References

1. Ames, R. S., B. Holskin, M. Mitcho, D. Shalloway, and M. Chen. 1990. Induction of sensitivity to the cytotoxic action of tumor necrosis factor alpha by adenovirus E1A is independent of transformation and transcriptional activation. J. Virol. 64:4115-4122.
2. Arany, Z., D. Newsome, E. Oldread, D. M. Livingston, and R. Eckner. 1995. A family of transcriptional adaptor proteins targeted by the E1A oncoprotein. Nature 374:81-84.
3. Avantaggiati, M. L., M. Carbone, A. Graessmann, Y. Nakatani, B. Howard, and A. S. Levine. 1996. The SV40 large T antigen and adenovirus e1a oncoproteins interact with distinct isoforms of the transcriptional co- activator, p300. EMBO Journal 15:2236-2248.
4. Bagchi, S., P. Raychaudhuri, and J. R. Nevins. 1990. Adenovirus E1A proteins can dissociate heteromeric complexes involving the E2F transcription factor: a novel mechanism for E1A trans-activation. Cell 62:659-669.
5. Bautista, D. S., M. Hitt, J. McGrory, and F. L. Graham. 1991. Isolation and characterization of insertion mutants in E1A of adenovirus type 5. Virology 182:578-596.
6. Bayley, S. T. and J. S. Mymryk. 1994. Adenovirus E1A proteins and transformation (Review). Int. J. Oncology 5:425-444.
7. Bellett, A. J. D., P. Li, E. T. David, E. J. Mackey, A. W. Braithwaite, and J. R. Cutt. 1985. Control functions of adenovirus transformation region E1A gene products in rat and human cells. Mol. Cell Biol. 5:1933-1939.
8. Berk, A. J. 1992. Adenovirus E1A trans-activation: understanding it will require learning how the general transcription factors function. 1:727-742.
9. Berk, A. J., F. Lee, T. Harrison, J. Williams, and P. A. Sharp. 1979. A pre-early adenovirus 5 gene product regulates synthesis of early messenger RNAs. Cell 17:935-944.
10. Berlingieri, M. T., M. Santoro, C. Battaglia, M. Grieco, and A. Fusco. 1993. The Adenovirus E1A gene blocks the differentiation of a thyroid epithelial cell line, however the neoplastic phenotype is achieved only after cooperation with other oncogenes. Oncogene 8:249-255.
11. Bondesson, M., C. Svensson, S. Linder, and G. Akusjarvi. 1992. The carboxy-terminal exon of the adenovirus E1A protein is required for E4F-dependent transcription activation. EMBO J. 11:3347-3354.
12. Borrelli, E., R. Hen, and P. Chambon. 1984. Adenovirus-2 E1A products repress enhancer-induced stimulation of transcription. Nature 312:608-612.
13. Boulakia, C. A., G. Chen, F. W. H. Ng, J. G. Teodoro, P. E. Branton, D. W. Nicholson, G. G. Poirier, and G. C. Shore. 1996. Bcl-2 and adenovirus E1B 19 kDa protein prevent E1A-induced processing of CPP32 and cleavage of poly(ADP-ribose) polymerase. Oncogene 12:529-535.
14. Boulukos, K. E. and E. B. Ziff. 1993. Adenovirus 5 E1A proteins disrupt the neuronal phenotype and growth factor responsiveness of PC12 cells by a conserved region 1-dependent mechanism. Oncogene 8:237-248.
15. Boyer, T. G. and A. J. Berk. 1993. Functional interaction of adenovirus E1A with holo-TFIID. Genes Dev. 7:1810-1823.
16. Carswell, E. A., L. J. Old, R. L. Kassel, S. Green, N. Fiore, and B. Williamson. 1975. An endotoxin-induced serum factor that causes necrosis of tumors. Proc. Natl. Acad. Sci. U. S. A. 72:3666-3670.
17. Chatterjee, P. K., M. Bruner, S. J. Flint, and M. L. Harter. 1988. DNA-binding properties of an adenovirus 289R E1A protein. EMBO J. 7:835-841.
18. Chellappan, S., V. B. Kraus, B. Kroger, K. Munger, P. M. Howley, W. C. Phelps, and J. R. Nevins. 1992. Adenovirus E1A, simian virus 40 tumor antigen, and human papillomavirus E7 protein share the capacity to disrupt the interaction between transcription factor E2F and the retinoblastoma gene product. Proc. Natl. Acad. Sci. U. S. A. 89:4549-4553.
19. Chellappan, S. P., S. Hiebert, M. Mudryj, J. M. Horowitz, and J. R. Nevins. 1991. The E2F transcription factor is a cellular target for the RB protein. Cell 65:1053-1061.
20. Chen, M. J., B. Holskin, J. Strickler, J. Gorniaks, M. A. Clark, P. J. Johnson, M. Mitcho, and D. Shalloway. 1987. Induction by E1A oncogene expression of cellular susceptibility to lysis by TNF. Nature 330:581-583.
21. Chiang, C. M. and R. G. Roeder. 1995. Cloning of an intrinsic human TFIID subunit that interacts with multiple transcriptional activators. Science 267:531-536.
22. Chinnadurai, G. 1992. Adenovirus E1a as a tumor-suppressor gene. Oncogene 7:1255-1258.
23. Culp, J. S., L. C. Webster, D. J. Friedman, C. L. Smith, W. Huang, F. YH. Wu, M. Rosenberg, and R. P. Ricciardi. 1988. The 289-amino acid E1A protein of adenovirus binds zinc in a region that is important for trans-activation. Proc. Natl. Acad. Sci. U. S. A. 85:6450-6454.
24. de Groot, R., N. Foulkes, M. Mulder, W. Kruijer, and P. Sassone-Corsi. 1991. Positive regulation of jun/AP-1 by E1A. Mol. Cell Biol. 11:192-201.
25. Debbas, M. and E. White. 1993. Wild-type p53 mediates apoptosis by E1A, which is inhibited by E1B. Genes Dev. 7:546-554.
26. DeCaprio, J. A., J. W. Ludlow, J. Figge, J. Shew, C. Huang, W. Lee, E. Marsilio, E. Paucha, and D. M. Livingston. 1988. SV40 large tumor antigen forms a specific complex with the product of the retinoblastoma susceptibility gene. Cell 54:275-283.
27. Draetta, G., D. Beach, and E. Moran. 1988. Synthesis of p34, the mammalian homolog of the yeast cdc2+/CDC28 protein kinase, is stimulated during adenovirus-induced proliferation of primary baby rat kidney cells. Oncogene 2:553-557.
28. Duerksen Hughes, P., W. S. Wold, and L. R. Gooding. 1989. Adenovirus E1A renders infected cells sensitive to cytolysis by tumor necrosis factor. J. Immunol. 143:4193-4200.
29. Duerksen-Hughes, P. J., T. W. Hermiston, W. S. M. Wold, and L. R. Gooding. 1991. The amino-terminal portion of CD1 of the adenovirus E1A proteins is required to induce susceptibility to tumor necrosis factor cytolysis in adenovirus-infected mouse cells. J. Virol. 65:1236-1244.
30. Dumont, D. J., R. C. Marcellus, S. T. Bayley, and P. E. Branton. 1993. Role of phosphorylation near the amino terminus of adenovirus type 5 early region 1A proteins. J. Gen. Virol 74:583-595.
31. Dumont, D. J., M. L. Tremblay, and P. E. Branton. 1989. Phosphorylation at serine 89 induces a shift in gel mobility but has little effect on the function of adenovirus type 5 E1A proteins. J. Virol. 63:987-991.
32. Dyson, N., K. Buchkovich, P. Whyte, and E. Harlow. 1989. The cellular 107K protein that binds to adenovirus E1A also associates with the large T antigens of SV40 and JC virus. Cell 58:249-255.
33. Dyson, N., P. M. Howley, K. Munger, and E. Harlow. 1989. The human papilloma virus-16 E7 oncoprotein is able to bind to the retinoblastoma gene product. Science 243:934-937.
34. Eckner, R., M. E. Ewen, D. Newsome, M. Gerdes, J. A. DeCaprio, J. B. Lawrence, and D. M. Livingston. 1994. Molecular cloning and functional analysis of the adenovirus E1A-associated 300-kD protein (p300) reveals a protein with properties of a transcriptional adaptor. Genes Dev. 8:869-884.
35. Eckner, R., J. W. Ludlow, N. L. Lill, E. Oldread, Z. Arany, N. Modjtahedi, J. A. DeCaprio, D. M. Livingston, and J. A. Morgan. 1996. Association of p300 and CBP with simian virus 40 large T antigen. Molecular & Cellular Biology 16:3454-3464.
36. Egan, C., S. T. Bayley, and P. E. Branton. 1989. Binding of the Rb1 protein to E1A products is required for adenovirus transformation. Oncogene 4:383-388.
37. Egan, C., T. N. Jelsma, J. A. Howe, S. T. Bayley, B. Ferguson, and P. E. Branton. 1988. Mapping of cellular protein-binding sites on the products of early-region 1A of human adenovirus type 5. Mol. Cell Biol. 8:3955-3959.
38. Enkemann, S. A., S. F. Konieczny, and E. J. Taparowsky. 1990. Adenovirus 5 E1A represses muscle-specific enhancers and inhibits expression of the myogenic regulatory factor genes, MyoD1 and myogenin. Cell Growth Differ. 1:375-382.
39. Evan, G. I., A. H. Wyllie, C. S. Gilbert, T. D. Littlewood, H. Land, M. Brooks, C. M. Waters, L. Z. Penn, and D. C. Hancock. 1992. Induction of apoptosis in fibroblasts by c-myc protein. Cell 69:119-128.
40. Ewen, M. E., Y. Xing, J. B. Lawrence, and D. M. Livingston. 1991. Molecular cloning, chromosomal mapping, and expression of the cDNA for p107, a retinoblastoma gene product-related protein. Cell 66:1155-1164.
41. Ferguson, B., B. Krippl, O. Andrisani, N. Jones, H. Westphal, and M. Rosenberg. 1985. E1A 13S and 12S mRNA products made in Escherichia coli both function as nucleus-localized transcription activators but do not directly bind DNA. Mol. Cell Biol. 5:2653-2661.
42. Frisch, S. M. 1991. Antioncogenic effect of adenovirus E1A in human tumor cells. Proc. Natl. Acad. Sci. U. S. A. 88:9077-9081.
43. Frisch, S. M. 1994. E1a induces the expression of epithelial characteristics. J. Cell Biol. 127:1085-1096.
44. Frisch, S. M. 1996. Reversal of malignancy by the adenovirus ela gene. Mutation Research - Fundamental & Molecular Mechanisms of Mutagenesis 350:261-266.
45. Frisch, S. M. and H. Francis. 1994. Disruption of epithelial cell-matrix interactions induces apoptosis. J. Cell Biol. 124:619-626.
46. Gedrich, R. W., S. T. Bayley, and D. A. Engel. 1992. Induction of AP-1 DNA-binding activity and c-fos mRNA by the adenovirus 243R E1A protein and cyclic AMP requires domains necessary for transformation. J. Virol. 66:5849-5859.
47. Geisberg, J. V., J. L. Chen, and R. P. Ricciardi. 1995. Subregions of the adenovirus e1a transactivation domain target multiple components of the TFIID complex. Molecular & Cellular Biology 15:6283-6290.
48. Geisberg, J. V., W. S. Lee, A. J. Berk, and R. P. Ricciardi. 1994. The zinc finger region of the adenovirus E1A transactivating domain complexes with the TATA box binding protein. Proc. Natl. Acad. Sci. U. S. A 91:2488-2492.
49. Glenn, G. M. and R. P. Ricciardi. 1987. An adenovirus type 5 E1A protein with a single amino acid substitution blocks wild-type E1A transactivation. Mol. Cell Biol. 7:1004-1011.
50. Gooding, L. R., L. W. Elmore, A. E. Tollefson, H. A. Brady, and W. S. Wold. 1988. A 14,700 MW protein from the E3 region of adenovirus inhibits cytolysis by tumor necrosis factor. Cell 53:341-346.
51. Gooding, L. R., T. S. Ranheim, A. E. Tollefson, L. Aquino, P. Duerksen Hughes, T. M. Horton, and W. S. Wold. 1991. The 10,400- and 14,500-dalton proteins encoded by region E3 of adenovirus function together to protect many but not all mouse cell lines against lysis by tumor necrosis factor. J. Virol 65:4114-4123.
52. Hagmeyer, B. M., H. Konig, I. Herr, R. Offringa, A. Zantema, A. van der Eb, P. Herrlich, and P. Angel. 1993. Adenovirus E1A negatively and positively modulates transcription of AP-1 dependent genes by dimer-specific regulation of the DNA binding and transactivation activities of Jun. EMBO J. 12:3559-3572.
53. Hannon, G. J., D. Demetrick, and D. Beach. 1993. Isolation of the Rb-related p130 through its interaction with CDK2 and cyclins. Genes Dev. 7:2378-2391.
54. Harlow, E., P. Whyte, B. R. Franza,Jr., and C. Schley. 1986. Association of adenovirus early-region 1A proteins with cellular polypeptides. Mol. Cell Biol. 6:1579-1589.
55. Hateboer, G., A. Gennissen, Y. F. Ramos, R. M. Kerkhoven, V. Sonntag Buck, H. G. Stunnenberg, and R. Bernards. 1995. BS69, a novel adenovirus E1A-associated protein that inhibits E1A transactivation. EMBO J. 14:3159-3169.
56. Hateboer, G., H. T. M. Timmers, A. K. Rustgi, M. Billaud, L. J. van't Veer, and R. Bernards. 1993. TATA-binding protein and the retinoblastoma gene product bind to overlapping epitopes on c-Myc and adenovirus E1A protein. Proc. Natl. Acad. Sci. U. S. A 90:8489-8493.
57. Heasley, L. E., S. Benedict, J. Gleavy, and G. L. Johnson. 1991. Requirement of the adenovirus E1A transformation domain 1 for inhibition of PC12 cell neuronal differentiation. Cell Regul. 2:479-489.
58. Hen, R., E. Borrelli, and P. Chambon. 1985. Repression of the immunoglobulin heavy chain enhancer by the adenovirus-2 E1A products. Science 230:1391-1394.
59. Hiebert, S. W., M. Blake, J. Azizkhan, and J. R. Nevins. 1991. Role of E2F transcription factor in E1A-mediated trans activation of cellular genes. J. Virol. 65:3547-3552.
60. Hiebert, S. W., M. Lipp, and J. R. Nevins. 1989. E1A-dependent trans-activation of the human MYC promoter is mediated by the E2F factor. Proc. Natl. Acad. Sci. U. S. A. 86:3594-3598.
61. Horikoshi, N., K. Maguire, A. Kralli, E. Maldonado, D. Reinberg, and R. Weinmann. 1991. Direct interaction between adenovirus E1A protein and the TATA box binding transcription factor IID. Proc. Natl. Acad. Sci. U. S. A. 88:5124-5128.
62. Houweling, A., P. J. van den Elsen, and A. J. van der Eb. 1980. Partial transformation of primary rat cells by the left most 4.5% fragment of adenovirus 5 DNA. Virology 105:537-550.
63. Howe, J. A. and S. T. Bayley. 1992. Effects of Ad5 E1A mutant viruses on the cell cycle in relation to the binding of cellular proteins including the retinoblastoma protein and cyclin A. Virology 186:15-24.
64. Howe, J. A., J. S. Mymryk, C. Egan, P. E. Branton, and S. T. Bayley. 1990. Retinoblastoma growth suppressor and a 300-kDa protein appear to regulate cellular DNA synthesis. Proc. Natl. Acad. Sci. U. S. A. 87:5883-5887.
65. Ikeda, M. and J. R. Nevins. 1993. Identification of distinct roles for separate E1A domains in disruption of E2F complexes. Mol. Cell Biol. 13:7029-7035.
66. Janknecht, R. and T. Hunter. 1996. Transcriptional control - versatile molecular glue. Current Biology 6:951-954.
67. Jelsma, T. N., J. A. Howe, J. S. Mymryk, C. M. Evelegh, N. F. A. Cunniff, and S. T. Bayley. 1989. Sequences in E1A proteins of human adenovirus 5 required for cell transformation, repression of a transcriptional enhancer, and induction of proliferating cell nuclear antigen. Virology 171:120-130.
68. Jones, N. and T. Shenk. 1979. An adenovirus type 5 early gene function regulates expression of other early viral genes. Proc. Natl. Acad. Sci. U. S. A. 76:3665-3669.
69. Kaddurah-Daouk, R., J. W. Lillie, G. H. Daouk, M. R. Green, R. Kingston, and P. Schimmel. 1990. Induction of a cellular enzyme for energy metabolism by transforming domains of adenovirus E1a. Mol. Cell Biol. 10:1476-1483.
70. Kalman, D., K. Whittaker, J. M. Bishop, and P. H. O'Lague. 1993. Domains of E1A that bind p105Rb, p130, and p300 are required to block nerve growth factor-induced neurite growth in PC12 cells. Mol. Biol. Cell 4:353-361.
71. Kannabiran, C., G. F. Morris, C. Labrie, and M. B. Mathews. 1993. The adenovirus E1A 12S product displays functional redundancy in activating the human proliferating cell nuclear antigen promoter. J. Virol 67:507-515.
72. Kimelman, D., J. S. Miller, D. Porter, and B. E. Roberts. 1985. E1a regions of the human adenoviruses and of the highly oncogenic simian adenovirus 7 are closely related. J. Virol. 53:399-409.
73. Kovesdi, I., R. Reichel, and J. R. Nevins. 1987. Role of an adenovirus E2Q promoter binding factor in E1A-mediated coordinate gene control. Proc. Natl. Acad. Sci. U. S. A. 84:2180-2184.
74. Kraus, V. B., E. Moran, and J. R. Nevins. 1992. Promoter-specific trans-activation by the adenovirus E1A12S product involves separate E1A domains. Mol. Cell Biol. 12:4391-4399.
75. Krippl, B., B. Ferguson, M. Rosenberg, and H. Westphal. 1984. Functions of purified E1A protein microinjected into mammalian cells. Proc. Natl. Acad. Sci. U. S. A. 81:6988-6992.
76. Kuppuswamy, M. N. and G. Chinnadurai. 1987. Relationship between the transforming and transcriptional regulatory functions of adenovirus 2 E1a oncogene. Virology 159:31-38.
77. Laster, S. M., J. G. Wood, and L. R. Gooding. 1988. Tumor necrosis factor can induce both apoptic and necrotic forms of cell lysis. J. Immunol. 141:2629-2634.
78. Li, Y., C. Graham, S. Lacy, A. M. Duncan, and P. Whyte. 1993. The adenovirus E1A-associated 130-kD protein is encoded by a member of the retinoblastoma gene family and physically interacts with cyclins A and E. Genes Dev. 7:2366-2377.
79. Liebermann, D. A., B. Hoffman, and R. A. Steinman. 1995. Molecular controls of growth arrest and apoptosis: p53-dependent and independent pathways. Oncogene 11:199-210.
80. Lillie, J. W., M. Green, and M. R. Green. 1986. An adenovirus E1a protein region required for transformation and transcriptional repression. Cell 46:1043-1051.
81. Lillie, J. W., P. M. Loewenstein, M. R. Green, and M. Green. 1987. Functional domains of adenovirus type 5 E1a proteins. Cell 50:1091-1100.
82. Lowe, S. W., T. Jacks, D. E. Housman, and H. E. Ruley. 1994. Abrogation of oncogene-associated apoptosis allows transformation of p53-deficient cells. Proc. Natl. Acad. Sci. U. S. A 91:2026-2030.
83. Lundblad, J. R., R. P. Kwok, M. E. Laurance, M. L. Harter, and R. H. Goodman. 1995. Adenoviral E1A-associated protein p300 as a functional homologue of the transcriptional co-activator CBP. Nature 374:85-88.
84. Lyons, R. H., B. Q. Ferguson, and M. Rosenberg. 1987. Pentapeptide nuclear localization signal in adenovirus E1a. Mol. Cell Biol. 7:2451-2456.
85. Martin, K. J., J. W. Lillie, and M. R. Green. 1990. Evidence for interaction of different eukaryotic transcriptional activators with distinct cellular targets. Nature 346:147-152.
86. Maruyama, K., S. C. Schiavi, W. Huse, G. L. Johnson, and H. E. Ruley. 1987. myc and E1A oncogenes alter the responses of PC12 cells to nerve growth factor and block differentiation. Oncogene 1:361-367.
87. Mayol, X., X. Grana, A. Baldi, N. Sang, Q. Hu, and A. Giordano. 1993. Cloning of a new member of the retinoblastoma gene family (pRb2) which binds to the E1A transforming domain. Oncogene 8:2561-2566.
88. Mazzarelli, J. M., G. B. Atkins, J. V. Geisberg, and R. P. Ricciardi. 1995. The viral oncoproteins Ad5 E1A, HPV16 E7 and SV40 TAg bind a common region of the TBP-associated factor-110. Oncogene 11:1859-1864.
89. McKinnon, R. D., S. Bacchetti, and F. L. Graham. 1982. Tn5 mutagenesis of the transforming genes of human adenovirus type 5. Gene 19:33-42.
90. Miller, M. E., B. R. Cairns, R. S. Levinson, K. R. Yamamoto, D. A. Engel, and M. M. Smith. 1996. Adenovirus E1A specifically blocks SWI/SNF-dependent transcriptional activation. Mol. Cell Biol. 16:5737-5743.
91. Montano, X. and D. P. Lane. 1987. The adenovirus Ela gene induces differentiation of F9 teratocarcinoma cells. Mol. Cell Biol. 7:1782-1790.
92. Montell, C., G. Courtois, C. Eng, and A. Berk. 1984. Complete transformation by adenovirus 2 requires both E1A proteins. Cell 36:951-961.
93. Moran, B. and B. Zerler. 1988. Interactions between cell growth-regulating domains in the products of the adenovirus E1A oncogene. Mol. Cell Biol. 8:1756-1764.
94. Moran, E., B. Zerler, T. M. Harrison, and M. B. Mathew. 1986. Identification of separate domains in the adenovirus E1A gene for immortalization activity and the activation of virus early genes. Mol. Cell Biol. 6:3470-3480.
95. Muller, U., M. P. Roberts, D. A. Engel, W. Doerfler, and T. Shenk. 1989. Induction of transcription factor AP-1 by adenovirus E1A protein and cAMP. Genes Dev. 3:1991-2002.
96. Mymryk, J. S. 1996. Tumour suppressive properties of the adenovirus 5 E1A oncogene. Oncogene
97. Mymryk, J. S. and S. T. Bayley. 1993. Multiple pathways for gene activation in rodent cells by the smaller adenovirus 5 E1A protein and their relevance to growth and transformation. J. Gen. Virol. 74:2131-2141.
98. Mymryk, J. S., R. W. H. Lee, and S. T. Bayley. 1992. Ability of adenovirus 5 E1A proteins to suppress differentiation of BC3H1 myoblasts correlates with their binding to a 300 kDa cellular protein. Mol. Biol. Cell 3:1107-1115.
99. Mymryk, J. S., K. Shire, and S. T. Bayley. 1994. Induction of apoptosis by adenovirus type 5 E1A in rat cells requires a proliferation block. Oncogene 9:1187-1193.
100. Nelson, C. C., A. W. Braithwaite, M. Silvestro, and A. J. Bellett. 1990. E1a-dependent expression of adenovirus genes in OTF963 embryonal carcinoma cells: role of E1a-induced differentiation. Proc. Natl. Acad. Sci. U. S. A. 87:8041-8045.
101. Nevins, J. R., H. S. Ginsberg, J. M. Blanchard, M. C. Wilson, and J. E. Darnell. 1979. Regulation of the primary expression of the early adenovirus transcription units. J. Virol. 32:727-733.
102. Pagano, M., M. Durst, S. Joswig, G. Draetta, and P. Jansen-Durr. 1992. Binding of the human E2F transcription factor to the retinoblastoma protein but not to cyclin A is abolished in HPV-16-immortalized cells. Oncogene 7:1681-1686.
103. Pei, R. and A. J. Berk. 1989. Multiple transcription factor binding sites mediate adenovirus E1A transactivation. J. Virol. 63:3499-3506.
104. Phelps, W. C., S. Bagchi, J. A. Barnes, P. Raychaudhuri, V. Kraus, K. Munger, P. M. Howley, and J. R. Nevins. 1991. Analysis of trans activation by human papillomavirus type 16 E7 and adenovirus 12S E1A suggests a common mechanism. J. Virol. 65:6922-6930.
105. Pines, J. and T. Hunter. 1990. Human cyclin A is adenovirus E1A-associated protein p60 and behaves differently from cyclin B. Nature 346:760-763.
106. Quinlan, M. P., P. Whyte, and T. Grodzicker. 1988. Growth factor induction by the adenovirus type 5 E1A 12S protein is required for immortalization of primary epithelial cells. Mol. Cell Biol. 8:3191-3203.
107. Rao, L., M. Debbas, P. Sabbatini, D. Hockenbery, S. Korsmeyer, and E. White. 1992. The adenovirus E1A proteins induce apoptosis, which is inhibited by the E1B 19-kDa and Bcl-2 proteins. Proc. Natl. Acad. Sci. U. S. A. 89:7742-7746.
108. Rawls, J. A., R. Pusztai, and M. Green. 1990. Chemical synthesis of human papillomavirus type 16 E7 oncoprotein: autonomous protein domains for induction of cellular DNA synthesis and for trans activation. J. Virol. 64:6121-6129.
109. Raychaudhuri, P., S. Bagchi, S. H. Devoto, V. B. Kraus, E. Moran, and J. R. Nevins. 1991. Domains of the adenovirus E1A protein required for oncogenic activity are also required for dissociation of E2F transcription factor complexes. Genes Dev. 5:1200-1211.
110. Rochette-Egly, C., C. Fromental, and P. Chambon. 1990. General repression of enhanson activity by the adenovirus-2 E1A proteins. Genes Dev. 4:137-150.
111. Rossini, M. 1983. The role of adenovirus early region 1A in the regulation of early regions 2A and 1B expression. Virology 131:49-58.
112. Ruley, H. E. 1983. Adenovirus early region 1A enables viral and cellular transforming genes to transform primary cells in culture. Nature 304:602-606.
113. Schaeper, U., J. M. Boyd, S. Verma, E. Uhlmann, T. Subramanian, and G. Chinnadurai. 1995. Molecular cloning and characterization of a cellular phosphoprotein that interacts with a conserved C-terminal domain of adenovirus E1A involved in negative modulation of oncogenic transformation. Proc. Natl. Acad. Sci. U. S. A. 92:10467-10471.
114. Schneider, J. F., F. Fisher, C. R. Goding, and N. C. Jones. 1987. Mutational analysis of the adenovirus E1a gene: the role of transcriptional regulation in transformation. EMBO J. 6:2053-2060.
115. Senear, A. W. and J. B. Lewis. 1986. Morphological transformation of established rodent cell lines by high-level expression of the adenovirus type 2 E1a gene. Mol. Cell Biol. 6:1253-1260.
116. Shenk, T. and J. Flint. 1991. Transcriptional and transforming activities of the adenovirus E1A proteins. Adv. Cancer Res. 57:47-85.
117. Shisler, J., P. Duerksen-Hughes, T. M. Hermiston, W. S. M. Wold, and L. R. Gooding. 1996. Induction of susceptibility to tumor necrosis factor by E1A is dependent on binding to either p300 or p105-Rb and induction of DNA synthesis. J. Virol. 70:68-77.
118. Slack, R. S., J. Craig, S. Costa, and M. W. McBurney. 1995. Adenovirus 5 E1A induced differentiation of P19 embryonal carcinoma cells requires binding to p300. Oncogene 10:19-25.
119. Smith, D. H. and E. B. Ziff. 1988. The amino-terminal region of the adenovirus serotype 5 E1a protein performs two separate functions when expressed in primary baby rat kidney cells. Mol. Cell Biol. 8:3882-3890.
120. Sogawa, K., H. Handa, A. Fujisawa-Sehara, T. Hiromasa, M. Yamane, and Y. Fujii-Kuriyama. 1989. Repression of cytochrome P-450c gene expression by cotransfection with adenovirus E1a DNA. Eur. J. Biochem. 181:539-544.
121. Song, C. Z., P. M. Loewenstein, K. Toth, and M. Green. 1995. Transcription factor TFIID is a direct functional target of the adenovirus e1a transcription-repression domain. Proceedings of the National Academy of Sciences of the United States of America 92:10330-10333.
122. Song, C. Z., P. M. Loewenstein, K. Toth, and M. Green. 1995. Transcription factor TFIID is a direct functional target of the adenovirus E1A transcription-repression domain. Proc. Natl. Acad. Sci. U. S. A 92:10330-10333.
123. Stabel, S., P. Argos, and L. Philipson. 1985. The release of growth arrest by microinjection of adenovirus E1A DNA. EMBO J. 4:2329-2336.
124. Stein, R. W., M. Corrigan, P. Yaciuk, J. Whelan, and E. Moran. 1990. Analysis of E1A-mediated growth regulation functions: binding of the 300-kilodalton cellular product correlates with E1A enhancer repression function and DNA synthesis-inducing activity. J. Virol. 64:4421-4427.
125. Stein, R. W. and E. B. Ziff. 1987. Repression of insulin gene expression by adenovirus type 5 E1a proteins. Mol. Cell Biol. 7:1164-1170.
126. Stephens, C. and E. Harlow. 1987. Differential splicing yields novel adenovirus 5 E1A mRNAs that encode 30 kd and 35 kd proteins. EMBO J. 6:2027-2035.
127. Subramanian, T., M. Kuppuswamy, R. J. Nasr, and G. Chinnadurai. 1988. An N-terminal region of adenovirus E1a essential for cell transformation and induction of an epithelial cell growth factor. Oncogene 2:105-112.
128. Subramanian, T., M. La Regina, and G. Chinnadurai. 1989. Enhanced ras oncogene mediated cell transformation and tumorigenesis by adenovirus 2 mutants lacking the C-terminal region of E1a protein. Oncogene 4:415-420.
129. Subramanian, T., B. Tarodi, and G. Chinnadurai. 1995. p53-independent apoptotic and necrotic cell deaths induced by adenovirus infection: suppression by E1B 19K and Bcl-2 proteins. Cell Growth Differ. 6:131-137.
130. Teodoro, J. G., G. C. Shore, and P. E. Branton. 1995. Adenovirus E1A proteins induce apoptosis by both p53-dependent and p53-independent mechanisms. Oncogene 11:467-474.
131. Thalmeier, K., H. Synovzik, R. Mertz, E. L. Winnacker, and M. Lipp. 1989. Nuclear factor E2F mediates basic transcription and trans-activation by E1a of the human MYC promoter. Genes Dev. 3:527-536.
132. Tooze, J. 1984. DNA Tumor Viruses. 1:
133. Tremblay, M. L., D. J. Dumont, and P. E. Branton. 1989. Analysis of phosphorylation sites in the exon 1 region of E1A proteins of human adenovirus type 5. Virology 169:397-407.
134. Tremblay, M. L., C. J. McGlade, G. E. Gerber, and P. E. Branton. 1988. Identification of the phosphorylation sites in early region 1A proteins of adenovirus type 5 by amino acid sequencing of peptide fragments. J. Biol. Chem. 263:6375-6383.
135. Trentin, J. L., Y. Yabe, and G. Taylor. 1962. The quest for human cancer viruses. Science 137:835-841.
136. Tsai, L. H., E. Harlow, and M. Myerson. 1991. Isolation of the human cdk2 gene that encodes the cyclin A-and adenovirus E1A-associated p33 kinase. Nature 353:174-177.
137. Tsuji, Y., J. Ninomiya Tsuji, S. V. Torti, and F. M. Torti. 1993. Augmentation by IL-1 alpha of tumor necrosis factor-alpha cytotoxicity in cells transfected with adenovirus E1A. J. Immunol. 150:1897-1907.
138. Ulfendahl, P. J., S. Linder, J. Kreivi, K. Nordqvist, C. Sevensson, H. Hultberg, and G. Akusjarvi. 1987. A novel adenovirus-2 E1A mRNA encoding a protein with transcription activation properties. EMBO J. 6:2037-2044.
139. van Dam, H., M. Duyndam, R. Rottier, A. Bosch, L. de Vries-Smits, P. Herrlich, A. Zantema, P. Angel, and A. J. van der Eb. 1993. Heterodimer formation of cJun and ATF-2 is responsible for induction of c-jun by the 243 amino acid adenovirus E1A protein. EMBO J. 12:479-487.
140. van Dam, H., R. Offringa, I. Meijer, B. Stein, A. M. Smits, P. Herrlich, J. L. Bos, and A. J. van der Eb. 1990. Differential effects of the adenovirus E1A oncogene on members of the AP-1 transcription factor family. Mol. Cell Biol. 10:5857-5864.
141. van den Elsen, P., S. de Pater, A. Houweling, J. van der Veer, and A. van der Eb. 1982. The relationship between region E1a and E1b of human adenoviruses in cell transformation. Gene 18:175-185.
142. van Ormondt, H., J. Maat, and R. Dijkema. 1986. Comparison of nucleotide sequences of the early E1A regions for subgroups A,B, and C of human adenoviruses. Gene 12:63-76.
143. Velcich, A. and E. Ziff. 1985. Adenovirus E1a proteins repress transcription from the SV40 early promoter. Cell 40:705-716.
144. Velcich, A. and E. Ziff. 1988. Adenovirus E1a ras cooperation activity is separate from its positive and negative transcription regulatory functions. Mol. Cell Biol. 8:2177-2183.
145. Velcich, A. and E. B. Ziff. 1989. The adenovirus-5 12S E1a protein, but not the 13S induces expression of the endoA differentiation marker in F9 cells. Oncogene 4:707-713.
146. Wade, M., T. F. Kowalik, M. Mudryj, E. Huang, and J. C. Azizkhan. 1992. E2F mediates dihydrofolate reductase promoter activation and multiprotein complex formation in human cytomegalovirus infection. Mol. Cell Biol. 12:4364-4374.
147. Wang, H., G. Draetta, and E. Moran. 1991. E1A induces phosphorylation of the retinoblastoma protein independently of direct physical association between the E1A and retinoblastoma products. Mol. Cell Biol. 11:4253-4265.
148. Wang, H., Y. Rikitake, M. C. Carter, P. Yaciuk, S. E. Abraham, B. Zerler, and E. Moran. 1993. Identification of specific adenovirus E1A N-terminal residues critical to the binding of cellular proteins and to the control of cell growth. J. Virol 67:476-488.
149. Webster, K. A., G. E. O. Muscat, and L. Kedes. 1988. Adenovirus E1A products suppress myogenic differentiation and inhibit transcription from muscle-specific promoters. Nature 332:553-557.
150. Webster, L. C. and R. P. Ricciardi. 1991. Trans-dominant mutants of E1A provide genetic evidence that the zinc finger of the trans-activating domain binds a transcription factor. Mol. Cell Biol. 11:4287-4296.
151. Weigel, R. J., S. H. Devoto, and J. R. Nevins. 1990. Adenovirus 12S E1A gene represses differentiation of F9 teratocarcinoma cells. Proc. Natl. Acad. Sci. U. S. A. 87:9878-9882.
152. Weigel, R. J. and J. R. Nevins. 1990. Adenovirus infection of differentiated F9 cells results in a global shut-off of differentiation-induced gene expression. Nucleic Acids Res. 18:6107-6112.
153. White, E. 1993. Regulation of apoptosis by the transforming genes of the DNA tumor virus adenovirus. Proc. Soc. Exp. Biol. Med. 204:30-39.
154. White, E., R. Cipriani, P. Sabbatini, and A. Denton. 1991. Adenovirus E1B 19-kilodalton protein overcomes the cytotoxicity of E1A proteins. J. Virol. 65:2968-2978.
155. Whyte, P., K. J. Buchkovich, J. M. Horowitz, S. H. Friend, M. Raybuck, R. A. Weinberg, and E. Harlow. 1988. Association between an oncogene and an anti-oncogene: the adenovirus E1A proteins bind to the retinoblastoma gene product. Nature 334:124-129.
156. Whyte, P., H. E. Ruley, and E. Harlow. 1988. Two regions of the adenovirus early region 1A proteins are required for transformation. J. Virol. 62:257-265.
157. Williams, G. T. 1991. Programmed cell death: apoptosis and oncogenesis. Cell 65:1097-1098.
158. Yang, X. J., V. V. Ogryzko, J. Nishikawa, B. H. Howard, and Y. Nakatani. 1996. A p300/CBP-associated factor that competes with the adenoviral oncoprotein E1A. Nature 382:319-324.
159. Yee, S. and P. E. Branton. 1985. Detection of cellular proteins associated with human adenovirus type 5 early region 1A polypeptides. Virology 147:142-153.
160. Young, K. S., R. Weigel, S. Hiebert, and J. R. Nevins. 1989. Adenovirus E1A-mediated negative control of genes activated during F9 differentiation. Mol. Cell Biol. 9:3109-3113.
161. Zerler, B., R. J. Roberts, M. B. Mathews, and E. Moran. 1987. Different functional domains of the adenovirus E1A gene are involved in regulation of host cell cycle products. Mol. Cell Biol. 7:821-829.


go back to Introduction to E1A
go back to main page