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Abstract

This report, and the talk which accompanied it, were created for the Graduate
Student Seminar course at Pennsylvania State University, administered by Professor
Sergei Tabachnikov in Spring 2017.

1 Introduction

We provide a short introduction to some basic ideas and themes of geometric group
theory. Considering that this remains an active, wide-ranging research area, it goes
without saying that any attempt to fence it in is doomed to exclude a large amount
of interesting mathematics. However, in order to get anywhere, we need to settle on
some (probably narrow) view of the topic. To this end, we declare Geometric Group
Theory to be that part of mathematics which deals with the question “what can be
learned about a finitely-generated group by studying the large-scale geometry of its
Cayley graph?” It is only to this perspective that we attempt an introduction. The
following quotation, taken from [8], describes this viewpoint in rather poetic terms.

“A group G with a given system of generators carries a unique maximal
left invariant distance function for which the distance from each generator
and its inverse to the identity is 1. This distance function, called the word
metric associated to the given system of generators, makes G as subject to
a geometric scrutiny as any other metric space.

This space may appear boring and uneventful to a geometer’s eye since it is
discrete and the traditional (e.g. topological and infinitesimal) machinery
does not run in G. To regain the geometric perspective one has to change
one’s position and move the observation point far away from G. Then the
metric in G seen from the distance d becomes the original distance divided
by d and as d tends to infinity the points in G coalesce into a connected
continuous solid unity which occupies the visual horizon without any gaps
or holes and fills our geometer’s heart with joy...”

“...one may start to feel uncomfortable by realizing how much structure
has been lost as one passed from G to the quasi-isometry class of G with
its word metric. Indeed, one barters here the rigid crystalline beauty of a
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group for a soft and flabby chunk of geometry where all measurements have
built-in errors. But something amazing and unexpected happens here as was
discovered by Mostow in 1968: the quasi-isometric (or large-scale) geometry
turns out to be far more rich and powerful than appears at first sight. In
fact one believes nowadays that most essential elements of an infinite group
are quasi-isometry invariant.”

– Mikhail Gromov

2 History

An early intrusion of geometrical ideas into group theory occurred in the work of Max
Dehn in the early 20th century. In [3], motivated by problems in knot theory, Dehn was
the first to pose some of the basic algorithmic questions concerning group presentations.
In particular:

“The identity problem1: An element of the group is given as a product of
generators. One is required to give a method whereby it may be decided in
a finite number of steps whether this element is the identity or not.”

-Max Dehn (translation by John Stillwell)

It is a sad fact of life that the word problem of a finitely-generated group is not
generally solvable, i.e. there may not exist an algorithm which can be used to deter-
mine when two words represent the same group element. Rather strikingly, concrete
presentations are known which exhibit this pathological behaviour. In [1], one finds an
example of the form

G = 〈 10 generators | 27 explicit relations 〉

whose word problem is not solvable.
What is it that causes a group to have a hard word problem? The basic issue is

that, for a given word w representing 1, it may be necessary to insert a large number
of relations, meanwhile vastly increasing the length of the w, before one succeeds in
reducing w to 1. Here, we find some suggestion that the large-scale geometry of the
Cayley graph might play a role since, in cases where w = 1 has a long proof, a large
amount of the Cayley graph is used. Therefore, it is not unreasonable to suspect that,
if we are able to exercise some kind of control over the geometry of the Cayley graph,
the word problem may become more tractable.

Indeed, it is by looking at the Cayley graph that Dehn was able to prove in [3] that
the fundamental group of the genus g surface Sg is solvable (in linear time) by what
is now known as Dehn’s algorithm. This group has a standard presentation with 2g
generators and one relation

π1(Sg) = 〈 a1, . . . , an; b1, . . . , bn | a1b1a−11 b−11 · · · anbna
−1
n b−1n 〉.

arising from the picture (Figure 2) of Sg as an identification space of a (4g)-gon. The
single relation reflects the contractibility of the boundary cycle.

1Nowadays, usually called the word problem.
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Figure 1: Planar diagram for surface of genus 3.

Although, ultimately, the validity of Dehn’s algorithm can be established purely
through combinatorial means (see [4]) the original proof made use of a choice of constant
negative curvature metric on Sg. The universal cover of S̃g is then a hyperbolic plane
in which the Cayley graph of π1(Sg) can be inscribed. It was through consideration of
this geometric situation that Dehn first discovered his eponymous algorithm.

Another development which set the stage for geometric group theory was gradual
realization during the mid-1900s that, under certain natural hypotheses to be fleshed
out in a later section, a discrete group G acting by isometries on a metric space X
will actually resemble the space X at large scales. This result is often referred to as
the Schwarz-Milnor Lemma or, sometimes, the Fundamental Observation of Geometric
Group Theory, in both cases following the terminology of the influential book [2]. As
is noted in that account, this result is actually rather difficult to attribute because
various authors, Albert Schwarz and John Milnor among them, have published results
of this nature in slightly different contexts.

Another precursor to geometric group theory was the discovery of rigidity phenom-
ena in negatively curved Riemannian geometry, especially the landmark theorem of
Mostow2. For a nice survey, see [13]. To appreciate Mostow’s remarkable result, one
needs to understand how spaces of constant curvature can be described as quotients of
the model geometries. We briefly summarize this. By a constant curvature manifold,
let us understand a connected, complete Riemann manifold with constant (sectional)
curvature equal to 1, 0 or −1. It turns out that every simply-connected constant cur-
vature manifold X is isometric to one of Sn, Rn or Hn, following the curvature. Now,
given any constant curvature manifold M , the universal cover of M is isometric to
one of these spaces X, and so M can be identified with X/Γ, where Γ ⊆ Isom(X)
is the fundamental group of M . All constant curvature manifolds arise in this way.
Furthermore, by lifting isometries to the universal cover, one has that M1 = X/Γ1 and
M2 = X/Γ2 are isometric Riemann manifolds if and only if Γ1 and Γ2 are conjugate in
Isom(X).

Generally, one expects there should exist plenty of pairs of constant curvature mani-
folds which are the same as topological manifolds, but different as Riemann manifolds.
For example, any pair of linearly independent vectors in R2 determine commuting
translation operators, hence an embedding ι : Z2 ↪→ R2 ⊆ Isom(R2). The quotient

2Sadly, George Mostow (1923-2017) passed away while I was researching this topic.
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R2/ι(Z2) is always a topological torus, but two such subgroups ι(Z2), ι′(Z2) ⊆ R2 are
only conjugate in Isom(R2) when they are rigid rotations of one another. So, at the
isometry level, there are many, many distinct tori. Because of this expectation, it was
a big surprise in 1968 when Mostow proved

Theorem 1 (Mostow Rigidity). In dimension 3 and up, it holds that two closed Rie-
mann manifolds of constant curvature −1 with the same fundamental group must be
isometric.

In particular, such manifolds are identical metrically if and only if they are identical
topologically. The Mostow rigidity theorem was highly influential and attracted the
attention of many outstanding mathematicians to the area. Indeed, Mostow’s theorem
played a role in the work for which each of Margulis, Perelman and Thurston received
their Fields medals.

One can also not ignore the influence which the groundbreaking work of Thurston in
low-dimensional topology3 in the 1980s has had on geometric group theory in general,
and Gromov in particular. The two had a collaboration in the 1980s which resulted
in the two papers [11] and [10]. By Thurston’s own account [14], he and Gromov were
considering a number of similar questions at the time, in particular the problem of
recovering group-theoretic information from information about the growth rate:

“I was thinking about the problem of deducing structure of a group from
the growth rate in the ’70’s, when Gromov was still in Russia. When we
first met, soon after he arrived, we had much in common that we’d been
thinking about, but he had not yet proven the theorem concerning groups
of polynomial growth. I was stuck on trying to analyze groups of quadratic
growth.”

-Bill Thurston

This brings us, after all, to the work of Gromov and the emergence of geometric
group theory as an industry unto itself. The papers [6] and [8] and especially the
monograph [7] have proven extremely influential and could be regarded as the birth
of the subject. In [6], he proves his famous theorem on groups of polynomial growth.
In one [7], he defines what is a hyperbolic group and initiates their study. In [8], one
finds his vision for the study of groups up to quasi-isometry which was quoted in the
introduction.

3 The Word Metric and the Cayley Graph

Geometric group theory begins with the definition of the word metric. Let S be a finite
generating set for a group G. The generating set S induces a length function | · |S :
G→ {0, 1, 2, . . .} by setting |g|S = n where g = s1 . . . sn is the shortest presentation of
g as a word in S∪S−1. By convention, the product of the empty word equals 1 so that
|1|S = 0. Given the length function, there is a unique way to define a left-invariant
metric dS on G such that dS(1, g) = |g|S . One simply defines dS(g, h) = |g−1h|S .

3Demonstrating, among other things, the special importance of hyperbolic geometry.
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Figure 2: Standard Cayley graph for F2 = 〈a, b〉.

Figure 3: Possible Cayley graph for Z/6Z and S3.

Figure 4: Another possible Cayley graph for Z/6Z and S3.

The distance function dS is easily visualized as the path metric of the Cayley graph
of G which, for us, is the undirected graph with vertex set consisting of the elements of
G and an edge joining g, h ∈ G whenever g = sh for some s ∈ S ∪ S−1. A simple, but
important, example is the case where G = Fn is free of rank n and S = {a1, . . . , an} is
a free generating set. In this case, the Cayley graph is an infinite tree in which every
vertex has degree 2n, as shown in Figure 3.

For finite groups, the Cayley graph does precious little to recover the structure of
the group. For example, the presentations Z/6Z = 〈1〉 and S3 = 〈 2 reflections 〉 both
have a 6-cycle as the Cayley graph. On the other hand, the presentations Z/6Z = 〈2, 3〉
and S3 = 〈 1 rotation, 1 flip 〉 both have a triangular prism as the Cayley graph. The
situation becomes much more interesting when we go to infinite, but still finitely-
generated, groups. Even though the Cayley graph of a finitely-generated group is not
well-defined, because different generating sets can give different Cayley graphs, it turns
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out there is a precise sense in which the large-scale structure of the Cayley graph is
independent of the chosen generating set. The basic jumping off point is the following
observation:

Fact 2. If S and S′ are two finite generating sets for a group G, then there exist
constants A,B > 0 such that the path metrics dS and dS′ satisfy dS ≤ A · dS′ and
dS′ ≤ B · dS.

To see this, one simply uses the fact that each element of S can be expressed as
a word in S′, and vice versa. In this way, any word w in S can be converted into a
word in S′ by substituting each S-generator for its expression in terms of S′-generators.
Since only finitely many generators are involved here, the length of the word w can
only increase by some bounded constant factor. The above fact tells us that the Cayley
graph of a finitely-generated group is a well-defined metric space up to the notion of a
quasi-isometry, which we now define.

Definition 3. A not-necessarily-continuous map of metric spaces φ : X → Y is called
a quasi-isometry if there exist constants constants A ≥ 1, B ≥ 0, R ≥ 0 such that the
estimate 1

A · d(x, y) − B ≤ d(φ(x), φ(y)) ≤ A · d(x, y) + B holds for all x, y ∈ X and
such that, for any y ∈ Y , there exists an x ∈ X with d(φ(x), y)) ≤ R.

In a more casual language, a quasi-isometry is a map which does not distort any
distance by more than some fixed affine function, and which is surjective, up to bounded
error. One may check that “X is quasi-isometric to Y ”⇔ “there exists a quasi-isometry
X → Y ” defines an equivalence relation on metric spaces. Intuitively, metric spaces
are quasi-isometric if they look the same at large scales. For example, when we look
at Z from very far away, its points coalesce and it becomes hard to tell it apart from
its continuous counterpart R.

Example 4. The inclusion map Zn → Rn is a quasi-isometry. The “round to the nearest
integer” map Rn → Zn is a quasi-isometry. If T1 and T2 are infinite trees such that
each vertex in Ti has the same finite degree δi ≥ 3, then T1 and T2 are quasi-isometric
(this requires some work to see).

4 The Schwarz-Milnor Lemma

When a group G arises “in the wild”, it may not be obvious whether G is finitely-
generated. Moreover, even if a fairly canonical finite generating set S is known, we
may still have very little clue what the corresponding Cayley graph looks like. Thus, if
the program of analyzing groups by analyzing the large-scale geometry of their Cayley
graphs is to have any chance of success, it is crucially important that we have tools
for (1) showing that a group G is finitely generated, and (2) determining the metric
structure of the Cayley graph up to quasi-isometry. The Schwarz-Milnor lemma, which
we shall now state, is exactly such a device. Provided we have, or can construct, a
sufficiently nice action of Gy X of G by isometries on a metric space X, the Schwarz-
Milnor Lemma tells us (1) that G is finitely generated, and (2) that the Cayley graph is
quasi-isometric to X. Conventionally, X is taken to be a geodesically complete space,
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but, in an attempt to be slightly novel and in order to allow some actions on discrete
spaces (which are never geodesically complete), we use a nonstandard definition.

Definition 5. We say that a metric space X is 1-walkable if it has the following
property. Fix any two points x, y ∈ X and write d(x, y) = n+r where n is a nonnegative
integer and 0 ≤ r < 1. Then, there must exist x = x0, x1, x2, . . . , xn, xn+1 = y ∈ X
such that d(xi−1, xi) = 1 for i = 1, . . . , n and d(xn, y) = r.

Note that d(x, y) =
∑n+1

i=1 d(xi−1, xi) above, the idea being we can walk from x
to y in steps of size 1, possibly taking one extra step of size < 1. This definition is
designed to cover the following two examples: (1) metric spaces in which every distance
is realized as the length of a connecting geodesic, and (2) the vertex set of a graph in
its path metric.

Theorem 6 (Schwarz-Milnor Lemma). Let G act by isometries on a 1-walkable metric
space X and suppose the action is

1. Cobounded: There exists x0 ∈ X and R ≥ 0 such that X =
⋃

g∈G{x : d(gx0, x) ≤
R}.

2. Metrically proper: For all x ∈ X and M ≥ 0, the set {g ∈ G : d(gx, x) ≤ M} is
finite.

Then, the finite set
S = {g ∈ G : d(gx0, x0) ≤ 2R+ 1}

generates G and g 7→ gx0 defines a quasi-isometry from G in the word metric dS to X.
More precisely, we have the estimate

dS(g, h)− 1 ≤ d(gx0, hx0) ≤ (2R+ 1)dS(g, h)

for all g, h ∈ G.

One feels that no mathematical document, even an expository one, should fail to
prove at least one statement, so we give a proof of this.

Proof. The coboundedness immediately gives that g 7→ gx0 is surjective up to bounded
error so, to show this map is a quasi-isometry, it only remains to establish the affine
estimate. Strictly speaking, we also should show that S generates G, but this is equiv-
alent to finiteness of dS , so will also follow from the bound. Also note that, by left
translation invariance of the metrics, we just need to show that, for all g ∈ G,

|g|S − 1 ≤ d(gx0, x0) ≤ (2R+ 1)|g|S .

First we tackle the inequality on the left. The strategy is illustrated in Figure 4.
As in Definition 5 above, we write d(gx0, x0) = n + r and find corresponding x =
x0, x1, x2, . . . , xn+1 = gx0. By coboundedness, we can find g0, g1, g2, . . . , gn+1 ∈ G such
that d(gix0, xi) ≤ R for i = 1, . . . , n + 1. Indeed, for i = 0, n + 1, we take g0 = 1 and
gn+1 = g so as to have gix0 = xi in those cases. Then, for each i = 1, . . . , n+1, we have
d(g−1i−1gix0, x0) = d(gix0, gi−1x0) ≤ d(gix0, xi) + d(xi, xi−1) + d(xi−1, gi−1x0) ≤ 2R + 1
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Figure 5: Schwarz-Milnor lemma proof

so that g−1i−1gi = si ∈ Si. Thus, we have g = gn+1 = s1s2 . . . sn+1, and so |g|S − 1 ≤
n ≤ n+ r = d(x, gx0), as desired.

For the inequality on the left, i.e. d(gx0, x0) ≤ (2R + 1)|g|S , suppose |g|S = n
and write g = s1s2 . . . sn where si ∈ S. Define xi = s1s2 . . . six0 for i = 1, . . . , n. In
particular, xn = gx0. Observe d(xi, xi−1) = d(six0, x0) ≤ 2R + 1 by the translation
invariance, and so, by the triangle inequality, d(x0, gx0) ≤ (2R + 1)n = (2R + 1)|g|S ,
as desired.

We end this section by giving two examples which we hope indicate the wide ap-
plicability of this result.

Example 7. Let M be a closed Riemann manifold and G = π1(M,p) its fundamental

group with respect to some basepoint. Let X = M̃ , the universal cover of M . Then, X
is a geodesically complete metric space on which G acts isometrically (by deck transfor-
mations). It is easy to see this action is cobounded and proper, so the Schwarz-Milnor
lemma tells us that π1(M,p) is finitely-generated, and quasi-isometric to the universal

cover M̃ . In particular, if M has constant (sectional) curvature, its universal cover
must be one of the model geometries Sn,Rn,Hn. Thus, π1(M,p) is quasi-isometric to
either (1) a sphere, (2) Euclidean space, or (3) hyperbolic space. In the first case, the
fundamental group is quasi-isometric to a bounded space, hence finite. In the second
case, it turns out the fundamental group must have Zn as a finite-index subgroup. In
the third case, the fundamental group must be a so-called hyperbolic group.

Example 8. LetG be any finitely-generated group with word metric d, and letH ⊆ G be
a subgroup of finite index. Then, H acts by isometries on G, simply by left translation.
It is easy to see this action is cobounded and proper, so the Schwarz-Milnor lemma
tells us that (1) H is also finitely-generated, and (2) H is quasi-isometric to G. This
example brings out a basic feature of geometric group theory: in this subject, one
cannot tell the difference between a group and any of its finite index subgroups. In
particular, all finite groups should be thought of as equivalent to the trivial group.

We hasten to point out that one is certainly able to prove that finite index subgroups
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of finitely-generated groups are finitely-generated without appealing to the Schwarz-
Milnor lemma; this is just for purposes of illustration.

5 Examples of Quasi-isometry Invariant Prop-

erties

Since the Cayley graph of a finitely-generated group is a well-defined metric space, mod-
ulo quasi-isometry, any metric property of the Cayley graph which is quasi-isometry
invariant is also a property of the group. Thus, it is of interest to look for interest-
ing quasi-isometry invariant properties, and to see what these properties can tell us
about the original group. In this final section, we rapidly survey three such properties:
growth rate, asymptotic dimension and hyperbolicity. The goal is to demonstrate that
one can indeed recover group theoretic information from the geometry of the Cayley
graph.

Growth Rate

Once a finite-generating set S has been fixed for G, one can consider the growth
function

fS(x) = #{g ∈ G : |g|S ≤ x}

which counts the number of elements in the ball of radius x. Of course, if the generating
set S changes, so does the function fS . However, up to some standard notion of
equivalence, the growth rate of the function fS is well-defined.

Example 9. If G = Zn, the growth is like x 7→ xn. If G = Fn, the free group on n ≥ 2
generators, the growth is exponential (growth rate fails to detect the rank of a free
group).

A question which has received considerable attention is whether or not there can
exist groups of various intermediate growth rates. Can the growth rate be between two
powers xn and xn+1? Can the growth be super-polynomial and also sub-exponential?
The latter is a famous question posed by Milnor in [12] and eventually settled in the
affirmative by Grigorchuk in [5].

A highly celebrated theorem concerning growth rates is the 1981 theorem of Gromov
on polynomial growth. This a paradigmatic result in geometric group theory; a purely
geometrical property is shown to be equivalent to a purely algebraic one.

Theorem 10 ([6]). If a finitely generated group Γ has polynomial growth then Γ con-
tains a nilpotent subgroup of finite index.

It was known already from [15] that a nilpotent group has polynomial growth.
Moreover, in this whole area, one cannot distinguish between the properties of a group
and one of its finite index subgroups (see Example 8), so the above theorem of Gromov
achieves an exact characterization of groups having polynomial growth.
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Asymptotic Dimension

The asymptotic dimension of a metric space X was defined by Gromov in [8] as a
large-scale analog of Lebesgue covering dimension.

Definition 11. We write asdim(X) ≤ n if, for every R > 0, there is a covering B of
X by bounded sets such that (1) there is a uniform bound on the diameters of the sets
in B and (2) each ball of radius R in X intersects at most n+ 1 of the sets in B.

This definition is very much dual to covering dimension. Considering that, in order
to show that dim(R) ≤ 1, one covers R with extremely small intervals which overlap
in pairs. Similarly, in order to show that asdim(R) ≤ 1, one covers R with extremely
long intervals. Some standard examples include:

Example 12. asdim(Rn) = asdim(Zn) = asdim(Hn) = n. The asymptotic dimension of
an (infinite) regular tree is 1.

A famous application of this concept is the the following theorem of Guoliang Yu.

Theorem 13 ([16]). Let Γ be a finitely generated group whose classifying space BΓ
has the homotopy type of a finite CW-complex. If Γ has finite asymptotic dimension
as a metric space with a word length-metric, then the Novikov conjecture holds for Γ.

This was proved by using a refinement of operator K-theory known as controlled K-
theory4 to establish the coarse Baum-Connes conjecture for groups of finite asymptotic
dimension, and then applying a known descent procedure to get the Novikov conjecture.

Hyperbolicity

The definition of a hyperbolic group was first given by Gromov in [6]. Gromov’s
definition applies not only to groups, but actually to arbitrary metric spaces, thus open-
ing up the study of “negatively curved geometry” in contexts very far from manifold
theory.

There are several ways to define what is a hyperbolic metric space. A geometrically
appealing approach, which works well when there are enough geodesics (or at least
near-geodesics), is to first define what it means for a (geodesic) triangle to be D-thin.
This means simply that there is some point p simultaneously within distance D of all
three of the triangle’s sides. If, for some fixed D, every triangle in the space is D-thin,
one says the space is D-hyperbolic. When working up to quasi-isometry, distances can
be multiplied, so it no longer makes sense to speak of a D-hyperbolic metric space.
However, it turns out that the notion of a hyperbolic metric space, i.e. a metric space
which is D-hyperbolic for some D, still makes sense up to quasi-isometry.

A great many things are known about hyperbolic groups. For instance:

- Every hyperbolic group can be finitely presented (i.e. presented with finitely
many generators and relations).

- Every hyperbolic group has a word problem which is solvable in linear time.

4Invented by Yu for this purpose.
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- Except in trivial cases5, every hyperbolic group G contains the free group on 2
generators and so, in particular, has exponential growth.

Let us finish by mentioning that there is also a sense, which we will not make precise
here, in which hyperbolicity is a “generic property” for groups. Roughly speaking, if we
randomly prescribe the relations in a group with n-generators, the probability of getting
a hyperbolic group approaches 1 as n→∞. This, too, is a theorem of Gromov [9].
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Études Sci. Publ. Math., (53):53–73, 1981.

[7] M. Gromov. Hyperbolic groups. In Essays in group theory, volume 8 of Math.
Sci. Res. Inst. Publ., pages 75–263. Springer, New York, 1987.

[8] M. Gromov. Asymptotic invariants of infinite groups. In Geometric group theory,
Vol. 2 (Sussex, 1991), volume 182 of London Math. Soc. Lecture Note Ser., pages
1–295. Cambridge Univ. Press, Cambridge, 1993.

[9] M. Gromov. Random walk in random groups. Geom. Funct. Anal., 13(1):73–146,
2003.

[10] M. Gromov, H. B. Lawson, Jr., and W. Thurston. Hyperbolic 4-manifolds and
conformally flat 3-manifolds. Inst. Hautes Études Sci. Publ. Math., (68):27–45
(1989), 1988.

[11] M. Gromov and W. Thurston. Pinching constants for hyperbolic manifolds. In-
vent. Math., 89(1):1–12, 1987.

[12] J. Milnor. A note on curvature and fundamental group. J. Differential Geometry,
2:1–7, 1968.

[13] R. J. Spatzier. An invitation to rigidity theory. In Modern dynamical systems and
applications, pages 211–231. Cambridge Univ. Press, Cambridge, 2004.

5A group G with a finite index cyclic subgroup is hyperbolic, but usually one wants to exclude these.

11



[14] W. Thurston. Is there a simple proof that a group of linear growth is quasi-
isometric to Z? (answer). MathOverflow. URL: https://mathoverflow.net/q/
21586 (visited on 2017-04-23).

[15] J. A. Wolf. Growth of finitely generated solvable groups and curvature of Rie-
manniann manifolds. J. Differential Geometry, 2:421–446, 1968.

[16] G. Yu. The Novikov conjecture for groups with finite asymptotic dimension. Ann.
of Math. (2), 147(2):325–355, 1998.

12

https://mathoverflow.net/q/21586
https://mathoverflow.net/q/21586

	Introduction
	History
	The Word Metric and the Cayley Graph
	The Schwarz-Milnor Lemma
	Examples of Quasi-isometry Invariant Properties

