the walls. Figure 3.6 shows that ∂yT > 0 in the liquid

and free-fall regions, so we expect heat should flow down the channel there, but

that there should be no vertical heat flow in the glass (as ∂yT = 0 in the glass).

As Fig. 3.6(a) shows, the square of the typical normal velocity v2
n encountered

in a collision essentially tracks the velocity fluctuations. In the fluid and free-fall

region the typical vn is sufficiently high that 〈µ〉 is close to its asymptotic value

µ0. In the glassy region vn is typically much smaller and 〈µ(vn)〉 is closer to 1.

Elastic hard spheres undergo a fluid-solid phase transition [31]. Inelastic granular

systems have a similar transition [32, 33, 34, 35]. Theory suggests that in inelas-

tic systems these phases can be further subdivided into dynamical phases with

different characteristic velocity distributions [4, 5, 6, 7, 8]. The different phases

we see in our simulations are closely aligned with the phases suggested by Esipov

and Poschel [4], as we shall show in more detail below. Experiments, however,

often have not clearly identified which phase is being observed. This has lead to

what at first appears to be potentially conflicting results. Moka and Nott [16]

observe a phase that exhibits plug-like flow and is hotter in the interior of the

system. This corresponds to the free-fall to fluid transition region in our system.

As in the experiment, our velocity in this transition region (N’s) of Fig. 3.3(b),

also shows a plug profile. This is because the particles at the top of the chute are

given random velocities, and thus have, on average, a flat velocity profile at the

top. As the particles travel through the free-fall to the fluid transition region this

develops into a plug profile as the fluid region grows in at the walls. The corre-
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sponding plot of granular temperature shown in Fig. 3.5(a) is hotter in the middle

as collisions with the walls are slowing the grains in this region more than in the

interior where there are few collisions. More typically, experiments [9, 17, 18] see

the interior being colder corresponding to our glassy phase. Clearly, the system

supports a finite shear stress in the central glassy region with continuous, plastic

deformation along the boundary. This is shown in the plug flow profile in the

glassy region of our simulation, (?’s) of Fig. 3.3(b), and in the corresponding

plot of granular temperature in Fig. 3.5(c), which shows the temperature to be

colder in the middle. As we shall show below, the velocity distributions are very

different in these three different regions and a consistent interpretation of exper-

iment therefore requires knowing what phase is being studied. Few experiments

tend to pin this down and the implicit assumption appears to be that the entire

system is in one phase, something that is clearly not the case. We hope that fu-

ture experiments will pay more attention to measuring properties such as density

and flow rate as a function of height to clearly identify the phases present. One

of the advantages of the system we are studying is that we can see all of these

phases in a steady-state configuration that can be easily realized and thus studied

experimentally.

3.4 Velocity distributions

A normal fluid in local equilibrium in the canonical ensemble has velocity fluctu-

ations δv distributed about the local mean velocity v in a Gaussian,

P (δv) ∼ exp

(
− δv2

kBT

)
. (3.3)

Numerous experiments and simulations [5, 8, 14, 15, 16, 36] have shown that

velocity fluctuations in granular materials do not generally follow such a distri-
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bution. This is not that surprising as energy is constantly being lost (due to the

inelastic collisions) and the assumption of local equilibrium is dubious in most of

the system. However, there is also conversion of potential energy to kinetic energy

due to the grains falling so the possibility of kinetic energy loss from collisions

balancing kinetic energy gain exists, at least in some regions. In fact we find two

regions in the system where the distribution of vx is Gaussian.

The first location is in the free-fall region. Grains are placed at the top of the

chute at a random x and z position and with a small random velocity (〈v2
α〉 similar

to at the bottom of the chute but from a uniform distribution). Even though the

initial velocity distribution is not Gaussian, the velocity distribution at the top

becomes Gaussian within 5 ball radii of the top (we measured the distribution

every 5a from top to bottom). This is not surprising if one recalls the central limit

theorem (particles start at top with velocities independent of nearby particles).

The vx distribution remains Gaussian in the free fall region [see Fig. 3.7(a)], but

narrows as the grains fall (i.e. the standard deviation 〈v2
x〉1/2 becomes smaller as

shown in Fig. 3.6). The distribution narrows as a result of collisions dissipating

kinetic energy. This energy could, in principle, be recouped from gains from the

conversion of potential energy to kinetic energy, and as we will see below this does

affect the vy distribution. However, the vx fluctuations are largely decoupled from

the vy fluctuations in the free fall region. This can be seen in the anisotropy of

the velocity fluctuations shown in Fig. 3.8 for µ0 = 0.9. There is a significant

difference in the anisotropy in the polydisperse versus monodisperse (1% poly-

disperse) cases when we compare Fig. 3.8(a) versus Fig. 3.8(b). The reason we

find this difference in anisotropy in the glassy phase is that in the monodisperse

case, the particles become more ordered and tend to crystallize causing forces to

translate along straight line chains of particles. Thus the monodisperse particles

become more correlated. In the polydisperse case the particles are more disor-

dered and thus less correlated. We reported this finding in our previous paper [19]



53

Figure 3.7: x-velocity distributions in (a) free-fall, (b) fluid and (c) glassy region
and y-velocity distributions in (d) free-fall, (e) fluid and (f) glassy region for a
15% polydisperse simulation. Note that 〈vx〉 = 0, so we plotted the x-velocity
distribution as vx = vx − 〈vx〉, whereas 〈vy〉 6= 0, so we plotted the y-velocity
distribution as vy − 〈vy〉. These velocity distributions were taken at heights in
the chute at h = 300 in the free-fall region, h = 270 in the fluid region, and
h = 190 in the glassy region. Fits are shown with the solid line. (µ0 = 0.97).

Red curves are fits to A exp (−δv2
α/v2

0). Blue lines are fits to A exp
[
− (vα/v0)

β
]

with β = 1.5 in (b) and (c).
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x)/δv
2
x, the anisotropy in the velocity fluctuations

relative to the x direction. Ay (dashed line) and Az (solid line) are shown for
the 3D (a) 15% polydisperse system and (b) 1% polydisperse (essentially mono-
disperse) system with an asymptotic coefficient of restitution µ0 = 0.9. The
vertical dashed lines indicate the fluid transition region.

(Chapter 2). In the remainder of the paper we will focus on the 15% polydisperse

systems. Also, in the free fall region, δv2
x and δv2

z differ significantly from δv2
y. In

the transition from free-fall to fluid, this anisotropy abruptly changes sign and

then drops close to zero in the liquid phase. We will discuss this transition region

more below after we have discussed the distributions in the main phases.

In the fluid phase, the vx distribution fits a Gaussian at low vx but has stretched

exponential tails as shown in Fig. 3.7(b). These tails gradually fill in the whole

distribution to the point where the entire distribution can be well fit to a function

A exp(−(|vx/v0|α), with α = 3/2, as shown in Fig. 3.7(b). Similar velocity distri-

butions (with the same α = 3/2) have been measured in experiments on driven

granular systems [14, 15]. Such a distribution has also been shown to be a solu-

tion to the Boltzmann equation for a system of heated (i.e., with stochastic noise)

granular fluid by Noije and Ernst [5] and as a special case of more general mul-

tiplicative driving [37]. In our case, the driving is not stochastic (the grains are
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converting gravitational potential energy into kinetic energy deterministically).

However, in the fluid phase the dynamics are apparently sufficiently chaotic to

mimic the stochastic noise used in [5, 37]. In the free-fall region the direction

of particle motion is predominantly downward with gravity whereas in the fluid

region there are more sideways particle collisions which couple the velocity fluc-

tuations in all directions (the anisotropy seen in Fig. 3.6 disappears). Thus the

net result (i.e. the form of the distribution) has the same velocity distribution

(with the same α = 3/2) in the fluid region as is seen in simulations with stochas-

tic noise. It would appear that the stochastic nature is actually essential as the

velocity distributions do not have this shape in the free-fall regions, where the

grain trajectories are too independent to induce chaos, nor in the glassy region,

where the motion of the grains is too coherent.

In the glassy phase, the vx distribution again fits a Gaussian at low vx but

has exponential tails. In this case, the tails, that are best fit by a function

A exp(−|vx/v0|), are closest to filling the distribution near the top of the glassy

region and then settle to a fixed fraction of the distribution in bulk of the glassy

region. Such distributions have also been seen in experiments of vibrated mono-

layers of spheres [38, 39]. Exponential tails have also been seen in several simu-

lations of dense clusters in two dimensions [37, 40]. Such exponential tails have

also been derived in the context of driven inelastic Maxwell models with diffusion

[4, 6, 7, 41].

We found that our vy−〈vy〉 distributions in the free-fall and glassy regions showed

similar behavior to the vx distributions described above and as shown in Figs.

3.7(a) and (c). In the fluid region, however, the vy distribution was dramatically

asymmetric about the mean. This distribution can be fit separately on the left and

on the right of its peak to functions A exp(−(|vx/v0|α), with α = 3/2, as shown

in Fig. 3.7(b). Interestingly, this asymmetry in the vy distribution has also been

found in vibratory experiments [15]. A possible origin of this anisotropy may be
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that particles going faster than the average downward velocity are more likely to

collide than particles going slower than the average.

Clearly, the velocity distribution for each state has very distinct characteristics.

As a result, there are transition areas where the velocity distribution changes

from one type to another. These cross-over areas can give the impression of there

being power-law tails in the velocity distributions. Such distributions have also

been suggested theoretically as “borderline” cases [6, 7]. As an example we ex-

amine the transition area between the free-fall and the fluid regions. The velocity

distribution for the fluid is wider than that in the free-fall region (cf. Fig. 3.6) and

grows into the free-fall distribution from the tails. The vx velocity distribution

and vy velocity distribution at roughly halfway through this transition area are

shown for one case in Figs. 3.9(a) and 3.9(b), respectively. As can be seen, the

tails of these distributions can be fit to P ∼ 1/vβ with β = 3.8 for both tails

of the vx distribution and with β = 7.3 and β = 2.4 for the left and right tails

of the vy distribution rather convincingly. Theory [6, 7, 8] suggests considerably

higher exponents for the power laws. Interestingly, our exponents are very close

to the experimentally determined power-law exponents of β = 3.6 for the tails

of the vx distribution and β = 7.4 and β = 2.9 for the tails of the vy distribu-

tion found recently in an experiment by Moka and Nott [16]. Their experiment

configuration is very similar to that of our simulation and the characteristics of

the average velocity profile and the profile of velocity fluctuations are consistent

with what we find in the free-fall to fluid transition area (compare Fig. 1 of [16]

with the appropriate profiles in our Figs. 3.3 and 3.5). It is not clear that this

is a true power law as it corresponds to a cross-over area and while we have just

over three decades in height, we do not have a full decade in width. However, it

is possible that the equivalent area in the experiment is wider than we see in our

simulations due to some aspect that we are not including (such as particle spin).

It would be interesting to see the experimental results at a range of heights along
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Figure 3.9: (a) Log-log plots of x-velocity distributions in a transition region
between free fall and fluid. The line is a power law fit P ∼ 1/vβ with β = 3.8.
(b) y-velocity distributions in a transition region between free fall and fluid. The
line is a power law fit P ∼ 1/vβ with β = 7.3 on the left and β = 2.4 on the right.
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the column to compare with what we have done here in the simulations.

3.5 Velocity Correlations

As the particles undergo collisions traveling down the chute, they lose some of

their relative velocity vn, and hence become more correlated. In order to com-

pare how the particles become correlated within the chute, we measured their

vx velocity-velocity correlation function every 5a from the top to bottom of the

chute. In particular, we compared the velocity correlations of the particles in the

glassy and fluid regions and found a noticeable difference in the way the velocity

correlations scale.

We ran simulations with different system widths Lx, in the x direction, while

keeping the dimensions in the y direction and z direction the same. Note that

as the walls are at x = 0 and x = Lx, 〈vx〉 = 0. Based on our data for system

widths of 20a, 28a, 36a and 44a, the 〈vx(xo)vx(x)〉 velocity correlations,

C(x) =
〈vx (x) vx (x0)〉

[〈v2
x (x) v2

x (x0)〉]1/2
, (3.4)

for various system sizes are shown in Fig. 3.10. The form of the tails of the velocity

correlations in the glassy region follow an exponential decay, exp{−(x− x0)/ξ}.
This is demonstrated by the straight portions of the curves in the semi-log plot

shown in Fig. 3.10(a). Remarkably ξ scales only with system size, ξ = 0.125Lx.

[The lines in Fig. 3.10(a) are parallel and the x−axis is already scaled by Lx.]

The slope of the gray line in Figure 3.10(a) corresponds to ξ = 0.125Lx.

We also tried looking at 2D correlation functions 〈vx(xo, yo)vx(x, y)〉. The correla-

tion length was similar in the y-direction, although the data for the 2D correlation

function was much noisier [as it was measured relative to a single point (x0, y0, z0)
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Figure 3.10: Correlation function C(x) for the x component of the velocity mea-
sured from x0 = Lx/2 (center of the chute). The sizes of all the systems are
Lx×32a×400a, where Lx is the width of the system in the x direction (Lx = 20a
for the boxes, 28a for the triangles, 36a for the circles and 44a for the diamonds).
(a) Semi-logarithmic plot of C(x) for the x component of velocity in the glassy
region as a function of the scaled variable (x− x0)/Lx. Data shown in plot (a) is
averaged in height in the uniform glassy region at y0 = 90a± 20a. The gray line
has a slope of -8 which translates to a length scale ξ ≈ 0.125Lx in the relation
exp{−(x − x0)/ξ}. (b) C(x) in the fluid region as a function of |x − x0|. The
data shown in plot (b) is at a height in the fluid region of the three systems all
at the same granular temperature.
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and so could not benefit by the averaging over different y0 that was done for the

1D correlation functions]. As the weight of the glassy column is supported by

the walls, essentially through what is expected to be an arching effect [28], the

similarity of correlation lengths in the x and y directions is expected.

Interestingly, in the fluid region, the 〈vx(xo)vx(x)〉 velocity correlations drop to

zero at a length of around 3 − 5a, where a is the mean particle radius. This is

shown in Fig. 3.10(b) which plots the velocity correlations in the fluid region for

three different sized systems, but at the same granular temperature. Thus we

can clearly see that how the correlations scale also distinguishes between a glassy

and fluid phase in granular matter. It would be interesting if experiments could

measure velocity correlations in different phases of granular matter to compare

with our findings.

3.6 Properties related to velocity fluctuations

Previous work has suggested a possible relationship between the velocity fluctu-

ations, δv ≡ |δv2|1/2, and the flow velocity, v. In [19] we used our simulations to

confirm Menon and Durian’s diffusing wave spectroscopy experimental result [13]

that the fluctuating velocity is power-law related to the flow speed vy of particles

falling under the influence of gravity in a vertical chute, δv ∝ v2/3 (Fig. 3.11).

An important detail is that we arrived at this 2/3 power law only after we had

averaged our data across the x direction of the chute (in the glassy region). This

is similar to the experiment, where diffusing wave spectroscopy was used. Such an

experiment involves looking at the correlation of laser speckle patterns after the

laser beam has traversed the width of the chute. Note, however, from Fig. 3.5(c)

that the velocity fluctuations are not constant across the channel. Plotting δv

locally (i.e., the profile across the chute rather than the average), we get the
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Figure 3.11: Relationship between fluctuating and flow velocity in the glassy
region. Data was averaged in directions normal to ~g for the 32x32 (?, δv =(
δv2

x + δv2
y + δv2

z

)1/2
) and 16x16 (N, δv = δvy) 15% polydisperse systems. The

fitted lines have slope of 2/3, in agreement with the experiments of [13]. The
points arcing across the line are non-averaged values of velocities and velocity
fluctuations at specific local points in the system.

curved branches in Fig. 3.11. Note that the actual profiles cross the average per-

pendicular to our 2/3 power-law line. Thus this power law is a nonlocal, averaged

effect.

In our previous paper [19] (Chapter 2) we studied collision time distributions

in the glassy and fluid regions. Here we will examine how the collision time

distribution changes from one region to the other and how the collision times are

related to the velocity fluctuations. The average collision time (the time between

successive collisions for a particle) is:

τc ≡ 〈τ〉 =

∫ tb
ts

τN(τ)dτ
∫ tb

ts
N(τ)dτ

, (3.5)

where N(τ) is the histogram of collision times observed in one of our simulations,

and ts and tb are upper and lower cutoffs. Figure 3.12 shows the collision dis-

tributions for different regions of our simulations. For the analytic form of the
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Figure 3.12: In a 15% polydisperse 3D 32x32x250 simulation with a probability of
reflection p of 10% at the bottom of the chute, (a) semilogarithmic plot of collision
time distribution at top of fluid region at h = 190, (b)(i) semilogarithmic plot on
the left and (b)(ii) log-log plot on the right of the collision time distribution in
fluid-glass transition region at h = 165 (the sloped straight line in the log-log plot
on the right has a slope of −0.5), and (c) log-log plot of collision time distribution
in glassy region at h = 90 (the sloped straight line has a slope of −3).
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Figure 3.13: Mapping of points A, B, C, D, E and F between (a) vy velocity profile
along chute height y and (b) log-log plot of velocity fluctuations as measured by
the granular temperature, T , versus mean collision time, τc in a 15% 3d 32x32x250
simulation with p = 0.01. The free-fall region runs between points A and B. The
free-fall to fluid transition region runs between points B and C. The fluid region
runs between points C and D. The glassy region runs between points D and E.
Between points E and F the the material becomes fluid again near the bottom
sieve. Here, p is the probability of reflection at the bottom of the chute and the
asymptotic coefficient of restitution µ0 = 0.9.

collision time distributions that we will compare our simulation data to,

〈τ〉 =





tm for N(τ) ∼ e−τ/tm ,

2ts for N(τ) ∼ τ−3, tb →∞,

1
3
tb for N(τ) ∼ τ−1/2, ts → 0.

(3.6)

Thus, the mean collision time tends to zero, or the lower cutoff, for the τ−3 case

whereas it tends to the upper cutoff for the τ−1/2 case.

As can be seen from Fig. 3.12, in the fluid region we have an exponential dis-

tribution of collision times and therefore a well-defined mean collision time, 〈τ〉,
tm from Eq. (3.6). As shown in Fig. 3.12(c), in the glass, N(τ) ∼ τ−3 as re-

ported in our recent paper [19]. This is shown in Fig. 3.12(c) for one of the faster
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systems. In the glass, 〈τ〉 is essentially equal to the lower cutoff of the power

law (see Eq. 3.6). In the fluid-glass transition region N(τ) ∼ τ−1/2 as shown in

Fig. 3.12(b). In this case 〈τ〉 is at the upper cutoff, Eq. (3.6), corresponding to

the crossover to the exponential tail. The τ−1/2 power-law exists only over a nar-

row band of heights and disappears by the exponential tail continuously turning

into the τ−3 glass distribution. The crossover between the resulting two power

laws (tb for τ−1/2 and ts for τ−3) moves lower as one goes into the glass. The

existence of the τ−1/2 power-law is somewhat curious as it does not correspond

to either the fluid or glassy states. However the way it disappears as we go into

the glass provides a clue. If one associates the glass with a “collapsing conden-

sate” [1, 2, 4], the fluid to glass transition should involve “droplets” of collapsing

condensate coming out of the fluid. In each droplet, the collision times should be

distributed as in the glass, but the cutoff, ts will depend on how close the droplet

is to the close-packed glass density. Droplets of different sizes are then likely to

have different cutoffs. A wide distribution of droplet sizes will then result in a

wide distribution of cutoffs for the N(τ) ∼ τ−3 power law, perhaps generating

the τ−1/2 low end tail seen in the transition regime.

We now examine the relationship between the velocity fluctuations, as measured

by the granular temperature T = (〈v2
x〉+ 〈vy − 〈vy〉2〉+ 〈v2

z〉) /2 and the collision

times. Figure 3.13(a) shows the velocity profile for a very fast flowing system

(with probability of reflection at the bottom of the chute of p = 0.01). The

transitions between different phases are marked by capital letters. We can map

these labeled points that mark the boundaries between the different regions onto

a plot of T vs. τc shown in Fig. 3.13(b). The different regions show very different

relationships between T and τc. To see if these relationships are general, or system

specific, we look at several systems with different probabilities of reflection at the

bottom of the chute, and hence very different flow rates. By plotting the different

systems on the same log-log plot, as shown in Fig. 3.14, we can observe whether
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Figure 3.14: Log-log plot of velocity fluctuations as measured by the granular
temperature, T , versus mean collision time, τc in (a) free-fall region, (b) free-fall
to fluid transition, (c) fluid region and (d) glassy region in a 15% 3D 32x32x250
simulation with (◦ with p = 0.01), (¤ with p = 0.1), (♦ with p = 0.25), (4 with
p = 0.5), (5 with p = 0.75) and (• with p = 0.9). Here, p is the probability of
reflection at the bottom of the chute and the asymptotic coefficient of restitution
µ0 = 0.9.
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Figure 3.15: (a) Granular temperature, T , versus mean collision time, τc, and (b)
temperature versus mean collision time scaled by the glass transition temperature,
Tg and the corresponding collision time τg in a 15% 3D 32× 32× 250 simulation
with (◦ with p = 0.01), (¤ with p = 0.1), (♦ with p = 0.25), (4 with p = 0.5),
(5 with p = 0.75) and (• with p = 0.9). Here, p is the probability of reflection
at the bottom of the chute and the asymptotic coefficient of restitution µ0 = 0.9.

there is a power-law relationship between T and τc in each of the different regions.

As can be seen from the Figure there exists a power-law relationship T = τ γ
c in

the free-fall to fluid transition with γ around −1.1 (the lines are all parallel and

have slope −1.1) and in the fluid region with γ around 1.4, but there is no obvious

relationship in the free-fall and glassy regions.

In Fig. 3.15 we examine the fluid and glass regions corresponding to different

values for the probability of reflection at the bottom of the chute, p [42]. As

shown in Fig. 3.15, the faster systems with lower reflection probabilities of p such

as 10% tend to turn around at the fluid to glass transition and reach a limiting

line. The slower systems with higher reflection probabilities such as 75% both

fall on the same limiting line. This behavior can be explained as follows. The

simulation with p = 10% is a much faster flow so its y velocity, density and

velocity fluctuations are not a constant value in the “glass”. For example, the
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density at the top of the glassy region for the fast flows is slightly lower and

gradually increases as one goes further into the glass. Thus the system is unable

to reach a stationary, or in other words translationally invariant, steady state.

It is also worthwhile to consider the fluid to glass transition regions in terms of

the jamming phase diagram proposed by [43]. They propose a “jammed” phase

diagram as a function of temperature, density, and shear stress where the region

in the vicinity of the origin is jammed and the region far from the origin is not

jammed. Their jamming transition is expected to be first order except for the

J-point, a transition at close packing density and at T = 0 and where the shear

stress is zero. The transitions for the different systems seen in Fig. 3.15 occur

at different temperatures and different shear stresses (related to the flow speed

controlled by the probability of reflection p). As we lower the flow speed, and

the temperature at which the transition occurs decreases, our system should be

approaching the J-point and the transition should become more continuous and

the “glass” state should approach a more well-defined translationally invariant,

disordered limit. This is consistent with what we observe in Fig. 3.15. If we

attempt to scale Fig. 3.15(a) by the difference in temperature from the observed

transition for each system, we arrive at Fig. 3.15(b). We find that the slower

systems start to approach a single universal line but the faster systems deviate.

While a full investigation of the transition is beyond the scope of the current

paper, we plan to investigate this phenomenon in the future.

3.7 Conclusions

In this paper we have examined velocity fluctuations in computer simulations

of a granular system. The gravity driven granular chute flow system we study

has been realized in numerous experiments. Our observations are consistent with
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the fluctuations observed in the experiments most closely matching our simula-

tions [13, 16].

We find three main classes of velocity distributions corresponding to the free-fall,

fluid, and glassy regions. In the free-fall region we see a Gaussian distribution

of velocities, but the velocity fluctuations in the vertical and horizontal direction

evolve separately. In the fluid region the velocity distribution has a stretched ex-

ponential tail of exp
(−v3/2

)
, but the vertical velocity fluctuations become very

asymmetric and require separate fits for velocities above and below the mean. In

the glassy state the velocity distribution has exponential tails. Velocity fluctua-

tions are correlated on the scale of the system size in the glassy region and have

a finite correlation length independent of system size in the fluid region.

We then related the velocity fluctuations to the collision time, the time between

collisions. The distribution of collision times in the glass is power-law distributed

and in the fluid it is exponential, as we observed in previous work [19] (Chapter

2). We also find evidence that the transition from fluid to glass becomes more

continuous for slower-moving, lower temperature flows. The slower flows also

reach a more translationally invariant disordered glassy state. These observations

are consistent with the approach to the J-point defined by O’Hern et al. [43].
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Chapter 4

Constitutive relations in dense granular flows

4.1 Introduction

There have been numerous attempts to accurately describe stresses in granular

matter ranging from approaches using partial differential equations [1, 2, 3, 4, 5] to

using phenomenological ideas [6, 7]. Apart from adopting mathematical models,

if we concentrate on the basic physics of momentum conservation, mass conser-

vation and energy conservation, this does not provide us with enough equations

to fully solve for local density, velocities, and temperature. In order to solve for

these quantities, the stress tensor and heat flux need to be expressed in terms of

these local variables in order to “close” the equations (i.e. have the same number

of equations and unknowns). This prompts us to studying various constitutive re-

lations to provide these necessary additional constraints. With this aim in mind,

we have performed simulations of gravity driven dense granular flow in three di-

mensions to compare and test constitutive pressure, stress and energy relations

of granular matter.

The binary, hard sphere collision model used for our simulations is similar to

that used in [8, 9], but for illustrative purposes a typical snapshot from one of

our simulations is shown in Fig. 4.1(a). We will reiterate a brief description of
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Figure 4.1: (a) Section of a simulation involving 43 200 grains with 15 % poly-
dispersity. The system size is 32a × 32a × 400a. There are reflective walls at
x = 0 and x = Lx, periodic boundary conditions in the z-direction, and a finite
probability of reflection at the bottom of the chute (at y = 0) with an asymptotic
coefficient of restitution µ0 = 0.97. Time-averaged density (volume fraction) in
(b) and y− velocity in (c) down the center of a 3D chute. The short dashed lines
are analytic calculations of density and vy in the free-fall region (described in
text). (d) The total kinetic energy E = 1

2
ρv2 + 3

2
ρT and (e) stress tensor compo-

nents σxx (solid line), σyy (dashed line) and σzz (dotted line). The measurements
for plots (b), (c), (d) and (e) were taken down the center of the chute.
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our model in the next paragraphs but for more details one can refer to references

[8, 9] (Chapters 2 and 3).

In our simulation, spherical grains are dropped in from the top of a rectangular

chute and fall under the influence of gravity. There are flat walls at the left and

right (x-direction) of the chute and periodic boundary conditions at the front and

back (z-direction). At the bottom of the chute (y = 0), grains are reflected with a

probability p (typically p = 90%). Particles transmitted through the bottom are

replaced at the top of the chute in order to maintain steady-state. Particles reflect

off the walls of the chute with a partial loss, typically 10% in their vertical (y)

velocity. This is essential as experiments show [10, 11] that much of the column

weight is supported by the walls.

Particles in our simulation undergo binary collisions where their momenta are

transferred along the line joining their centers. Specifically, the velocities after

collision ṙ′1 and ṙ′2 in terms of the velocities before collision, ṙ1 and ṙ2, are


 ṙ′1

ṙ′2


 =


 ṙ1

ṙ2


 (4.1)

+
(1 + µ)

(m1 + m2)


 −m2 m2

m1 −m1





 ṙ1 · q

ṙ2 · q


q,

where q = (r2−r1)/|r2−r1|, and µ is the coefficient of restitution. Such collision

models of granular flow have a long history [12, 13]. µ is a velocity-dependent

restitution coefficient described by the phenomenological relation [14, 15],

µ (vn) =





1− (1− µ0) (vn/v0)
0.7 , vn ≤ v0

µ0 , vn ≥ v0.
(4.2)

Here vn is the component of relative velocity along the line joining the grain

centers, µ0 is the asymptotic coefficient at large velocities, and v0 =
√

2ga [16].
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Equation (4.2) effectively makes the ball collisions become more elastic as the

collisions become weaker as observed experimentally [17, 18]. Scaled units are

given in footnote [19].

In previous work [8, 9] (Chapters 2 and 3) we examine both mono- and poly-

disperse mixtures of spheres. Here we simulate only 15% poly-disperse particles.

In this context, a polydispersity of 15% means that the standard deviation of

a particle radius is 0.15 if the mean is 1 using a Gaussian distribution of radii.

Poly-disperse particles achieve a truly glassy state, and here we are interested

in testing and comparing constitutive relations in the glassy state, in addition

to the free-fall and fluid states. Mono-disperse or nearly mono-disperse particles

gradually increase in order and crystallize, and it is beyond the scope of this

paper to examine the approach to the crystallized state in detail, although we

did touch upon such details in previous work [8, 9] (Chapters 2 and 3).

A typical steady-state configuration of our simulation is shown in Fig. 4.1(a). The

steady-state density (plotted as a volume fraction), velocity, energy, and diago-

nal stresses from our simulation for this typical configuration were all measured

down the center of the channel and are plotted in Figs. 4.1(b), (c), (d) and (e),

respectively. The orientation of the x, y and z axes is shown at the bottom of

the visualization in Fig. 4.1(a).

As indicated by the labels and vertical dashed lines in Figs. 4.1(b)-(e), there are

three regions, which we label as a glassy region, a fluid region and a free fall region.

These labels were justified in our previous work [8, 9] (Chapters 2 and 3). In the

free fall region the grains accelerate at 1 g and collisions do not have a significant

impact on their kinetics [8, 9] (Chapters 2 and 3). In the liquid region the density

is sufficiently high that collisions mix the grains, but the distribution of collision

times are exponential, meaning that collisions are largely independent. In the

glass region, the collision time distribution is a power-law and thus collisions are
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not independent and as a result there are collisions at a wide range of time scales

[9] (Chapter 3).

It is important to note that the relative sizes of the glassy, fluid and free-fall

regions vary depending on the coefficient of restitution used. As expected, the

lowest asymptotic coefficient of restitution of 0.9 resulted in the smallest fluid

region, an intermediate asymptotic coefficient of restitution of 0.95 resulted in

a larger fluid region, and the largest asymptotic coefficient of restitution of 0.99

resulted in the largest fluid region for the same sized column. The existence of

transition regions between the free-fall, fluid and glassy states was demonstrated

in previous work [8, 9] (Chapters 2 and 3). The transition region between the

free-fall region and the fluid region is indicated by the vertical gray shaded stripe

in Figs. 4.1(b-e). Unless otherwise noted, the results presented in this paper use

an asymptotic coefficient of restitution of 0.97, which facilitates the study of one

of the wider transition regions. A wider fluid region clearly shows a kink in the

free-fall to fluid transition region in the data profiles as shown in Figs. 4.1(b)-(e).

It is interesting to note that the kink at this transition in the density and velocity

profiles lines up with the peak in the kinetic energy and inflection point in the

stress profiles as shown in Figs. 4.1 (d) and (e). This peak marks the boundary

between the fluid region and the free-fall to fluid transition region.

4.2 Continuum Equations

Our simulation evolves over discrete binary collisions. In our simulation, we

average various physical properties based on these discrete events over time and

space. We resolve our 32a× 32a× 400a chute over a fine volume grid composed

of 1a × 1a × 1a cubes. This resolution was chosen to scale with the size of the

particles of mean radii a = 1. This allows us to map our discrete system onto



78

a time-averaged continuum set of fields. We will now begin by describing the

continuum equations describing the average density, 〈ρ〉, velocity 〈~v〉 and energy

〈E〉 that we would expect our system to map onto. To simplify the notation, even

though the measured properties in our simulation are quantities averaged in time

and over the translationally invariant z-direction, we omit the angled brackets 〈·〉
in the conservation equations that follow.

4.2.1 Conservation equations

In this section, we will describe the continuum equations of conservation of mass,

momentum and energy that we will attempt to map our simulation results onto.

We will describe how the physical terms in these equations can be measured

directly from our simulation.

The continuity equation for mass gives us one equation

∂ρ

∂t
+∇ · (ρv) = 0. (4.3)

Momentum conservation requires that

∂t(ρvα) + ∂β(ρvαvβ) = ∂βσαβ + ρgα, (4.4)

where σαβ is the stress tensor, and all vα and vβ refer to first moments of the

velocity distribution. This gives us the three components of the Navier-Stokes

equations. The Einstein summation convention is used for repeated indices α and

β. The indices α and β refer to the x, y or z components.

The time averaged stress tensor can be directly measured in our simulation using
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the microscopic form of the 3D stress tensor [20]:

σαβ = σkinetic
αβ + σcollision

αβ (4.5a)

= −〈ρ (vα − 〈vα〉) (vβ − 〈vβ〉)〉 (4.5b)

+
1

t

∑

collisions

−1

2
(1 + µ)(ṙ1 − ṙ2) · q̂ (q̂ · êα) (q̂ · êβ) ,

where êα and êβ are x̂, ŷ or ẑ. The 1
2

accounts for the double counting of collisions

in the sum (we count the transfer from particle 1 to 2 and the transfer from 2 to

1).

Our fifth equation is an equation describing the energy conservation in our system

∂t (E) + ∂α (vαE + Fα) = I + ρg · v, (4.6)

where the Einstein summation convention is used for repeated indices. Briefly,

E =
1

2
ρv2 +

3

2
ρT (4.7)

is the (kinetic) energy (note that v2 = 〈v〉2 in the first term), where

T =
1

3
δv2 =

(〈v2
x〉+ 〈vy − 〈vy〉2〉+ 〈v2

z〉
)
/3 (4.8)

is the granular temperature. The energy, E, from our simulation is plotted in

Fig. 4.1(d). F is the non-convective energy flux and α refers to the x, y or z

component.

An important component of the non-convective energy flux F, is the collision

energy flux, Fc. Part of the energy flux is related to the coherent transfer of

momentum, that is, the work done by the stress tensor and the other part is the

heat flux. We can measure the energy transfered between grains in a collision
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using Eq. (4.1)[20] to get

δFc =
1 + µ

m1 + m2

[
m1 (ṙ1 · q)2 −m2 (ṙ2 · q)2]q. (4.9)

Averaging over time gives the collision energy flux as

Fc =
1

t

∑

collisions

δFc. (4.10)

Similarly, we can easily use Eq. (4.1) to calculate the dissipation, I from the

kinetic energy lost in each collision,

δI = − 1− µ2

2(m1 + m2)
(m1ṙ1 · q−m2ṙ2 · q)2 . (4.11)

If we average δI over the collisions that occur in a small cell (1× 1× Lz) of our

simulation, and if we also average δI per unit time (effectively multiplying by the

collision frequency fc), we arrive at the average dissipation rate I which is the

remaining term in Eq. (4.6).

Equations (4.3), (4.4) and (4.6) give us five equations (in the static limit), but

there are six unknown stress values, namely the diagonal stresses σxx, σyy, σzz,

and, using the fact that the stress tensor is symmetric, we have the shear stresses

σxy = σyx, σxz = σzx and σyz = σzy. We need six constitutive equations to solve

for these six unknown stress values. Similarly, all the terms in Eq. (4.6) can be

measured directly from a simulation, however they cannot be predicted ahead of

time without relating the F and I to the density, velocities, or energy by means

of two additional constitutive relations. The dissipation and heat flux will be

examined in more detail in sections 4.2.5 and 4.2.7.
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4.2.2 Stress and energy balance

In the previous section we described the conservation equations that are applica-

ble to our system. In the upcoming sections we will examine these conservation

equations in detail applying them to the different regions of our simulation. In

this section we will examine the balance of stress and energy in the fluid, glass and

free-fall regions. In particular, we will examine Eq. (4.4) in the different regions

of our simulation. The stress tensor cannot be ignored in these regions, even as

a first approximation. If we assume in Eq. (4.4), that the time derivative is zero

as we are in steady state, and if we assume that the kinetic terms, ∂β (ρvαvβ) are

negligible (as is observed by the low acceleration values in the glassy and in part

of the fluid region in Fig. 2(c) in reference [8] and in Fig. 1(d) in reference [9])

(Fig. 3.2(c) in Chapter 3 and Fig. 2.1(d) in Chapter 2), we arrive at

∂xσyx + ∂yσyy = −ρgy, (4.12)

where gy = −g < 0 in this orientation.

Figures 4.2(a) and (b) show the balance of the weight, −ρg and stress gradients

∂xσyx + ∂yσyy in the fluid and glassy regions, respectively. There are very signif-

icant differences between how these terms are balanced in the liquid and glassy

regions. We find that the pressure gradient ∂yσyy is the dominant term supporting

the weight in the fluid region. This is consistent with what one would expect in a

simple fluid where the pressure would be a function of depth, P = ρgy+constant.

In contrast, in the glassy region we find that the gradient in the shear stress, ∂xσyx

is the dominant term supporting the weight. Here, as in our previous paper [9],

we can conclude that in the glassy region the system supports a finite shear stress

and this region behaves like a solid in this sense.

As a result, a constitutive relation for the pressure is critical to understanding
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Figure 4.2: Plot of force densities ∂yσyy (dot-dashed line), ∂xσyx (long dashed
line), ∂xσyx + ∂yσyy (short dashed line) and the weight −ρgy (solid line) in (a)
the fluid region and (b) the glassy region versus the width x for a 400-height
column using an asymptotic coefficient of restitution µ0 of 0.97 and probability
of reflection p = 90%. (c) Plot of force densities ∂yσyy (dot-dashed line), −∂yρv2

y

(long dashed line), ∂xσyy − ∂yρv2
y (short dashed line) and the weight −ρgy (solid

line) in the free-fall region.
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the fluid region while a constitutive relation for the shear stress is necessary for

describing the glass.

Now that we have looked at the stress balance in the fluid and glassy regions, we

can next examine the balance in the free-fall region. Taking the y component of

the Navier-Stokes Eq. (4.4), we have

∂y

(
ρv2

y

)
= ∂yσyy + ρgy, (4.13)

where gy = −g < 0 in this orientation. Figure 4.2(c) shows the balance of

the weight, ρg and stress gradients ∂yσyy − ∂y

(
ρv2

y

)
. In the free-fall region the

pressure gradient, ∂yσyy ≈ 0, and the kinetic term, −∂y

(
ρv2

y

)
, contributes solely

to balance the weight, ρg.

Finally, we can observe the energy balance Eq. (4.6) in all three regions. We can

assume that the time derivatives are negligible since we are in steady state and

that the derivatives in the periodic z direction are also negligible. Note that the

only significant energy fluxes are in the x and y directions and δv2
x ≈ δv2

y ≈ δv2
z

and thus we can say that T ≈ δv2
y. Using these assumptions together with

Eq. (4.6), we finally arrive at the energy equation

∇ · F = I + ρgvy, (4.14)

where we have used the following constitutive relation for the energy flux

F = Fc − 1

2
〈ρ (vα − 〈vα〉) (vβ − 〈vβ〉)〉vβ (4.15)

The left and right sides of Eq. (4.14), as directly measured from our simulation,

are plotted in Fig. 4.3. The clear agreement in the free fall, fluid and glass regions

shows that all the assumptions made to this point are reasonable.
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dashed line is the right side of the equation, I + ρgvy.

4.2.3 Pressure

In our discussion of stress balance in the previous section, we demonstrated the

role of the pressure gradient in balancing the weight, particularly in the fluid and

somewhat less importantly in the glass. In this section, we will examine several

equations of state for pressure for the glassy and fluid regions of our system. In

a simple fluid the pressure is normally defined as

P = −1

3
Tr (σ) , (4.16)

and the diagonal stresses σαα = −P . However, as is already clear from Fig. 4.1(e)

the diagonal stresses are not equal everywhere, so we will examine the pressure
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tensor diagonal components as

Pαα = −σαα. (4.17)

As jamming is approached, Salsburg and Wood [21] used a free volume approx-

imation to suggest that the pressure in a classical (conservative) hard sphere

system approaches

P = (ρT )(1− (φ/φc)
1/D)−1. (4.18)

They also gave an asymptotic approximation (as φ → φc) of Eq. (4.18) as

P = D(ρT )(1− φ/φc)
−1. (4.19)

In Eqs. (4.18) and (4.19) D is the dimension and φ is a volume packing fraction

φ =
4

3
πa3 ρ

m
, (4.20)

where m is a mean grain mass, and φc is a random close-packed density. Normally

these expressions involve Boltzmann’s constant and the absolute temperature,

which is not relevent for dissipative granular materials so we follow standard con-

vention and replace kBT with the granular temperature in Eq. (4.8), something

that would be entirely equivalent in a conservative hard sphere system. Also,

the true form of Eq. (4.19) has an additional constant of order 1, but literature

usually quotes this equation suppressing the constant.

As can be seen in Fig. 4.4 both Eqs. (4.18) and (4.19) do well as the close-packed

density is approached in the glassy region, but they give higher pressures than

what we observed in our simulation at lower densities in the fluid regions. As

expected, the asymptotic approximation Eq. (4.19) is worse in the fluid region

than the true free-volume expression Equation (4.18), although both disagree with
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Figure 4.4: (a) Plot of ρδv2
x/Pxx (squares), ρδv2

y/Pyy (triangles), and ρδv2
z/Pzz (cir-

cles) versus φ. Also plotted are the result from Eq. (4.19) (solid green (bottom)
line), Eq. (4.18) (blue dotted (middle) line), and Eq. (4.23) (orange dot-dashed
(top) curve). φc is the observed close-packed density in the glassy region and
δv2

α = 〈(vα − 〈vα〉)2〉. (b) Reciprocal of data in (a). In both plots closed symbols
indicate the glassy region and open symbols the fluid regions. The data is for a
32 × 32 × 400 simulation with an asymptotic coefficient of restitution µ0 = 0.97
and a probability of reflection at the bottom of the chute p = 0.9. The solid red
curve through the data is described in the text.
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our simulation data in the fluid region. Similar effects are found in simulations

of elastic hard sphere packings [22].

At low densities, a more appropriate approach to studying the equation of state

of a hard sphere fluid is to use a virial expansion:

P

ρT
= 1 + B2φ + B3φ

2 + ..., (4.21)

where again φ is the volume packing fraction proportional to density and Bi are

the virial coefficients. For hard spheres, the Carnahan-Starling [23] equation of

state for a hard sphere fluid uses a rescaled virial series solution of the Percus-

Yevick equation [24] for hard spheres which is an approximate integral equation

for determining the radial distribution function of a fluid. It uses the rescaled

virial series
P

ρT
=

1 + c2φ + c3φ
2 + ...

(1− φ)3 , (4.22)

where ci are related to the virial coefficients Bi. The Carnahan-Starling [23]

equation of state is written as

P

ρT
=

(1 + φ + φ2 − φ3)

(1− φ)3 . (4.23)

Both the Carnahan-Starling equation, Eq. (4.23), as well as the virial expansion

to 12 coefficients, as derived in [25, 26], are shown in Figure 4.4 (dash-dotted

lines, indistinguishable from each other except at high densities in Figure 4.4(b))

and agree well with our data in the lower density fluid region. In the literature,

there are several other equations of state that are proposed as solutions to the

Percus-Yevick equation which are slightly more accurate than the Carnahan-

Starling equation. Examples of these include the Kolafa equation [27] and the

Malijevsky and Veverka equation of state [28]. The Malijevsky and Veverka

equation, for instance, uses a combination of the analytical solution of the Percus-

Yevick equation and a Pade approximation of the rescaled virial series using the
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first seven virial coefficients to improve the convergence of the virial expansion.

When we plotted the Kolafa and Malijevsky and Veverka equations of state we

found that these solutions were very close to the Carnahan-Starling equation of

state and gave no significant improvement in agreement with our data.

The close agreement between the virial/Carnahan-Starling result and our data

is surprising. These theoretical results are based on the assumption that the

grains are in a thermal equilibrium which would be characterized by a Gaussian

distribution of velocities. In contrast to a conservative hard sphere fluid, a dissi-

pative granular fluid does not form a Gaussian velocity distribution. Experiments

[29, 30] and theory [31, 32, 33] have shown, and we previously demonstrated using

our simulation [8] (Chapter 3), that in a granular fluid, the distribution is not

Gaussian. At low vx, the vx distribution is Gaussian but it has stretched expo-

nential tails. These tails gradually fill the whole distribution such that the entire

distribution can be well fit with a 1.5 power law instead of the power-law expo-

nent of 2 that would be expected for a Gaussian velocity distribution [8] (Chapter

3). The lack of normal thermal equilibration is also particularly evident in the

free-fall to fluid transition area (the low density region in Fig. 4.4(b)). Here the

Pyy data match the Carnahan-Starling equation and the virial expansion, but

Pxx and Pzz do not. This indicates that in this transition region, the fluid is not

fully equilibrated in the x-x and z-z directions. Thus we shouldn’t expect that

Eq. (4.23) and the coincident virial expansion can be directly applied to a gran-

ular fluid. Surprisingly, however, the Carnahan-Starling and the virial expansion

work extremely well in the fluid region, matching our simulation data. A reason

may be that even though in the velocity distribution the 1.5 power law exists

in the tails, the distribution still remains Gaussian in the center. This implies

that the pressure in the fluid and free-fall region is not too sensitive to the tail

distribution.

It is also remarkable that there is no real signature of the different phases in the
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pressure. The ratio of P/(ρT ) diverges as close packing is approached but is still

finite throughout the glassy region. As we shall see below, these phases are only

distinct when we consider dynamic properties such as transport coefficients. This

fits with the usual description of the glass transition being a dynamical transition.

What is perhaps more interesting is that the free-fall to fluid transition must also

be a dynamic transition if these phases are truly distinct. We will examine this

in more detail in later sections.

An expression that interpolates between the virial and the free-volume expression

for the pressure can be found by taking the virial expansion up to and including

B5φ
4 and adding to it Eq. (4.18) and subtracting the Taylor series expansion of

Eq. (4.18) taken about φ = 0 up to and including the φ4 term:

P

ρT
= (1 + B2φ + B3φ

2 + B4φ
3 + B5φ

4)

+

[
1−

(
φ

φc

)1/3
]−1

−
n=12∑
n=0

(
φ

φc

)n/3

. (4.24)

This is shown in Fig. 4.4 as the solid red line that goes through the simulation

data.

4.2.4 Collision frequency

Many of the constitutive relations that follow, such as for the dissipation and

energy flux involve a collision frequency (per unit volume). Thus, it seems ap-

propriate to first establish closed relations for the collision frequency, fc that are

valid in the different regions. A closed relation for the collision frequency includes

the pressure, P . In the previous section, we combined a virial expansion with

a free-volume theory expression to establish a relation for the pressure, P , that

works equally well in the fluid and glass regions. We can also derive the pressure,
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P . We know Pαβ = −σαβ, and we have the stresses, σαα, plotted in Fig. 4.1(e).

We have for the virial pressure

V = −1

3
Tr (σαβ − 〈ρ (vα − 〈vα〉) (vβ − 〈vβ〉)〉) , (4.25a)

≈ P − ρT, (4.25b)

where the pressure P is a function of the density ρ and granular tempera-

ture T as detailed in the previous section. The kinetic term in Eq. (4.25a),

〈ρ (vα − 〈vα〉) (vβ − 〈vβ〉)〉, is negligible in the glass but is significant in the fluid

and free-fall regions. Using Eq. (4.5) we also have the relation

V =
1

2
fc〈(1 + µ)(ṙ1 − ṙ2) · q〉, (4.26)

where

(ṙ1 − ṙ2) · q = vn (4.27)

is simply the normal impact velocity between the colliding particles. Note that

we have already studied constitutive relations for the pressure in section 4.2.3.

Using the relations for the pressure determined in section 4.2.3, we can solve for

the collision frequency as follows. We can use the fact that

〈(1 + µ)(ṙ1 − ṙ2) · q〉 = 2〈1 + µ〉〈vn〉, (4.28)

where the factor of 2 is because we have counted the momentum transferred from

particle 1 to 2 and from particle 2 to 1 in the average over collisions.
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Figure 4.5: Plot of the empirically determined parameter A in Eq. (4.31) for the
glassy region of the chute from simulations with different asymptotic coefficients
of restitution µ0. The line is just a guide for the eye.

By combining Eqs. (4.25a), (4.26) and (4.27) we have

fc =
3V

1
2
〈[1 + µ (vn)] vn〉

(4.29a)

≈ 3V

〈1 + µ (vn)〉〈vn〉 , (4.29b)

where the 1
2

in Eq. (4.29a) has been cancelled by the 2 from Eq. (4.28).

Now, µ = µ (vn) is the velocity-dependent coefficient of restitution given by

Eq. (4.2). Here vn is the component of relative velocity along the line joining

the grain centers.

During a collision the sign of vn is fixed and vn is always positive, as can be

readily seen from Eq. (4.27). In Ref. [8], we showed that v2
n traces the velocity
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fluctuations δv2
α. Thus we expect 〈vn〉 to be related to 〈|δvα|〉,

〈|δvα|〉 =

√
2

π
〈δv2

α〉1/2, (4.30)

if δvα is distributed in a Gaussian. This is nearly true in the liquid and free-fall

regions. However, as will be explained below, δvα is not strictly distributed in a

Gaussian distribution in the glassy region. If the particles are moving statistically

independently

〈vn〉 =

√
2

π
AT 1/2, (4.31)

where A = 2 in the liquid and free-fall regions. In the glassy region P (δv)

is not Gaussian [8] (Chapter 3) and the particles are not moving or colliding

independently [8, 9] (Chapters 2 and 3). So 〈vn〉collisions 6= 〈δv〉particles. Thus

in the glass, A < 2 and a value for A has to be determined empirically. For an

asymptotic coefficient of restitution of µ0 = 0.97, we found A = 1.62 in the glass.

Figure 4.5 shows a plot of A in the glassy region for three different coefficients of

restitution. As the simulation becomes more elastic, that is as µ0 → 1, A → 2.

We also calculated A in the glassy region for simulations with different sieve

probabilities, hence for different flow rates with the same asymptotic coefficient

of restitution, and found that A did not vary with the flow rate in the glassy

region.

Upon combining, Eqs. (4.2), (4.29), and (4.30), we finally arrive at closed ex-

pression for the collision frequency fc. We can use the fact that in the glass the

normal velocity, vn, is less than the cutoff velocity v0 =
√

2ga [16]. Here, g is the

acceleration due to gravity and a is the particle radius. Thus our expression for
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Figure 4.6: Plot of the collision frequency per unit volume as calculated using
Eq. (4.32) using A = 1.62 (red line with ◦’s), as calculated using Eq. (4.32) using
A = 2 (purple line with ¤’s), and the simulation values for the collision frequency
(blue solid line) versus the height y of the chute in (a) the entire chute and (b) in
the fluid region (semi-logarithmic). Measurements are taken in the center of the
chute using a simulation with an asymptotic coefficient of restitution µ0 = 0.97.
Data is averaged over depth (32a) in z and over 800 time units.
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the collision frequency becomes

fc =
3V[

1 + 1− (1− µ0)

(√
2
π

AT 1/2

v0

)0.7
]√

2
π
AT 1/2

, (4.32)

with A as defined for the different regions in the paragraph above. Fig. 4.6

shows that the collision frequency as calculated using Eq. (4.32), and the collision

frequencies obtained from the simulation agree nicely.

4.2.5 Conservation equations in free-fall region

Now that we have established a closed relation for the collision frequency in the

fluid, glass and free-fall regions, we can examine closed relations for the properties

in the different regions that depend on the collision frequency. In this section, we

will examine properties in the free-fall region which we can solve for analytically.

In the free-fall region, the stresses are very small, and their gradients even smaller.

As can be seen from the flat pressure profile in the free-fall region in the inset in

Fig. 4.1(e), there is a small (mostly kinetic) stress contribution. This allows us to

greatly simplify the above equations and solve for the density, velocity and energy

in the free-fall region. As described in Ref.[8] (Chapter 3), the fluid region begins

as a boundary layer in the free-fall region which gradually grows to dominate the

flow. What we describe in this section applies only to the plug-like flow in the

central (away from the walls) portion of the channel. In this plug-like flow region,

velocity gradients in the x-direction are negligible (e.g. see Fig. 3(b) in Ref. [8])

(Fig. 3.3(b) in Chapter 3), as are shear stresses σxy. Due to the periodic boundary

conditions in the z-direction physical properties are translationally invariant, on

average, along z. Our system is in a steady state so we can also assume that

the partial derivative with respect to time in Eqs. (4.3), (4.4), and (4.6) are

negligible.
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With these assumptions in the free-fall region, the continuity equation Eq. (4.3)

translates to

∂y (ρvy) = 0. (4.33)

and the y component of the Navier-Stokes Eq. (4.4) translates to

∂y

(
ρv2

y

)
= ∂yσyy + ρg. (4.34)

There is a very small kinetic contribution to the stress as can be seen in the inset

in Fig. 4.1(e):

σyy = −ρδv2
y. (4.35)

However this kinetic stress contribution in the free-fall region is nearly constant

(except close to the inlet) as can be seen by the horizontal profile in the inset in

Fig. 4.1(e), and thus

∂yσyy = −∂yρδv2
y ≈ 0. (4.36)

We can then solve for the density and velocity in the free-fall region using

Eqs. (4.33) and (4.34) and one data point in the bulk interior of the free-fall region

at a height y0, at mid-width (mid x−direction) and mid-depth (mid z−direction)

in the chute. The reason we use an interior point as opposed to a boundary value

say, at the top of the chute is because the assumption that σyy is constant is

most accurate once the grains have moved a finite distance into the chute. This

assumption is not strictly a required to solve the equations, but it is required if

we wish to solve without consideration of the energy equation.

Thus solving Eqs. (4.33) and (4.34), gives us the solution

ρ = c/vy, (4.37)

vy ≈ −
√

2gy + k1, (4.38)
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where the constants are

k1 = v2
y0
− 2gy0, (4.39)

c = ρy0vy0 , (4.40)

where ρy0 and vy0 are measured at any single point in the interior of the free-fall

region as described in the previous paragraph. Eqs. (4.37) and (4.38) are plot-

ted as dashed lines in the free-fall region in Fig. 4.1(b) and (c). The agreement

between the analytical results and the simulation in the free-fall region is remark-

ably good. Not surprisingly, there is some deviation at the very top of the chute

where the approximation that σyy ≈ constant breaks down. As noted above, in

the free fall region the stress is almost entirely from the kinetic terms so that

σyy = −ρδv2
y so to improve our analytic solution we must examine the energy

equation (to obtain a better solution for δv2
y).

It is clear however, that to solve these equations analytically (or numerically

without input from the simulation) that constitutive relations giving I and Fc

are needed. These will be presented in section 4.2.7.

4.2.6 Shear-Stress Constitutive Relations: Models of Viscosity

In section 4.2.2, we demonstrated the importance of the shear stress gradient in

supporting the weight. This was significant in the glassy region. In this section,

we will examine constitutive relations in the glassy region that involve the shear

stress. Closely related to the shear stress is the shear rate (velocity gradient),

and the viscosity, so we will examine these properties as well.

In references [8] and [9] (Chapters 2 and 3), it was demonstrated that the ve-

locity profile of particles in the fluid was parabolic (Poiseuille flow), but as one

approached the glassy region a plug type profile emerged. The development of
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this plug profile in the y-velocity was clearly correlated with the center region so-

lidifying into a glass. As the particles travel down the chute, they are slowed by

the drag force at the walls supporting the weight of this glassy region via a shear

stress. This gives a plug-like profile. We cannot overemphasize the important

role that the shear stress has on the y-velocity profiles for particles traveling from

the fluid to a glassy region. The stresses were shown to be crucial in providing

the weight balance that we discussed in section 4.2.2. In this section, we will

discuss constitutive relations for the shear stress in the fluid and glassy regions

of our granular system.

Most works based on kinetic theory assume a fluid-like constitutive relation for

the shear stress in the system

σxy = η∂xvy, (4.41)

where σxy is the shear stress, η is the effective viscosity and ∂xvy is the shear rate.

The difficulty with such descriptions is that the viscosity η is strongly dependent

on quantities such as the granular temperature which varies considerably in space

in many granular systems.

This complexity can be seen in Fig. 4.7(a) which plots the shear stress, σxy, vs.

the shear rate ∂xvy in the granular fluid region for different heights. Here, it

was important to use a slow (p = 90%) system with a high enough asymptotic

coefficient of restitution µ0 = 0.95 in order to achieve a true fluid region. The

temperature in this region is fairly uniform in width x but changes dramatically

in height y (see Figs. 5 and 6 in reference [8]) (Figs. 3.5 and 3.6 Chapter 3).

We plotted the shear stress σxy versus the shear rate ∂xvy for different heights,

hence at different temperatures for these different heights, as shown in Fig. 4.7(a).

Fig. 4.7(a) does display the linear relation of Eq. (4.41). To calculate the viscosity

η, we then measured the slopes of σxy versus ∂xvy at these different heights, and
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plotted these viscosity values versus the granular temperature T at these heights.

We obtained a power-law relationship between the viscosity and the granular

temperature along heights in the fluid region as shown in Fig. 4.7(b).

η ∼ T−4/3. (4.42)

Equation (4.42) for the fluid region seems surprising. If one recalls, in section

4.2.3, particularly by looking at Fig. 4.4, we were able to successfully match the

pressure in the fluid region from our simulation to the pressure equation of state

obtained from a virial expansion. Thus it appears reasonable that one should

expect our fluid to behave as a hard sphere gas whose viscosity as given from any

standard textbook [34] would be:

η =
5

64

1

a2

√
mkBT

π
, (4.43)

where a is the particle radius, m its mass, kB is Boltzmann’s constant and T is

the absolute temperature. One can see from Eq. (4.43), for a hard sphere gas,

the viscosity η ∼ T 1/2. Thus one would expect the viscosity to increase with

temperature, but from Eq. (4.42) and the corresponding Fig. 4.7(b), the viscosity

actually decreases with increasing temperature. This is not how a gas behaves.

This behavior is often associated with a liquid whose viscosity grows larger as

the temperature decreases as one approaches the solid state. The viscosity in a

liquid typically has an exponential relation that is found in standard textbooks

[34]

η = η0e
Ea,η/RT , (4.44)

which as, in our simulation data, does decrease with increasing temperature. In

Eq. (4.44), Ea,η is the molar activation energy. The fact that we observe a power

relation given by Eq. (4.42), and not the exponential relation given by Eq. (4.44),

indicates that our granular fluid is not a truly equilibrated fluid. The data in
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Fig. 4.7(b), however, when plotted on a semi-logarithmic scale (Fig. 4.7(c)), does

seem to be approaching a straight line at higher temperatures (near the top of

the fluid region), indicating that the viscosity in our granular fluid is trying to

approach exponential behavior.

Numerous experiments have measured velocities and forces in sheared granular

matter [35, 36, 37, 38] confining granular matter in a Couette cell between a

stationary outer cylinder and a rotating inner cylinder. These experiments are

typically shearing a very dense granular state like our glass. In Ref. [39], the

authors investigate the relationship between the square root of the granular tem-

perature and shear rate that was observed in the glassy region of granular particles

in a Couette cell. Our granular particles are in a shear flow traveling down the

chute. The shear zones near the walls in the glassy state of our simulation should

be comparable to these experiments.

Following the analysis given in reference [39], using σxy = ηγ̇ with γ̇ = ∂xvy being

the shear rate and η the viscosity, an expression was derived for the viscosity to

scale with the collision frequency,

η = η0P/
(
ρcd

2T 1/2
)
, (4.45)

where d is the particle diameter, η0 is a dimensionless quantity, and ρ ∼ ρc the

close-packed density has been assumed, so that

T 1/2 = η0P/
(
ρcd

2σxy

)
γ̇. (4.46)

However, this analysis can be taken further. If the pressure given in Eq. (4.45)

followed the scaling P ∼ ρT , this would give the same scaling η ∼ T 1/2 as

Eq. (4.43) for a hard sphere gas. This extension was not done in Ref. [39]. The

analysis that was provided by the authors in Ref. [39], resulting in Eq. (4.46),
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gives γ̇ = ∂xvy ∼ T 1/2. Their analysis did not lead to agreement with their

experiment. Experimentally, they observed a power-law with

T 1/2 ∼ |∂xvy|0.4. (4.47)

A log-log plot of the square root of the granular temperature vs shear rate as

measured from our simulation on one side of the chute from x = 4 to x = 16 in the

glassy region is shown in Fig. 4.8(a). We plotted this for a series of systems with

different probabilities of sieve reflection, p and different asymptotic coefficients of

restitution µ0. On a log-log plot the top curve in Fig. 4.8(a) vaguely resembles

a power-law exponent of 0.4 as in experiment [39] for a fast system (p = 1%,

µ0 = 0.9). As shown by the superimposed bottom curves in Fig. 4.8(a), for

the slower systems (p = 90%) with µ0 = 0.9, 0.95, 0.96 and 0.97, the slope is

0.2, although the power-law regime is not clear for the slower systems as for the

faster system. Thus the power law exponent of 0.4 that was reported in the

experimental paper [39] is not universal.

Eq. (4.47) indirectly assumes that the viscosity in the sheared glass is a function

of the granular temperature. Using the relation σxy = η∂xvy, we can plot the

viscosity, η as σxy/∂xvy, versus the granular temperature, T , in the glassy region

for both a slow (p = 90%) system which yields a power law of 1.1 and a fast

(p = 1%) system which yields a power law of 2.3. This is shown as a log-log plot

in Fig. 4.8(b). Clearly, the power-law exponent is not universal here.

We can, however, obtain a universal power law in the sheared glass by plotting

the shear stress, σxy, vs. the shear rate, ∂xvy, on a log-log plot as shown in

Fig. 4.9. We found a universal power law of 0.4 for both slow and fast systems

on one side of the chute from x = 1 to x = 15:

σxy = B|∂xvy|0.4, (4.48)
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with B a constant. This is equivalent to obtaining a universal power law by

further plotting (not shown) the viscosity, η on one side of the chute from x = 4

to x = 16 in the glassy region versus the shear rate, γ̇ = ∂xvy and observing a

universal power law of approximately −0.6:

η = B|∂xvy|−0.6. (4.49)

The universal power-law between the shear stress and strain rate given by Eq. (4.48)

and shown in Fig. 4.9(a) makes one wonder whether we have a true glassy region.

Consider in Fig. 4.9(a) a typical region where a particle of radius a undergoes a

strain rate ∂xvy of 0.01. In this region, vy ∼ 1 so using the relation

∂xvy =
∆v

a
, (4.50)

we can say that it takes 100 time units for one grain to pass another. However,

the time that a particle has in the glassy portion of the chute is

Ly

vy

≈ 200

1
= 200 time units. (4.51)

Thus, in our glassy region, it takes about the same amount of time for one grain

to pass another as it takes for all the particles to traverse the entire chute. If

we look at the plot of shear stress at the wall (experimentally measurable shear

stress) versus the scaled y velocity at the center minus the y velocity at the wall

(experimentally observable strain rate) shown in Fig. 4.9(b), we do observe a

finite shear stress when the scaled y velocity at the center minus the y velocity

at the wall is zero. This indicates that our glassy region has a yield stress at this

zero velocity as would be expected for a glassy region.

It is to be noted that Eq. (4.49) is consistent with Eq. (4.48). It is also important

to note that the validity of Eq. (4.41) rests on linear response arguments which
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are in turn based on minimum entropy production arguments, or alternatively

by applying the Boltzmann equation. Since the Boltzmann equation is not valid

in a glass and since our glassy system is not even in equilibrium it should not be

suprising that Eq. (4.41) is not valid here.

4.2.7 Energy equation

In section 4.2.1, the energy conservation during steady-state was expressed as

∂t (E) + ∂α (Fα) = I + ρg · v. (4.52)

In this section, we will examine the kinetic energy terms on the left hand side of

Eq. (4.52) which are related to the granular temperature

T =
(〈v2

x〉+ 〈vy − 〈vy〉2〉+ 〈v2
z〉

)
/3. (4.53)

We assume that the time derivative ∂tE is zero because we are in steady state,

so we will concentrate only on the energy flux components, Fα.

As stated in [20], there is a difference between the “energy flux”, F, and the “heat

flux”, Q. The heat flux, Q is the uncorrelated part of the energy flux, and can

be found using

Q = Fc + (σ · v) , (4.54)

where Fc is the collision energy flux defined by Eq. (4.10) and σ is the stress

tensor defined by Eq. (4.5). In Eq. (4.54), σ · v represents the coherent transfer

of energy (i.e. non-dissipative) during collisions.

Fourier’s law suggests that the heat flux across the chute, Qx, can be expressed
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as proportional to the gradient of the granular temperature, T , by the relation

Qx = −κ∂xT (4.55)

where κ is the thermal conductivity. In our fluid region, we plotted the heat flux,

Qx versus the gradient of the granular temperature, ∂xT , across the width (x

direction) of the chute. This is shown in Fig. 4.10(a) for a slow system using a

probability of reflection at the bottom sieve of p = 90% and an asymptotic coef-

ficient of restitution of µ0 = 0.95. Systems with higher coefficients of restitution

had the largest fluid regions. It was important here to choose a system with a

high asymptotic coefficient of restitution in order to maintain a true fluid region.

With lower coefficients of restitution we would simply have a combination of fluid

to glass and fluid to free-fall transition regions. As one can see for various heights

in the fluid region, the data in Fig. 4.10(a) falls on straight lines. The negative

slopes of these straight lines give the thermal conductivity

κ = − Qx

∂xT
. (4.56)

In Fig. 4.10, the thermal conductivity, κ was calculated as a linear fit and is shown

on a semi-logarithmic plot versus the granular temperature at a range of heights

in the fluid region for three slow systems (p = 90%). Fig. 4.10 shows results

from systems with different asymptotic coefficients of restitution, with data for

µ0 = 0.95 shown as ¤’s, 0.96 shown as ◦’s and 0.97 shown as O’s. Interestingly,

all three systems consistently give an exponential fit in the fluid region of

κ = Ae−T/T0 , (4.57)

where T0 ∼ 11, and A is a multiplicative constant.

We may contrast Eq. (4.57) to a thermal conduction expression for a hard sphere
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gas given in reference [34]

κ =
25

128

cv

a2

(
kBT

πm

)1/2

, (4.58)

where cv is a specific heat and a is the particle radius. It does not seem plausible

for our granular gas to have a specific heat as we potentially could argue for an

infinite specific heat for our dissipative simulation. From the equation for the

thermal conductivity of a hard sphere gas given by Eq. (4.58), one obtains the

impression that κ ∼ T 1/2 and thus that the thermal conductivity should increase

with temperature. The thermal conductivity for our granular fluid does not in-

crease with temperature, but exponentially decays with increasing temperature

as given by Eq.(4.57). Thus once again our granular fluid cannot be consid-

ered as a hard sphere gas. Our fluid behaves as a liquid: as the temperature

decreases, the thermal conductivity increases as one might expect in a material

which approaches a solid state as it enters the glassy region.

Now, we will examine the thermal conductivity in the glassy region. The heat

flux, Qx is plotted in the glassy region in Fig. 4.11 across the width (x direction)

of the chute. As shown in Fig. 4.11, in the glassy region

κ = 3φfc =
4

3
πa3ρ3fc, (4.59)

(the density times the collision frequency). Eq. (4.59) is the same equation found

in 2D in reference [20] where we used a volume fraction rather than density.

The factor of 3 in Eq. (4.59) arises only because we have defined temperature

differently from the way it was defined in reference [20].

Now we will establish constitutive relations for the dissipation, I, in the free-

fall, liquid and glass regions. Since the coefficient of restitution, µ, is highly

correlated with the impact velocity, vn, we cannot simply factor the terms in
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Eq.(4.11), −1
4
〈(1 − µ2)v2

n〉 as −1
4
〈1 − µ2〉〈v2

n〉 (we could factor out (1 + µ) in

previous expressions (e.g. for the collision frequency) because the relative change

in (1 + µ) for different vn is small whereas the relative change in (1 − µ2) for

different vn is large). We outline below two different constitutive relations for I

based on different assumptions.

In the first case, we assume that dissipation is dominated by the high impact

collisions. We consider a small proportion, say b, of the dissipation involves vn

being greater than the cutoff velocity v0 in our velocity-dependent coefficient of

restitution Eq. (4.2), and a proportion 1 − b of the dissipation involves vn < v0.

Then we have

〈δI〉 = 〈−1

4
(1− µ2)v2

n〉 (4.60)

= b〈−1

4
(1− µ2

0)v
2
n〉vn>v0

+ (1− b)〈−1

4
(1− µ2)v2

n〉vn<v0 .

Now, for vn < v0

〈−1

4
(1− µ2)v2

n〉vn<v0 ≈ 0, (4.61)

because µ ≈ 1 and vn is also small for these collisions. Similarly,

〈v2
n〉all = b〈v2

n〉vn>v0 + (1− b)〈v2
n〉vn<v0 ,

≈ b〈v2
n〉vn>v0 . (4.62)

Putting it all together gives

〈δI〉 =
1

4
(1− µ2

0)〈v2
n〉. (4.63)

However, most collisions occur with vn < v0. If the coefficient of restitution

formula for vn < v0 is used directly and substituted into Eq. (4.2) and the average
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of the entire expression is evaluated one gets

〈δI〉 =
1

2

(1− µ0)

v0.7
0

〈v2.7
n 〉 − (1− µ0)

2

4v1.4
0

〈v3.4
n 〉. (4.64)

One can relate the averages of 〈v2.7
n 〉 and 〈v3.4

n 〉 to 〈v2
n〉 similar to Eq.(4.30).

Figure 4.12 shows, on a semi-logarithmic plot, the dissipation from the simulation

plotted along with the constitutive Eqs. (4.63) and (4.64) (multiplied by the

collision frequency). The constitutive equation given by Eq. (4.63) matches the

dissipation from the simulation nicely in the liquid and glass regions, strongly

supporting the argument that dissipation in these regions is completely dominated

by the high impact velocity collisions. For the free-fall region an interpolation

is required between Eq. (4.63) and Eq. (4.64) to match the dissipation from the

simulation. This is similar to when we interpolated between the free-volume and

virial expressions for the pressure in section 4.2.3.

4.2.8 Static Limit

We can also examine the existence of a static limit to the glassy state of our

system, and relate it to various other constitutive relations proposed for static

granular materials. First we will demonstrate that there is a static limit to our

equations for stress.

In the first step we write the 3D stress tensor given in Eq. (6) as [20]:

σαβ ≈ −〈ρ (vα − 〈vα〉) (vβ − 〈vβ〉)〉 (4.65)

− 1

2
fc〈(1 + µ)(ṙ1 − ṙ2) · q̂〉〈(q̂ · êα) (q̂ · êβ)〉.
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In Eqs. (4.5) and (4.65) the sum is over collisions in a (long) time interval t, fc

is the collision frequency and µ is a velocity-dependent coefficient of restitution.

In going from Eq. (4.5) to Eq. (4.65), we have assumed as in [20] that we could

separate the factor (1 + µ)(ṙ1 − ṙ2) · q̂ from the factors in the matrix when

computing averages. The validity of this assumption is shown in Figs. 4.13(a) and

4.13(b) which plot the shear stress, σxy, and Rxy = 1
2
fc〈(1 + µ)(ṙ1 − ṙ2) · q̂〉〈(q̂ ·

x̂)(q̂ · ŷ) vs. the width x, at heights in the glassy and fluid regions, respectively.

As expected, the plotted lines coincide, and the scale of the gradient of the shear

stress in the fluid is appreciably less than in the glass. This can also be done for

the normal stresses, σxx, σyy and σzz, in Fig. 4.13(c), which plots the respective

stress and the collision directions multiplied by −1
2
fc〈(1 + µ)(ṙ1− ṙ2) · q̂〉 vs. the

height y. Once again, as expected, the plotted lines coincide, except of course

in the free-fall/fluid transition where the kinetic terms 〈ρvαvβ〉 play a significant

role.

As shown in Fig. 4.13(c), in a granular fluid the kinetic term, 〈ρvαvβ〉 is important

but not in a granular glass where it is negligible. As shown in Fig. 4.14(a), for a

granular glass, the factor fc〈(1 + µ)(ṙ1 − ṙ2) · q̂〉 in front of the matrix changes

dramatically in the fluid region but in comparison appears to be nearly constant

in the glassy region. Fig. 4.14(b) plots the factor fc〈(1 + µ)(ṙ1 − ṙ2) · q̂〉 for

different sieve reflection probabilities and shows that for slower systems, this

factor approaches a a constant. Hence the structure of the stress tensor in the

glass comes almost entirely from the collision directions (i.e. the 〈(q̂ · êα) (q̂ · êβ)〉
terms in Eq. (4.65)). This is very reminiscent of models describing static granular

materials based on force chains.

The stress tensor equation, Eq. (4.65), that we have developed, can be compared

in the glassy region to a previously proposed static pressure tensor model [6, 7]:

pαβ = −σαβ = Λ1nαnβ + Λ2mαmβ + Λ3lαlβ, (4.66)
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“with n̂, m̂, l̂ directors along three nonparallel populations of force chains; the Λ’s

are compressive pressures acting along these. Body forces cause Λ1,2,3 to vary in

space,” [7], however n̂, m̂, l̂ are fixed and are not allowed to change in space. They

must be determined from global symmetries and boundary conditions. However,

they are mutually orthogonal. We can interpret Λ1,2,3 to be the eigenvalues of

our stress tensor as shown in Fig. 4.15, and n̂, m̂, l̂ to be the eigenvectors of

our stress tensor as shown in Fig. 4.15. Since the collision chains in our system

propagate through our particles at 45 degrees to the x/y axes (i.e. as determined

from the eigenvectors 〈(q̂ · êα) (q̂ · êβ)〉), the normalized directors in the glassy

region of our system can be expressed as

n̂ =

(
1√
2
,

1√
2
, 0

)
, (4.67a)

m̂ =

(
− 1√

2
,

1√
2
, 0

)
, (4.67b)

l̂ = (0, 0, 1) . (4.67c)

Using Eqs. (4.4) and (4.12) in the static limit, we have component-wise

∂xσyx + ∂yσyy = −ρgy = ρg, (4.68a)

∂xσxx + ∂yσxy = 0, (4.68b)

∂zσzz = 0. (4.68c)

Using Eqs. (4.68) with the known stress directions described by Eqs. (4.67), we

can solve for the eigenvalues in our glassy region giving

σxy = σyx = Λ1
1

2
− Λ2

1

2
, (4.69a)

σyy = Λ1
1

2
+ Λ2

1

2
, (4.69b)

σxx = Λ1
1

2
+ Λ2

1

2
, (4.69c)

σzz = Λ3 = constant. (4.69d)
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Finally, combining Eqs. (4.68) and (4.69) we arrive at

(∂xΛ1 − ∂xΛ2)
1

2
+

1

2
(∂yΛ1 + ∂yΛ2) = 0, (4.70a)

(∂xΛ1 + ∂xΛ2)
1

2
+

1

2
(∂yΛ1 − ∂yΛ2) = 0. (4.70b)

There exist four distinct mathematical solutions to Eqs. (4.70) which are

Λ1 = ρg (x− 16) + constant, (4.71a)

Λ2 = −ρg (x− 16) + constant,

Λ3 = σzz|x=16 = constant

Λ1 = ρg (x− 16) + constant, (4.71b)

Λ2 = ρgy + constant,

Λ3 = σzz|x=16 = constant

Λ1 = ρgy + constant, (4.71c)

Λ2 = −ρg (x− 16) + constant,

Λ3 = σzz|x=16 = constant

Λ1 = ρgy + constant, (4.71d)

Λ2 = ρgy + constant,

Λ3 = σzz|x=16 = constant

where we have used symmetry properties at mid-width (at x = 16) of the chute.

Only the first solution, Eq. (4.71a), makes physical sense for our situation. The

second and third solutions, Eqs. (4.71b) and (4.71c) can be ruled out because they
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are not symmetrical (i.e. σxx 6= σyy 6= σzz anywhere except at some boundary

point). The final solution, Eq. (4.71d), is a hydrostatic case which would result

in our stress tensor having no shear stresses. Since we know our system is sup-

ported by the shear stress at the walls, we may disregard this last solution. The

eigenvalue solutions in the glassy region given by Eq. (4.71a), using one interior

point as a boundary condition at mid-width of the chute, are plotted as thick

transparent lines in the top left plot of Fig. 4.15. These lines closely match our

simulation data.

The vector plots in the top row of Fig. 4.15 show that the directions of the

principal stresses in the glassy region of our system (the eigenvectors) are at 45

degrees to the x/y axes in the glassy region, as expected. But in the fluid and

free-fall region the principal stress is vertical in line with the shear flow as shown

in the second plot of the bottom row of Fig. 4.15. It is also evident from the

lower portion of Fig. 4.15 that the intermediate free-fall to fluid transition region

between the glass and free-fall region is somewhat chaotic (the minor stresses are

not along well defined directions).

4.3 Conclusion

In this paper we investigated constitutive relations in the free-fall, fluid and glassy

states observed in our simulations of granular matter. We were able to formulate

an equation to explore the static stresses in all three of these granular states and

showed that values for the stresses are almost entirely dependent on the collision

directions. We further showed that the exponent in the power-law between local

velocity fluctuations and shear rate that was determined by experiment in the

glassy region is not universal. Similarly we found that the shear viscosity depen-

dence on the granular temperature also does not exhibit a universal power-law.
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However we did find a universal power-law relationship with exponent 0.4 be-

tween the shear stress and the shear rate in the glassy region. We also showed

that there is a yield stress associated with our glassy region.

By studying the energy conservation and heat flow in our systems, we obtained

accurate representations of the thermal conductivity for a granular glass and

granular fluid. We combined the Navier-Stokes equations of momentum conser-

vation, the continuity equation and the conservation of energy equation together

with the constitutive relations that have been presented in this paper. All these

equations resulted in determining the collision frequency for which we found a

closed expression valid in all three regions. By providing closed expressions for

the constitutive relations for the stresses, energy flux and dissipation, it is hoped

that we have fulfilled our objective to provide useful constitutive relations that

might be suitable for fully solving the stress tensor and the energy flux in granular

flows.
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Figure 4.7: (a) Shear stress σxy versus shear rate ∂xvy in the fluid region for a
slow flow (probability of reflection at the bottom sieve of p=90%, µ0 = 0.95).
The symbols indicate data at different heights in the fluid region (N’s at y = 277,
¥’s at y = 283, •‘s at y = 289 and ¨’s at 295), (b) Log-log plot of viscosity
and (c) semilogarithmic plot of viscosity in the fluid region (slope of data in (a)).
The symbols indicate different asymptotic coefficients of restitution, µ0 (with ◦’s
using µ0 = 0.95 and p = 90%, ¦’s using µ0 = 0.96 and p = 90%, and O’s using
µ0 = 0.97 and p = 90%). Systems with the higher asymptotic coefficients of
restitution of µ0 = 0.95, 0.96 and 0.97 achieve a true fluid region and have a
consistent power-law of −4

3
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system with a fast flow (probability of reflection at the bottom sieve of p = 1%,
4 and µ0 = 0.9) yields the experimental power law exponent of 0.4, while slow
systems (probability of reflection at the bottom sieve of p = 90% with µ0 = 0.9
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exponent 0.2. (b) Log-log plot of effective shear viscosity η = σxy/∂xvy versus
temperature T in the glassy transition region for a fast flow (4) and slower
flows (symbols same as in (a)). The solid lines have slopes of -1.1 for the fast
system, -2.3 for the slow system with µ0 = 0.9, and -2.8 for the slow systems with
µ0 = 0.95, 0.96 and 0.97.
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polydisperse 3D simulation for a glassy region at y = 200 where κ = 4/3πa3ρfc.
The solid line is Qx = Fcx+σxyvy, and the dashed line is Qx = −4/3πa3ρfc∂x3T .
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Figure 4.12: Semi-logarithmic plot of the negative of the dissipation, −I, from
the simulation as calculated from Eq. (4.11) (blue solid line), as calculated using
Eq. (4.63) (red dashed line), and as calculated using Eq. (4.64) (purple dotted
line).
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Figure 4.13: Shear stress σxy (solid line) and Rxy (circles)(right hand side of
Eq. (4.65), the shear stress factorized into the collision directions, 〈(q̂ · x̂) (q̂ · ŷ)〉
and the constant −1

2
fc〈(1 + µ)(ṙ1 − ṙ2) · q̂〉) versus x in (a) the glassy region

at a height, y = 100, and (b) the fluid region at a height, y = 280, of a 400-
height column using an asymptotic coefficient of restitution µ0 of 0.97. In (b) the
dashed line represents data without the kinetic term and the solid line is for data
including the kinetic term. (c) Plot of the diagonal stress, σαα with its kinetic
term (lower curves) and without its kinetic term (upper curves), and factor Rαα

versus height y. (σxx is the solid line, σyy is the dashed line, and σzz is the dot-
dashed line, Rxx is circles, Ryy is squares, and Rzz is triangles). Data is for a
400-height column using an asymptotic coefficient of restitution µ0 of 0.97 and a
probability of reflection, p = 0.9.
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Figure 4.14: (a) Plot of fc〈(1 + µ)(ṙ1 − ṙ2) · q̂〉 vs. height y for a 400-height
column. The lines from bottom to top represent data with asymptotic coefficients
of restitution µ0 of 0.95, 0.96 and 0.97, all with a sieve reflection probability, p =
0.9. Data is averaged over the width (x direction). (b) Plot of fc〈(1+µ)(ṙ1−ṙ2)·q̂〉
vs. height y for a 250-height column. The lines from top to bottom represent data
with sieve reflection probabilities p of 0.25, 0.5 and 0.75, all with an asymptotic
coefficient of restitution µ0 = 0.9.
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Figure 4.15: Plot of the eigenvalues (compressive stresses) and corresponding
directions of the stress tensor along width of column in (Top) the glassy region
at y = 138, and at (Bottom) top of the fluid region at y = 305 for a 400-height
column using an asymptotic coefficient of restitution µ0 of 0.97. In both (Top) and
(Bottom), the eigenvalues are associated alongside with the eigenvector directions
by the style of the lines. That is, the line style of the eigenvalues (shown as
solid, dashed or dotted lines) are matched with the line style of the box (shown
as a solid, dashed or dotted lined box) surrounding the particular eigenvector
directions. The analytical solution for the eigenvalues given by Eq. (4.71a) are
plotted as thick lines with Λ1 drawn in pink, Λ2 in green and Λ3 in yellow.
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Chapter 5

Conclusion

The purpose of this thesis was to unlock a bit of the mystery of and to acquire a

better understanding of the nature of granular materials. By studying different

physical observable properties such as collision times, velocity distributions and

constitutive relations, we were able to show that these properties could be neatly

categorized by three states or phases of granular material. We justified and called

these regions a free-falling gas, a granular fluid and a glassy region.

A previously proposed phase diagram of granular materials included a glassy and

liquid region [1]. We feel the predominance of a granular gas region is also evident

and that it should be included in the phase diagram as shown in Fig 5.1.

In the case of collision times, it was important to understand the details of how

observable properties were measured in experiments. This played a crucial role in

explaining any discrepancies with results measured from our simulation. This was

also evident in our study of velocity distributions where we were able to reconcile

seemingly conflicting experiments by relating different experimental results with

our three different phases of granular matter.

We also demonstrated the importance of the free-fall to fluid transition. Al-

though it was a fluid-like region, we showed that it was not fully equilibrated as
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Figure 5.1: Proposed advancement of phase diagram from [1], adding a granular
gas region.

a true fluid, and thus it should be considered more as a cross-over rather than a

true transition region. We indicated this crossover in our study of the velocity

distributions.

Our study of constitutive relations allowed us to probe which experimental and

theoretical results were universal by exploring our parameter space. Here, we also

compared our findings in the glass and fluid regions to a static stress model used

for sand piles and demonstrated that the sand pile is effectively a static limit of

our glassy state.

Future work considerations include exploring length scales in the transitional

granular fluid region, collision distance distributions and densities of states. We

feel that our findings have illustrated the importance of the interplay between

theory, experiments and simulations in exploring the true physical nature of gran-

ular materials.
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