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Abstract

This essay was created for the purposes of demonstrating the ability to competently
write about mathematics, as required by the Penn State graduate program for the
scheduling of a doctoral comprehensive exam. It was complemented by a presentation
delivered in a geometry topics course run by Dmitri Burago. As to the mathematical
contents, we prove the Darboux theorem by leveraging the linearizability of vector
fields of the form: Euler vector field + higher order terms. This method is taken from
a talk titled “Some normal form theorems in differential geometry” given by Eckhard
Meinrenken in the Penn State GAP Seminar on 20 February, 2018.

1 Darboux’s theorem

As any cartographer knows, it is impossible to design a map of the earth’s surface which
does not distort any distances. This is a manifestation of Gauss’s Theorema Egregium. On
the other hand, there do exist maps of the earth which preserve all areas, for example the
cylindrical projection shown in Figure 1. This is a manifestation of Darboux’s theorem.

Theorem 1 (Darboux, 1882). Two symplectic manifolds of the same dimension are locally
isomorphic to one another.

Remark 2. For surfaces, a symplectic form is the same thing as an area form. A smooth,
area-preserving bijection between a patch on the 2-sphere and a patch on the Euclidean
plane is the same thing as a local isomorphism of their symplectic structures.

Darboux’s theorem is frequently interpreted as saying that symplectic geometry has “no local
invariants”. This distinguishes it from Riemannian geometry, where curvature obstructs
isometric identification of small patches on different manifolds.

Definition 3. A symplectic form on a smooth manifold M is a (smooth) closed, nondegen-
erate 2-form ω. A symplectic manifold is a manifold equipped with a preferred symplectic
form. An isomorphism (or symplectomorphism) between two symplectic manifolds is a dif-
feomorphism which carries the symplectic form of one to the symplectic form of the other,
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Figure 1: Area-preserving cylindrical projection

Here are three (boring) examples of symplectic forms.

Example 4. The standard area form ω = dxdy on R2.

Example 5. The standard symplectic form ω =
∑n

i=1 dx
idyi on R2n, where the coordinate

functions are denoted x1, . . . , xn, y1, . . . , yn, effectively the n-fold product of Example 4.

Example 6. Any constant (hence closed), nondegenerate 2-form on Euclidean space.

While, at first glance, it would appear that Example 6 is more general than Example 5, it
turns out

Proposition 7. If ω is a constant, nondegenerate 2-form on Rn, then n is even and there
is a linear change of coordinates carrying ω to the standard symplectic form.

The above proposition is purely a linear algebra problem which we won’t touch in this note.
So, for us, Darboux’s theorem will refer to the following.

Theorem 8 (Darboux). Let ω be a symplectic form on Rn. Then, locally near the origin,
there exists a smooth change of coordinates which carries ω to a constant 2-form.

It will be useful to have an algebraic way of recognizing when a 2-form on Rn is constant.
This is taken up in the next section.

2 The Euler vector field

The Euler vector field on Rn is the following linear vector field.

E =
n∑
i=1

xi
∂

∂xi

The Euler vector field is invariant under linear changes of coordinates. To see this quickly,
one may note that the flow generated by E is just scalar multiplication (t, x) 7→ etx. Since
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this flow is invariant under linear changes of coordinates, so is E .

The Euler vector field can be used to detect which smooth functions are homogeneous poly-
nomials, or even when the coefficients of a tensor are homogeneous polynomials.

Proposition 9.

1. A function f on Rn is a homogeneous polynomial of degree k if and only if Ef = kf .

2. A vector field X on Rn is linear if and only if [E , X] = 0.

3. A k-form α on Rn is constant if and only if LE(α) = kα, where LX denotes Lie
derivative with respect to a vector field X.

We are only interested in the third part of the above proposition, so that is all we prove.

Proof. Recall that Lie differentiation of forms is an (ungraded) derivation for the wedge
product which commutes with the exterior derivative.

LX(α ∧ β) = LX(α) ∧ β + α ∧ LX(β) [LX , d] = 0 (1)

The properties (1) can be obtained as formal consequences of Cartan’s Formula, which
expresses the Lie derivative in terms of exterior differentiation and contraction by X

LX = ιXd+ dιX

together with the fact that ιX and d are graded derivations.

d(α ∧ β) = dα ∧ β + (−1)deg(α)α ∧ dβ ιX(α ∧ β) = ιXα ∧ β + (−1)deg(α)α ∧ ιXβ

Since E(xi) = xi for each coordinate function i (indeed, E leaves precisely the linear func-
tionals invariant), the properties (1) imply that

LE(dxi1 · · · dxik) = kdxi1 · · · dxik

and so, writing a generic k-form as ω as

ω =
∑

i1<...<ik

fi1,...,ikdx
i1 · · · dxik ,

we calculate that

LE(ω) = kω ⇐⇒
∑

i1<...<ik

E(fi1,...,ik)dxi1 · · · dxik = 0

⇐⇒ E(fi1,...,ik) = 0 for all i1 < . . . < ik

⇐⇒ fi1,...,ik is a constant function for all i1 < . . . < ik.
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3 Euler-like vector fields

If X is a (smooth) vector field on Rn with a zero at the origin, we may write

X = L+ higher order terms

where L is a linear vector field. In various applications, one would like to say that L tells
us something about the behaviour of X near the origin. The best case scenario is that X
is linearizeable in the sense that there is some smooth change of coordinates, fixing x = 0,
which (locally) conjugates X to L.

Figure 2: A nonlinear vector field Figure 3: Its linear part

Obviously not every vector field is linearizeable. For example, the linear part of the 1-
dimensional vector field x2 d

dx
is zero, and so is certainly not conjugate to the original vector

field. So, at least one should stick to the case where the linear part L is nondegenerate.
There is a quite general Sternberg linearization theorem which give as a sufficient condi-
tion for linearizability that the eigenvalues of the linear part are “non-resonant”. In cases
where Sternberg’s theorem does not apply, the linearization question can be subtle. For
example:

Example 10. 2x ∂
∂x

+ y ∂
∂y

+ x2 ∂
∂y

is linearizeable and 2x ∂
∂x

+ y ∂
∂y

+ y2 ∂
∂x

is not linearizeable,

even though both of them have the same linear part 2x ∂
∂x

+ y ∂
∂y

.

One case to which Sternberg’s theorem does apply is the case of an “Euler-like” vector
field. Moreover, we can establish the linearizability of such vector fields without recourse to
Sternberg’s theorem.

Definition 11. A vector field X on Rn with a zero at the origin is called Euler-like if its
linear part is the Euler vector field, i.e. if we can write X = E + higher order terms.

Example 12. X = x ∂
∂x

+ y ∂
∂y

+ xy ∂
∂x

+ y3 ∂
∂y

is an Euler-like vector field on R2.

4



Theorem 13. An Euler-like vector field X on Rn is linearizable, i.e. there exists a smooth,
local change of coordinates fixing the origin and carying X to E.

Proof. Let X be a vector field on Rn with a zero at x = 0. Expand X as

X = L+Q+ remainder

where L is a linear vector field and Q is a quadratic vector field. From Taylor’s theorem, it
follows that

Xt(x) =

{
1
t
X(tx) t 6= 0

L(x) t = 0
Yt(X) =

{
1
t2

(X − L)(tx) t 6= 0

Q(x) t = 0

define smooth 1-parameter families of vector fields. As t changes from 1 to 0, the family Xt

changes from X to L and the family Yt changes from X − L to Q.

To attack the linearization problem for X, an optimist might hope for a smooth 1-parameter
family Ψt of diffeomorphisms, fixing the origin, with the property that (Ψt)∗(X) = Xt

for all t ∈ [0, 1]. In particular, Ψ0 will give the linearization. Note that the rescaling
diffeomorphisms

κt(x) = 1
t
x t > 0

satisfy (κt)∗(X) = Xt, essentially by definition, but sadly κ0 does not make sense. We now
assume X is Euler-like, so that L = E is the Euler vector field. The plan is to tweak the
family κt a bit so that it makes sense at t = 0. Let Φ be the flow of X, and define

Ψt = κt ◦ Φlog(t) t > 0.

Note that (Ψt)∗(X) = Xt still holds for t 6= 0 (since a vector field is invariant under is own
flow). The rationale behind this choice is that, in the case where X is actually equal to E ,
the flow is just Φt(x) = etx and so Ψt(x) = id for all t > 0, whence the family Ψt can trivially
be continued to t = 0. We now show that Ψt can be continued when X is merely Euler-like.
This we shall prove by checking that Ψt coincides with the flow of the time-dependent vector
field Yt, defined above. Indeed, loosely identifying the tangent spaces of Rn with Rn itself so
that E may be though of as the identity map Rn → Rn, we calculate

d
dt

Ψt(x) = d
dt

(
Φlog(t)(x)

t

)
=
X(Φlog(t)(x))

t2
−Φlog(t)(x)

t2
=
X(tΨt(x))

t2
−E(Ψt(x))

t
= Yt(Ψt(x)).

Thus, we may continue the family Ψt to t = 0. Since (Ψt)∗(X) = Xt holds for t > 0, it holds
as well for t = 0 by continuity, and so (Ψ0)∗(X) = X0 = E , and we have achieved the desired
linearization of X.
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4 Proof of Darboux’s theorem

Finally, we come to the proof of Darboux’s theorem, which is quite short given our prepara-
tions. Let us summarize the main points so far.

• For us, “Darboux’s theorem” refers to the assertion “locally, every symplectic form on
Rn can be changed into a constant 2-form after some smooth change of coordinates.”

• A 2-form ω is constant if and only if LE(ω) = 2ω (Proposition 9, Part 3).

• Locally near the origin, every Euler-like vector can be changed into the actual Euler
vector field after some smooth change of coordinates.

Thus, Darboux’s theorem will be proved once we establish the following proposition.

Proposition 14. If ω is a symplectic form on Rn, then there exists a vector field X satisfying

1. LX(ω) = 2ω.

2. X is Euler-like.

The point is that, after a change of coordinates, X becomes E and then (1) tells us that ω is
constant in the new coordinate system. We conclude with the proof of this proposition.

Proof. Finding an X such that (1) alone is satisfied is quite straightforward (we can actually
find X such that LX(ω) is any closed 2-form we desire), but in order to make (2) hold we
should be a bit more particular in our choice. Let ω(0) =

∑
i<j cijdx

idxj be the constant
part of ω so that

ω =
∑
i<j

cijdx
idxj + closed 2-form vanishing at 0.

Since we are working on Rn, the Poincaré lemma ensures that ω has a primitive, i.e. a 1-form
α such that dα = ω. We choose the obvious primitive

∑
i<j cijx

idxj for the constant part.
For the remainder term, we can choose a primitive which vanishes to one more order:

α =
∑
i<j

cijx
idxj + 1-form vanishing to 2nd order at 0.

Since ω is nondegenerate, any 1-form arises as the contraction of ω by a unique vector field.
We define X to be the unique vector field such that ιX(ω) = 2α. Then, from Cartan’s
formula and closedness of ω, we have LX(ω) = ιXdω + dιXω = 0 + 2dα = 2ω, as desired. A
short calculation shows that ιE(

∑
i<j cijdx

idxj) = 2
∑

i<j cijx
idxj so, in the absence of error

terms, X must be the Euler vector field. A bit of thought reveals that, if we put back the
error terms, then X will be Euler-like:

X = E + vector field vanishing to 2nd order at 0.
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