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Abstract

My primary research areas are operator theory and differential geometry. My PhD
dissertation (completed in 2021, supported by an NSERC PGS-D scholarship) centered
on groupoids and operator algebras associated to singular foliations, building on work
of Androulidakis and Skandalis. My postdoctoral research has also branched out into
cyclic homology, complex geometry and index theory.
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1 Introduction to singular foliations and holonomy

To give the flavour of my research and introduce major objects and themes, I include an in-
formal overview of foliations and holonomy, highlighting the differences between the singular
context, where I have done work, and the regular context.

Definition 1 ([AS09], Definition 1.1). A (possibly singular) foliation F of a smooth manifold
M is a locally finitely-generated C∞(M)-module of compactly-supported, smooth vector
fields on M that is closed under Lie bracket.

The set of points accessible from a given point using the flows of the vector fields in F is
called a leaf. By work of Stefan and Sussmann ([Ste74], [Sus73]), the leaves of F constitute
a partition of M into immersed submanifolds. If all the leaves have the same dimension, the
foliation is said to be regular. Otherwise, the foliation is singular. Besides being a classical
topic in geometry, foliations play an important role in classical mechanics and optimal control
theory. In the regular setting, the module of vector fields can be recovered from the partition,
but this fails in the singular setting. Indeed, considering different modules which determine
the same partition is a prominent theme in my work.

Recall that the solution operators of certain PDEs can be usefully represented by smooth
integral kernels, e.g. in the case of the heat equation on a Riemannian manifold M . The value
of the kernel at (x, y) ∈ M ×M may be understood as a measure of how much the operator
propagates from y to x. Whereas heat flow propagates in all directions, in other important
situations one would like to consider operators which only propagate along the leaves of some
foliation, e.g. the level sets of a quantity that is invariant for the time evolution. A kernel
representing such an operator should then be a function on the equivalence relation whose
classes are the leaves, and not the whole manifold M × M . This motivates the following
problem:

Problem 2. What is a smooth function on the leaf equivalence relation of a given foliation?

The problem is complicated by the fact the leaf equivalence relation need not be a sub-
manifold of M ×M . The reason, and also the remedy, for this failure of smoothness is an
interesting and important phenomenon known as holonomy. The holonomy groupoid G(F) of
a foliation F tries to desingularize the equivalence relation, somewhat in the spirit of blowups
in algebraic geometry. When G(F) is a Lie groupoid (the so-called almost regular case), the
natural solution to Problem 2 is “a smooth function on G(F)”. The holonomy groupoid
was defined for regular foliations by Winkelnkemper [Win83] and extended to singular cases
by various authors. A very general construction of G(F) was given by Androulidakis and
Skandalis in [AS09]. The use of G(F) in operator theory was pioneered by Connes [Con82].

Figure 1 illustrates several foliations of the cylinder S1×R, regarded as having coordinates
(x, y), where x is Z-periodic. I have used the notation F{X1, . . . , Xn} to denote a foliation
generated by a finite set of vector fields X1, . . . , Xn.

The first two foliations in Figure 1 are regular while the third is singular; its leaves are
S1×(0,∞), S1×{0} and S1×(−∞, 0). All three foliations determine nonsmooth equivalence
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Figure 1: Leaves of some foliations of S1 × R.
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Figure 2: Equivalence relations of some foliations of S1 × R, restricted to T = {0} × R.

relations. The issue is visible when we restrict attention to the transversal T = {0} × R
passing through p = (0, 0). The resulting subsets of T × T are depicted in Figure 2.

The holonomy groupoid, however, is smooth for all these foliations. In terms of Figure 2,
what occurs is the problematic point (p, p) at the origin gets blown up and replaced with the
holonomy group Hp. For a regular foliation, given a point p and a transversal T through the
leaf of p, Hp may be viewed as the discrete group consisting of all germs of diffeomorphisms
of T fixing p which can be obtained using flows of vector fields in F . For both the regular
foliations shown above, Hp is infinite cyclic, and it is easy to imagine how such a replacement
can resolve the singularity.

A key difference between the regular and singular settings is that, whereas for regular
foliations holonomy is purely a discrete phenomenon, for singular foliations one can also have
continuous holonomy. For the singular foliation F{ d

dx
, y d

dy
} shown above, Hp is isomorphic

to the Lie group R. However, this is just one many foliations of S1 × R whose leaves are
S1× (0,∞), S1×{0} and S1× (−∞, 0). With the exception of some pathological examples,
the holonomy group Hp for any such foliation is naturally realized, for some positive integer
k, as a one-dimensional subgroup of the group Jk(R) of k-jets of orientation-preserving
diffeomorphisms of R which fix 0. Explicitly, Jk(R) = {a1y+a2y

2 + . . . aℓy
k : ai ∈ R, a1 ̸= 0}
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under the operation “compose and truncate”. Some examples are tabulated below:

F{ d
dx
, y d

dy
} ⇝ Hp

∼= {ety : t ∈ R} ⊆ J1(R)

F{ d
dx
, y2 d

dy
} ⇝ Hp

∼= {y + ty2 : y ∈ R} ⊆ J2(R)

F{ d
dx

+ y d
dy
, y2 d

dy
} ⇝ Hp

∼= {eny + ty2 : n ∈ Z, t ∈ R} ⊆ J2(R)

F{ d
dx

+ y2 d
dy
, y4 d

dy
} ⇝ Hp

∼= {y + ny2 + n2y3 + ty4 : n ∈ Z, t ∈ R} ⊆ J4(R)

Note that Hp is diffeomorphic to R in the first two cases and R × Z in the second two
cases. The precise details of how (p, p) is blown up into a copy of Hp depend also on two
natural orderings of group Jk(R), associated to the postive and negative half lines. As
Figure 3 shows, the topological possibilities for the blowup space are actually quite rich,
especially given how simple the leaf space of these foliations is. The last two surfaces are
not homeomorphic, as can be seen by counting the number of topological “ends”.
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Figure 3: Holonomy groupoids of some singular foliations of S1×R, restricted to T = {0}×R.

2 Postdoctoral research

2.1 A Dixmier-Malliavin theorem for Lie groupoids (published)

A famous theorem of Dixmier and Malliavin ([DM78], 3.1 Théorème) states that every
smooth, compactly-supported function on a Lie group can be expressed as a finite sum in
which each term is the convolution (with respect to Haar measure) of two such functions.
This result has applications to the representation theory of real reductive groups.

To complete the proof of the main theorem in [Fra20], I needed to know that every element
of the smooth convolution algebra of certain singular foliations could be expressed as a finite
sum of convolution products. In other words, a Lie groupoid version of the Dixmier-Malliavin
theorem was needed. In [Fra22], I took up the general form of this problem and extended
Dixmier-Malliavin’s result to the setting of arbitrary Lie groupoids.

Theorem 3 ([Fra22]). Let G be a Lie groupoid with a smooth Haar system and form the
smooth convolution algebra C∞

c (G). Then, every f ∈ C∞
c (G) can be expressed in the form

f = g1 ∗ h1 + . . . + gn ∗ hn

for some positive integer n and g1, h1, . . . , gn, hn ∈ C∞
c (G).

4



In the same article, I obtained results on the multiplication structure of certain ideals in
C∞

c (G) arising from functions vanishing to given order along a given invariant submanifold
Z of the unit space. These results on ideals are only interesting after one has generalized to
the groupoid setting. In the group case, the unit space consists of a single point and these
ideals do not arise at all.

2.2 H-Unitality of Smooth Groupoid Algebras (preprint)

In [Fra23a], I was able to extend the techniques of [Fra22] in order to show that the con-
volution algebra C∞

c (G) of smooth, compactly-supported functions on a Lie groupoid G is
homologically unital in the sense of Wodzicki. Consequently, this algebra has the excision
property for Hochschild and cyclic homology. I was also able to establish homological unital-
ity for the infinite order vanishing ideals J∞

Z ⊆ C∞
c (G) associated to invariant submanifolds

of the unit space discussed above. This is a noncommutative generalization of a classical
result of Wodzicki.

My work improves our understanding of localization around invariant subsets in calcu-
lations of the cyclic and Hochschild homology of convolution algebras of Lie groupoids. For
example, my results yield the following corollary.

Corollary 4 ([Fra23a]). For any Lie groupoid G, for any closed, invariant subset Z of the
unit space of G, the exact sequence

0 J∞
Z C∞

c (G) C∞
c (G)/J∞

Z 0

induces corresponding long exact sequences in Hochschild and cyclic homology.

In the same article, I furthermore establish analogous H-unitality and excision results
for noncommutative algebras of Whitney functions. Such calculations fall squarely within
Connes’s noncommutative geometry program. One may see [PPT23] for recent progress in
this area.

2.3 The Newlander-Nirenberg theorem for complex b-manifolds
(preprint)

Melrose [Mel93] introduced b-geometry (also called log-geometry) as an organizational frame-
work for studying partial differential operators on a smooth manifold M that suffer a first
order degeneracy along a given hypersurface Z. The b-tangent bundle bTM is the vector
bundle whose sections are smooth vector fields defined on all of M and tangent along Z.
Many classical geometries admit “b-analogues” in which the b-tangent bundle fills the role of
the usual tangent bundle (so one has symplectic b-geometry, Riemannian b-geometry, etc).
Mendoza [Men14] defined a complex b-structure to be an involutive subbundle bT 0,1M of the
complexified b-tangent bundle such that CbTM = bT 0,1M ⊕ bT 0,1M .

5



In joint work with Tatyana Barron [BF23b], I established that complex b-manifolds have
a single local model depending only on dimension. This can be thought of as the Newlander-
Nirenberg theorem for complex b-manifolds: there are no “local invariants” in complex b-
geometry.

Theorem 5 ([BF23b]). Around any point in the hypersurface Z of a complex b-manifold M ,
there are local coordinates (x0, y0, . . . , xn, yn), with x0 vanishing on Z, such that

1
2
(x0∂x0 + i∂y0) and 1

2
(∂xj

+ i∂yj), j = 1, . . . , n

constitute a local frame for bT 0,1M .

The challenge in proving this stems from the fact that the analogue of the Dolbeault
operator in b-geometry is nonelliptic.

2.4 Automorphisms of complex bk-manifolds (accepted)

Scott [Sco16] generalized b-calculus by introducing bk-manifolds, where k encodes the order
of degeneracy along the hypersurface Z ⊆ M . From the point of view of Scott’s theory,
ordinary b-geometry is the case k = 1. In another joint article with Tatyan Barron [BF23a],
I extend Mendoza’s definition of complex b-manifold in the spirit of Scott’s work by defining
what is a complex bk-manifold for k > 1. The case k = 2 is of particular interest, having
connections to hyperbolic geometry. We then restrict attention to the (real) two-dimensional
case and investigate the local and global automorphisms of complex bk-manifolds. We also
discuss candidates for function spaces one can attach to a complex bk-manifold.

Looking to the future, I expect that complex bk-manifolds also satisfy a Newlander-
Nirenberg theorem analogous to that of [BF23b] and plan to address the problem of local
normal forms for complex bk-manifolds in future work. Some broader research objectives
include studying the global structure of complex bk-manifolds (it is known this can be rich
thanks to a holonomy invariant constructed in my PhD thesis) and spaces of bk-holomorphic
functions. For example, considering analogues of classical Bergman spaces leads to a variety
of interesting questions relating to spectral theory and dimension counting.

2.5 The fundamental class of certain singular folations (project)

Suppose that (M,F) is a regular, codimension-1, transversely-oriented foliation. By a re-
sult of Connes ([Con94], Theorem 3.6.9), there is an associated nontorsion K-theory class
[V/F ] ∈ K1(C

∗(F)) called the transverse orientation class which may be defined by push-
ing forward the K-theory orientation class of any appropriate transversal. I have devised
a related construction to define the tranverse fundamental class [V/F ] of certain singular
foliations having exactly one singular leaf of codimension-1. For reasons relating to the
Connes-Thom isomorphism [Con81], this class [V/F ] instead lives in K0(C

∗(F)). Morally,
this happens because the leaf space is zero-dimensional in this singular context.
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Problem 6. Show that this K-theory class [V/F ] ∈ K0(C
∗(F)) is also nontorsion (and in

particular nonzero).

Having a nonzero canonically-defined orientation class is desirable because, for example,
it provides a path to defining and calculating numerical invariants of the singular foliation by
pairing the orientation class with elements of the dual theory. For instance, this opens up the
possiblity of defining a Godbillon-Vey invariant in a singular context. Indeed, one natural
approach to this problem is to construct a corresponding transverse fundamental class in
the cyclic cohomology of C∞

c (G), where G is the holonomy groupoid of F , in such a way
that the pairing with [V/F ] is nonzero. This follows a similar thread to Connes. However,
for reasons relating to the counterpart to the Connes-Thom isomorphism in cyclic theory
[ENN88], the transverse fundamental class lives in H2(C∞

c (G)) and is therefore represented
by a 2-trace. This makes formulas more complicated than in Connes’s case.

In this singular context, the holonomy group at any point on the singular leaf is a certain
1-dimensional Lie group ΓR (an extension of a solvable discrete group Γ by R). In another line
of attack, I have shown that Problem 6 is equivalent to showing that a certain homomorphism
ind : K1(C

∗(ΓR)) → Z ⊕ Z is compatible with a naturally defined automorphism of ΓR
corresponding to reversing the orientation of the real line. This compatibility can be checked
in a variety of examples.

2.6 Characterizing the smooth convolution algebra of singular fo-
liations induced by a Lie groupoids (project)

Let G⇒M be a Lie groupoid and let F be the singular foliation of M induced by G. It is
known that the smooth convolution algebra A(F) of Androulidakis and Skandalis fits into
an exact sequence

0 → I → C∞
c (G) → A(F) → 0

(fixing a smooth Haar system on G to make sense of convolution). However, the description
of the ideal I is very indirect and involves quantification over an infinite number of relators
taking the form of “roof diagrams” (Section 4.3, [AS09]). I am interested in describing the
ideal I in more explicit terms. A useful test case for this problem is the singular foliation of
R2 associated to the action of SL(2,R). Consider the quadratic mapping Z : R2 → sl(2,R)
defined by

Z(x, y) =

[
xy −x2

y2 −xy

]
.

One may show that Z defines a bi-invariant vector field on the transformation groupoid
R2⋊SL(2,R) that generates the singular foliation of R2⋊SL(2,R) consisting of vector fields
which are vertical with respect to both the source and target projections. Using this vector
field, I was able to obtain the following.

Theorem 7. Let F be the singular foliation of R2 generated by the natural action of SL(2,R).
Then, an element f ∈ C∞

c (R2 ⋊ SL(2,R)) belongs to the kernel of the natural quotient map
C∞

c (R2 ⋊ SL(2,R)) → A(F) if and only if f = Zg for g ∈ C∞
c (R2 ⋊ SL(2,R)).
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The proof of the above result is related to the “Moser trick” of symplectic geometry. I am
working on generalizing my arguments in order to obtain a concrete model for the smooth
convolution algebra for singular foliations induced by other Lie groupoids.

Problem 8. Let G ⇒ M be a Lie groupoid, satisfying some reasonable hypotheses, and
let F the singular foliation induced on M . Describe the kernel of the quotient mapping
C∞

c (G) → A(F) in terms of the singular foliation of G consisting of vector fields which are
vertical with respect to both the source and target projections.

2.7 Grassmannian manifolds as singular foliations (project)

Unlike in the setting of regular foliations, there can exist interesting singular foliations hav-
ing only a finite number of leaves. I am particularly interested in studying Grassmannian
manifolds and their cell structures from the perspective of singular foliations. For example,
consider the canonical cell structure of the real projective plane:

RPn = R0 ∪ R1 ∪ R2 ∪ . . . ∪ Rn.

To view this as a singular foliation, one must furthermore specify a module of vector fields
inducing the partition. A simple choice is the module F determined by the action of the
n-dimensional Lie group G ⊆ GL(n + 1,R) consisting of matrices of the form:

1 a1 a2 a3 . . . an
0 1 a1 a2 . . . an−1

0 0 1 a1 . . . an−2
...

...
...

...
...

0 0 0 0 . . . 1

 .

The orbits of the natural action of G on RPn are exactly the parition under consideration.
The group G is commutative and, indeed, isomorphic to Rn. The action of G on the top-
dimensional leaf is free and transitive and this can be used to show that the holonomy
groupoid of the singular foliation associated to this action is just the transformation groupoid
RPn ⋊ G. Correspondingly, the foliation C*-algebra C∗(F) is isomorphic to the crossed
product C*-algebra C(RPn) ⋊G. The K-theory of C∗(F) can therefore be computed using
the Connes-Thom isomorphism [Con81]. One obtains Ki(C

∗(F)) ∼= Ki+n(RPn).
In general, Grassmanians and other spaces admitting a natural finite stratications promise

to be a rich source of examples for further study.

3 Doctoral research

Note that, except for minor changes, my PhD dissertation [Fra21] reproduces the contents
of the articles [Fra22], [Fra20] and Francis [Fra23b].
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3.1 The smooth algebra of a one-dimensional singular foliation
(preprint)

Given any singular foliation F of a smooth manifold M , it was shown in [AS09] how to
construct a holonomy groupoid G(F), a smooth convolution algebra A(F) and a C*-algebra1

C∗(F). In the article [Fra20], I consider a specific family of singular foliations of the real line
and obtain a complete classification of their smooth convolution algebras and C*-algebras.
The main findings may be summarized as follows.

Theorem 9 ([Fra20], Theorems 3,4,5). For each positive integer k, let Fk
R denote the singular

foliation of the real line singly-generated by yk d
dy
.

1. The smooth convolution algebras of the Fk
R are pairwise nonisomorphic.

2. The C*-algebras of the Fk
R are of two isomorphism types that are determined by the

parity of k.

3. The C*-algebras of the Fk
R are represented in a natural way on L2(R). The images of

these representations are pairwise distinct.

This demonstrates the principle that there can be information stored in the smooth
algebra which is washed away when one passes to the C*-algebra.

3.2 On certain singular foliations with finitely many leaves (preprint)

In [Fra23b], I define and analyze a class of singular foliations which I call transversely order-k
foliations. These are foliations which have exactly one singular leaf L of codimension one
around which the transverse structure is modeled on the one-dimensional foliation of Fk

R in
the theorem above.

Unlike in the context of regular foliations, a loop in L does not determine a holonomy
transformation in the usual sense of a diffeomorphism germ on a transversal. I show, however,
that one does have a well-defined holonomy mapping at the level of (k− 1)-jets. In this way,
I assign an invariant to a transversely-order k foliation taking the form of a homomorphism
(well-defined up to conjugation) π1(L) → Jk−1 where Jk−1 denotes the group of (k− 1)-jets
of diffeomorphisms of R fixing the origin.

Theorem 10 ([Fra23b]). The restriction of a transversely order k foliation to a small neigh-
bourhood of its singular leaf L is uniquely determined by the above invariant. Moreover, the
possible values of this invariant are exhausted by transversely order k foliations.

I furthermore obtain a concrete description of the holonomy groupoid and C*-algebra of
a transversely order k foliation in terms of its holonomy invariant.

1Actually, multiple C*-completions can be considered, including a reduced and a maximal version. For
the examples considered here, all the standard completions agree.
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3.3 Subgraph-avoiding minimum decycling sets and k-conversion
sets in graphs (published)

My mathematical interests are quite varied and I enjoy interacting with researchers from
other areas. A collaboration with Professors Kieka Mynhardt and Jane Wodlinger resulted
in the article [FMW19] (published in the Australian Journal of Combinatorics). The main
result of this article is stated below. A minimum decycling set in a graph G (finite, with
no loops or multiple edges) is a set of vertices which breaks every cycle of G and has as few
vertices as possible.

Theorem 11 ([FMW19]). With the exception of the complete graph on r+ 1 vertices, every
finite graph G with maximum degree r has a minimum decycling set S whose induced subgraph
G[S] does not contain any (r − 2)-regular subgraph.

This result has several corollaries including the classical Brooks’ theorem, and the state-
ment that (except for the complete graph on 4 vertices), every graph of maximum degree 3
admits a minimum decycling set which is also an independent set.

4 Master’s research

My master’s thesis [Fra14] provides a self-contained account of the following result of Connes:

Theorem 12 ([Con81]). Suppose A is a C*-algebra with R-action α and α-invariant trace τ .
Then, τ̂∗ϕ

1
α[u] = 1

2πi
τ(δ(u)u−1) holds, where τ̂ is the dual trace, and ϕ1

α : K1(A) → K0(A⋊αR)
is the Connes-Thom isomorphism, δ = d

dt
|t=0, and u is a suitable unitary.

One novel aspect of my thesis is its avoidance of von Neumann algebraic methods. An-
other is a modern proof of following quantum mechanical theorem:

Theorem 13 (Bargmann-Wigner, c. 1960). If αt is a strongly continuous 1-parameter group
of ∗-automorphisms of the compact operators on a separable Hilbert space, then there exists
a strongly continuous 1-parameter unitary group Ut such that αt = Ad(Ut).

Together with Stone’s theorem on 1-parameter unitary groups, the above forms part of
the chain of reasoning that justifies the practice of expressing the time-evolution of a quantum
system by Schrodinger’s equation for a given Hamiltonian iℏ ∂

∂t
Ψ = HΨ. The usual method

of proof is to first implement αt by a measurable family of unitaries, then correct that family
to a 1-parameter group using a measurable, circle-valued cocycle and, finally, appeal to an
automatic continuity result of von Neumann. I gave a new proof of the above theorem based
on Connes’ lemma that, for any projection e, one can explicitly define a continuous unitary
cocycle ut such that Ad(ut) ◦ αt leaves e invariant.

Also during my masters, I wrote an expository article [Fra12] on a 1910 theorem of
Brouwer characterizing the Cantor set and 1920 theorem of Sierpinski characterizing the
rationals. Due to its expository nature, I did not seek its publication, but it nonetheless
attracted positive attention on mathoverflow [Kjo] and was cited in the general topology
literature [EHW18].

10



References

[AS09] I. Androulidakis and G. Skandalis. “The holonomy groupoid of a singular folia-
tion”. In: J. Reine Angew. Math. 626 (2009), pp. 1–37.

[BF23a] T. Barron and M. Francis. “On Automorphisms of Complex bk-Manifolds”. In:
arXiv e-prints, arXiv:2310.08014 (Oct. 2023).

[BF23b] T. Barron and M. Francis. “The Newlander-Nirenberg theorem for complex b-
manifolds”. In: arXiv e-prints, arXiv:2310.08013 (Oct. 2023).

[Con81] A. Connes. “An analogue of the Thom isomorphism for crossed products of a
C∗-algebra by an action of R”. In: Adv. in Math. 39.1 (1981), pp. 31–55.

[Con82] A. Connes. “A survey of foliations and operator algebras”. In: Operator algebras
and applications, Part I (Kingston, Ont., 1980). Vol. 38. Proc. Sympos. Pure
Math. Amer. Math. Soc., Providence, R.I., 1982, pp. 521–628.

[Con94] A. Connes. Noncommutative geometry. Academic Press, Inc., San Diego, CA,
1994, pp. xiv+661. isbn: 0-12-185860-X.

[DM78] J. Dixmier and P. Malliavin. “Factorisations de fonctions et de vecteurs indéfiniment
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