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ABSTRACT ARTICLE HISTORY

A majority of research on Spatial Multicriteria Analysis (SMCA) has Received 22 August 2019
been spatially implicit. Typically, SMCA uses conventional (aspatial) Accepted 1 January 2020
multicriteria methods for analysing and solving spatial problems. KEYWORDS

This paper examines emerging trends and research frontiers related GIS; multicriteria analysis
to the paradigm shift from spatially implicit to spatially explicit

multicriteria analysis. The emerging trend in SMCA has been spa-

tially explicit conceptualizations of multicriteria problems focused

on multicriteria analysis with geographically varying outcomes and

local multicriteria analysis. The research frontiers align with con-

ceptual and structural elements of SMCA and pertain to, among

others, theoretical frameworks, problem structuring, model para-

meter derivation, decision problem contextualization, scale repre-

sentation, treatment of uncertainties, and the very meaning of

decision support. The paper also identifies research directions and

challenges associated with developing spatially explicit multicri-

teria methods and integrating concepts and approaches from two

distinct fields: GIS and multicriteria analysis.

1. Introduction

Over the last three decades, Spatial Multicriteria Analysis (SMCA), also referred to as GIS-
based multicriteria analysis (GIS-MCA), has become a significant part of GIScience (Thill
1999, Malczewski and Rinner 2015). The quantity of publications about SMCA has been
increasing exponentially. The total number of refereed journal papers with the key-
words {GIS or Geographic Information System} and {multicriteria or multiobjective or
multiattribute} has increased from 24 in 1990-1994 to 1537 in the last 5 years (based on
a Scopus query for the years 1990 through 2018, executed in August 2019). This trend is
likely to persist into the foreseeable future driven by the diversity of SMCA applications
(de Brito and Evers 2016, Allain et al. 2017, Adem Esmail and Geneletti 2018, Gonzélez
and Enriquez-de-Salamanca 2018, Sallwey et al. 2018, Ferretti and Montibeller 2019) and
enabled by the steady progress in geospatial technologies and the availability of
geographic data/information (Yang et al. 2010, See et al. 2016, Wang and Goodchild
2018). Although SMCA has been applied in a variety of spatial problems, the decision
analysis and support has been the main focus of its applications (Sugumaran and
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Degroote 2011, Ferretti and Montibeller 2016, Rinner 2018, Keenan and Jankowski
2019). Methods of GIS-MCA can be classified into two groups: GIS-based multicriteria
evaluation (GIS-MCE) and GIS-based multiobjective optimization. This paper deals with
GIS-MCE methods (hereafter, the three terms, SMCA, GIS-MCA and GIS-MCE, are used
interchangeably).

While there is a wide range of approaches available for tackling multicriteria decision/
evaluation problems (e.g. Malczewski 1999, Malczewski and Rinner 2015), two categories
of MCE methods have typically been integrated with GIS. First, value function methods
such as weighted linear combination (WLC) methods, multiattribute value/utility models,
analytical hierarchy/network process (AHP/ANP) and reference point (RP) methods (e.g.
Malczewski 2006a, 2010, Ferretti and Montibeller 2016). Second, outranking relation
methods including ELECTRE (ELimination Et Choix TRaduisant la REalité) and
PROMETHEE (Preference Ranking Organization METHod for Enrichment Evaluations)
(Chakhar and Mousseau 2008, Esmaelian et al. 2015). The value-function models require
an estimation of value function and criterion weight for each evaluation criterion. The two
components are integrated using a model (or a combination rule) to obtain an overall
value for each alternative. The outranking methods are based on the process of con-
structing outranking relations by pairwise comparisons of alternatives with respect to
each evaluation criterion. These comparisons allow for the development of outranking
relations, which are then used to prioritize alternatives.

This paper discusses a paradigm shift and emerging trends in SMCA (Section 2) and
research directions and frontiers (Section 3).

2. Paradigm shift and emerging trends

Currently, the prevalent practice in GIS-MCA is to adapt conventional (aspatial) multi-
criteria methods for analysing spatial problems. An overwhelming majority of GIS-MCA
studies involve spatial variability only implicitly by defining evaluation criteria based on
the concept of spatial relations such as proximity, adjacency and contiguity (O'Sullivan
and Unwin 2010, Ligmann-Zielinska and Jankowski 2012). The GIS-MCA methods usually
have been applied at a ‘global’ level; that is, the methods are premised on the implicit
assumption that multicriteria model parameters and results of GIS-MCA do not vary as
a function of geographical space. There has recently been a significant paradigm shift in
GIS-MCA to address the shortcomings of currently prevalent practices. This shift has been
stimulated by two related developments. First, a growing awareness of the limitations and
inadequacies of the conventional GIS-MCA methods for tackling spatial problems (e.g.
Simon et al. 2014, Malczewski and Rinner 2015, Ferretti and Montibeller 2016, 2019, Harju
et al. 2019) has resulted in the movement away from spatially implicit approaches towards
spatially explicit methods (see Section 2.1). Second, with the advent of the Internet of
Things and Big Data, citizens have increasingly been involved in producing and using
a new type of data/information useful for analysing spatial problems, and researchers and
practitioners increasingly have been confronted with the task of developing methods and
approaches for massive data collection, integration and analysis in spatially explicit
formats (e.g. Wang and Armstrong 2009, Capineri et al. 2016, See et al. 2016, Wang and
Goodchild 2018). These developments have recently pushed the frontiers of research on
SMCA towards big data analytics and CyberGIS-enabled methods (e.g. Andrienko et al.
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2016, Cerreta et al. 2016, Gonzélez-Ramiro et al. 2016, Mele and Poli 2017, Zeng et al. 2017,
Zhang et al. 2018; see Section 2.2).

2.1. Spatially explicit MCA

Two major trends in spatially explicit MCA have been gaining significance in recent years.
These emerging trends have focused on developing multicriteria analysis with geogra-
phically varying outcomes (MCA-GVO) and local multicriteria analysis (LMCA). First, the
works by Simon et al. (2014), Keller and Simon (2019) and Harju et al. (2019) have charted
a new territory for MCA by axiomatizing spatially explicit multicriteria models (see also
Ferretti and Montibeller 2016). Simon et al. (2014) and Keller and Simon (2019) have
proposed spatially explicit multicriteria (multiattribute) value/utility function methods
with geographically varying outcomes. The key parameters of MCA-GVO models are
spatial weights as they represent trade-offs among outcomes at different locations. This
approach has been further advanced by Harju et al. (2019). Harju and associates have
made an eminent contribution to SMCA by developing axiomatic foundations for spatially
explicit multicriteria analysis and modelling spatial problems characterized by incomplete
preference information. Second, in the direct response to the criticism of prevalent
practices, significant advances have been made in developing local forms of MCA models.
Malczewski (2011) used the range sensitivity principle to develop a local version of GIS-WLC
model (see also Carter and Rinner 2014, Tang et al. 2018). Subsequently, a local ordered
weighted averaging (OWA) was proposed by Malczewski and Liu (2014), Xiao et al. (2018)
and Jiao et al. (2019). Salap-Ayca and Jankowski (2016, 2018), Jankowski (2018) and Taha
et al. (2019) advanced GIS-MCA by developing local forms of reference point methods.

Although the two emerging trends share a common premise by acknowledging the
presence of spatial heterogeneity of preferences, they differ essentially in their
approaches to conceptualizing spatial heterogeneity. The MCA-GVO models have their
roots in classic decision analysis and multiattribute value/utility theories (e.g. Fishburn
1970, Keeney and Raiffa 1976), while LMCA is a part of local analysis or local modelling
movement within GIScience/spatial analysis (see Fotheringham et al. 2002, Lloyd 2010,
O’Sullivan and Unwin 2010). MCA-GVO is primarily concerned with preference modelling,
while LMCA is mainly concerned with spatial modelling. The former approach focuses on
the theory of spatial preferences and has a limited concern for the fundamental properties
of spatial data, whereas the latter focuses on GIS-based modelling of multicriteria pro-
blems at the expense of ‘relaxing’ some of theoretical underpinnings behind multicriteria
analysis. While GIS provides an effective and efficient platform for the local modelling
approach to multicriteria problems, LMCA is based on a hard-to-verify-empirically set of
assumptions underlying the principle of range sensitivity (e.g. Fischer 1995, Monat 2009).
These contrasts are intrinsically related to the hybrid heritage of GIS-MCA, which creates
opportunities and challenges for advancing both conceptual and applied research (see
Section 3).

2.2. Spatially explicit MCA with crowdsourced data

The concept of crowdsourcing is often conflated with such concepts as Volunteered
Geographic Information - VGI (Goodchild 2007), contributed data (Harvey 2013),



4 e J. MALCZEWSKI AND P. JANKOWSKI

neogeography (Turner 2006), Public Participation GIS (Ramsey 2010), and the use of social
media platforms employed in data production through photos, video and text (Leung
et al. 2018). Although these concepts are not necessarily synonymous, they all describe
data contributed by the public at large leveraged by wide-spread technologies such as
GPS, mobile devices, Internet connectivity, and Web-2 apps. The emerging trends perti-
nent to crowdsourced data and SMCA are the employment of: (i) crowdsourced geogra-
phical data (CGD) on criteria, for which there are no authoritative geographical data (AGD)
available, and (ii) crowdsourced preference data (CPD) substituting for or augmenting
traditional preference data (TPD) provided by experts. While CGD comes in similar forms
to AGD and can involve geographical object attributes of qualitative and/or quantitative
nature, CPD substantially differs from TPD in representing revealed rather than stated
preferences (see Upton et al. 2015, Pritchard 2018). The revealed preferences typically take
a form of object selection or sentiment expression that is location-specific (e.g. by sharing
via social media apps the name and location of one’s favourite service facility or marking
object location on a map). Contrary to this, stated preferences take a form of criterion
trade-offs or weights numerically expressing a relative criterion importance vis-a-vis the
other criteria in a SMCA model. The affinity of AGD and CGD and the difference between
CPD and TPD present a challenge and an opportunity to adopt the existing and develop
new SMCA methods integrating different yet complementary types of data. The potential
integration strategies are outlined in Table 1.

The strategies in Table 1 can be categorized into three groups. Group A, comprised of
a single strategy type 1, represents prevalent practices involving the combination of
AGD with TPD. Methods representative of type 1 involve spatially implicit/explicit MCA,
in which criterion data come from authoritative sources and preferences are typically
stated by experts as weights, trade-offs, or value functions. The vast majority of present
and past publications reporting on research and applications of SMCA falls into this
group.

Group B, comprised of types 2-6, represents emerging trends in SMCA incorporating
crowdsourced data. The strategy type 2 (CGD + TPD) was used, for example, by Bordogna
et al. (2014) for evaluating the quality of crowdsourced geographic data by employing
traditional MCA techniques. Lyu et al. (2019), used strategy 3 combining AGD with CPD to
develop a point-of-interest (POI) recommender system. Their system harnesses POI-
specific preferences of individuals from popular POl web services such as Yelp and
Instagram and integrates them into crowd-averaged preferences to deliver POI

Table 1. Strategies for combining authoritative and/or crowdsourced geographic data with traditional

and/or crowdsourced preference data. Note: Authoritative Geographic Data (AGD), Crowdsourced

Geographic Data (CGD), Traditional Preference Data (TPD), Crowdsourced Preference Data (CPD).
Preference Data (PD)

Traditional Crowdsourced Mixed
(TPD) (CPD) (TPD+CPD)

2 Authoritative Type 1 Type 3 Type 6
o (AGD) (AGD)+(TPD) (AGD)+(CPD) (AGD)+(TPD+CPD)
= Crowdsourced Type 2 Type 4 Type 8
g (CGD) (CGD)+(TPD) (CGD)+(CPD) (CGD)+(TPD+CPD)
= Mixed Type 5 Type 7 Type 9
) (AGD+CGD) (AGD+CGD)+(TPD) (AGD+CGD)+(CPD) (AGD+CGD)+(TPD+CPD)
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recommendations tailored to individual preferences. A different type of recommender
system substituting CGD for AGD, representative of type 4, was proposed by Bordogna
et al. (2014). The strategy type 5 augmenting authoritative geographic data with crowd-
sourced data and relying on stated preferences (TPD) has been the most common
emerging trend. Examples of this strategy include using public-contributed photos to
derive the characteristics of tourist accommodations and restaurants (Gonzalez-Ramiro
et al. 2016) and to assess the attractiveness of landscape (Mele and Poli 2017). The same
authors (Mele and Poli 2017) used OpenStreetMap to obtain data for ecosystem services
(water), infrastructure (railways, roads, public transportation), recreation (cultural sites)
and soils (waste disposal sites). Another emerging trend has been the integration of
authoritative data (AGD) with revealed by crowd preferences (CPD) and expert-elicited
stated preferences (TPD) in type 6 strategy. Examples of this strategy can be found in
SMCA of natural disaster evacuation shelters guided by people’s shelter preferences
contained in Tweets and combined with stated expert preferences for suitable shelter
locations (Kusumo 2016). Another example is presented in SMCA of site selection invol-
ving a geo-social network (Neisani Samani et al. 2018).

Group C, comprised of types 7-9, does not have published exemplars - at least to our
knowledge, and thus suggests directions for future SMCA research on ways to conflate
authoritative with crowdsourced geographic data, and approaches to integrating
revealed with stated preferences.

3. Research directions and frontiers

Here, we highlight some of new research directions that emanate from the hybrid
nature of GIS-MCA. The research directions can be characterized by a series of shifts
from the currently prevailing practices to emerging trends and research frontiers in
spatially explicit MCA. The discussion is organized around core concepts and elements
of SMCA including theoretical frameworks, problem structuring, combination rules,
model parameters, contexts, scales, uncertainties, decision support and visualization
(see Table 2).

Table 2. Spatial multicriteria analysis: prevalent practices and emerging trends/research frontiers.

Concepts/elements of SMCA

Prevalent practices

Emerging trends/research frontiers

Theoretical frameworks
Problem structuring

Combination rules

(methods, models, procedures)

Model parameters

(criteria weights, value functions, etc.)

Contexts

Scales
(spatial, temporal)
Uncertainties

Decision support
Visualization

Normative/Prescriptive
Well-structured
Hierarchies
Single-method
Single-agent
Knowledge-driven

Context-independence
Single-scale

Deterministic
One-parameter-at-a-time
sensitivity analysis
Decision support systems
Visualizing situational
awareness

Descriptive/Behavioural
Networks

Ontology-driven
Mixed-methods

Multiple agents/Citizens
Data-driven
Knowledge/Data-driven
Context-dependence
Context-awareness
Multi-scale/Spatio-temporal

Non-deterministic
Integrated uncertainty and sensitivity analysis

Recommender systems
Geo-visual analytics
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3.1. Theoretical frameworks

3.1.1. Rationality and modelling frameworks

There are three main types of theoretical frameworks for GIS-MCA: descriptive, normative
and prescriptive (Bell et al. 1988, Malczewski and Rinner 2015). Descriptive models are
concerned with actual behaviour of decision-making agents. Normative theories are built
on the basic axioms that should be considered as rational guidance for making decisions.
While descriptive or pragmatic rationality attempts to explain how agents actually make
their decisions, normative rationality addresses the question of how agents ought to
make their decisions. The prescriptive approaches focus on the insights into the decision-
making process rather than on the axioms underlying the normative modelling. These
insights are enhanced by a synergetic effect of combining normative and descriptive
approaches (Bell et al. 1988).

Models and methods of GIS-MCA share the elements of rational decision-making and
bounded/procedural rationality theories. A (theoretically) rational decision-maker has an
unambiguous understanding of the nature of a decision problem, is capable of identifying
all feasible decision options, and knows their outcomes (Edwards 1961). It follows that the
rational decision maker is fully capable of discriminating among decision options by
evaluating their trade-offs, integrating them in an overall measure of the worth of
a decision option, and consequently producing an ordered list of choice alternatives.
Importantly, choice preferences of the rational decision maker are transitive (i.e. if one
prefers option A to B and B to C, then he/she must prefer A to ().

These assumptions are reflected in the conceptual and structural elements of GIS-MCA
including preference, trade-off, objective, criterion, constraint and decision rule.
Additionally, value functions in GIS-MCA directly borrow from the concept of utility
functions in utility theory (Fishburn 1970). The assumptions of the rational decision-
making model are also reflected in procedural steps of GIS-MCA such as comprehensive
search for decision options, known or expected decision option outcomes, discrimination
among the decision options by evaluating their trade-offs, and integration of multiple
tradeoffs into an overall measure of decision option worth (Jankowski 2018). That said,
GIS-MCA also embraces some of important points of the critique levied on rational
decision theory by, among others, Herbert Simon who offered bounded and procedural
rationality theories (Simon 1957). These elements include making provisions in GIS-MCA
for overcoming incomplete search for decision alternatives, biased evaluations including
violations of preference transitivity, and support for satisficing behavior characterized by
setting goal/aspiration levels. Examples of the latter are reference point methods.

3.1.2. Behavioral turn

Behavioral turn implies the acceptance of behavioral concepts such as bounded ration-
ality, prospect theory, regret theory, disappointment theory, etc. in mainstream decision
science/multicriteria analysis (e.g. Morton and Fasolo 2009, Franco and Hamaldinen 2016).
Behavioral theories attempt to improve understanding of decision-making process by
combining theoretical foundation of normative methods with empirical findings of
descriptive research. One of the most prominent contributions to behavioral turn in
decision analysis came from prospect theory and its extensions (Kahneman and Tversky
1979, Tversky and Kahneman 1992, Schmidt et al. 2008). These theories challenged the
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normative approaches based on expected utility in arguing and demonstrating in
a number of experiments that gains have different utility functions than losses. When
measured in absolute values and given a typical risk aversion, the utility of gaining $100 is
less than the disutility of losing $100. In utility theory, the utility of gain cancels out the
disutility of loss if the gain equals the loss (in absolute terms). This implies that given
a 50-50 chance of ending up at location A, characterized by the positive utility of $100,
versus ending up at location B, characterized by the disutility of -$100, one should be
indifferent to such a gamble - according to utility theory. However, according to prospect
theory, most people will require a higher payoff at A to offset the prospect of ending up in
B before they take the gamble. This trivial example becomes more interesting when
extended to a more realistic situation of more than two locations evaluated under multi-
ple criteria. Clearly, in such a case criterion trade-offs should consider differential percep-
tions of gains and losses. The present GIS-MCA methods, however, make no provisions for
such a calculus. Hence, there is a research opportunity to develop new GIS-MCA methods
consistent with the cornerstone of prospect theory, namely the recognition that people
tend to treat gains differently than losses by applying different utility functions. There are
two areas ripe with opportunities for future research. First, prospect theory has not been
validated in the context of spatially explicit, multicriteria choice situations with risky
outcomes (i.e. entailing both a chance of gain and loss). Although nothing at this point
indicates that prospect theory would fail to explain such choice behaviors, demonstrating
that it does would provide a theoretically valuable proof. Second, vast amounts of data
about individual choices including location choices (e.g. points-of-interest or POIs) and
navigational choices could be leveraged to estimate the parameters of utility functions for
gains and losses that can be attributed to specific places in geographical space. Moreover,
such utility functions could conceivably by estimated for individuals who are interested in
receiving recommendations for POls (i.e. recommender systems — see Section 3.8.2).

3.2. Problem structuring

Problem structuring is a process that aims at defining and representing a research
(decision) problem in a format acceptable and manageable by all involved in the process.
Although problem structuring has been recognized as a crucial component of or pre-
requisite for multicriteria analysis (e.g. Belton and Stewart 2010), a very limited attention
has been given to the significance of problem structuring in SMCA (Ferretti and
Montibeller 2016, Adem Esmail and Geneletti 2018). Typically, GIS-MCA takes a well-
structured problem as a starting point and/or a simple hierarchical structure approach
is used for representing the problem situation (see Table 2). Only recently, methods for
structuring multicriteria problems have gained attention as an integral part of SMCA
(Bottero and Ferretti 2011, Argyris et al. 2019). The SMCA literature reports a variety of
problem structuring methods including soft systems methodology (SSM), strategic
options development and analysis (SODA), strengths, weaknesses, opportunities and
threats (SWOT), and strategic choice approach (SCA) (Lami et al. 2014, Oppio et al. 2015,
Uhde et al. 2015, Ferretti and Gandino 2018). Also, Analytical Network Process (Saaty 2001)
has been increasingly used in the process of problem structuring for SMCA (Bottero and
Ferretti 2011, Bojorquez-Tapia et al. 2011, Oppio et al. 2015). The main advantage of
network approach is its capability of dealing with complexity by representing a problem
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situation as a network of elements (e.g. objectives, criteria, alternatives) that are grouped
into clusters including inter-relationships within and between clusters (Bottero and
Ferretti 2011).

3.2.1. Spatial data

A common characteristic of all problem structuring methods for SMCA is that they
combine problem structuring with spatially implicit multicriteria analysis. The traditional
methods of problem structuring — are, however, of limited applicability for spatially
explicit MCA. This is because the process of structuring spatial problems should involve
explicit considerations of ‘the special nature of spatial data’ (Haining 2009) as well as the
special nature of spatial preference data/information (Simon et al. 2014, Ferretti and
Montibeller 2019, Harju et al. 2019). The fundamental (i.e. special) properties of spatial
data, spatial dependence and spatial heterogeneity, are inherent in the nature of attributes
(criteria), and they depend directly or indirectly on the model of spatial data (Haining
2009). Consequentially, a central question in the process of spatial problem structuring is
that of how to represent spatial properties of decision/evaluation alternatives and how to
elucidate spatial preferences within the frame of spatial dependence and spatial
heterogeneity.

3.2.2. Social networks

The notions of social networks, both physical and virtual, can be incorporated into the
process of multicriteria problem structuring. The networks, within which nodes (repre-
senting decision-makers, stakeholders, participants, or citizens) are connected and influ-
ence one another can be used as a platform for supporting decision-makers’ reasoning,
which, in turn, can be structured in terms of a network of means-and-ends (i.e. cognitive/
causal mapping) approaches (e.g. Montibeller and Belton 2009). Social networks can also
incorporate interactions among nodes (changing preferences over time and space) and
contextual factors (Giacchi et al. 2016) into the process of structuring multicriteria pro-
blems. Such an approach can provide an effective way for developing procedures for
spatial problem structuring by considering not only the spatial-temporal nature of the
interactions among nodes (e.g. spatial social networks) and the nodes’ context-awareness
(social and spatial) but also the fundamental properties of spatial data (see Section 3.2.1).

3.2.3. Qualitative-quantitative approach

The current GIS-MCA methods and practices impose the notion of geometric primitives
(points, lines, polygons and pixels) on the process of problem structuring; and subse-
quently, the multicriteria modelling procedure and its outcomes are positioned in an
absolute space, which is ‘static, deterministic, and asocial’ (Warf and Sui 2010). This
generates an incompatibility between processing and analysing geographic data, and
the requirements of SMCA for processing and analysing preferences on criteria and
alternatives (Ferretti and Montibeller 2016, Malczewski 2017). Some evidence suggests
that the concept of relational (cognitive) space provides an effective foundation for
structuring problems in GIS-MCA (Ferretti 2016, Bojérquez-Tapia et al. 2019, Giuffrida
et al. 2019). Unlike the absolute models of space, which require measurements referenced
to constant base, implying nonjudgmental observations (Peuquet 1994, Wachowicz
1999), the relational spaces of critical/qualitative GIS allow for value judgments (Elwood
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et al. 2011); that is, concepts such as location, distance, direction, connectivity, adjacency,
neighbourhood, proximity can be specified in terms of an agent’s preferences, beliefs,
opinions and perceptions. Emerging from arguments about the complementarity of
absolute and relational models of space, a qualitative-quantitative approach to spatial
problem structuring should be developed in order to bridge not only methodological but
also ontological and epistemological divides between GIS and MCA.

3.2.4. Ontology-driven approach

One of the most challenging issues in developing the qualitative-quantitative SMCA
approach is the problem of semantic heterogeneity caused by different meanings of
data, terminologies and models used in GIS and MCA. It has been only recently recognized
by researchers how the problem of semantic heterogeneity inherent in conventional GIS-
MCA affects the quality of spatial decision-making process (Bojorquez-Tapia et al. 2011,
Jelokhani-Niaraki 2018, Jelokhani-Niaraki et al. 2018). We suggest that an ontology-driven
approach for spatial problem structuring (and solving) is needed to make substantial
progress in spatially explicit MCA. A generic framework proposed by Smith and Shaw
(2019) can be adapted to this end. The framework should be organized around a set of
assumptions related to spatially explicit MCA including ontological assumptions describ-
ing the reality and leading to a definition of spatial problem, epistemological assumptions
and theories underlying GIS and MCA, and methodological assumptions about the
models and methods of GIS and spatially explicit MCA.

3.3. Combination rules

3.3.1. Comparison, augmentation, and integration

Spatially explicit MCA has typically been a single method analysis (see Table 2); that is,
a specific multicriteria combination (or decision) rule has been integrated into GIS for
analysing a given spatial problem (Malczewski 2006a, 2017). The single-method approach
can significantly be enhanced by developing GIS-based procedures that combine multi-
criteria model(s) with other method(s) (e.g. Uhde et al. 2015). The research should proceed
in three main directions (see Howick and Ackermann 2011): (i) comparison (using two
methods separately, for the purpose of comparing them or solving different aspects of
a spatial problem, which either method used on its own could not tackle), (ii) augmenta-
tion (enhancing one method by using elements of the other), and (iii) integration (devel-
oping new methods by integrating or unifying the existing methods).

Mixing methods may simply involve a comparison of the GIS-MCA outputs or an
improvement of a SMCA method by using elements of another method. Spatially explicit
methods can be advanced by using other methods for estimating the parameters of MCA
models. For example, mathematical programming procedures can be used for estimating
criterion weights in spatially explicit models (Ferretti and Montibeller 2019) and for
defining order weights in GIS-OWA models (Malczewski and Liu 2014, Jiao et al. 2019).
There is empirical evidence to show that applying different GIS-MCA methods for a given
spatial problem can generate significantly different results (e.g. Elaalem et al. 2011,
Feizizadeh and Blaschke 2013). Although this is often seen as a drawback of GIS-MCA,
a comparative analysis of spatially explicit MCA methods may provide us with diverse
insights into the results generated by different methods and is one way of analysing the
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sensitivity of problem solution (see Section 3.7.1). Moreover, it can also reveal whether
methods are compatible or complementary. Of particular significance are comparative
studies of global and local MCA models; this type of modelling creates opportunities for
the synergistic accumulation of insights from spatially implicit and explicit MCA methods.

A robust framework for analysing spatial problems can be developed by mixing
spatially explicit multicriteria models with other GIS-based modelling procedures. The
most prominent example of this approach has been the use of multicriteria methods for
defining agent’s decision rules in geosimulation models such as cellular automata and
agent-based models (Li and Liu 2007, Yu et al. 2011, Sabri et al. 2012). While geosimulation
methods provide a platform for making conventional MCA spatially explicit (Ford et al.
2019), they can be enriched by using spatially explicit MCA. Conversely, decision rules
used in MCA models can be enriched by adopting rules of behaviour developed for agent-
based models (ABM). One of the most promising research directions in GIS-MCA is
integrating local MCA models with geosimulation procedures and ABM.

An integrated mixed-method involves combining elements of different multicriteria
methods to develop a new approach for tackling spatial problems (e.g. Moradi et al. 2017,
Dragicevic et al. 2018). Yet, there is a contradiction between GIS-MCA studies focusing on
the uniqueness of different approaches and similarities between ostensibly very different
methods. The value function methods provide a good example of this. Specifically, there
are several parallels between WLC, AHP/ANP and RP methods (see Malczewski and Rinner
2015). We hint that these MCA methods along with Boolean operations can be unified
within the framework of OWA (Malczewski 2006b, Boroushaki and Malczewski 2008).
A unified GIS-OWA framework can in turn provide a tool for further advancement by
developing an integrated global and local MCA modelling system.

3.3.2. Multiple agents
Recent approaches to computer-based modelling have taken a broader perspective on
decision-making to include the concept of decision-making agent. An agent can be an
organization (government, corporation, or non-government organization - NGO),
a person (stakeholder, expert, citizen) or a computer program characterized by such
properties as autonomy, reactivity and rationality including humanistic characteristics
(preferences, beliefs and opinions). Spatially explicit multicriteria methods have been
designed to deal with single-human-decision maker problems (Malczewski 2011, Simon
et al. 2014). Hence, an obvious direction for future research is to extend single-decision-
maker methods such as MCA-GVO and LMCA to spatially explicit multi-agent MCA. The
main difficulty in developing a spatially explicit multi-agent MCA model is associated with
estimating its parameters (values/utilities, criterion weights). A way to deal with this
difficulty is to operationalize spatially explicit multi-agent MCA in terms of multicriteria
group decision-making under incomplete preference information (e.g. Salo and
Hamaldinen 2010). For example, a multi-agent MCA-GVO procedure can be developed
by using a method of preference programing with incomplete information (Harju et al.
2019). LMCA can also be used in group, participatory and collaborative settings by
enhancing local models with voting procedures.

The integration of multicriteria decision rules into geosimulation (agent-based) models
(Yu et al. 2018, Ford et al. 2019) and the use of crowdsourced data/information in SMCA
(Gonzélez-Ramiro et al. 2016, Mele and Poli 2017) have stimulated the development of
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multi-agent MCA. Spatial perspective, often implicit in conventional MCA, can be made
explicit through geosimulation and crowdsourced geographic data (CGD). Indeed, geosi-
mulation has emerged as a platform for integrating MCA into group (social or collective)
decision-making. Likewise, conventional MCA can be made spatially explicit through
integrating CGD into multicriteria analysis (CGD-MCA). A limitation of CGD-MCA models
has been their reliance on traditional methods of eliciting preferences. CGD-MCA models
have so far combined authoritative and crowdsourced geographic data with expert-based
preferences (see Section 2.2). This limitation can be addressed by developing methods
that combine authoritative and crowdsourced geographic datasets with traditional and
crowdsourced preference data. This type of approach would open new opportunities for
advancing research on participatory (collaborative) GIS and usher in new perspectives on
spatial group decision-making by incorporating place-based knowledge of people into
SMCA. It can potentially be employed not only for operationalizing multicriteria combina-
tion rules for group decision-making but also for examining behaviour of decision-making
agents.

3.4. Model parameters

Parameters of multicriteria models are typically estimated by knowledge-driven
approaches, which rely on the decision-making agents’ knowledge, experience, value
judgements, opinions and perception of the problem at hand (Malczewski 2006a, Stevens
and Pfeiffer 2011, Veronesi et al. 2017). A drawback of knowledge-driven methods is that
the agents (decision-makers, stakeholders, experts, citizens, etc.) find it difficult to eluci-
date their preference and in effect provide inconsistent judgments under different
schemes of estimating model parameters (Ferretti and Montibeller 2016). Parameters
such as criteria weights (criteria ‘importance’) and value functions (values associated
with criteria scores) are as much properties of the criteria as they are of the agents. This
implies that model parameters can be estimated by knowledge-driven approaches (which
rely on the agents’ knowledge of a problem at hand) or they can be derived from data.

3.4.1. Data-driven approach

The data-driven procedures such as entropy methods, correlation and standard deviation
methods (Wang and Luo 2010) have sporadically been used for estimating parameters of
GIS-MCA models (Veronesi et al. 2017). We suggest, however, that the data-driven frame-
work can provide a valuable platform for advancing spatially explicit GIS-MCA. For
example, a data-driven approach can be used for developing local forms of outranking
methods. Arguably, the main limitation of integrating this class of MCA methods into GIS
is a large number of pairwise comparisons of alternatives with respect to each evaluation
criterion. This problem can be overcome by aggregating spatial analysis units (e.g.
Marinoni 2006, Chakhar and Mousseau 2008), but the downside is potential information
loss. This shortcoming provides a motivation for further research. Specifically, the out-
ranking relations can be modelled locally. For example, a local form of PROMETHEE can be
developed by estimating local weights and local binary preference functions. The concept
of local outranking relations opens the door for developing spatially explicit outranking
methods for choosing the best alternative, ranking the alternatives from best to worst,
and sorting (or classifying) the alternatives into homogeneous groups.
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3.4.2. Combining knowledge- and data-driven approaches
There are contrasting suppositions on the merits of data- versus knowledge-driven
models (Stevens et al. 2013, Veronesi et al. 2017, Rohrbach et al. 2018). On the one
hand, there is a notion of the superiority of data-driven approaches due to their objectiv-
ity and replicability of results; on the other, data-driven approaches are criticized for their
limited ability to tackle problems involving hard-to-quantify preference information and
intangible aspects of a spatial problem situation. In contrast, the knowledge-driven
methods are perceived to be inferior because of their subjectivity and low replicability;
however, they are superior in their ability of dealing with preferences and intangibles.
These conflicting properties provide a good starting point for advancing SMCA by devel-
oping methods that combine the knowledge- and data-driven methods. For example,
local RP models can be developed by using the entropy or correlation and standard
deviation methods for estimating local criterion weights, and the maximum and mini-
mum criterion values can be employed for approximating local value functions. Data- and
knowledge-driven methods can be combined by employing Bayesian updates. For exam-
ple, criterion weights can be elicited through a knowledge-based approach (i.e. pairwise
comparison or value function) and treated as a priori information. Then, using the Bayes
Rule, data-based methods can be employed to derive an alternative set of weights that
will serve as a posteriori information and be used to update the initial set of weights. There
is also another justification for a hybrid approach combining data-based with knowledge-
based methods. Complex decision problems involving multiple stakeholders with often
divergent interests can hardly be reduced to hard data. Soft data representing beliefs,
preferences and sometimes intangibles should have a way to be included into SMCA
calculus, along with hard data, in order to operationalize such problems.
Knowledge/data-driven approaches can be developed using authoritative and crowd-
sourced data for estimating model parameters (e.g. Cerreta et al. 2016; see Section 2.2).
The former is a theory-driven approach that is concerned with stated preferences, while
the latter involves data-driven analytics aiming at constructing revealed preferences.
These two very different ways of parameterizing multicriteria models provide new oppor-
tunities for advancing GIS-MCA. They also make the procedures for estimating model
parameters more challenging. Future research should strive to advance GIS-MCA through
a combination of theory-driven and data-driven approaches. Combining authoritative
with crowdsourced preference data is of particular significance in situations requiring
real-time estimation of model parameters. That said, there is a need for developing
a theoretically and practically sound protocol for validation and verification of SMCA
models involving both stated and revealed preferences.

3.5. Contexts

3.5.1. Context-dependent preferences

An important and often ignored aspect of SMCA is the context of decision-making
processes. Broadly speaking, the context of spatial multicriteria problems is a set of factors
(or characteristics) of an individual agent or group of agents that have the potential to
change the preferences about decision alternatives. It is important, however, to make
a distinction between the notions of context-dependent preferences and heterogeneity
of preferences. While the former articulates how preferences are adjusted by the decision
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situation, the latter captures differences in preferences across a study area independent of
context. Spatially explicit models including LMCA and MCA-GVO are concerned with
spatial heterogeneity of preferences (see Section 2.1). While these models are derived
from context-dependent spatial analysis (Fotheringham 2000), they do not directly con-
sider contextual factors. One of the underlying assumptions of spatially explicit MCA
models is based on the principle of rational choice — a corner stone of neoclassical
decision theory (see Section 3.1.1); stating that an individual's preferences over a set of
alternatives can be completely rank-ordered and the highest-ranked alternative is
declared to be the best alternative (Keeney and Raiffa 1976). This implies the property
of independence of irrelevant alternatives: preference ranking between any pair of alter-
natives is not influenced by the decision context. We suggest that the property of
independence of irrelevant alternatives deserves more attention in spatially explicit
MCA. For example, we argue that any change in the spatial scale results in a new set of
alternatives (see Section 3.6.1) and therefore the principle of independence of irrelevant
alternatives may not hold for spatial context-dependent SMCA solutions. An important
contribution to context-dependent spatial analysis can be made by contextualizing
spatially explicit MCA and analysing the relations between spatial heterogeneity of
preferences and contextual factors.

3.5.2. Contextualizing SMCA

Contextual factors are operationalized by data about characteristics of an individual or
group of individuals. The data can be obtained from traditional (authoritative) sources
such as population censuses, surveys, questionnaires, etc. (Cabrera-Barona et al. 2018)
and/or extracted from unstructured crowdsourced data (Robertson and Horrocks 2017).
An effective way of integrating contextual factors into SMCA is through the use of multi-
method approach in which SMCA is hybridized with a method for analysing authoritative
contextual data. This approach is proved to be highly effective in developing GIS-MCA
procedures for the construction of composite socio-economic and socio-environmental
indices, such as the indices of vulnerability, liveability, deprivation, environmental quality
and sustainability, just to name a few (e.g. Schuurman et al. 2007, Miller et al. 2013,
McHenry and Rinner 2016). For example, GIS-MCA can be used for constructing
a deprivation index and statistical methods can be employed to examine the sensitivity
of the index values to the contextual factors (e.g. Cabrera-Barona et al. 2018). One way of
refining this approach is to use the concept of localized contextual factors within the
framework of LMCA. There is some evidence suggesting that the size and shape of
a neighbourhood are the critical parameters of LMCA (McHenry and Rinner 2016, Taha
etal. 2019). The parameters are problem specific and context dependent. We suggest that
a constructive approach can be developed by examining how the results of LMCA are
influenced not only by the parameters of neighbourhood but also by the contextual
factors.

SMCA can be contextualized by extracting contextual factors from volunteered crowd-
sourced data with explicit or implicit geographic references collected through social
networks or mobile applications and then by linking those factors to multicriteria proce-
dures. This approach is of particular importance for emergency management applications
to reduce the detrimental effects of natural disasters such as floods, hurricanes, earth-
quakes, tsunamis, landslides and forest fires (e.g. Wood et al. 2014, Zhang et al. 2018). One
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of the main tasks in this type of applications is selecting an efficient and effective method
for combining authoritative and crowdsourced datasets to obtain useful information for
emergency management (see Section 2.2). The most challenging questions for SMCA-
based emergency management applications are how to derive contextual factors from
unstructured crowdsourced data and incorporate them into SMCA procedures in real-
time and capture dynamically changing preferences and priorities.

3.6. Scales

3.6.1. MAUP and rank reversals

The results of multicriteria analysis of spatially aggregated data are sensitive to the
modifiable areal unit problem (MAUP); that is, the scale effect (the size of the zones)
and the zoning effect (the shape of the zones) (Wong 2009). Every change in the shape
and size of zones creates a new set of geographic data (and different set of decision/
evaluation alternatives). Consequently, the results of GIS-MCA are sensitive to the rank
reversal problem; that is, the change in ordering/ranking of the alternatives is
a consequence of modifying the set of spatially defined alternatives (Nijssen and
Schumann 2014, Malczewski and Rinner 2015, Taha et al. 2019). Future research can
make an important contribution to GIS-MCA by demonstrating how do scale/zonation
changes influence the outcomes of GIS-MCA procedures, and examining how MAUP
relates to the rank reversal problem. The scale and zoning effects should not be regarded
solely as ‘problems’, but as a research opportunity for contributing to GIS-MCA. The
process of detecting an appropriate scale of analysis must be considered as an essential
component of the exploratory analysis of spatial problems.

3.6.2. Multi-scale spatio-temporal analysis

GIS-based multi-scale MCA (MS-MCA) models use geographic data/information for two or
more spatial and/or temporal scales simultaneously or sequentially to analyse decision/
evaluation problems (e.g. Schuurman et al. 2007, Scolozzi and Geneletti 2012, Delmotte
et al. 2013, Dragicevi¢ et al. 2015). GIS-MCA can be advanced by integrating multicriteria
models into multi-scale spatiotemporal analyses. The triangle and pyramid models (Van
de Weghe et al. 2014, Qiang et al. 2018) can potentially be used to develop a multi-scale
spatiotemporal GIS-MCA framework. The inherent complexity of this type of GIS-MCA
analysis brings about conceptual and operational challenges in the process of estimating
spatio-temporal parameters of multicriteria models. An estimation of parameters requires
not only data about four spatio-temporal elements (e.g. location, spatial resolution,
temporal interval and temporal unit of aggregation), but also a choice of spatial and
temporal, observational and analytic extents. In addition to the conceptual and opera-
tional complexities, the major challenge here is the development of efficient computa-
tional procedures for tackling multi-scale spatio-temporal multicriteria problems.

3.7. Uncertainties

3.7.1. Uncertainty and sensitivity
Uncertainty in geography is an umbrella term for describing problems that arise from the
inherently incomplete representations of the world (Longley et al. 2010). In GIS-MCA,
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uncertainty permeates problem structure, combination rules, data and model parameters
(Ligmann-Zielinska and Jankowski 2008). Some parameter uncertainties, such as those
concerning criterion weights, can be subdivided into scalar and spatial (i.e. global and
local), which is reminiscent of the distinction between attribute and positional errors in
spatial data. Both scalar and spatial model parameters can be represented using probability
distributions, or as multiple realizations of a geographic theme (Liburne and Tarantola 2009).

A comprehensive approach to dealing with SMCA parameter uncertainties involves an
integrated uncertainty analysis (UA) and sensitivity analysis (SA) (Feizizadeh et al. 2014,
Ligman-Zielinska and Jankowski 2014). UA and SA are two complementary ways of
evaluating the uncertainty present in model parameters and by extension in model results
(Saltelli et al. 2004, Saltelli and D’Hombres 2010). UA quantifies outcome variability given
model input uncertainties. UA is therefore forward-looking as it focuses on the evaluation
of how the uncertainty of parameters (e.g. criterion weights) propagates through the
model and affects its output. Typically, UA produces an empirical probability distribution
of model result(s), accompanied by descriptive statistics and confidence bounds for the
output. UA, however, does not provide information on the magnitude of the influence of
individual parameters, which is the objective of SA. Consequently, SA evaluates how
much each source of parameter uncertainty contributes to model output variability; it is
therefore backward-looking (Saisana et al. 2005). With SA one aims at identifying those
parameters that are mostly responsible for the uncertainty of model results. This can be
done by quantifying the contribution of each parameter to model output variability.

Numerically, uncertainty can be expressed, among others, through the variance of
model output. In spatially explicit models, the variance is represented by a variance layer
as the model output is spatially distributed. One can subdivide the variance and apportion
it to uncertain parameters effectively expressing the (relative) share of model output
variability due to each of the uncertain input parameters (Saltelli and Annoni 2010).
Arguably, this method of SA, called variance decomposition, is highly advantageous for
GIS-MCA for a number of reasons. First, it enables a global approach to SA that allows the
exhaustive examination of model input parameters, rather than selected ‘best-guess’
parameter values, as is the case in frequently used one-parameter-at-a-time (prescriptive)
approach (Gomez-Delgado and Tarantola 2006, Chen et al. 2013). Next, variance decom-
position is agnostic of model formulation. Last (but not least), it accounts for the con-
tributions of a given input parameter to model output uncertainty owing to this
parameter only and additionally due to its interactions with other parameters.

The use of integrated UA-SA in GIS-MCA is still an exception rather than the rule. Many
researchers still publish results of SMCA as if the underlying model was clear-cut and the
input data error-free. Some plausible reasons for this are (i) lack of expertise in the use of
uncertainty and sensitivity analysis methods, (ii) lack of efficient computational methods
for spatially explicit UA-SA, and (iii) the challenge of finding effective ways of commu-
nicating the uncertainty of model parameters and the sensitivity of model output due to
uncertain parameters. While the first reason can be rectified through the UA-SA literature
readings, the latter two present a research frontier.

3.7.2. Integrated spatially explicit UA-SA
Spatially explicit UA-SA is computationally costly (Ligman-Zielinska and Jankowski 2014).
Computational cost increases exponentially with the simultaneous consideration of
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model parameters (e.g. criterion weights) and data (criterion values) uncertainties. Two
research directions that address the issue of computation cost are: (i) accelerating UA-SA
with high-performance computing, and (ii) meta-modelling approaches. Graphic
Processing Units (GPUs) offer powerful and relatively affordable high-performance com-
puting infrastructure that has been used in various research fields. Erlacher et al. (2017)
have shown that GPUs can accelerate up to 150 times computationally-demanding
calculations of sensitivity indices in spatially explicit UA-SA. Other high-performance
architectures such as Hadoop should also be explored. Meta-modelling approaches
approximate the full solution space typically explored by global UA-SA, but as shown
by Salap-Ayca et al. (2018) the accuracy of approximation may be sufficient even for
complex spatio-temporal models.

The effectiveness of communicating model output uncertainty, both numerically and
visually, is of paramount importance especially in spatial decision-making problems
where model results fail to disclose full information by falsely conveying the sense of
certainty and reliability. There is a need to build on the existing body of work on
visualizing information uncertainty (MacEachren et al. 2005) and systematically evaluate
the effectiveness of various visualization techniques in communicating the results of
spatially explicit uncertainty and sensitivity analysis. Future research efforts should be
directed at investigating, which of map designs are effective in helping to understand
distributional patterns of model variances and the link between parameter uncertainties
and model sensitivity. The link, which is fairly easy to understand in non-spatial model,
becomes much more complex in spatial and even more so in spatial-temporal models.
Still, an effective visualization could illuminate the relationships between the parameter
uncertainty and model sensitivity and thus, contribute to an effective decision support.

3.8. Decision support

3.8.1. Decision support as structuring the decision space

The conventional approach to decision support in GIS-MCA follows a model, under which
a spatial decision support system (SDSS) is developed and deployed to organize the
decision space by identifying feasible (meeting all salient constraints) decision alterna-
tives and systematically evaluating their performance. Hence, the essence of decision
support lies in assisting and not necessarily in recommending a choice. This approach is
justifiable for high stake situations characteristic of institutional decision-making environ-
ment, in which political context and other intangibles often limit the role of SDSS to
structuring a complex decision space. Typical structural elements of decision space
include objectives, criteria, alternatives and trade-offs.

3.8.2. Decision support as choice recommendation

An alternative approach to spatial decision support has recently emerged as a result of
growing data accumulation about personal choices and choice object characteristics.
Under this model, choices that are made by individuals (not agencies) on a frequent
rather than infrequent bases, are typically low-stake in comparison with institutional
choices. SMCA can be used in this approach for recommending the ‘best alternative’
(multicriteria recommender systems) rather than supporting decision-making process
(multicriteria decision support systems).
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MCA-based systems for recommending spatially explicit points of interest (POI) (Liu
et al. 2013, Lyu et al. 2019) offer a personalized decision support by taking advantage of
big data created by millions of users accessing online services such as Yelp or Instagram.
By accessing information on specific POls such as restaurants, shops, service providers,
etc., users effectively reveal their preferences instead of stating them through value
judgements, which is the traditional way of eliciting the decision-maker/stakeholder
preferences. The preferences revealed through the user check-in frequencies can be
leveraged to develop personalized preference profiles useful in making POl choice
recommendations on individual bases. A recent example of MCA-based recommending
system is the work of Lyu et al. (2019). The system integrates user preferences for
geographical location, POI category and POI’s attributes, which are treated as three top-
level criteria. Limiting spatially explicit criteria to location only is a shortcoming of the
system. A potentially promising research direction is the exploration of spatial relations,
such as proximity and inclusion (e.g. inclusion in a specific geographical zone of interest),
as additional spatially explicit criteria (Mazumdar et al. 2018). One of the challenges in
MCA-based recommending systems is how to keep updating criterion preferences in light
of changing user experiences, trends and influences exerted by ever-evolving popular
culture. To this extent, Bayesian updating new knowledge on the relevance of salient
criteria affecting people’s choices might be a promising approach.

3.9. Visualization

3.9.1. Visualization of multicriteria problem structure and solution

A hallmark of GIS-MCA from its early days has been the integration of maps, afforded by
GIS, with MCA data processing. Typically, maps represent criteria and their spatial dis-
tributions (aka spatial variables), locations of alternatives (e.g. sites) and MCA results (e.g.
locations of rank-ordered alternatives). Choropleth maps and raster-based surfaces, used
in early GIS-MCA visualization, were extended into interactive visualizations by linking
maps with graphs and tables (Andrienko and Andrienko 1999), which in turn afforded
simultaneous visual exploration of criterion and decision spaces (Jankowski et al. 2001).

A criterion space in GIS-MCA encompasses criterion values and their ranges that can be
easily obtained by taking max and min values from a column in a GIS attribute table. In
a similar fashion, a decision space representing alternatives and their criteria-based
characteristics can be constructed by taking the attribute values from table’s row. The
visual exploration of both data spaces contributes to understanding patterns and rela-
tionships among the criteria and alternatives and hence, supports understanding of the
decision problem structure. Tools that can be used to explore both criterion and decision
spaces include parallel coordinate plots, unclassified and classified choropleth maps,
dynamic map query, bi-variate maps and multiple maps with pie-, bar- and column charts
(Andrienko and Andrienko 2006).

Similar to exploring problem structure, the results of SMCA can be visually explored
and analysed. By employing a bivariate map, the overall estimate of decision alternative’s
performance and the uncertainty of the estimate, quantified by mean alternative rank and
its variance, can be simultaneously visualized and contextualized by the distribution
pattern of mean ranks and their variances. A different, but complementary visualization
of SMCA results can be achieved by a pie chart map, in which the pie size reflects the
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position of a given alternative in the rank order, and the pie wedges representing the
evaluation criteria are scaled to reflect the weighted contribution of each criterion to the
overall performance of alternative.

3.9.2. Towards geo-visual analytics in SMCA

The visual-analytic capabilities described above are aimed at developing a situational
awareness in a decision problem, which roughly follows a sequence of steps comprised of
(i) perception of structural elements comprising the decision problem, (ii) comprehension
of relationships between the structural elements, and (iii) projection of the hierarchy
among choice alternatives (Luo and MacEachren 2014). While the visual exploratory
techniques described above can support the first step, there is a need to develop effective
visualization techniques and tools to support steps two and three. Such techniques and
tools could focus, for example, on visual analysis of trade-offs among the evaluation
criteria, visualization of uncertainty and sensitivity analysis results (see Section 3.7.2), and
visual exploration of what-if scenarios.

In charting future research directions for geo-visual exploratory techniques for SMCA, it
is worth acknowledging that decision-makers frequently have reasons to keep certain
decision criteria implicit (Andrienko et al. 2007). Hence, the decision support approach
requiring the complete knowledge of problem structure is unlikely to succeed. Given that
tacit criteria are common in decision processes, future techniques and tools should allow
the flexibility in introducing such criteria and their values into SMCA and exploring their
impacts on the suitability assessment of each alternative.

4. Conclusion

This paper has examined the shift in paradigm from spatially implicit to spatially explicit
multicriteria analysis. It has identified the emerging trends and research frontiers and
pointed out the challenges that come along with the development of spatially explicit
approaches to GIS-MCA. Presented herein the analysis of the changing paradigm has
allowed us to identify key research directions with opportunities for advancements. We
have argued that the future development of GIS-MCA can be organized around a series of
moves from the currently prevalent practices to new approaches for advancing spatially
explicit MCA. More specifically, we have proposed ways of moving towards spatially
explicit MCA by modifying/augmenting existing approaches or developing new methods
for spatial problem structuring, combining geographic and preference data, estimating
model parameters, defining contexts and spatial/time scales, dealing with uncertainties,
supporting decision-making and geo-visualizing multicriteria spatial problems and
solutions.

The research on integrating GIS and MCA is an example of how linking concepts and
methods from two distinct fields (GIScience/GIS) and (Decision Science/MCA) can yield
new approaches for analysing and solving complex spatial problems. We believe that
advancing GIS-MCA requires more attention to the interdisciplinary character of GIS-MCA
research. The process of merging traditionally distinct approaches calls for a tight colla-
boration among researchers and practitioners with different areas of expertise. We would
therefore hope that the growth of interest in spatially explicit modelling will encourage
more mutually beneficial interactions between GIS and MCA communities.
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Appendix: List of acronyms

AHP (Analytic Hierarchy Process)

ANP (Analytic Network Process)

ELECTRE (ELimination Et Choix TRaduisant la REalité)

GIS-MCA (GIS-based Multicriteria Analysis)

LMCA (Local Multicriteria Analysis)

MAUP (Modifiable Areal Unit Problem)

MCA (Multicriteria Analysis)

MCA-GVO (Multicriteria Analysis with Geographically Varying Outcomes)
MCE (Multicriteria Evaluation)

OAT (One-parameter-At-a-Time)

OWA (Ordered Weighted Averaging)

POI (Point of Interest)

PSM (Problem Structuring Method)

PROMETHEE (Preference Ranking Organization METHod for Enrichment Evaluations)
RP (Reference Point)

SCA (Strategic Choice Approach)

SDSS (Spatial Decision Support System)

SMCA (Spatial Multicriteria Analysis)

SODA (Strategic Options Development and Analysis)

SSM (Soft Systems Methodology)

SWOT (Strengths, Weaknesses, Opportunities and Threats)

TOPSIS (Technique for Order of Preference by Similarity to Ideal Solution)
UA-SA (Uncertainty Analysis and Sensitivity Analysis)

VGl (Volunteered Geographic Information)

WLC (Weighted Linear Combination)



	Abstract
	1. Introduction
	2. Paradigm shift and emerging trends
	2.1. Spatially explicit MCA
	2.2. Spatially explicit MCA with crowdsourced data

	3. Research directions and frontiers
	3.1. Theoretical frameworks
	3.1.1. Rationality and modelling frameworks
	3.1.2. Behavioral turn

	3.2. Problem structuring
	3.2.1. Spatial data
	3.2.2. Social networks
	3.2.3. Qualitative-quantitative approach
	3.2.4. Ontology-driven approach

	3.3. Combination rules
	3.3.1. Comparison, augmentation, and integration
	3.3.2. Multiple agents

	3.4. Model parameters
	3.4.1. Data–driven approach
	3.4.2. Combining knowledge- and data-driven approaches

	3.5. Contexts
	3.5.1. Context-dependent preferences
	3.5.2. Contextualizing SMCA

	3.6. Scales
	3.6.1. MAUP and rank reversals
	3.6.2. Multi-scale spatio-temporal analysis

	3.7. Uncertainties
	3.7.1. Uncertainty and sensitivity
	3.7.2. Integrated spatially explicit UA-SA

	3.8. Decision support
	3.8.1. Decision support as structuring the decision space
	3.8.2. Decision support as choice recommendation

	3.9. Visualization
	3.9.1. Visualization of multicriteria problem structure and solution
	3.9.2. Towards geo-visual analytics in SMCA


	4. Conclusion
	Acknowledgments
	Disclosure statement
	Funding
	Notes on contributors
	ORCID
	References
	Appendix: List of acronyms



